You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

506 lines
20KB

  1. /*
  2. * Copyright (c) 2002 Dieter Shirley
  3. *
  4. * This library is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2 of the License, or (at your option) any later version.
  8. *
  9. * This library is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with this library; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. */
  18. #include <stdlib.h>
  19. #include <stdio.h>
  20. #include "../dsputil.h"
  21. #include "../mpegvideo.h"
  22. // Swaps two variables (used for altivec registers)
  23. #define SWAP(a,b) \
  24. do { \
  25. __typeof__(a) swap_temp=a; \
  26. a=b; \
  27. b=swap_temp; \
  28. } while (0)
  29. // transposes a matrix consisting of four vectors with four elements each
  30. #define TRANSPOSE4(a,b,c,d) \
  31. do { \
  32. __typeof__(a) _trans_ach = vec_mergeh(a, c); \
  33. __typeof__(a) _trans_acl = vec_mergel(a, c); \
  34. __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
  35. __typeof__(a) _trans_bdl = vec_mergel(b, d); \
  36. \
  37. a = vec_mergeh(_trans_ach, _trans_bdh); \
  38. b = vec_mergel(_trans_ach, _trans_bdh); \
  39. c = vec_mergeh(_trans_acl, _trans_bdl); \
  40. d = vec_mergel(_trans_acl, _trans_bdl); \
  41. } while (0)
  42. #define TRANSPOSE8(a,b,c,d,e,f,g,h) \
  43. do { \
  44. __typeof__(a) _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \
  45. __typeof__(a) _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \
  46. \
  47. _A1 = vec_mergeh (a, e); \
  48. _B1 = vec_mergel (a, e); \
  49. _C1 = vec_mergeh (b, f); \
  50. _D1 = vec_mergel (b, f); \
  51. _E1 = vec_mergeh (c, g); \
  52. _F1 = vec_mergel (c, g); \
  53. _G1 = vec_mergeh (d, h); \
  54. _H1 = vec_mergel (d, h); \
  55. \
  56. _A2 = vec_mergeh (_A1, _E1); \
  57. _B2 = vec_mergel (_A1, _E1); \
  58. _C2 = vec_mergeh (_B1, _F1); \
  59. _D2 = vec_mergel (_B1, _F1); \
  60. _E2 = vec_mergeh (_C1, _G1); \
  61. _F2 = vec_mergel (_C1, _G1); \
  62. _G2 = vec_mergeh (_D1, _H1); \
  63. _H2 = vec_mergel (_D1, _H1); \
  64. \
  65. a = vec_mergeh (_A2, _E2); \
  66. b = vec_mergel (_A2, _E2); \
  67. c = vec_mergeh (_B2, _F2); \
  68. d = vec_mergel (_B2, _F2); \
  69. e = vec_mergeh (_C2, _G2); \
  70. f = vec_mergel (_C2, _G2); \
  71. g = vec_mergeh (_D2, _H2); \
  72. h = vec_mergel (_D2, _H2); \
  73. } while (0)
  74. // Loads a four-byte value (int or float) from the target address
  75. // into every element in the target vector. Only works if the
  76. // target address is four-byte aligned (which should be always).
  77. #define LOAD4(vec, address) \
  78. { \
  79. __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
  80. vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
  81. vec = vec_ld(0, _load_addr); \
  82. vec = vec_perm(vec, vec, _perm_vec); \
  83. vec = vec_splat(vec, 0); \
  84. }
  85. int dct_quantize_altivec(MpegEncContext* s,
  86. DCTELEM* data, int n,
  87. int qscale, int* overflow)
  88. {
  89. int lastNonZero;
  90. vector float row0, row1, row2, row3, row4, row5, row6, row7;
  91. vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
  92. const vector float zero = (const vector float)(0.0f);
  93. // Load the data into the row/alt vectors
  94. {
  95. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  96. data0 = vec_ld(0, data);
  97. data1 = vec_ld(16, data);
  98. data2 = vec_ld(32, data);
  99. data3 = vec_ld(48, data);
  100. data4 = vec_ld(64, data);
  101. data5 = vec_ld(80, data);
  102. data6 = vec_ld(96, data);
  103. data7 = vec_ld(112, data);
  104. // Transpose the data before we start
  105. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  106. // load the data into floating point vectors. We load
  107. // the high half of each row into the main row vectors
  108. // and the low half into the alt vectors.
  109. row0 = vec_ctf(vec_unpackh(data0), 0);
  110. alt0 = vec_ctf(vec_unpackl(data0), 0);
  111. row1 = vec_ctf(vec_unpackh(data1), 0);
  112. alt1 = vec_ctf(vec_unpackl(data1), 0);
  113. row2 = vec_ctf(vec_unpackh(data2), 0);
  114. alt2 = vec_ctf(vec_unpackl(data2), 0);
  115. row3 = vec_ctf(vec_unpackh(data3), 0);
  116. alt3 = vec_ctf(vec_unpackl(data3), 0);
  117. row4 = vec_ctf(vec_unpackh(data4), 0);
  118. alt4 = vec_ctf(vec_unpackl(data4), 0);
  119. row5 = vec_ctf(vec_unpackh(data5), 0);
  120. alt5 = vec_ctf(vec_unpackl(data5), 0);
  121. row6 = vec_ctf(vec_unpackh(data6), 0);
  122. alt6 = vec_ctf(vec_unpackl(data6), 0);
  123. row7 = vec_ctf(vec_unpackh(data7), 0);
  124. alt7 = vec_ctf(vec_unpackl(data7), 0);
  125. }
  126. // The following block could exist as a separate an altivec dct
  127. // function. However, if we put it inline, the DCT data can remain
  128. // in the vector local variables, as floats, which we'll use during the
  129. // quantize step...
  130. {
  131. const vector float vec_0_298631336 = (vector float)(0.298631336f);
  132. const vector float vec_0_390180644 = (vector float)(-0.390180644f);
  133. const vector float vec_0_541196100 = (vector float)(0.541196100f);
  134. const vector float vec_0_765366865 = (vector float)(0.765366865f);
  135. const vector float vec_0_899976223 = (vector float)(-0.899976223f);
  136. const vector float vec_1_175875602 = (vector float)(1.175875602f);
  137. const vector float vec_1_501321110 = (vector float)(1.501321110f);
  138. const vector float vec_1_847759065 = (vector float)(-1.847759065f);
  139. const vector float vec_1_961570560 = (vector float)(-1.961570560f);
  140. const vector float vec_2_053119869 = (vector float)(2.053119869f);
  141. const vector float vec_2_562915447 = (vector float)(-2.562915447f);
  142. const vector float vec_3_072711026 = (vector float)(3.072711026f);
  143. int whichPass, whichHalf;
  144. for(whichPass = 1; whichPass<=2; whichPass++)
  145. {
  146. for(whichHalf = 1; whichHalf<=2; whichHalf++)
  147. {
  148. vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  149. vector float tmp10, tmp11, tmp12, tmp13;
  150. vector float z1, z2, z3, z4, z5;
  151. tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
  152. tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
  153. tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
  154. tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
  155. tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
  156. tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
  157. tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
  158. tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
  159. tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
  160. tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
  161. tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
  162. tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
  163. // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
  164. row0 = vec_add(tmp10, tmp11);
  165. // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
  166. row4 = vec_sub(tmp10, tmp11);
  167. // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  168. z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
  169. // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  170. // CONST_BITS-PASS1_BITS);
  171. row2 = vec_madd(tmp13, vec_0_765366865, z1);
  172. // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  173. // CONST_BITS-PASS1_BITS);
  174. row6 = vec_madd(tmp12, vec_1_847759065, z1);
  175. z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
  176. z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
  177. z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
  178. z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
  179. // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  180. z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
  181. // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  182. z3 = vec_madd(z3, vec_1_961570560, z5);
  183. // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  184. z4 = vec_madd(z4, vec_0_390180644, z5);
  185. // The following adds are rolled into the multiplies above
  186. // z3 = vec_add(z3, z5); // z3 += z5;
  187. // z4 = vec_add(z4, z5); // z4 += z5;
  188. // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  189. // Wow! It's actually more effecient to roll this multiply
  190. // into the adds below, even thought the multiply gets done twice!
  191. // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
  192. // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  193. // Same with this one...
  194. // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
  195. // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  196. // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
  197. row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
  198. // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  199. // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
  200. row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
  201. // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  202. // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
  203. row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
  204. // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  205. // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
  206. row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
  207. // Swap the row values with the alts. If this is the first half,
  208. // this sets up the low values to be acted on in the second half.
  209. // If this is the second half, it puts the high values back in
  210. // the row values where they are expected to be when we're done.
  211. SWAP(row0, alt0);
  212. SWAP(row1, alt1);
  213. SWAP(row2, alt2);
  214. SWAP(row3, alt3);
  215. SWAP(row4, alt4);
  216. SWAP(row5, alt5);
  217. SWAP(row6, alt6);
  218. SWAP(row7, alt7);
  219. }
  220. if (whichPass == 1)
  221. {
  222. // transpose the data for the second pass
  223. // First, block transpose the upper right with lower left.
  224. SWAP(row4, alt0);
  225. SWAP(row5, alt1);
  226. SWAP(row6, alt2);
  227. SWAP(row7, alt3);
  228. // Now, transpose each block of four
  229. TRANSPOSE4(row0, row1, row2, row3);
  230. TRANSPOSE4(row4, row5, row6, row7);
  231. TRANSPOSE4(alt0, alt1, alt2, alt3);
  232. TRANSPOSE4(alt4, alt5, alt6, alt7);
  233. }
  234. }
  235. }
  236. // used after quantise step
  237. int oldBaseValue = 0;
  238. // perform the quantise step, using the floating point data
  239. // still in the row/alt registers
  240. {
  241. const int* biasAddr;
  242. const vector signed int* qmat;
  243. vector float bias, negBias;
  244. if (s->mb_intra)
  245. {
  246. vector signed int baseVector;
  247. // We must cache element 0 in the intra case
  248. // (it needs special handling).
  249. baseVector = vec_cts(vec_splat(row0, 0), 0);
  250. vec_ste(baseVector, 0, &oldBaseValue);
  251. qmat = (vector signed int*)s->q_intra_matrix[qscale];
  252. biasAddr = &(s->intra_quant_bias);
  253. }
  254. else
  255. {
  256. qmat = (vector signed int*)s->q_inter_matrix[qscale];
  257. biasAddr = &(s->inter_quant_bias);
  258. }
  259. // Load the bias vector (We add 0.5 to the bias so that we're
  260. // rounding when we convert to int, instead of flooring.)
  261. {
  262. vector signed int biasInt;
  263. const vector float negOneFloat = (vector float)(-1.0f);
  264. LOAD4(biasInt, biasAddr);
  265. bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
  266. negBias = vec_madd(bias, negOneFloat, zero);
  267. }
  268. {
  269. vector float q0, q1, q2, q3, q4, q5, q6, q7;
  270. q0 = vec_ctf(qmat[0], QMAT_SHIFT);
  271. q1 = vec_ctf(qmat[2], QMAT_SHIFT);
  272. q2 = vec_ctf(qmat[4], QMAT_SHIFT);
  273. q3 = vec_ctf(qmat[6], QMAT_SHIFT);
  274. q4 = vec_ctf(qmat[8], QMAT_SHIFT);
  275. q5 = vec_ctf(qmat[10], QMAT_SHIFT);
  276. q6 = vec_ctf(qmat[12], QMAT_SHIFT);
  277. q7 = vec_ctf(qmat[14], QMAT_SHIFT);
  278. row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
  279. vec_cmpgt(row0, zero));
  280. row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
  281. vec_cmpgt(row1, zero));
  282. row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
  283. vec_cmpgt(row2, zero));
  284. row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
  285. vec_cmpgt(row3, zero));
  286. row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
  287. vec_cmpgt(row4, zero));
  288. row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
  289. vec_cmpgt(row5, zero));
  290. row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
  291. vec_cmpgt(row6, zero));
  292. row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
  293. vec_cmpgt(row7, zero));
  294. q0 = vec_ctf(qmat[1], QMAT_SHIFT);
  295. q1 = vec_ctf(qmat[3], QMAT_SHIFT);
  296. q2 = vec_ctf(qmat[5], QMAT_SHIFT);
  297. q3 = vec_ctf(qmat[7], QMAT_SHIFT);
  298. q4 = vec_ctf(qmat[9], QMAT_SHIFT);
  299. q5 = vec_ctf(qmat[11], QMAT_SHIFT);
  300. q6 = vec_ctf(qmat[13], QMAT_SHIFT);
  301. q7 = vec_ctf(qmat[15], QMAT_SHIFT);
  302. alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
  303. vec_cmpgt(alt0, zero));
  304. alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
  305. vec_cmpgt(alt1, zero));
  306. alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
  307. vec_cmpgt(alt2, zero));
  308. alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
  309. vec_cmpgt(alt3, zero));
  310. alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
  311. vec_cmpgt(alt4, zero));
  312. alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
  313. vec_cmpgt(alt5, zero));
  314. alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
  315. vec_cmpgt(alt6, zero));
  316. alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
  317. vec_cmpgt(alt7, zero));
  318. }
  319. }
  320. // Store the data back into the original block
  321. {
  322. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  323. data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
  324. data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
  325. data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
  326. data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
  327. data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
  328. data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
  329. data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
  330. data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
  331. {
  332. // Clamp for overflow
  333. vector signed int max_q_int, min_q_int;
  334. vector signed short max_q, min_q;
  335. LOAD4(max_q_int, &(s->max_qcoeff));
  336. LOAD4(min_q_int, &(s->min_qcoeff));
  337. max_q = vec_pack(max_q_int, max_q_int);
  338. min_q = vec_pack(min_q_int, min_q_int);
  339. data0 = vec_max(vec_min(data0, max_q), min_q);
  340. data1 = vec_max(vec_min(data1, max_q), min_q);
  341. data2 = vec_max(vec_min(data2, max_q), min_q);
  342. data4 = vec_max(vec_min(data4, max_q), min_q);
  343. data5 = vec_max(vec_min(data5, max_q), min_q);
  344. data6 = vec_max(vec_min(data6, max_q), min_q);
  345. data7 = vec_max(vec_min(data7, max_q), min_q);
  346. }
  347. vector bool char zero_01, zero_23, zero_45, zero_67;
  348. vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67;
  349. vector signed char negOne = vec_splat_s8(-1);
  350. vector signed char* scanPtr =
  351. (vector signed char*)(s->intra_scantable.inverse);
  352. // Determine the largest non-zero index.
  353. zero_01 = vec_pack(vec_cmpeq(data0, (vector short)zero),
  354. vec_cmpeq(data1, (vector short)zero));
  355. zero_23 = vec_pack(vec_cmpeq(data2, (vector short)zero),
  356. vec_cmpeq(data3, (vector short)zero));
  357. zero_45 = vec_pack(vec_cmpeq(data4, (vector short)zero),
  358. vec_cmpeq(data5, (vector short)zero));
  359. zero_67 = vec_pack(vec_cmpeq(data6, (vector short)zero),
  360. vec_cmpeq(data7, (vector short)zero));
  361. // 64 biggest values
  362. scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01);
  363. scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23);
  364. scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45);
  365. scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67);
  366. // 32 largest values
  367. scanIndices_01 = vec_max(scanIndices_01, scanIndices_23);
  368. scanIndices_45 = vec_max(scanIndices_45, scanIndices_67);
  369. // 16 largest values
  370. scanIndices_01 = vec_max(scanIndices_01, scanIndices_45);
  371. // 8 largest values
  372. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  373. vec_mergel(scanIndices_01, negOne));
  374. // 4 largest values
  375. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  376. vec_mergel(scanIndices_01, negOne));
  377. // 2 largest values
  378. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  379. vec_mergel(scanIndices_01, negOne));
  380. // largest value
  381. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  382. vec_mergel(scanIndices_01, negOne));
  383. scanIndices_01 = vec_splat(scanIndices_01, 0);
  384. signed char lastNonZeroChar;
  385. vec_ste(scanIndices_01, 0, &lastNonZeroChar);
  386. lastNonZero = lastNonZeroChar;
  387. // While the data is still in vectors we check for the transpose IDCT permute
  388. // and handle it using the vector unit if we can. This is the permute used
  389. // by the altivec idct, so it is common when using the altivec dct.
  390. if ((lastNonZero > 0) && (s->idct_permutation_type == FF_TRANSPOSE_IDCT_PERM))
  391. {
  392. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  393. }
  394. vec_st(data0, 0, data);
  395. vec_st(data1, 16, data);
  396. vec_st(data2, 32, data);
  397. vec_st(data3, 48, data);
  398. vec_st(data4, 64, data);
  399. vec_st(data5, 80, data);
  400. vec_st(data6, 96, data);
  401. vec_st(data7, 112, data);
  402. }
  403. // special handling of block[0]
  404. if (s->mb_intra)
  405. {
  406. if (!s->h263_aic)
  407. {
  408. if (n < 4)
  409. oldBaseValue /= s->y_dc_scale;
  410. else
  411. oldBaseValue /= s->c_dc_scale;
  412. }
  413. // Divide by 8, rounding the result
  414. data[0] = (oldBaseValue + 4) >> 3;
  415. }
  416. // We handled the tranpose permutation above and we don't
  417. // need to permute the "no" permutation case.
  418. if ((lastNonZero > 0) &&
  419. (s->idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
  420. (s->idct_permutation_type != FF_NO_IDCT_PERM))
  421. {
  422. ff_block_permute(data, s->idct_permutation,
  423. s->intra_scantable.scantable, lastNonZero);
  424. }
  425. return lastNonZero;
  426. }