You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

787 lines
23KB

  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000, 2001 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include "avcodec.h"
  20. #include "mpegaudio.h"
  21. /* currently, cannot change these constants (need to modify
  22. quantization stage) */
  23. #define FRAC_BITS 15
  24. #define WFRAC_BITS 14
  25. #define MUL(a,b) (((INT64)(a) * (INT64)(b)) >> FRAC_BITS)
  26. #define FIX(a) ((int)((a) * (1 << FRAC_BITS)))
  27. #define SAMPLES_BUF_SIZE 4096
  28. typedef struct MpegAudioContext {
  29. PutBitContext pb;
  30. int nb_channels;
  31. int freq, bit_rate;
  32. int lsf; /* 1 if mpeg2 low bitrate selected */
  33. int bitrate_index; /* bit rate */
  34. int freq_index;
  35. int frame_size; /* frame size, in bits, without padding */
  36. INT64 nb_samples; /* total number of samples encoded */
  37. /* padding computation */
  38. int frame_frac, frame_frac_incr, do_padding;
  39. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  40. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  41. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  42. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  43. /* code to group 3 scale factors */
  44. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  45. int sblimit; /* number of used subbands */
  46. const unsigned char *alloc_table;
  47. } MpegAudioContext;
  48. /* define it to use floats in quantization (I don't like floats !) */
  49. //#define USE_FLOATS
  50. #include "mpegaudiotab.h"
  51. int MPA_encode_init(AVCodecContext *avctx)
  52. {
  53. MpegAudioContext *s = avctx->priv_data;
  54. int freq = avctx->sample_rate;
  55. int bitrate = avctx->bit_rate;
  56. int channels = avctx->channels;
  57. int i, v, table;
  58. float a;
  59. if (channels > 2)
  60. return -1;
  61. bitrate = bitrate / 1000;
  62. s->nb_channels = channels;
  63. s->freq = freq;
  64. s->bit_rate = bitrate * 1000;
  65. avctx->frame_size = MPA_FRAME_SIZE;
  66. /* encoding freq */
  67. s->lsf = 0;
  68. for(i=0;i<3;i++) {
  69. if (mpa_freq_tab[i] == freq)
  70. break;
  71. if ((mpa_freq_tab[i] / 2) == freq) {
  72. s->lsf = 1;
  73. break;
  74. }
  75. }
  76. if (i == 3)
  77. return -1;
  78. s->freq_index = i;
  79. /* encoding bitrate & frequency */
  80. for(i=0;i<15;i++) {
  81. if (mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  82. break;
  83. }
  84. if (i == 15)
  85. return -1;
  86. s->bitrate_index = i;
  87. /* compute total header size & pad bit */
  88. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  89. s->frame_size = ((int)a) * 8;
  90. /* frame fractional size to compute padding */
  91. s->frame_frac = 0;
  92. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  93. /* select the right allocation table */
  94. table = l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  95. /* number of used subbands */
  96. s->sblimit = sblimit_table[table];
  97. s->alloc_table = alloc_tables[table];
  98. #ifdef DEBUG
  99. printf("%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  100. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  101. #endif
  102. for(i=0;i<s->nb_channels;i++)
  103. s->samples_offset[i] = 0;
  104. for(i=0;i<257;i++) {
  105. int v;
  106. v = mpa_enwindow[i];
  107. #if WFRAC_BITS != 16
  108. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  109. #endif
  110. filter_bank[i] = v;
  111. if ((i & 63) != 0)
  112. v = -v;
  113. if (i != 0)
  114. filter_bank[512 - i] = v;
  115. }
  116. for(i=0;i<64;i++) {
  117. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  118. if (v <= 0)
  119. v = 1;
  120. scale_factor_table[i] = v;
  121. #ifdef USE_FLOATS
  122. scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  123. #else
  124. #define P 15
  125. scale_factor_shift[i] = 21 - P - (i / 3);
  126. scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
  127. #endif
  128. }
  129. for(i=0;i<128;i++) {
  130. v = i - 64;
  131. if (v <= -3)
  132. v = 0;
  133. else if (v < 0)
  134. v = 1;
  135. else if (v == 0)
  136. v = 2;
  137. else if (v < 3)
  138. v = 3;
  139. else
  140. v = 4;
  141. scale_diff_table[i] = v;
  142. }
  143. for(i=0;i<17;i++) {
  144. v = quant_bits[i];
  145. if (v < 0)
  146. v = -v;
  147. else
  148. v = v * 3;
  149. total_quant_bits[i] = 12 * v;
  150. }
  151. avctx->coded_frame= avcodec_alloc_frame();
  152. avctx->coded_frame->key_frame= 1;
  153. return 0;
  154. }
  155. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  156. static void idct32(int *out, int *tab)
  157. {
  158. int i, j;
  159. int *t, *t1, xr;
  160. const int *xp = costab32;
  161. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  162. t = tab + 30;
  163. t1 = tab + 2;
  164. do {
  165. t[0] += t[-4];
  166. t[1] += t[1 - 4];
  167. t -= 4;
  168. } while (t != t1);
  169. t = tab + 28;
  170. t1 = tab + 4;
  171. do {
  172. t[0] += t[-8];
  173. t[1] += t[1-8];
  174. t[2] += t[2-8];
  175. t[3] += t[3-8];
  176. t -= 8;
  177. } while (t != t1);
  178. t = tab;
  179. t1 = tab + 32;
  180. do {
  181. t[ 3] = -t[ 3];
  182. t[ 6] = -t[ 6];
  183. t[11] = -t[11];
  184. t[12] = -t[12];
  185. t[13] = -t[13];
  186. t[15] = -t[15];
  187. t += 16;
  188. } while (t != t1);
  189. t = tab;
  190. t1 = tab + 8;
  191. do {
  192. int x1, x2, x3, x4;
  193. x3 = MUL(t[16], FIX(SQRT2*0.5));
  194. x4 = t[0] - x3;
  195. x3 = t[0] + x3;
  196. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  197. x1 = MUL((t[8] - x2), xp[0]);
  198. x2 = MUL((t[8] + x2), xp[1]);
  199. t[ 0] = x3 + x1;
  200. t[ 8] = x4 - x2;
  201. t[16] = x4 + x2;
  202. t[24] = x3 - x1;
  203. t++;
  204. } while (t != t1);
  205. xp += 2;
  206. t = tab;
  207. t1 = tab + 4;
  208. do {
  209. xr = MUL(t[28],xp[0]);
  210. t[28] = (t[0] - xr);
  211. t[0] = (t[0] + xr);
  212. xr = MUL(t[4],xp[1]);
  213. t[ 4] = (t[24] - xr);
  214. t[24] = (t[24] + xr);
  215. xr = MUL(t[20],xp[2]);
  216. t[20] = (t[8] - xr);
  217. t[ 8] = (t[8] + xr);
  218. xr = MUL(t[12],xp[3]);
  219. t[12] = (t[16] - xr);
  220. t[16] = (t[16] + xr);
  221. t++;
  222. } while (t != t1);
  223. xp += 4;
  224. for (i = 0; i < 4; i++) {
  225. xr = MUL(tab[30-i*4],xp[0]);
  226. tab[30-i*4] = (tab[i*4] - xr);
  227. tab[ i*4] = (tab[i*4] + xr);
  228. xr = MUL(tab[ 2+i*4],xp[1]);
  229. tab[ 2+i*4] = (tab[28-i*4] - xr);
  230. tab[28-i*4] = (tab[28-i*4] + xr);
  231. xr = MUL(tab[31-i*4],xp[0]);
  232. tab[31-i*4] = (tab[1+i*4] - xr);
  233. tab[ 1+i*4] = (tab[1+i*4] + xr);
  234. xr = MUL(tab[ 3+i*4],xp[1]);
  235. tab[ 3+i*4] = (tab[29-i*4] - xr);
  236. tab[29-i*4] = (tab[29-i*4] + xr);
  237. xp += 2;
  238. }
  239. t = tab + 30;
  240. t1 = tab + 1;
  241. do {
  242. xr = MUL(t1[0], *xp);
  243. t1[0] = (t[0] - xr);
  244. t[0] = (t[0] + xr);
  245. t -= 2;
  246. t1 += 2;
  247. xp++;
  248. } while (t >= tab);
  249. for(i=0;i<32;i++) {
  250. out[i] = tab[bitinv32[i]];
  251. }
  252. }
  253. #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
  254. static void filter(MpegAudioContext *s, int ch, short *samples, int incr)
  255. {
  256. short *p, *q;
  257. int sum, offset, i, j;
  258. int tmp[64];
  259. int tmp1[32];
  260. int *out;
  261. // print_pow1(samples, 1152);
  262. offset = s->samples_offset[ch];
  263. out = &s->sb_samples[ch][0][0][0];
  264. for(j=0;j<36;j++) {
  265. /* 32 samples at once */
  266. for(i=0;i<32;i++) {
  267. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  268. samples += incr;
  269. }
  270. /* filter */
  271. p = s->samples_buf[ch] + offset;
  272. q = filter_bank;
  273. /* maxsum = 23169 */
  274. for(i=0;i<64;i++) {
  275. sum = p[0*64] * q[0*64];
  276. sum += p[1*64] * q[1*64];
  277. sum += p[2*64] * q[2*64];
  278. sum += p[3*64] * q[3*64];
  279. sum += p[4*64] * q[4*64];
  280. sum += p[5*64] * q[5*64];
  281. sum += p[6*64] * q[6*64];
  282. sum += p[7*64] * q[7*64];
  283. tmp[i] = sum;
  284. p++;
  285. q++;
  286. }
  287. tmp1[0] = tmp[16] >> WSHIFT;
  288. for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
  289. for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
  290. idct32(out, tmp1);
  291. /* advance of 32 samples */
  292. offset -= 32;
  293. out += 32;
  294. /* handle the wrap around */
  295. if (offset < 0) {
  296. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  297. s->samples_buf[ch], (512 - 32) * 2);
  298. offset = SAMPLES_BUF_SIZE - 512;
  299. }
  300. }
  301. s->samples_offset[ch] = offset;
  302. // print_pow(s->sb_samples, 1152);
  303. }
  304. static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
  305. unsigned char scale_factors[SBLIMIT][3],
  306. int sb_samples[3][12][SBLIMIT],
  307. int sblimit)
  308. {
  309. int *p, vmax, v, n, i, j, k, code;
  310. int index, d1, d2;
  311. unsigned char *sf = &scale_factors[0][0];
  312. for(j=0;j<sblimit;j++) {
  313. for(i=0;i<3;i++) {
  314. /* find the max absolute value */
  315. p = &sb_samples[i][0][j];
  316. vmax = abs(*p);
  317. for(k=1;k<12;k++) {
  318. p += SBLIMIT;
  319. v = abs(*p);
  320. if (v > vmax)
  321. vmax = v;
  322. }
  323. /* compute the scale factor index using log 2 computations */
  324. if (vmax > 0) {
  325. n = av_log2(vmax);
  326. /* n is the position of the MSB of vmax. now
  327. use at most 2 compares to find the index */
  328. index = (21 - n) * 3 - 3;
  329. if (index >= 0) {
  330. while (vmax <= scale_factor_table[index+1])
  331. index++;
  332. } else {
  333. index = 0; /* very unlikely case of overflow */
  334. }
  335. } else {
  336. index = 62; /* value 63 is not allowed */
  337. }
  338. #if 0
  339. printf("%2d:%d in=%x %x %d\n",
  340. j, i, vmax, scale_factor_table[index], index);
  341. #endif
  342. /* store the scale factor */
  343. assert(index >=0 && index <= 63);
  344. sf[i] = index;
  345. }
  346. /* compute the transmission factor : look if the scale factors
  347. are close enough to each other */
  348. d1 = scale_diff_table[sf[0] - sf[1] + 64];
  349. d2 = scale_diff_table[sf[1] - sf[2] + 64];
  350. /* handle the 25 cases */
  351. switch(d1 * 5 + d2) {
  352. case 0*5+0:
  353. case 0*5+4:
  354. case 3*5+4:
  355. case 4*5+0:
  356. case 4*5+4:
  357. code = 0;
  358. break;
  359. case 0*5+1:
  360. case 0*5+2:
  361. case 4*5+1:
  362. case 4*5+2:
  363. code = 3;
  364. sf[2] = sf[1];
  365. break;
  366. case 0*5+3:
  367. case 4*5+3:
  368. code = 3;
  369. sf[1] = sf[2];
  370. break;
  371. case 1*5+0:
  372. case 1*5+4:
  373. case 2*5+4:
  374. code = 1;
  375. sf[1] = sf[0];
  376. break;
  377. case 1*5+1:
  378. case 1*5+2:
  379. case 2*5+0:
  380. case 2*5+1:
  381. case 2*5+2:
  382. code = 2;
  383. sf[1] = sf[2] = sf[0];
  384. break;
  385. case 2*5+3:
  386. case 3*5+3:
  387. code = 2;
  388. sf[0] = sf[1] = sf[2];
  389. break;
  390. case 3*5+0:
  391. case 3*5+1:
  392. case 3*5+2:
  393. code = 2;
  394. sf[0] = sf[2] = sf[1];
  395. break;
  396. case 1*5+3:
  397. code = 2;
  398. if (sf[0] > sf[2])
  399. sf[0] = sf[2];
  400. sf[1] = sf[2] = sf[0];
  401. break;
  402. default:
  403. av_abort();
  404. }
  405. #if 0
  406. printf("%d: %2d %2d %2d %d %d -> %d\n", j,
  407. sf[0], sf[1], sf[2], d1, d2, code);
  408. #endif
  409. scale_code[j] = code;
  410. sf += 3;
  411. }
  412. }
  413. /* The most important function : psycho acoustic module. In this
  414. encoder there is basically none, so this is the worst you can do,
  415. but also this is the simpler. */
  416. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  417. {
  418. int i;
  419. for(i=0;i<s->sblimit;i++) {
  420. smr[i] = (int)(fixed_smr[i] * 10);
  421. }
  422. }
  423. #define SB_NOTALLOCATED 0
  424. #define SB_ALLOCATED 1
  425. #define SB_NOMORE 2
  426. /* Try to maximize the smr while using a number of bits inferior to
  427. the frame size. I tried to make the code simpler, faster and
  428. smaller than other encoders :-) */
  429. static void compute_bit_allocation(MpegAudioContext *s,
  430. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  431. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  432. int *padding)
  433. {
  434. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  435. int incr;
  436. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  437. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  438. const unsigned char *alloc;
  439. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  440. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  441. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  442. /* compute frame size and padding */
  443. max_frame_size = s->frame_size;
  444. s->frame_frac += s->frame_frac_incr;
  445. if (s->frame_frac >= 65536) {
  446. s->frame_frac -= 65536;
  447. s->do_padding = 1;
  448. max_frame_size += 8;
  449. } else {
  450. s->do_padding = 0;
  451. }
  452. /* compute the header + bit alloc size */
  453. current_frame_size = 32;
  454. alloc = s->alloc_table;
  455. for(i=0;i<s->sblimit;i++) {
  456. incr = alloc[0];
  457. current_frame_size += incr * s->nb_channels;
  458. alloc += 1 << incr;
  459. }
  460. for(;;) {
  461. /* look for the subband with the largest signal to mask ratio */
  462. max_sb = -1;
  463. max_ch = -1;
  464. max_smr = 0x80000000;
  465. for(ch=0;ch<s->nb_channels;ch++) {
  466. for(i=0;i<s->sblimit;i++) {
  467. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  468. max_smr = smr[ch][i];
  469. max_sb = i;
  470. max_ch = ch;
  471. }
  472. }
  473. }
  474. #if 0
  475. printf("current=%d max=%d max_sb=%d alloc=%d\n",
  476. current_frame_size, max_frame_size, max_sb,
  477. bit_alloc[max_sb]);
  478. #endif
  479. if (max_sb < 0)
  480. break;
  481. /* find alloc table entry (XXX: not optimal, should use
  482. pointer table) */
  483. alloc = s->alloc_table;
  484. for(i=0;i<max_sb;i++) {
  485. alloc += 1 << alloc[0];
  486. }
  487. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  488. /* nothing was coded for this band: add the necessary bits */
  489. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  490. incr += total_quant_bits[alloc[1]];
  491. } else {
  492. /* increments bit allocation */
  493. b = bit_alloc[max_ch][max_sb];
  494. incr = total_quant_bits[alloc[b + 1]] -
  495. total_quant_bits[alloc[b]];
  496. }
  497. if (current_frame_size + incr <= max_frame_size) {
  498. /* can increase size */
  499. b = ++bit_alloc[max_ch][max_sb];
  500. current_frame_size += incr;
  501. /* decrease smr by the resolution we added */
  502. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  503. /* max allocation size reached ? */
  504. if (b == ((1 << alloc[0]) - 1))
  505. subband_status[max_ch][max_sb] = SB_NOMORE;
  506. else
  507. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  508. } else {
  509. /* cannot increase the size of this subband */
  510. subband_status[max_ch][max_sb] = SB_NOMORE;
  511. }
  512. }
  513. *padding = max_frame_size - current_frame_size;
  514. assert(*padding >= 0);
  515. #if 0
  516. for(i=0;i<s->sblimit;i++) {
  517. printf("%d ", bit_alloc[i]);
  518. }
  519. printf("\n");
  520. #endif
  521. }
  522. /*
  523. * Output the mpeg audio layer 2 frame. Note how the code is small
  524. * compared to other encoders :-)
  525. */
  526. static void encode_frame(MpegAudioContext *s,
  527. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  528. int padding)
  529. {
  530. int i, j, k, l, bit_alloc_bits, b, ch;
  531. unsigned char *sf;
  532. int q[3];
  533. PutBitContext *p = &s->pb;
  534. /* header */
  535. put_bits(p, 12, 0xfff);
  536. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  537. put_bits(p, 2, 4-2); /* layer 2 */
  538. put_bits(p, 1, 1); /* no error protection */
  539. put_bits(p, 4, s->bitrate_index);
  540. put_bits(p, 2, s->freq_index);
  541. put_bits(p, 1, s->do_padding); /* use padding */
  542. put_bits(p, 1, 0); /* private_bit */
  543. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  544. put_bits(p, 2, 0); /* mode_ext */
  545. put_bits(p, 1, 0); /* no copyright */
  546. put_bits(p, 1, 1); /* original */
  547. put_bits(p, 2, 0); /* no emphasis */
  548. /* bit allocation */
  549. j = 0;
  550. for(i=0;i<s->sblimit;i++) {
  551. bit_alloc_bits = s->alloc_table[j];
  552. for(ch=0;ch<s->nb_channels;ch++) {
  553. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  554. }
  555. j += 1 << bit_alloc_bits;
  556. }
  557. /* scale codes */
  558. for(i=0;i<s->sblimit;i++) {
  559. for(ch=0;ch<s->nb_channels;ch++) {
  560. if (bit_alloc[ch][i])
  561. put_bits(p, 2, s->scale_code[ch][i]);
  562. }
  563. }
  564. /* scale factors */
  565. for(i=0;i<s->sblimit;i++) {
  566. for(ch=0;ch<s->nb_channels;ch++) {
  567. if (bit_alloc[ch][i]) {
  568. sf = &s->scale_factors[ch][i][0];
  569. switch(s->scale_code[ch][i]) {
  570. case 0:
  571. put_bits(p, 6, sf[0]);
  572. put_bits(p, 6, sf[1]);
  573. put_bits(p, 6, sf[2]);
  574. break;
  575. case 3:
  576. case 1:
  577. put_bits(p, 6, sf[0]);
  578. put_bits(p, 6, sf[2]);
  579. break;
  580. case 2:
  581. put_bits(p, 6, sf[0]);
  582. break;
  583. }
  584. }
  585. }
  586. }
  587. /* quantization & write sub band samples */
  588. for(k=0;k<3;k++) {
  589. for(l=0;l<12;l+=3) {
  590. j = 0;
  591. for(i=0;i<s->sblimit;i++) {
  592. bit_alloc_bits = s->alloc_table[j];
  593. for(ch=0;ch<s->nb_channels;ch++) {
  594. b = bit_alloc[ch][i];
  595. if (b) {
  596. int qindex, steps, m, sample, bits;
  597. /* we encode 3 sub band samples of the same sub band at a time */
  598. qindex = s->alloc_table[j+b];
  599. steps = quant_steps[qindex];
  600. for(m=0;m<3;m++) {
  601. sample = s->sb_samples[ch][k][l + m][i];
  602. /* divide by scale factor */
  603. #ifdef USE_FLOATS
  604. {
  605. float a;
  606. a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
  607. q[m] = (int)((a + 1.0) * steps * 0.5);
  608. }
  609. #else
  610. {
  611. int q1, e, shift, mult;
  612. e = s->scale_factors[ch][i][k];
  613. shift = scale_factor_shift[e];
  614. mult = scale_factor_mult[e];
  615. /* normalize to P bits */
  616. if (shift < 0)
  617. q1 = sample << (-shift);
  618. else
  619. q1 = sample >> shift;
  620. q1 = (q1 * mult) >> P;
  621. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  622. }
  623. #endif
  624. if (q[m] >= steps)
  625. q[m] = steps - 1;
  626. assert(q[m] >= 0 && q[m] < steps);
  627. }
  628. bits = quant_bits[qindex];
  629. if (bits < 0) {
  630. /* group the 3 values to save bits */
  631. put_bits(p, -bits,
  632. q[0] + steps * (q[1] + steps * q[2]));
  633. #if 0
  634. printf("%d: gr1 %d\n",
  635. i, q[0] + steps * (q[1] + steps * q[2]));
  636. #endif
  637. } else {
  638. #if 0
  639. printf("%d: gr3 %d %d %d\n",
  640. i, q[0], q[1], q[2]);
  641. #endif
  642. put_bits(p, bits, q[0]);
  643. put_bits(p, bits, q[1]);
  644. put_bits(p, bits, q[2]);
  645. }
  646. }
  647. }
  648. /* next subband in alloc table */
  649. j += 1 << bit_alloc_bits;
  650. }
  651. }
  652. }
  653. /* padding */
  654. for(i=0;i<padding;i++)
  655. put_bits(p, 1, 0);
  656. /* flush */
  657. flush_put_bits(p);
  658. }
  659. int MPA_encode_frame(AVCodecContext *avctx,
  660. unsigned char *frame, int buf_size, void *data)
  661. {
  662. MpegAudioContext *s = avctx->priv_data;
  663. short *samples = data;
  664. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  665. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  666. int padding, i;
  667. for(i=0;i<s->nb_channels;i++) {
  668. filter(s, i, samples + i, s->nb_channels);
  669. }
  670. for(i=0;i<s->nb_channels;i++) {
  671. compute_scale_factors(s->scale_code[i], s->scale_factors[i],
  672. s->sb_samples[i], s->sblimit);
  673. }
  674. for(i=0;i<s->nb_channels;i++) {
  675. psycho_acoustic_model(s, smr[i]);
  676. }
  677. compute_bit_allocation(s, smr, bit_alloc, &padding);
  678. init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE, NULL, NULL);
  679. encode_frame(s, bit_alloc, padding);
  680. s->nb_samples += MPA_FRAME_SIZE;
  681. return pbBufPtr(&s->pb) - s->pb.buf;
  682. }
  683. static int MPA_encode_close(AVCodecContext *avctx)
  684. {
  685. av_freep(&avctx->coded_frame);
  686. }
  687. AVCodec mp2_encoder = {
  688. "mp2",
  689. CODEC_TYPE_AUDIO,
  690. CODEC_ID_MP2,
  691. sizeof(MpegAudioContext),
  692. MPA_encode_init,
  693. MPA_encode_frame,
  694. MPA_encode_close,
  695. NULL,
  696. };
  697. #undef FIX