You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1551 lines
50KB

  1. /*
  2. * Motion estimation
  3. * Copyright (c) 2000,2001 Fabrice Bellard.
  4. * Copyright (c) 2002 Michael Niedermayer
  5. *
  6. *
  7. * This library is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2 of the License, or (at your option) any later version.
  11. *
  12. * This library is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with this library; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. *
  21. * new Motion Estimation (X1/EPZS) by Michael Niedermayer <michaelni@gmx.at>
  22. */
  23. #include <stdlib.h>
  24. #include <stdio.h>
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. //#undef NDEBUG
  29. //#include <assert.h>
  30. #define SQ(a) ((a)*(a))
  31. #define P_LEFT P[1]
  32. #define P_TOP P[2]
  33. #define P_TOPRIGHT P[3]
  34. #define P_MEDIAN P[4]
  35. #define P_MV1 P[9]
  36. static inline int sad_hpel_motion_search(MpegEncContext * s,
  37. int *mx_ptr, int *my_ptr, int dmin,
  38. int xmin, int ymin, int xmax, int ymax,
  39. int pred_x, int pred_y, Picture *picture,
  40. int n, int size, uint16_t * const mv_penalty);
  41. static inline int update_map_generation(MpegEncContext * s)
  42. {
  43. s->me.map_generation+= 1<<(ME_MAP_MV_BITS*2);
  44. if(s->me.map_generation==0){
  45. s->me.map_generation= 1<<(ME_MAP_MV_BITS*2);
  46. memset(s->me.map, 0, sizeof(uint32_t)*ME_MAP_SIZE);
  47. }
  48. return s->me.map_generation;
  49. }
  50. /* shape adaptive search stuff */
  51. typedef struct Minima{
  52. int height;
  53. int x, y;
  54. int checked;
  55. }Minima;
  56. static int minima_cmp(const void *a, const void *b){
  57. Minima *da = (Minima *) a;
  58. Minima *db = (Minima *) b;
  59. return da->height - db->height;
  60. }
  61. /* SIMPLE */
  62. #define RENAME(a) simple_ ## a
  63. #define CMP(d, x, y, size)\
  64. d = cmp(s, src_y, (ref_y) + (x) + (y)*(stride), stride);
  65. #define CMP_HPEL(d, dx, dy, x, y, size)\
  66. {\
  67. const int dxy= (dx) + 2*(dy);\
  68. hpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride, (16>>size));\
  69. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  70. }
  71. #define CMP_QPEL(d, dx, dy, x, y, size)\
  72. {\
  73. const int dxy= (dx) + 4*(dy);\
  74. qpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride);\
  75. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  76. }
  77. #include "motion_est_template.c"
  78. #undef RENAME
  79. #undef CMP
  80. #undef CMP_HPEL
  81. #undef CMP_QPEL
  82. #undef INIT
  83. /* SIMPLE CHROMA */
  84. #define RENAME(a) simple_chroma_ ## a
  85. #define CMP(d, x, y, size)\
  86. d = cmp(s, src_y, (ref_y) + (x) + (y)*(stride), stride);\
  87. if(chroma_cmp){\
  88. int dxy= ((x)&1) + 2*((y)&1);\
  89. int c= ((x)>>1) + ((y)>>1)*uvstride;\
  90. \
  91. chroma_hpel_put[0][dxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  92. d += chroma_cmp(s, s->me.scratchpad, src_u, uvstride);\
  93. chroma_hpel_put[0][dxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  94. d += chroma_cmp(s, s->me.scratchpad, src_v, uvstride);\
  95. }
  96. #define CMP_HPEL(d, dx, dy, x, y, size)\
  97. {\
  98. const int dxy= (dx) + 2*(dy);\
  99. hpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride, (16>>size));\
  100. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  101. if(chroma_cmp_sub){\
  102. int cxy= (dxy) | ((x)&1) | (2*((y)&1));\
  103. int c= ((x)>>1) + ((y)>>1)*uvstride;\
  104. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  105. d += chroma_cmp_sub(s, s->me.scratchpad, src_u, uvstride);\
  106. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  107. d += chroma_cmp_sub(s, s->me.scratchpad, src_v, uvstride);\
  108. }\
  109. }
  110. #define CMP_QPEL(d, dx, dy, x, y, size)\
  111. {\
  112. const int dxy= (dx) + 4*(dy);\
  113. qpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride);\
  114. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  115. if(chroma_cmp_sub){\
  116. int cxy, c;\
  117. int cx= (4*(x) + (dx))/2;\
  118. int cy= (4*(y) + (dy))/2;\
  119. cx= (cx>>1)|(cx&1);\
  120. cy= (cy>>1)|(cy&1);\
  121. cxy= (cx&1) + 2*(cy&1);\
  122. c= ((cx)>>1) + ((cy)>>1)*uvstride;\
  123. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  124. d += chroma_cmp_sub(s, s->me.scratchpad, src_u, uvstride);\
  125. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  126. d += chroma_cmp_sub(s, s->me.scratchpad, src_v, uvstride);\
  127. }\
  128. }
  129. #include "motion_est_template.c"
  130. #undef RENAME
  131. #undef CMP
  132. #undef CMP_HPEL
  133. #undef CMP_QPEL
  134. #undef INIT
  135. /* SIMPLE DIRECT HPEL */
  136. #define RENAME(a) simple_direct_hpel_ ## a
  137. //FIXME precalc divisions stuff
  138. #define CMP_DIRECT(d, dx, dy, x, y, size, cmp_func)\
  139. if((x) >= xmin && 2*(x) + (dx) <= 2*xmax && (y) >= ymin && 2*(y) + (dy) <= 2*ymax){\
  140. const int hx= 2*(x) + (dx);\
  141. const int hy= 2*(y) + (dy);\
  142. if(s->mv_type==MV_TYPE_8X8){\
  143. int i;\
  144. for(i=0; i<4; i++){\
  145. int fx = s->me.direct_basis_mv[i][0] + hx;\
  146. int fy = s->me.direct_basis_mv[i][1] + hy;\
  147. int bx = hx ? fx - s->me.co_located_mv[i][0] : s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + (i &1)*16;\
  148. int by = hy ? fy - s->me.co_located_mv[i][1] : s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + (i>>1)*16;\
  149. int fxy= (fx&1) + 2*(fy&1);\
  150. int bxy= (bx&1) + 2*(by&1);\
  151. \
  152. uint8_t *dst= s->me.scratchpad + 8*(i&1) + 8*stride*(i>>1);\
  153. hpel_put[1][fxy](dst, (ref_y ) + (fx>>1) + (fy>>1)*(stride), stride, 8);\
  154. hpel_avg[1][bxy](dst, (ref2_y) + (bx>>1) + (by>>1)*(stride), stride, 8);\
  155. }\
  156. }else{\
  157. int fx = s->me.direct_basis_mv[0][0] + hx;\
  158. int fy = s->me.direct_basis_mv[0][1] + hy;\
  159. int bx = hx ? fx - s->me.co_located_mv[0][0] : s->me.co_located_mv[0][0]*(time_pb - time_pp)/time_pp;\
  160. int by = hy ? fy - s->me.co_located_mv[0][1] : s->me.co_located_mv[0][1]*(time_pb - time_pp)/time_pp;\
  161. int fxy= (fx&1) + 2*(fy&1);\
  162. int bxy= (bx&1) + 2*(by&1);\
  163. \
  164. hpel_put[0][fxy](s->me.scratchpad, (ref_y ) + (fx>>1) + (fy>>1)*(stride), stride, 16);\
  165. hpel_avg[0][bxy](s->me.scratchpad, (ref2_y) + (bx>>1) + (by>>1)*(stride), stride, 16);\
  166. }\
  167. d = cmp_func(s, s->me.scratchpad, src_y, stride);\
  168. }else\
  169. d= 256*256*256*32;
  170. #define CMP_HPEL(d, dx, dy, x, y, size)\
  171. CMP_DIRECT(d, dx, dy, x, y, size, cmp_sub)
  172. #define CMP(d, x, y, size)\
  173. CMP_DIRECT(d, 0, 0, x, y, size, cmp)
  174. #include "motion_est_template.c"
  175. #undef RENAME
  176. #undef CMP
  177. #undef CMP_HPEL
  178. #undef CMP_QPEL
  179. #undef INIT
  180. #undef CMP_DIRECT
  181. /* SIMPLE DIRECT QPEL */
  182. #define RENAME(a) simple_direct_qpel_ ## a
  183. #define CMP_DIRECT(d, dx, dy, x, y, size, cmp_func)\
  184. if((x) >= xmin && 4*(x) + (dx) <= 4*xmax && (y) >= ymin && 4*(y) + (dy) <= 4*ymax){\
  185. const int qx= 4*(x) + (dx);\
  186. const int qy= 4*(y) + (dy);\
  187. if(s->mv_type==MV_TYPE_8X8){\
  188. int i;\
  189. for(i=0; i<4; i++){\
  190. int fx = s->me.direct_basis_mv[i][0] + qx;\
  191. int fy = s->me.direct_basis_mv[i][1] + qy;\
  192. int bx = qx ? fx - s->me.co_located_mv[i][0] : s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + (i &1)*16;\
  193. int by = qy ? fy - s->me.co_located_mv[i][1] : s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + (i>>1)*16;\
  194. int fxy= (fx&3) + 4*(fy&3);\
  195. int bxy= (bx&3) + 4*(by&3);\
  196. \
  197. uint8_t *dst= s->me.scratchpad + 8*(i&1) + 8*stride*(i>>1);\
  198. qpel_put[1][fxy](dst, (ref_y ) + (fx>>2) + (fy>>2)*(stride), stride);\
  199. qpel_avg[1][bxy](dst, (ref2_y) + (bx>>2) + (by>>2)*(stride), stride);\
  200. }\
  201. }else{\
  202. int fx = s->me.direct_basis_mv[0][0] + qx;\
  203. int fy = s->me.direct_basis_mv[0][1] + qy;\
  204. int bx = qx ? fx - s->me.co_located_mv[0][0] : s->me.co_located_mv[0][0]*(time_pb - time_pp)/time_pp;\
  205. int by = qy ? fy - s->me.co_located_mv[0][1] : s->me.co_located_mv[0][1]*(time_pb - time_pp)/time_pp;\
  206. int fxy= (fx&3) + 4*(fy&3);\
  207. int bxy= (bx&3) + 4*(by&3);\
  208. \
  209. qpel_put[0][fxy](s->me.scratchpad, (ref_y ) + (fx>>2) + (fy>>2)*(stride), stride);\
  210. qpel_avg[0][bxy](s->me.scratchpad, (ref2_y) + (bx>>2) + (by>>2)*(stride), stride);\
  211. }\
  212. d = cmp_func(s, s->me.scratchpad, src_y, stride);\
  213. }else\
  214. d= 256*256*256*32;
  215. #define CMP_QPEL(d, dx, dy, x, y, size)\
  216. CMP_DIRECT(d, dx, dy, x, y, size, cmp_sub)
  217. #define CMP(d, x, y, size)\
  218. CMP_DIRECT(d, 0, 0, x, y, size, cmp)
  219. #include "motion_est_template.c"
  220. #undef RENAME
  221. #undef CMP
  222. #undef CMP_HPEL
  223. #undef CMP_QPEL
  224. #undef INIT
  225. #undef CMP__DIRECT
  226. static int zero_cmp(void *s, uint8_t *a, uint8_t *b, int stride){
  227. return 0;
  228. }
  229. static void set_cmp(MpegEncContext *s, me_cmp_func *cmp, int type){
  230. DSPContext* c= &s->dsp;
  231. int i;
  232. memset(cmp, 0, sizeof(void*)*11);
  233. switch(type&0xFF){
  234. case FF_CMP_SAD:
  235. cmp[0]= c->sad[0];
  236. cmp[1]= c->sad[1];
  237. break;
  238. case FF_CMP_SATD:
  239. cmp[0]= c->hadamard8_diff[0];
  240. cmp[1]= c->hadamard8_diff[1];
  241. break;
  242. case FF_CMP_SSE:
  243. cmp[0]= c->sse[0];
  244. cmp[1]= c->sse[1];
  245. break;
  246. case FF_CMP_DCT:
  247. cmp[0]= c->dct_sad[0];
  248. cmp[1]= c->dct_sad[1];
  249. break;
  250. case FF_CMP_PSNR:
  251. cmp[0]= c->quant_psnr[0];
  252. cmp[1]= c->quant_psnr[1];
  253. break;
  254. case FF_CMP_ZERO:
  255. for(i=0; i<7; i++){
  256. cmp[i]= zero_cmp;
  257. }
  258. break;
  259. default:
  260. fprintf(stderr,"internal error in cmp function selection\n");
  261. }
  262. };
  263. static inline int get_penalty_factor(MpegEncContext *s, int type){
  264. switch(type){
  265. default:
  266. case FF_CMP_SAD:
  267. return s->qscale;
  268. case FF_CMP_SSE:
  269. // return s->qscale*8;
  270. case FF_CMP_DCT:
  271. case FF_CMP_SATD:
  272. return s->qscale*8;
  273. }
  274. }
  275. void ff_init_me(MpegEncContext *s){
  276. set_cmp(s, s->dsp.me_pre_cmp, s->avctx->me_pre_cmp);
  277. set_cmp(s, s->dsp.me_cmp, s->avctx->me_cmp);
  278. set_cmp(s, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp);
  279. set_cmp(s, s->dsp.mb_cmp, s->avctx->mb_cmp);
  280. if(s->flags&CODEC_FLAG_QPEL){
  281. if(s->avctx->me_sub_cmp&FF_CMP_CHROMA)
  282. s->me.sub_motion_search= simple_chroma_qpel_motion_search;
  283. else
  284. s->me.sub_motion_search= simple_qpel_motion_search;
  285. }else{
  286. if(s->avctx->me_sub_cmp&FF_CMP_CHROMA)
  287. s->me.sub_motion_search= simple_chroma_hpel_motion_search;
  288. else if(s->avctx->me_sub_cmp == FF_CMP_SAD && s->avctx->me_cmp == FF_CMP_SAD)
  289. s->me.sub_motion_search= sad_hpel_motion_search;
  290. else
  291. s->me.sub_motion_search= simple_hpel_motion_search;
  292. }
  293. if(s->avctx->me_cmp&FF_CMP_CHROMA){
  294. s->me.motion_search[0]= simple_chroma_epzs_motion_search;
  295. s->me.motion_search[1]= simple_chroma_epzs_motion_search4;
  296. }else{
  297. s->me.motion_search[0]= simple_epzs_motion_search;
  298. s->me.motion_search[1]= simple_epzs_motion_search4;
  299. }
  300. if(s->avctx->me_pre_cmp&FF_CMP_CHROMA){
  301. s->me.pre_motion_search= simple_chroma_epzs_motion_search;
  302. }else{
  303. s->me.pre_motion_search= simple_epzs_motion_search;
  304. }
  305. }
  306. static int pix_dev(UINT8 * pix, int line_size, int mean)
  307. {
  308. int s, i, j;
  309. s = 0;
  310. for (i = 0; i < 16; i++) {
  311. for (j = 0; j < 16; j += 8) {
  312. s += ABS(pix[0]-mean);
  313. s += ABS(pix[1]-mean);
  314. s += ABS(pix[2]-mean);
  315. s += ABS(pix[3]-mean);
  316. s += ABS(pix[4]-mean);
  317. s += ABS(pix[5]-mean);
  318. s += ABS(pix[6]-mean);
  319. s += ABS(pix[7]-mean);
  320. pix += 8;
  321. }
  322. pix += line_size - 16;
  323. }
  324. return s;
  325. }
  326. static inline void no_motion_search(MpegEncContext * s,
  327. int *mx_ptr, int *my_ptr)
  328. {
  329. *mx_ptr = 16 * s->mb_x;
  330. *my_ptr = 16 * s->mb_y;
  331. }
  332. static int full_motion_search(MpegEncContext * s,
  333. int *mx_ptr, int *my_ptr, int range,
  334. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  335. {
  336. int x1, y1, x2, y2, xx, yy, x, y;
  337. int mx, my, dmin, d;
  338. UINT8 *pix;
  339. xx = 16 * s->mb_x;
  340. yy = 16 * s->mb_y;
  341. x1 = xx - range + 1; /* we loose one pixel to avoid boundary pb with half pixel pred */
  342. if (x1 < xmin)
  343. x1 = xmin;
  344. x2 = xx + range - 1;
  345. if (x2 > xmax)
  346. x2 = xmax;
  347. y1 = yy - range + 1;
  348. if (y1 < ymin)
  349. y1 = ymin;
  350. y2 = yy + range - 1;
  351. if (y2 > ymax)
  352. y2 = ymax;
  353. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  354. dmin = 0x7fffffff;
  355. mx = 0;
  356. my = 0;
  357. for (y = y1; y <= y2; y++) {
  358. for (x = x1; x <= x2; x++) {
  359. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x,
  360. s->linesize);
  361. if (d < dmin ||
  362. (d == dmin &&
  363. (abs(x - xx) + abs(y - yy)) <
  364. (abs(mx - xx) + abs(my - yy)))) {
  365. dmin = d;
  366. mx = x;
  367. my = y;
  368. }
  369. }
  370. }
  371. *mx_ptr = mx;
  372. *my_ptr = my;
  373. #if 0
  374. if (*mx_ptr < -(2 * range) || *mx_ptr >= (2 * range) ||
  375. *my_ptr < -(2 * range) || *my_ptr >= (2 * range)) {
  376. fprintf(stderr, "error %d %d\n", *mx_ptr, *my_ptr);
  377. }
  378. #endif
  379. return dmin;
  380. }
  381. static int log_motion_search(MpegEncContext * s,
  382. int *mx_ptr, int *my_ptr, int range,
  383. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  384. {
  385. int x1, y1, x2, y2, xx, yy, x, y;
  386. int mx, my, dmin, d;
  387. UINT8 *pix;
  388. xx = s->mb_x << 4;
  389. yy = s->mb_y << 4;
  390. /* Left limit */
  391. x1 = xx - range;
  392. if (x1 < xmin)
  393. x1 = xmin;
  394. /* Right limit */
  395. x2 = xx + range;
  396. if (x2 > xmax)
  397. x2 = xmax;
  398. /* Upper limit */
  399. y1 = yy - range;
  400. if (y1 < ymin)
  401. y1 = ymin;
  402. /* Lower limit */
  403. y2 = yy + range;
  404. if (y2 > ymax)
  405. y2 = ymax;
  406. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  407. dmin = 0x7fffffff;
  408. mx = 0;
  409. my = 0;
  410. do {
  411. for (y = y1; y <= y2; y += range) {
  412. for (x = x1; x <= x2; x += range) {
  413. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  414. if (d < dmin || (d == dmin && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  415. dmin = d;
  416. mx = x;
  417. my = y;
  418. }
  419. }
  420. }
  421. range = range >> 1;
  422. x1 = mx - range;
  423. if (x1 < xmin)
  424. x1 = xmin;
  425. x2 = mx + range;
  426. if (x2 > xmax)
  427. x2 = xmax;
  428. y1 = my - range;
  429. if (y1 < ymin)
  430. y1 = ymin;
  431. y2 = my + range;
  432. if (y2 > ymax)
  433. y2 = ymax;
  434. } while (range >= 1);
  435. #ifdef DEBUG
  436. fprintf(stderr, "log - MX: %d\tMY: %d\n", mx, my);
  437. #endif
  438. *mx_ptr = mx;
  439. *my_ptr = my;
  440. return dmin;
  441. }
  442. static int phods_motion_search(MpegEncContext * s,
  443. int *mx_ptr, int *my_ptr, int range,
  444. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  445. {
  446. int x1, y1, x2, y2, xx, yy, x, y, lastx, d;
  447. int mx, my, dminx, dminy;
  448. UINT8 *pix;
  449. xx = s->mb_x << 4;
  450. yy = s->mb_y << 4;
  451. /* Left limit */
  452. x1 = xx - range;
  453. if (x1 < xmin)
  454. x1 = xmin;
  455. /* Right limit */
  456. x2 = xx + range;
  457. if (x2 > xmax)
  458. x2 = xmax;
  459. /* Upper limit */
  460. y1 = yy - range;
  461. if (y1 < ymin)
  462. y1 = ymin;
  463. /* Lower limit */
  464. y2 = yy + range;
  465. if (y2 > ymax)
  466. y2 = ymax;
  467. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  468. mx = 0;
  469. my = 0;
  470. x = xx;
  471. y = yy;
  472. do {
  473. dminx = 0x7fffffff;
  474. dminy = 0x7fffffff;
  475. lastx = x;
  476. for (x = x1; x <= x2; x += range) {
  477. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  478. if (d < dminx || (d == dminx && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  479. dminx = d;
  480. mx = x;
  481. }
  482. }
  483. x = lastx;
  484. for (y = y1; y <= y2; y += range) {
  485. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  486. if (d < dminy || (d == dminy && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  487. dminy = d;
  488. my = y;
  489. }
  490. }
  491. range = range >> 1;
  492. x = mx;
  493. y = my;
  494. x1 = mx - range;
  495. if (x1 < xmin)
  496. x1 = xmin;
  497. x2 = mx + range;
  498. if (x2 > xmax)
  499. x2 = xmax;
  500. y1 = my - range;
  501. if (y1 < ymin)
  502. y1 = ymin;
  503. y2 = my + range;
  504. if (y2 > ymax)
  505. y2 = ymax;
  506. } while (range >= 1);
  507. #ifdef DEBUG
  508. fprintf(stderr, "phods - MX: %d\tMY: %d\n", mx, my);
  509. #endif
  510. /* half pixel search */
  511. *mx_ptr = mx;
  512. *my_ptr = my;
  513. return dminy;
  514. }
  515. #define Z_THRESHOLD 256
  516. #define CHECK_SAD_HALF_MV(suffix, x, y) \
  517. {\
  518. d= pix_abs_ ## suffix(pix, ptr+((x)>>1), s->linesize);\
  519. d += (mv_penalty[pen_x + x] + mv_penalty[pen_y + y])*penalty_factor;\
  520. COPY3_IF_LT(dminh, d, dx, x, dy, y)\
  521. }
  522. static inline int sad_hpel_motion_search(MpegEncContext * s,
  523. int *mx_ptr, int *my_ptr, int dmin,
  524. int xmin, int ymin, int xmax, int ymax,
  525. int pred_x, int pred_y, Picture *picture,
  526. int n, int size, uint16_t * const mv_penalty)
  527. {
  528. uint8_t *ref_picture= picture->data[0];
  529. uint32_t *score_map= s->me.score_map;
  530. const int penalty_factor= s->me.sub_penalty_factor;
  531. int mx, my, xx, yy, dminh;
  532. UINT8 *pix, *ptr;
  533. op_pixels_abs_func pix_abs_x2;
  534. op_pixels_abs_func pix_abs_y2;
  535. op_pixels_abs_func pix_abs_xy2;
  536. if(size==0){
  537. pix_abs_x2 = s->dsp.pix_abs16x16_x2;
  538. pix_abs_y2 = s->dsp.pix_abs16x16_y2;
  539. pix_abs_xy2= s->dsp.pix_abs16x16_xy2;
  540. }else{
  541. pix_abs_x2 = s->dsp.pix_abs8x8_x2;
  542. pix_abs_y2 = s->dsp.pix_abs8x8_y2;
  543. pix_abs_xy2= s->dsp.pix_abs8x8_xy2;
  544. }
  545. if(s->me.skip){
  546. // printf("S");
  547. *mx_ptr = 0;
  548. *my_ptr = 0;
  549. return dmin;
  550. }
  551. // printf("N");
  552. xx = 16 * s->mb_x + 8*(n&1);
  553. yy = 16 * s->mb_y + 8*(n>>1);
  554. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  555. mx = *mx_ptr;
  556. my = *my_ptr;
  557. ptr = ref_picture + ((yy + my) * s->linesize) + (xx + mx);
  558. dminh = dmin;
  559. if (mx > xmin && mx < xmax &&
  560. my > ymin && my < ymax) {
  561. int dx=0, dy=0;
  562. int d, pen_x, pen_y;
  563. const int index= (my<<ME_MAP_SHIFT) + mx;
  564. const int t= score_map[(index-(1<<ME_MAP_SHIFT))&(ME_MAP_SIZE-1)];
  565. const int l= score_map[(index- 1 )&(ME_MAP_SIZE-1)];
  566. const int r= score_map[(index+ 1 )&(ME_MAP_SIZE-1)];
  567. const int b= score_map[(index+(1<<ME_MAP_SHIFT))&(ME_MAP_SIZE-1)];
  568. mx<<=1;
  569. my<<=1;
  570. pen_x= pred_x + mx;
  571. pen_y= pred_y + my;
  572. ptr-= s->linesize;
  573. if(t<=b){
  574. CHECK_SAD_HALF_MV(y2 , 0, -1)
  575. if(l<=r){
  576. CHECK_SAD_HALF_MV(xy2, -1, -1)
  577. if(t+r<=b+l){
  578. CHECK_SAD_HALF_MV(xy2, +1, -1)
  579. ptr+= s->linesize;
  580. }else{
  581. ptr+= s->linesize;
  582. CHECK_SAD_HALF_MV(xy2, -1, +1)
  583. }
  584. CHECK_SAD_HALF_MV(x2 , -1, 0)
  585. }else{
  586. CHECK_SAD_HALF_MV(xy2, +1, -1)
  587. if(t+l<=b+r){
  588. CHECK_SAD_HALF_MV(xy2, -1, -1)
  589. ptr+= s->linesize;
  590. }else{
  591. ptr+= s->linesize;
  592. CHECK_SAD_HALF_MV(xy2, +1, +1)
  593. }
  594. CHECK_SAD_HALF_MV(x2 , +1, 0)
  595. }
  596. }else{
  597. if(l<=r){
  598. if(t+l<=b+r){
  599. CHECK_SAD_HALF_MV(xy2, -1, -1)
  600. ptr+= s->linesize;
  601. }else{
  602. ptr+= s->linesize;
  603. CHECK_SAD_HALF_MV(xy2, +1, +1)
  604. }
  605. CHECK_SAD_HALF_MV(x2 , -1, 0)
  606. CHECK_SAD_HALF_MV(xy2, -1, +1)
  607. }else{
  608. if(t+r<=b+l){
  609. CHECK_SAD_HALF_MV(xy2, +1, -1)
  610. ptr+= s->linesize;
  611. }else{
  612. ptr+= s->linesize;
  613. CHECK_SAD_HALF_MV(xy2, -1, +1)
  614. }
  615. CHECK_SAD_HALF_MV(x2 , +1, 0)
  616. CHECK_SAD_HALF_MV(xy2, +1, +1)
  617. }
  618. CHECK_SAD_HALF_MV(y2 , 0, +1)
  619. }
  620. mx+=dx;
  621. my+=dy;
  622. }else{
  623. mx<<=1;
  624. my<<=1;
  625. }
  626. *mx_ptr = mx;
  627. *my_ptr = my;
  628. return dminh;
  629. }
  630. static inline void set_p_mv_tables(MpegEncContext * s, int mx, int my, int mv4)
  631. {
  632. const int xy= s->mb_x + 1 + (s->mb_y + 1)*(s->mb_width + 2);
  633. s->p_mv_table[xy][0] = mx;
  634. s->p_mv_table[xy][1] = my;
  635. /* has allready been set to the 4 MV if 4MV is done */
  636. if(mv4){
  637. int mot_xy= s->block_index[0];
  638. s->motion_val[mot_xy ][0]= mx;
  639. s->motion_val[mot_xy ][1]= my;
  640. s->motion_val[mot_xy+1][0]= mx;
  641. s->motion_val[mot_xy+1][1]= my;
  642. mot_xy += s->block_wrap[0];
  643. s->motion_val[mot_xy ][0]= mx;
  644. s->motion_val[mot_xy ][1]= my;
  645. s->motion_val[mot_xy+1][0]= mx;
  646. s->motion_val[mot_xy+1][1]= my;
  647. }
  648. }
  649. static inline void get_limits(MpegEncContext *s, int *range, int *xmin, int *ymin, int *xmax, int *ymax, int f_code)
  650. {
  651. *range = 8 * (1 << (f_code - 1));
  652. /* XXX: temporary kludge to avoid overflow for msmpeg4 */
  653. if (s->out_format == FMT_H263 && !s->h263_msmpeg4)
  654. *range *= 2;
  655. if (s->unrestricted_mv) {
  656. *xmin = -16;
  657. *ymin = -16;
  658. if (s->h263_plus)
  659. *range *= 2;
  660. if(s->avctx->codec->id!=CODEC_ID_MPEG4){
  661. *xmax = s->mb_width*16;
  662. *ymax = s->mb_height*16;
  663. }else {
  664. *xmax = s->width;
  665. *ymax = s->height;
  666. }
  667. } else {
  668. *xmin = 0;
  669. *ymin = 0;
  670. *xmax = s->mb_width*16 - 16;
  671. *ymax = s->mb_height*16 - 16;
  672. }
  673. }
  674. static inline int mv4_search(MpegEncContext *s, int xmin, int ymin, int xmax, int ymax, int mx, int my, int shift)
  675. {
  676. int block;
  677. int P[10][2];
  678. uint8_t *ref_picture= s->last_picture.data[0];
  679. int dmin_sum=0;
  680. uint16_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  681. for(block=0; block<4; block++){
  682. int mx4, my4;
  683. int pred_x4, pred_y4;
  684. int dmin4;
  685. static const int off[4]= {2, 1, 1, -1};
  686. const int mot_stride = s->block_wrap[0];
  687. const int mot_xy = s->block_index[block];
  688. // const int block_x= (block&1);
  689. // const int block_y= (block>>1);
  690. #if 1 // this saves us a bit of cliping work and shouldnt affect compression in a negative way
  691. const int rel_xmin4= xmin;
  692. const int rel_xmax4= xmax;
  693. const int rel_ymin4= ymin;
  694. const int rel_ymax4= ymax;
  695. #else
  696. const int rel_xmin4= xmin - block_x*8;
  697. const int rel_xmax4= xmax - block_x*8 + 8;
  698. const int rel_ymin4= ymin - block_y*8;
  699. const int rel_ymax4= ymax - block_y*8 + 8;
  700. #endif
  701. P_LEFT[0] = s->motion_val[mot_xy - 1][0];
  702. P_LEFT[1] = s->motion_val[mot_xy - 1][1];
  703. if(P_LEFT[0] > (rel_xmax4<<shift)) P_LEFT[0] = (rel_xmax4<<shift);
  704. /* special case for first line */
  705. if (s->mb_y == 0 && block<2) {
  706. pred_x4= P_LEFT[0];
  707. pred_y4= P_LEFT[1];
  708. } else {
  709. P_TOP[0] = s->motion_val[mot_xy - mot_stride ][0];
  710. P_TOP[1] = s->motion_val[mot_xy - mot_stride ][1];
  711. P_TOPRIGHT[0] = s->motion_val[mot_xy - mot_stride + off[block]][0];
  712. P_TOPRIGHT[1] = s->motion_val[mot_xy - mot_stride + off[block]][1];
  713. if(P_TOP[1] > (rel_ymax4<<shift)) P_TOP[1] = (rel_ymax4<<shift);
  714. if(P_TOPRIGHT[0] < (rel_xmin4<<shift)) P_TOPRIGHT[0]= (rel_xmin4<<shift);
  715. if(P_TOPRIGHT[0] > (rel_xmax4<<shift)) P_TOPRIGHT[0]= (rel_xmax4<<shift);
  716. if(P_TOPRIGHT[1] > (rel_ymax4<<shift)) P_TOPRIGHT[1]= (rel_ymax4<<shift);
  717. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  718. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  719. if(s->out_format == FMT_H263){
  720. pred_x4 = P_MEDIAN[0];
  721. pred_y4 = P_MEDIAN[1];
  722. }else { /* mpeg1 at least */
  723. pred_x4= P_LEFT[0];
  724. pred_y4= P_LEFT[1];
  725. }
  726. }
  727. P_MV1[0]= mx;
  728. P_MV1[1]= my;
  729. dmin4 = s->me.motion_search[1](s, block, &mx4, &my4, P, pred_x4, pred_y4, rel_xmin4, rel_ymin4, rel_xmax4, rel_ymax4,
  730. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  731. dmin4= s->me.sub_motion_search(s, &mx4, &my4, dmin4, rel_xmin4, rel_ymin4, rel_xmax4, rel_ymax4,
  732. pred_x4, pred_y4, &s->last_picture, block, 1, mv_penalty);
  733. s->motion_val[ s->block_index[block] ][0]= mx4;
  734. s->motion_val[ s->block_index[block] ][1]= my4;
  735. dmin_sum+= dmin4;
  736. }
  737. return dmin_sum;
  738. }
  739. void ff_estimate_p_frame_motion(MpegEncContext * s,
  740. int mb_x, int mb_y)
  741. {
  742. UINT8 *pix, *ppix;
  743. int sum, varc, vard, mx, my, range, dmin, xx, yy;
  744. int xmin, ymin, xmax, ymax;
  745. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  746. int pred_x=0, pred_y=0;
  747. int P[10][2];
  748. const int shift= 1+s->quarter_sample;
  749. int mb_type=0;
  750. uint8_t *ref_picture= s->last_picture.data[0];
  751. Picture * const pic= &s->current_picture;
  752. uint16_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  753. assert(s->quarter_sample==0 || s->quarter_sample==1);
  754. s->me.penalty_factor = get_penalty_factor(s, s->avctx->me_cmp);
  755. s->me.sub_penalty_factor= get_penalty_factor(s, s->avctx->me_sub_cmp);
  756. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax, s->f_code);
  757. rel_xmin= xmin - mb_x*16;
  758. rel_xmax= xmax - mb_x*16;
  759. rel_ymin= ymin - mb_y*16;
  760. rel_ymax= ymax - mb_y*16;
  761. s->me.skip=0;
  762. switch(s->me_method) {
  763. case ME_ZERO:
  764. default:
  765. no_motion_search(s, &mx, &my);
  766. mx-= mb_x*16;
  767. my-= mb_y*16;
  768. dmin = 0;
  769. break;
  770. case ME_FULL:
  771. dmin = full_motion_search(s, &mx, &my, range, xmin, ymin, xmax, ymax, ref_picture);
  772. mx-= mb_x*16;
  773. my-= mb_y*16;
  774. break;
  775. case ME_LOG:
  776. dmin = log_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  777. mx-= mb_x*16;
  778. my-= mb_y*16;
  779. break;
  780. case ME_PHODS:
  781. dmin = phods_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  782. mx-= mb_x*16;
  783. my-= mb_y*16;
  784. break;
  785. case ME_X1:
  786. case ME_EPZS:
  787. {
  788. const int mot_stride = s->block_wrap[0];
  789. const int mot_xy = s->block_index[0];
  790. P_LEFT[0] = s->motion_val[mot_xy - 1][0];
  791. P_LEFT[1] = s->motion_val[mot_xy - 1][1];
  792. if(P_LEFT[0] > (rel_xmax<<shift)) P_LEFT[0] = (rel_xmax<<shift);
  793. if(mb_y) {
  794. P_TOP[0] = s->motion_val[mot_xy - mot_stride ][0];
  795. P_TOP[1] = s->motion_val[mot_xy - mot_stride ][1];
  796. P_TOPRIGHT[0] = s->motion_val[mot_xy - mot_stride + 2][0];
  797. P_TOPRIGHT[1] = s->motion_val[mot_xy - mot_stride + 2][1];
  798. if(P_TOP[1] > (rel_ymax<<shift)) P_TOP[1] = (rel_ymax<<shift);
  799. if(P_TOPRIGHT[0] < (rel_xmin<<shift)) P_TOPRIGHT[0]= (rel_xmin<<shift);
  800. if(P_TOPRIGHT[1] > (rel_ymax<<shift)) P_TOPRIGHT[1]= (rel_ymax<<shift);
  801. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  802. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  803. if(s->out_format == FMT_H263){
  804. pred_x = P_MEDIAN[0];
  805. pred_y = P_MEDIAN[1];
  806. }else { /* mpeg1 at least */
  807. pred_x= P_LEFT[0];
  808. pred_y= P_LEFT[1];
  809. }
  810. }else{
  811. pred_x= P_LEFT[0];
  812. pred_y= P_LEFT[1];
  813. }
  814. }
  815. dmin = s->me.motion_search[0](s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  816. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  817. break;
  818. }
  819. /* intra / predictive decision */
  820. xx = mb_x * 16;
  821. yy = mb_y * 16;
  822. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  823. /* At this point (mx,my) are full-pell and the relative displacement */
  824. ppix = ref_picture + ((yy+my) * s->linesize) + (xx+mx);
  825. sum = s->dsp.pix_sum(pix, s->linesize);
  826. varc = (s->dsp.pix_norm1(pix, s->linesize) - (((unsigned)(sum*sum))>>8) + 500 + 128)>>8;
  827. vard = (s->dsp.sse[0](NULL, pix, ppix, s->linesize)+128)>>8;
  828. //printf("%d %d %d %X %X %X\n", s->mb_width, mb_x, mb_y,(int)s, (int)s->mb_var, (int)s->mc_mb_var); fflush(stdout);
  829. pic->mb_var [s->mb_width * mb_y + mb_x] = varc;
  830. pic->mc_mb_var[s->mb_width * mb_y + mb_x] = vard;
  831. pic->mb_mean [s->mb_width * mb_y + mb_x] = (sum+128)>>8;
  832. pic->mb_var_sum += varc;
  833. pic->mc_mb_var_sum += vard;
  834. //printf("E%d %d %d %X %X %X\n", s->mb_width, mb_x, mb_y,(int)s, (int)s->mb_var, (int)s->mc_mb_var); fflush(stdout);
  835. #if 0
  836. printf("varc=%4d avg_var=%4d (sum=%4d) vard=%4d mx=%2d my=%2d\n",
  837. varc, s->avg_mb_var, sum, vard, mx - xx, my - yy);
  838. #endif
  839. if(s->flags&CODEC_FLAG_HQ){
  840. if (vard <= 64 || vard < varc)
  841. s->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  842. else
  843. s->scene_change_score+= s->qscale;
  844. if (vard*2 + 200 > varc)
  845. mb_type|= MB_TYPE_INTRA;
  846. if (varc*2 + 200 > vard){
  847. mb_type|= MB_TYPE_INTER;
  848. s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  849. pred_x, pred_y, &s->last_picture, 0, 0, mv_penalty);
  850. }else{
  851. mx <<=shift;
  852. my <<=shift;
  853. }
  854. if((s->flags&CODEC_FLAG_4MV)
  855. && !s->me.skip && varc>50 && vard>10){
  856. mv4_search(s, rel_xmin, rel_ymin, rel_xmax, rel_ymax, mx, my, shift);
  857. mb_type|=MB_TYPE_INTER4V;
  858. set_p_mv_tables(s, mx, my, 0);
  859. }else
  860. set_p_mv_tables(s, mx, my, 1);
  861. }else{
  862. if (vard <= 64 || vard < varc) {
  863. // if (sadP <= 32 || sadP < sadI + 500) {
  864. s->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  865. mb_type|= MB_TYPE_INTER;
  866. if (s->me_method != ME_ZERO) {
  867. dmin= s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  868. pred_x, pred_y, &s->last_picture, 0, 0, mv_penalty);
  869. if((s->flags&CODEC_FLAG_4MV)
  870. && !s->me.skip && varc>50 && vard>10){
  871. int dmin4= mv4_search(s, rel_xmin, rel_ymin, rel_xmax, rel_ymax, mx, my, shift);
  872. if(dmin4 + 128 <dmin)
  873. mb_type= MB_TYPE_INTER4V;
  874. }
  875. set_p_mv_tables(s, mx, my, mb_type!=MB_TYPE_INTER4V);
  876. } else {
  877. mx <<=shift;
  878. my <<=shift;
  879. }
  880. #if 0
  881. if (vard < 10) {
  882. skip++;
  883. fprintf(stderr,"\nEarly skip: %d vard: %2d varc: %5d dmin: %d",
  884. skip, vard, varc, dmin);
  885. }
  886. #endif
  887. }else{
  888. s->scene_change_score+= 20;
  889. mb_type|= MB_TYPE_INTRA;
  890. mx = 0;
  891. my = 0;
  892. }
  893. }
  894. s->mb_type[mb_y*s->mb_width + mb_x]= mb_type;
  895. }
  896. int ff_pre_estimate_p_frame_motion(MpegEncContext * s,
  897. int mb_x, int mb_y)
  898. {
  899. int mx, my, range, dmin;
  900. int xmin, ymin, xmax, ymax;
  901. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  902. int pred_x=0, pred_y=0;
  903. int P[10][2];
  904. const int shift= 1+s->quarter_sample;
  905. uint16_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  906. const int mv_stride= s->mb_width + 2;
  907. const int xy= mb_x + 1 + (mb_y + 1)*mv_stride;
  908. assert(s->quarter_sample==0 || s->quarter_sample==1);
  909. s->me.pre_penalty_factor = get_penalty_factor(s, s->avctx->me_pre_cmp);
  910. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax, s->f_code);
  911. rel_xmin= xmin - mb_x*16;
  912. rel_xmax= xmax - mb_x*16;
  913. rel_ymin= ymin - mb_y*16;
  914. rel_ymax= ymax - mb_y*16;
  915. s->me.skip=0;
  916. P_LEFT[0] = s->p_mv_table[xy + 1][0];
  917. P_LEFT[1] = s->p_mv_table[xy + 1][1];
  918. if(P_LEFT[0] < (rel_xmin<<shift)) P_LEFT[0] = (rel_xmin<<shift);
  919. /* special case for first line */
  920. if (mb_y == s->mb_height-1) {
  921. pred_x= P_LEFT[0];
  922. pred_y= P_LEFT[1];
  923. P_TOP[0]= P_TOPRIGHT[0]= P_MEDIAN[0]=
  924. P_TOP[1]= P_TOPRIGHT[1]= P_MEDIAN[1]= 0; //FIXME
  925. } else {
  926. P_TOP[0] = s->p_mv_table[xy + mv_stride ][0];
  927. P_TOP[1] = s->p_mv_table[xy + mv_stride ][1];
  928. P_TOPRIGHT[0] = s->p_mv_table[xy + mv_stride - 1][0];
  929. P_TOPRIGHT[1] = s->p_mv_table[xy + mv_stride - 1][1];
  930. if(P_TOP[1] < (rel_ymin<<shift)) P_TOP[1] = (rel_ymin<<shift);
  931. if(P_TOPRIGHT[0] > (rel_xmax<<shift)) P_TOPRIGHT[0]= (rel_xmax<<shift);
  932. if(P_TOPRIGHT[1] < (rel_ymin<<shift)) P_TOPRIGHT[1]= (rel_ymin<<shift);
  933. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  934. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  935. pred_x = P_MEDIAN[0];
  936. pred_y = P_MEDIAN[1];
  937. }
  938. dmin = s->me.pre_motion_search(s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  939. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  940. s->p_mv_table[xy][0] = mx<<shift;
  941. s->p_mv_table[xy][1] = my<<shift;
  942. return dmin;
  943. }
  944. int ff_estimate_motion_b(MpegEncContext * s,
  945. int mb_x, int mb_y, int16_t (*mv_table)[2], Picture *picture, int f_code)
  946. {
  947. int mx, my, range, dmin;
  948. int xmin, ymin, xmax, ymax;
  949. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  950. int pred_x=0, pred_y=0;
  951. int P[10][2];
  952. const int shift= 1+s->quarter_sample;
  953. const int mot_stride = s->mb_width + 2;
  954. const int mot_xy = (mb_y + 1)*mot_stride + mb_x + 1;
  955. uint8_t * const ref_picture= picture->data[0];
  956. uint16_t * const mv_penalty= s->me.mv_penalty[f_code] + MAX_MV;
  957. int mv_scale;
  958. s->me.penalty_factor = get_penalty_factor(s, s->avctx->me_cmp);
  959. s->me.sub_penalty_factor= get_penalty_factor(s, s->avctx->me_sub_cmp);
  960. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax, f_code);
  961. rel_xmin= xmin - mb_x*16;
  962. rel_xmax= xmax - mb_x*16;
  963. rel_ymin= ymin - mb_y*16;
  964. rel_ymax= ymax - mb_y*16;
  965. switch(s->me_method) {
  966. case ME_ZERO:
  967. default:
  968. no_motion_search(s, &mx, &my);
  969. dmin = 0;
  970. mx-= mb_x*16;
  971. my-= mb_y*16;
  972. break;
  973. case ME_FULL:
  974. dmin = full_motion_search(s, &mx, &my, range, xmin, ymin, xmax, ymax, ref_picture);
  975. mx-= mb_x*16;
  976. my-= mb_y*16;
  977. break;
  978. case ME_LOG:
  979. dmin = log_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  980. mx-= mb_x*16;
  981. my-= mb_y*16;
  982. break;
  983. case ME_PHODS:
  984. dmin = phods_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  985. mx-= mb_x*16;
  986. my-= mb_y*16;
  987. break;
  988. case ME_X1:
  989. case ME_EPZS:
  990. {
  991. P_LEFT[0] = mv_table[mot_xy - 1][0];
  992. P_LEFT[1] = mv_table[mot_xy - 1][1];
  993. if(P_LEFT[0] > (rel_xmax<<shift)) P_LEFT[0] = (rel_xmax<<shift);
  994. /* special case for first line */
  995. if (mb_y) {
  996. P_TOP[0] = mv_table[mot_xy - mot_stride ][0];
  997. P_TOP[1] = mv_table[mot_xy - mot_stride ][1];
  998. P_TOPRIGHT[0] = mv_table[mot_xy - mot_stride + 1 ][0];
  999. P_TOPRIGHT[1] = mv_table[mot_xy - mot_stride + 1 ][1];
  1000. if(P_TOP[1] > (rel_ymax<<shift)) P_TOP[1]= (rel_ymax<<shift);
  1001. if(P_TOPRIGHT[0] < (rel_xmin<<shift)) P_TOPRIGHT[0]= (rel_xmin<<shift);
  1002. if(P_TOPRIGHT[1] > (rel_ymax<<shift)) P_TOPRIGHT[1]= (rel_ymax<<shift);
  1003. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1004. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1005. }
  1006. pred_x= P_LEFT[0];
  1007. pred_y= P_LEFT[1];
  1008. }
  1009. if(mv_table == s->b_forw_mv_table){
  1010. mv_scale= (s->pb_time<<16) / (s->pp_time<<shift);
  1011. }else{
  1012. mv_scale= ((s->pb_time - s->pp_time)<<16) / (s->pp_time<<shift);
  1013. }
  1014. dmin = s->me.motion_search[0](s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  1015. picture, s->p_mv_table, mv_scale, mv_penalty);
  1016. break;
  1017. }
  1018. dmin= s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  1019. pred_x, pred_y, picture, 0, 0, mv_penalty);
  1020. //printf("%d %d %d %d//", s->mb_x, s->mb_y, mx, my);
  1021. // s->mb_type[mb_y*s->mb_width + mb_x]= mb_type;
  1022. mv_table[mot_xy][0]= mx;
  1023. mv_table[mot_xy][1]= my;
  1024. return dmin;
  1025. }
  1026. static inline int check_bidir_mv(MpegEncContext * s,
  1027. int mb_x, int mb_y,
  1028. int motion_fx, int motion_fy,
  1029. int motion_bx, int motion_by,
  1030. int pred_fx, int pred_fy,
  1031. int pred_bx, int pred_by)
  1032. {
  1033. //FIXME optimize?
  1034. //FIXME move into template?
  1035. //FIXME better f_code prediction (max mv & distance)
  1036. UINT16 *mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV; // f_code of the prev frame
  1037. uint8_t *dest_y = s->me.scratchpad;
  1038. uint8_t *ptr;
  1039. int dxy;
  1040. int src_x, src_y;
  1041. int fbmin;
  1042. if(s->quarter_sample){
  1043. dxy = ((motion_fy & 3) << 2) | (motion_fx & 3);
  1044. src_x = mb_x * 16 + (motion_fx >> 2);
  1045. src_y = mb_y * 16 + (motion_fy >> 2);
  1046. assert(src_x >=-16 && src_x<=s->width);
  1047. assert(src_y >=-16 && src_y<=s->height);
  1048. ptr = s->last_picture.data[0] + (src_y * s->linesize) + src_x;
  1049. s->dsp.put_qpel_pixels_tab[0][dxy](dest_y , ptr , s->linesize);
  1050. dxy = ((motion_by & 3) << 2) | (motion_bx & 3);
  1051. src_x = mb_x * 16 + (motion_bx >> 2);
  1052. src_y = mb_y * 16 + (motion_by >> 2);
  1053. assert(src_x >=-16 && src_x<=s->width);
  1054. assert(src_y >=-16 && src_y<=s->height);
  1055. ptr = s->next_picture.data[0] + (src_y * s->linesize) + src_x;
  1056. s->dsp.avg_qpel_pixels_tab[0][dxy](dest_y , ptr , s->linesize);
  1057. }else{
  1058. dxy = ((motion_fy & 1) << 1) | (motion_fx & 1);
  1059. src_x = mb_x * 16 + (motion_fx >> 1);
  1060. src_y = mb_y * 16 + (motion_fy >> 1);
  1061. assert(src_x >=-16 && src_x<=s->width);
  1062. assert(src_y >=-16 && src_y<=s->height);
  1063. ptr = s->last_picture.data[0] + (src_y * s->linesize) + src_x;
  1064. s->dsp.put_pixels_tab[0][dxy](dest_y , ptr , s->linesize, 16);
  1065. dxy = ((motion_by & 1) << 1) | (motion_bx & 1);
  1066. src_x = mb_x * 16 + (motion_bx >> 1);
  1067. src_y = mb_y * 16 + (motion_by >> 1);
  1068. assert(src_x >=-16 && src_x<=s->width);
  1069. assert(src_y >=-16 && src_y<=s->height);
  1070. ptr = s->next_picture.data[0] + (src_y * s->linesize) + src_x;
  1071. s->dsp.avg_pixels_tab[0][dxy](dest_y , ptr , s->linesize, 16);
  1072. }
  1073. fbmin = (mv_penalty[motion_fx-pred_fx] + mv_penalty[motion_fy-pred_fy])*s->me.sub_penalty_factor
  1074. +(mv_penalty[motion_bx-pred_bx] + mv_penalty[motion_by-pred_by])*s->me.sub_penalty_factor;
  1075. + s->dsp.me_sub_cmp[0](s, s->new_picture.data[0] + mb_x*16 + mb_y*16*s->linesize, dest_y, s->linesize);
  1076. return fbmin;
  1077. }
  1078. /* refine the bidir vectors in hq mode and return the score in both lq & hq mode*/
  1079. static inline int bidir_refine(MpegEncContext * s,
  1080. int mb_x, int mb_y)
  1081. {
  1082. const int mot_stride = s->mb_width + 2;
  1083. const int xy = (mb_y + 1)*mot_stride + mb_x + 1;
  1084. int fbmin;
  1085. int pred_fx= s->b_bidir_forw_mv_table[xy-1][0];
  1086. int pred_fy= s->b_bidir_forw_mv_table[xy-1][1];
  1087. int pred_bx= s->b_bidir_back_mv_table[xy-1][0];
  1088. int pred_by= s->b_bidir_back_mv_table[xy-1][1];
  1089. int motion_fx= s->b_bidir_forw_mv_table[xy][0]= s->b_forw_mv_table[xy][0];
  1090. int motion_fy= s->b_bidir_forw_mv_table[xy][1]= s->b_forw_mv_table[xy][1];
  1091. int motion_bx= s->b_bidir_back_mv_table[xy][0]= s->b_back_mv_table[xy][0];
  1092. int motion_by= s->b_bidir_back_mv_table[xy][1]= s->b_back_mv_table[xy][1];
  1093. //FIXME do refinement and add flag
  1094. fbmin= check_bidir_mv(s, mb_x, mb_y,
  1095. motion_fx, motion_fy,
  1096. motion_bx, motion_by,
  1097. pred_fx, pred_fy,
  1098. pred_bx, pred_by);
  1099. return fbmin;
  1100. }
  1101. static inline int direct_search(MpegEncContext * s,
  1102. int mb_x, int mb_y)
  1103. {
  1104. int P[10][2];
  1105. const int mot_stride = s->mb_width + 2;
  1106. const int mot_xy = (mb_y + 1)*mot_stride + mb_x + 1;
  1107. const int shift= 1+s->quarter_sample;
  1108. int dmin, i;
  1109. const int time_pp= s->pp_time;
  1110. const int time_pb= s->pb_time;
  1111. int mx, my, xmin, xmax, ymin, ymax;
  1112. int16_t (*mv_table)[2]= s->b_direct_mv_table;
  1113. uint16_t * const mv_penalty= s->me.mv_penalty[1] + MAX_MV;
  1114. ymin= xmin=(-32)>>shift;
  1115. ymax= xmax= 31>>shift;
  1116. if(s->co_located_type_table[mb_x + mb_y*s->mb_width]==CO_LOCATED_TYPE_4MV){
  1117. s->mv_type= MV_TYPE_8X8;
  1118. }else{
  1119. s->mv_type= MV_TYPE_16X16;
  1120. }
  1121. for(i=0; i<4; i++){
  1122. int index= s->block_index[i];
  1123. int min, max;
  1124. s->me.co_located_mv[i][0]= s->motion_val[index][0];
  1125. s->me.co_located_mv[i][1]= s->motion_val[index][1];
  1126. s->me.direct_basis_mv[i][0]= s->me.co_located_mv[i][0]*time_pb/time_pp + ((i& 1)<<(shift+3));
  1127. s->me.direct_basis_mv[i][1]= s->me.co_located_mv[i][1]*time_pb/time_pp + ((i>>1)<<(shift+3));
  1128. // s->me.direct_basis_mv[1][i][0]= s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + ((i &1)<<(shift+3);
  1129. // s->me.direct_basis_mv[1][i][1]= s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + ((i>>1)<<(shift+3);
  1130. max= FFMAX(s->me.direct_basis_mv[i][0], s->me.direct_basis_mv[i][0] - s->me.co_located_mv[i][0])>>shift;
  1131. min= FFMIN(s->me.direct_basis_mv[i][0], s->me.direct_basis_mv[i][0] - s->me.co_located_mv[i][0])>>shift;
  1132. max+= (2*mb_x + (i& 1))*8 - 1; // +-1 is for the simpler rounding
  1133. min+= (2*mb_x + (i& 1))*8 + 1;
  1134. xmax= FFMIN(xmax, s->width - max);
  1135. xmin= FFMAX(xmin, - 16 - min);
  1136. max= FFMAX(s->me.direct_basis_mv[i][1], s->me.direct_basis_mv[i][1] - s->me.co_located_mv[i][1])>>shift;
  1137. min= FFMIN(s->me.direct_basis_mv[i][1], s->me.direct_basis_mv[i][1] - s->me.co_located_mv[i][1])>>shift;
  1138. max+= (2*mb_y + (i>>1))*8 - 1; // +-1 is for the simpler rounding
  1139. min+= (2*mb_y + (i>>1))*8 + 1;
  1140. ymax= FFMIN(ymax, s->height - max);
  1141. ymin= FFMAX(ymin, - 16 - min);
  1142. if(s->mv_type == MV_TYPE_16X16) break;
  1143. }
  1144. assert(xmax <= 15 && ymax <= 15 && xmin >= -16 && ymin >= -16);
  1145. if(xmax < 0 || xmin >0 || ymax < 0 || ymin > 0){
  1146. s->b_direct_mv_table[mot_xy][0]= 0;
  1147. s->b_direct_mv_table[mot_xy][1]= 0;
  1148. return 256*256*256*64;
  1149. }
  1150. P_LEFT[0] = clip(mv_table[mot_xy - 1][0], xmin<<shift, xmax<<shift);
  1151. P_LEFT[1] = clip(mv_table[mot_xy - 1][1], ymin<<shift, ymax<<shift);
  1152. /* special case for first line */
  1153. if (mb_y) {
  1154. P_TOP[0] = clip(mv_table[mot_xy - mot_stride ][0], xmin<<shift, xmax<<shift);
  1155. P_TOP[1] = clip(mv_table[mot_xy - mot_stride ][1], ymin<<shift, ymax<<shift);
  1156. P_TOPRIGHT[0] = clip(mv_table[mot_xy - mot_stride + 1 ][0], xmin<<shift, xmax<<shift);
  1157. P_TOPRIGHT[1] = clip(mv_table[mot_xy - mot_stride + 1 ][1], ymin<<shift, ymax<<shift);
  1158. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1159. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1160. }
  1161. if(s->flags&CODEC_FLAG_QPEL){
  1162. dmin = simple_direct_qpel_epzs_motion_search(s, 0, &mx, &my, P, 0, 0, xmin, ymin, xmax, ymax,
  1163. &s->last_picture, mv_table, 1<<14, mv_penalty);
  1164. dmin = simple_direct_qpel_qpel_motion_search(s, &mx, &my, dmin, xmin, ymin, xmax, ymax,
  1165. 0, 0, &s->last_picture, 0, 0, mv_penalty);
  1166. }else{
  1167. dmin = simple_direct_hpel_epzs_motion_search(s, 0, &mx, &my, P, 0, 0, xmin, ymin, xmax, ymax,
  1168. &s->last_picture, mv_table, 1<<15, mv_penalty);
  1169. dmin = simple_direct_hpel_hpel_motion_search(s, &mx, &my, dmin, xmin, ymin, xmax, ymax,
  1170. 0, 0, &s->last_picture, 0, 0, mv_penalty);
  1171. }
  1172. s->b_direct_mv_table[mot_xy][0]= mx;
  1173. s->b_direct_mv_table[mot_xy][1]= my;
  1174. return dmin;
  1175. }
  1176. void ff_estimate_b_frame_motion(MpegEncContext * s,
  1177. int mb_x, int mb_y)
  1178. {
  1179. const int penalty_factor= s->me.penalty_factor;
  1180. int fmin, bmin, dmin, fbmin;
  1181. int type=0;
  1182. dmin= direct_search(s, mb_x, mb_y);
  1183. fmin= ff_estimate_motion_b(s, mb_x, mb_y, s->b_forw_mv_table, &s->last_picture, s->f_code);
  1184. bmin= ff_estimate_motion_b(s, mb_x, mb_y, s->b_back_mv_table, &s->next_picture, s->b_code) - penalty_factor;
  1185. //printf(" %d %d ", s->b_forw_mv_table[xy][0], s->b_forw_mv_table[xy][1]);
  1186. fbmin= bidir_refine(s, mb_x, mb_y);
  1187. {
  1188. int score= dmin;
  1189. type=MB_TYPE_DIRECT;
  1190. if(fmin<score){
  1191. score=fmin;
  1192. type= MB_TYPE_FORWARD;
  1193. }
  1194. if(bmin<score){
  1195. score=bmin;
  1196. type= MB_TYPE_BACKWARD;
  1197. }
  1198. if(fbmin<score){
  1199. score=fbmin;
  1200. type= MB_TYPE_BIDIR;
  1201. }
  1202. score= ((unsigned)(score*score + 128*256))>>16;
  1203. s->current_picture.mc_mb_var_sum += score;
  1204. s->current_picture.mc_mb_var[mb_y*s->mb_width + mb_x] = score; //FIXME use SSD
  1205. }
  1206. if(s->flags&CODEC_FLAG_HQ){
  1207. type= MB_TYPE_FORWARD | MB_TYPE_BACKWARD | MB_TYPE_BIDIR | MB_TYPE_DIRECT; //FIXME something smarter
  1208. if(dmin>256*256*16) type&= ~MB_TYPE_DIRECT; //dont try direct mode if its invalid for this MB
  1209. }
  1210. s->mb_type[mb_y*s->mb_width + mb_x]= type;
  1211. }
  1212. /* find best f_code for ME which do unlimited searches */
  1213. int ff_get_best_fcode(MpegEncContext * s, int16_t (*mv_table)[2], int type)
  1214. {
  1215. if(s->me_method>=ME_EPZS){
  1216. int score[8];
  1217. int i, y;
  1218. UINT8 * fcode_tab= s->fcode_tab;
  1219. int best_fcode=-1;
  1220. int best_score=-10000000;
  1221. for(i=0; i<8; i++) score[i]= s->mb_num*(8-i);
  1222. for(y=0; y<s->mb_height; y++){
  1223. int x;
  1224. int xy= (y+1)* (s->mb_width+2) + 1;
  1225. i= y*s->mb_width;
  1226. for(x=0; x<s->mb_width; x++){
  1227. if(s->mb_type[i] & type){
  1228. int fcode= FFMAX(fcode_tab[mv_table[xy][0] + MAX_MV],
  1229. fcode_tab[mv_table[xy][1] + MAX_MV]);
  1230. int j;
  1231. for(j=0; j<fcode && j<8; j++){
  1232. if(s->pict_type==B_TYPE || s->current_picture.mc_mb_var[i] < s->current_picture.mb_var[i])
  1233. score[j]-= 170;
  1234. }
  1235. }
  1236. i++;
  1237. xy++;
  1238. }
  1239. }
  1240. for(i=1; i<8; i++){
  1241. if(score[i] > best_score){
  1242. best_score= score[i];
  1243. best_fcode= i;
  1244. }
  1245. // printf("%d %d\n", i, score[i]);
  1246. }
  1247. // printf("fcode: %d type: %d\n", i, s->pict_type);
  1248. return best_fcode;
  1249. /* for(i=0; i<=MAX_FCODE; i++){
  1250. printf("%d ", mv_num[i]);
  1251. }
  1252. printf("\n");*/
  1253. }else{
  1254. return 1;
  1255. }
  1256. }
  1257. void ff_fix_long_p_mvs(MpegEncContext * s)
  1258. {
  1259. const int f_code= s->f_code;
  1260. int y;
  1261. UINT8 * fcode_tab= s->fcode_tab;
  1262. //int clip=0;
  1263. //int noclip=0;
  1264. /* clip / convert to intra 16x16 type MVs */
  1265. for(y=0; y<s->mb_height; y++){
  1266. int x;
  1267. int xy= (y+1)* (s->mb_width+2)+1;
  1268. int i= y*s->mb_width;
  1269. for(x=0; x<s->mb_width; x++){
  1270. if(s->mb_type[i]&MB_TYPE_INTER){
  1271. if( fcode_tab[s->p_mv_table[xy][0] + MAX_MV] > f_code
  1272. || fcode_tab[s->p_mv_table[xy][0] + MAX_MV] == 0
  1273. || fcode_tab[s->p_mv_table[xy][1] + MAX_MV] > f_code
  1274. || fcode_tab[s->p_mv_table[xy][1] + MAX_MV] == 0 ){
  1275. s->mb_type[i] &= ~MB_TYPE_INTER;
  1276. s->mb_type[i] |= MB_TYPE_INTRA;
  1277. s->p_mv_table[xy][0] = 0;
  1278. s->p_mv_table[xy][1] = 0;
  1279. //clip++;
  1280. }
  1281. //else
  1282. // noclip++;
  1283. }
  1284. xy++;
  1285. i++;
  1286. }
  1287. }
  1288. //printf("%d no:%d %d//\n", clip, noclip, f_code);
  1289. if(s->flags&CODEC_FLAG_4MV){
  1290. const int wrap= 2+ s->mb_width*2;
  1291. /* clip / convert to intra 8x8 type MVs */
  1292. for(y=0; y<s->mb_height; y++){
  1293. int xy= (y*2 + 1)*wrap + 1;
  1294. int i= y*s->mb_width;
  1295. int x;
  1296. for(x=0; x<s->mb_width; x++){
  1297. if(s->mb_type[i]&MB_TYPE_INTER4V){
  1298. int block;
  1299. for(block=0; block<4; block++){
  1300. int off= (block& 1) + (block>>1)*wrap;
  1301. int mx= s->motion_val[ xy + off ][0];
  1302. int my= s->motion_val[ xy + off ][1];
  1303. if( fcode_tab[mx + MAX_MV] > f_code
  1304. || fcode_tab[mx + MAX_MV] == 0
  1305. || fcode_tab[my + MAX_MV] > f_code
  1306. || fcode_tab[my + MAX_MV] == 0 ){
  1307. s->mb_type[i] &= ~MB_TYPE_INTER4V;
  1308. s->mb_type[i] |= MB_TYPE_INTRA;
  1309. }
  1310. }
  1311. }
  1312. xy+=2;
  1313. i++;
  1314. }
  1315. }
  1316. }
  1317. }
  1318. void ff_fix_long_b_mvs(MpegEncContext * s, int16_t (*mv_table)[2], int f_code, int type)
  1319. {
  1320. int y;
  1321. UINT8 * fcode_tab= s->fcode_tab;
  1322. /* clip / convert to intra 16x16 type MVs */
  1323. for(y=0; y<s->mb_height; y++){
  1324. int x;
  1325. int xy= (y+1)* (s->mb_width+2)+1;
  1326. int i= y*s->mb_width;
  1327. for(x=0; x<s->mb_width; x++){
  1328. if( fcode_tab[mv_table[xy][0] + MAX_MV] > f_code
  1329. || fcode_tab[mv_table[xy][0] + MAX_MV] == 0){
  1330. if(mv_table[xy][0]>0) mv_table[xy][0]= (16<<f_code)-1;
  1331. else mv_table[xy][0]= -(16<<f_code);
  1332. }
  1333. if( fcode_tab[mv_table[xy][1] + MAX_MV] > f_code
  1334. || fcode_tab[mv_table[xy][1] + MAX_MV] == 0){
  1335. if(mv_table[xy][1]>0) mv_table[xy][1]= (16<<f_code)-1;
  1336. else mv_table[xy][1]= -(16<<f_code);
  1337. }
  1338. xy++;
  1339. i++;
  1340. }
  1341. }
  1342. }