You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3608 lines
123KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of this file can be used
  21. * under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually, but I did not write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be OK)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #define _SVID_SOURCE //needed for MAP_ANONYMOUS
  53. #include <inttypes.h>
  54. #include <string.h>
  55. #include <math.h>
  56. #include <stdio.h>
  57. #include "config.h"
  58. #include <assert.h>
  59. #if HAVE_SYS_MMAN_H
  60. #include <sys/mman.h>
  61. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  62. #define MAP_ANONYMOUS MAP_ANON
  63. #endif
  64. #endif
  65. #if HAVE_VIRTUALALLOC
  66. #define WIN32_LEAN_AND_MEAN
  67. #include <windows.h>
  68. #endif
  69. #include "swscale.h"
  70. #include "swscale_internal.h"
  71. #include "rgb2rgb.h"
  72. #include "libavutil/x86_cpu.h"
  73. #include "libavutil/bswap.h"
  74. unsigned swscale_version(void)
  75. {
  76. return LIBSWSCALE_VERSION_INT;
  77. }
  78. #undef MOVNTQ
  79. #undef PAVGB
  80. //#undef HAVE_MMX2
  81. //#define HAVE_AMD3DNOW
  82. //#undef HAVE_MMX
  83. //#undef ARCH_X86
  84. //#define WORDS_BIGENDIAN
  85. #define DITHER1XBPP
  86. #define FAST_BGR2YV12 // use 7 bit coefficients instead of 15 bit
  87. #define RET 0xC3 //near return opcode for x86
  88. #ifdef M_PI
  89. #define PI M_PI
  90. #else
  91. #define PI 3.14159265358979323846
  92. #endif
  93. #define isSupportedIn(x) ( \
  94. (x)==PIX_FMT_YUV420P \
  95. || (x)==PIX_FMT_YUVA420P \
  96. || (x)==PIX_FMT_YUYV422 \
  97. || (x)==PIX_FMT_UYVY422 \
  98. || (x)==PIX_FMT_RGB48BE \
  99. || (x)==PIX_FMT_RGB48LE \
  100. || (x)==PIX_FMT_RGB32 \
  101. || (x)==PIX_FMT_RGB32_1 \
  102. || (x)==PIX_FMT_BGR24 \
  103. || (x)==PIX_FMT_BGR565 \
  104. || (x)==PIX_FMT_BGR555 \
  105. || (x)==PIX_FMT_BGR32 \
  106. || (x)==PIX_FMT_BGR32_1 \
  107. || (x)==PIX_FMT_RGB24 \
  108. || (x)==PIX_FMT_RGB565 \
  109. || (x)==PIX_FMT_RGB555 \
  110. || (x)==PIX_FMT_GRAY8 \
  111. || (x)==PIX_FMT_YUV410P \
  112. || (x)==PIX_FMT_YUV440P \
  113. || (x)==PIX_FMT_GRAY16BE \
  114. || (x)==PIX_FMT_GRAY16LE \
  115. || (x)==PIX_FMT_YUV444P \
  116. || (x)==PIX_FMT_YUV422P \
  117. || (x)==PIX_FMT_YUV411P \
  118. || (x)==PIX_FMT_PAL8 \
  119. || (x)==PIX_FMT_BGR8 \
  120. || (x)==PIX_FMT_RGB8 \
  121. || (x)==PIX_FMT_BGR4_BYTE \
  122. || (x)==PIX_FMT_RGB4_BYTE \
  123. || (x)==PIX_FMT_YUV440P \
  124. || (x)==PIX_FMT_MONOWHITE \
  125. || (x)==PIX_FMT_MONOBLACK \
  126. || (x)==PIX_FMT_YUV420PLE \
  127. || (x)==PIX_FMT_YUV422PLE \
  128. || (x)==PIX_FMT_YUV444PLE \
  129. || (x)==PIX_FMT_YUV420PBE \
  130. || (x)==PIX_FMT_YUV422PBE \
  131. || (x)==PIX_FMT_YUV444PBE \
  132. )
  133. #define isSupportedOut(x) ( \
  134. (x)==PIX_FMT_YUV420P \
  135. || (x)==PIX_FMT_YUVA420P \
  136. || (x)==PIX_FMT_YUYV422 \
  137. || (x)==PIX_FMT_UYVY422 \
  138. || (x)==PIX_FMT_YUV444P \
  139. || (x)==PIX_FMT_YUV422P \
  140. || (x)==PIX_FMT_YUV411P \
  141. || isRGB(x) \
  142. || isBGR(x) \
  143. || (x)==PIX_FMT_NV12 \
  144. || (x)==PIX_FMT_NV21 \
  145. || (x)==PIX_FMT_GRAY16BE \
  146. || (x)==PIX_FMT_GRAY16LE \
  147. || (x)==PIX_FMT_GRAY8 \
  148. || (x)==PIX_FMT_YUV410P \
  149. || (x)==PIX_FMT_YUV440P \
  150. || (x)==PIX_FMT_YUV420PLE \
  151. || (x)==PIX_FMT_YUV422PLE \
  152. || (x)==PIX_FMT_YUV444PLE \
  153. || (x)==PIX_FMT_YUV420PBE \
  154. || (x)==PIX_FMT_YUV422PBE \
  155. || (x)==PIX_FMT_YUV444PBE \
  156. )
  157. #define isPacked(x) ( \
  158. (x)==PIX_FMT_PAL8 \
  159. || (x)==PIX_FMT_YUYV422 \
  160. || (x)==PIX_FMT_UYVY422 \
  161. || isRGB(x) \
  162. || isBGR(x) \
  163. )
  164. #define usePal(x) ( \
  165. (x)==PIX_FMT_PAL8 \
  166. || (x)==PIX_FMT_BGR4_BYTE \
  167. || (x)==PIX_FMT_RGB4_BYTE \
  168. || (x)==PIX_FMT_BGR8 \
  169. || (x)==PIX_FMT_RGB8 \
  170. )
  171. #define RGB2YUV_SHIFT 15
  172. #define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  173. #define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  174. #define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  175. #define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  176. #define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  177. #define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  178. #define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  179. #define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  180. #define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  181. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  182. static const double rgb2yuv_table[8][9]={
  183. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  184. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  185. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  186. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  187. {0.59 , 0.11 , 0.30 , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
  188. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  189. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
  190. {0.701 , 0.087 , 0.212 , -0.384, 0.5 -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
  191. };
  192. /*
  193. NOTES
  194. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  195. TODO
  196. more intelligent misalignment avoidance for the horizontal scaler
  197. write special vertical cubic upscale version
  198. optimize C code (YV12 / minmax)
  199. add support for packed pixel YUV input & output
  200. add support for Y8 output
  201. optimize BGR24 & BGR32
  202. add BGR4 output support
  203. write special BGR->BGR scaler
  204. */
  205. #if ARCH_X86 && CONFIG_GPL
  206. DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
  207. DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
  208. DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
  209. DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
  210. DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
  211. DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
  212. DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
  213. DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
  214. const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
  215. 0x0103010301030103LL,
  216. 0x0200020002000200LL,};
  217. const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
  218. 0x0602060206020602LL,
  219. 0x0004000400040004LL,};
  220. DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
  221. DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
  222. DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
  223. DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
  224. DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
  225. DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
  226. DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
  227. DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
  228. DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
  229. #ifdef FAST_BGR2YV12
  230. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
  231. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
  232. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
  233. #else
  234. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
  235. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
  236. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
  237. #endif /* FAST_BGR2YV12 */
  238. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
  239. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
  240. DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
  241. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
  242. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
  243. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
  244. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
  245. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
  246. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV[2][4]) = {
  247. {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
  248. {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
  249. };
  250. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
  251. #endif /* ARCH_X86 && CONFIG_GPL */
  252. // clipping helper table for C implementations:
  253. static unsigned char clip_table[768];
  254. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  255. DECLARE_ALIGNED(8, static const uint8_t, dither_2x2_4[2][8])={
  256. { 1, 3, 1, 3, 1, 3, 1, 3, },
  257. { 2, 0, 2, 0, 2, 0, 2, 0, },
  258. };
  259. DECLARE_ALIGNED(8, static const uint8_t, dither_2x2_8[2][8])={
  260. { 6, 2, 6, 2, 6, 2, 6, 2, },
  261. { 0, 4, 0, 4, 0, 4, 0, 4, },
  262. };
  263. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_32[8][8])={
  264. { 17, 9, 23, 15, 16, 8, 22, 14, },
  265. { 5, 29, 3, 27, 4, 28, 2, 26, },
  266. { 21, 13, 19, 11, 20, 12, 18, 10, },
  267. { 0, 24, 6, 30, 1, 25, 7, 31, },
  268. { 16, 8, 22, 14, 17, 9, 23, 15, },
  269. { 4, 28, 2, 26, 5, 29, 3, 27, },
  270. { 20, 12, 18, 10, 21, 13, 19, 11, },
  271. { 1, 25, 7, 31, 0, 24, 6, 30, },
  272. };
  273. #if 0
  274. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_64[8][8])={
  275. { 0, 48, 12, 60, 3, 51, 15, 63, },
  276. { 32, 16, 44, 28, 35, 19, 47, 31, },
  277. { 8, 56, 4, 52, 11, 59, 7, 55, },
  278. { 40, 24, 36, 20, 43, 27, 39, 23, },
  279. { 2, 50, 14, 62, 1, 49, 13, 61, },
  280. { 34, 18, 46, 30, 33, 17, 45, 29, },
  281. { 10, 58, 6, 54, 9, 57, 5, 53, },
  282. { 42, 26, 38, 22, 41, 25, 37, 21, },
  283. };
  284. #endif
  285. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_73[8][8])={
  286. { 0, 55, 14, 68, 3, 58, 17, 72, },
  287. { 37, 18, 50, 32, 40, 22, 54, 35, },
  288. { 9, 64, 5, 59, 13, 67, 8, 63, },
  289. { 46, 27, 41, 23, 49, 31, 44, 26, },
  290. { 2, 57, 16, 71, 1, 56, 15, 70, },
  291. { 39, 21, 52, 34, 38, 19, 51, 33, },
  292. { 11, 66, 7, 62, 10, 65, 6, 60, },
  293. { 48, 30, 43, 25, 47, 29, 42, 24, },
  294. };
  295. #if 0
  296. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_128[8][8])={
  297. { 68, 36, 92, 60, 66, 34, 90, 58, },
  298. { 20, 116, 12, 108, 18, 114, 10, 106, },
  299. { 84, 52, 76, 44, 82, 50, 74, 42, },
  300. { 0, 96, 24, 120, 6, 102, 30, 126, },
  301. { 64, 32, 88, 56, 70, 38, 94, 62, },
  302. { 16, 112, 8, 104, 22, 118, 14, 110, },
  303. { 80, 48, 72, 40, 86, 54, 78, 46, },
  304. { 4, 100, 28, 124, 2, 98, 26, 122, },
  305. };
  306. #endif
  307. #if 1
  308. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={
  309. {117, 62, 158, 103, 113, 58, 155, 100, },
  310. { 34, 199, 21, 186, 31, 196, 17, 182, },
  311. {144, 89, 131, 76, 141, 86, 127, 72, },
  312. { 0, 165, 41, 206, 10, 175, 52, 217, },
  313. {110, 55, 151, 96, 120, 65, 162, 107, },
  314. { 28, 193, 14, 179, 38, 203, 24, 189, },
  315. {138, 83, 124, 69, 148, 93, 134, 79, },
  316. { 7, 172, 48, 213, 3, 168, 45, 210, },
  317. };
  318. #elif 1
  319. // tries to correct a gamma of 1.5
  320. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={
  321. { 0, 143, 18, 200, 2, 156, 25, 215, },
  322. { 78, 28, 125, 64, 89, 36, 138, 74, },
  323. { 10, 180, 3, 161, 16, 195, 8, 175, },
  324. {109, 51, 93, 38, 121, 60, 105, 47, },
  325. { 1, 152, 23, 210, 0, 147, 20, 205, },
  326. { 85, 33, 134, 71, 81, 30, 130, 67, },
  327. { 14, 190, 6, 171, 12, 185, 5, 166, },
  328. {117, 57, 101, 44, 113, 54, 97, 41, },
  329. };
  330. #elif 1
  331. // tries to correct a gamma of 2.0
  332. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={
  333. { 0, 124, 8, 193, 0, 140, 12, 213, },
  334. { 55, 14, 104, 42, 66, 19, 119, 52, },
  335. { 3, 168, 1, 145, 6, 187, 3, 162, },
  336. { 86, 31, 70, 21, 99, 39, 82, 28, },
  337. { 0, 134, 11, 206, 0, 129, 9, 200, },
  338. { 62, 17, 114, 48, 58, 16, 109, 45, },
  339. { 5, 181, 2, 157, 4, 175, 1, 151, },
  340. { 95, 36, 78, 26, 90, 34, 74, 24, },
  341. };
  342. #else
  343. // tries to correct a gamma of 2.5
  344. DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={
  345. { 0, 107, 3, 187, 0, 125, 6, 212, },
  346. { 39, 7, 86, 28, 49, 11, 102, 36, },
  347. { 1, 158, 0, 131, 3, 180, 1, 151, },
  348. { 68, 19, 52, 12, 81, 25, 64, 17, },
  349. { 0, 119, 5, 203, 0, 113, 4, 195, },
  350. { 45, 9, 96, 33, 42, 8, 91, 30, },
  351. { 2, 172, 1, 144, 2, 165, 0, 137, },
  352. { 77, 23, 60, 15, 72, 21, 56, 14, },
  353. };
  354. #endif
  355. const char *sws_format_name(enum PixelFormat format)
  356. {
  357. switch (format) {
  358. case PIX_FMT_YUV420P:
  359. return "yuv420p";
  360. case PIX_FMT_YUVA420P:
  361. return "yuva420p";
  362. case PIX_FMT_YUYV422:
  363. return "yuyv422";
  364. case PIX_FMT_RGB24:
  365. return "rgb24";
  366. case PIX_FMT_BGR24:
  367. return "bgr24";
  368. case PIX_FMT_YUV422P:
  369. return "yuv422p";
  370. case PIX_FMT_YUV444P:
  371. return "yuv444p";
  372. case PIX_FMT_RGB32:
  373. return "rgb32";
  374. case PIX_FMT_YUV410P:
  375. return "yuv410p";
  376. case PIX_FMT_YUV411P:
  377. return "yuv411p";
  378. case PIX_FMT_RGB565:
  379. return "rgb565";
  380. case PIX_FMT_RGB555:
  381. return "rgb555";
  382. case PIX_FMT_GRAY16BE:
  383. return "gray16be";
  384. case PIX_FMT_GRAY16LE:
  385. return "gray16le";
  386. case PIX_FMT_GRAY8:
  387. return "gray8";
  388. case PIX_FMT_MONOWHITE:
  389. return "mono white";
  390. case PIX_FMT_MONOBLACK:
  391. return "mono black";
  392. case PIX_FMT_PAL8:
  393. return "Palette";
  394. case PIX_FMT_YUVJ420P:
  395. return "yuvj420p";
  396. case PIX_FMT_YUVJ422P:
  397. return "yuvj422p";
  398. case PIX_FMT_YUVJ444P:
  399. return "yuvj444p";
  400. case PIX_FMT_XVMC_MPEG2_MC:
  401. return "xvmc_mpeg2_mc";
  402. case PIX_FMT_XVMC_MPEG2_IDCT:
  403. return "xvmc_mpeg2_idct";
  404. case PIX_FMT_UYVY422:
  405. return "uyvy422";
  406. case PIX_FMT_UYYVYY411:
  407. return "uyyvyy411";
  408. case PIX_FMT_RGB32_1:
  409. return "rgb32x";
  410. case PIX_FMT_BGR32_1:
  411. return "bgr32x";
  412. case PIX_FMT_BGR32:
  413. return "bgr32";
  414. case PIX_FMT_BGR565:
  415. return "bgr565";
  416. case PIX_FMT_BGR555:
  417. return "bgr555";
  418. case PIX_FMT_BGR8:
  419. return "bgr8";
  420. case PIX_FMT_BGR4:
  421. return "bgr4";
  422. case PIX_FMT_BGR4_BYTE:
  423. return "bgr4 byte";
  424. case PIX_FMT_RGB8:
  425. return "rgb8";
  426. case PIX_FMT_RGB4:
  427. return "rgb4";
  428. case PIX_FMT_RGB4_BYTE:
  429. return "rgb4 byte";
  430. case PIX_FMT_RGB48BE:
  431. return "rgb48be";
  432. case PIX_FMT_RGB48LE:
  433. return "rgb48le";
  434. case PIX_FMT_NV12:
  435. return "nv12";
  436. case PIX_FMT_NV21:
  437. return "nv21";
  438. case PIX_FMT_YUV440P:
  439. return "yuv440p";
  440. case PIX_FMT_VDPAU_H264:
  441. return "vdpau_h264";
  442. case PIX_FMT_VDPAU_MPEG1:
  443. return "vdpau_mpeg1";
  444. case PIX_FMT_VDPAU_MPEG2:
  445. return "vdpau_mpeg2";
  446. case PIX_FMT_VDPAU_WMV3:
  447. return "vdpau_wmv3";
  448. case PIX_FMT_VDPAU_VC1:
  449. return "vdpau_vc1";
  450. case PIX_FMT_YUV420PLE:
  451. return "yuv420ple";
  452. case PIX_FMT_YUV422PLE:
  453. return "yuv422ple";
  454. case PIX_FMT_YUV444PLE:
  455. return "yuv444ple";
  456. case PIX_FMT_YUV420PBE:
  457. return "yuv420pbe";
  458. case PIX_FMT_YUV422PBE:
  459. return "yuv422pbe";
  460. case PIX_FMT_YUV444PBE:
  461. return "yuv444pbe";
  462. default:
  463. return "Unknown format";
  464. }
  465. }
  466. static inline void yuv2yuvXinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  467. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  468. const int16_t **alpSrc, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, uint8_t *aDest, int dstW, int chrDstW)
  469. {
  470. //FIXME Optimize (just quickly written not optimized..)
  471. int i;
  472. for (i=0; i<dstW; i++)
  473. {
  474. int val=1<<18;
  475. int j;
  476. for (j=0; j<lumFilterSize; j++)
  477. val += lumSrc[j][i] * lumFilter[j];
  478. dest[i]= av_clip_uint8(val>>19);
  479. }
  480. if (uDest)
  481. for (i=0; i<chrDstW; i++)
  482. {
  483. int u=1<<18;
  484. int v=1<<18;
  485. int j;
  486. for (j=0; j<chrFilterSize; j++)
  487. {
  488. u += chrSrc[j][i] * chrFilter[j];
  489. v += chrSrc[j][i + VOFW] * chrFilter[j];
  490. }
  491. uDest[i]= av_clip_uint8(u>>19);
  492. vDest[i]= av_clip_uint8(v>>19);
  493. }
  494. if (CONFIG_SWSCALE_ALPHA && aDest)
  495. for (i=0; i<dstW; i++){
  496. int val=1<<18;
  497. int j;
  498. for (j=0; j<lumFilterSize; j++)
  499. val += alpSrc[j][i] * lumFilter[j];
  500. aDest[i]= av_clip_uint8(val>>19);
  501. }
  502. }
  503. static inline void yuv2nv12XinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  504. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  505. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  506. {
  507. //FIXME Optimize (just quickly written not optimized..)
  508. int i;
  509. for (i=0; i<dstW; i++)
  510. {
  511. int val=1<<18;
  512. int j;
  513. for (j=0; j<lumFilterSize; j++)
  514. val += lumSrc[j][i] * lumFilter[j];
  515. dest[i]= av_clip_uint8(val>>19);
  516. }
  517. if (!uDest)
  518. return;
  519. if (dstFormat == PIX_FMT_NV12)
  520. for (i=0; i<chrDstW; i++)
  521. {
  522. int u=1<<18;
  523. int v=1<<18;
  524. int j;
  525. for (j=0; j<chrFilterSize; j++)
  526. {
  527. u += chrSrc[j][i] * chrFilter[j];
  528. v += chrSrc[j][i + VOFW] * chrFilter[j];
  529. }
  530. uDest[2*i]= av_clip_uint8(u>>19);
  531. uDest[2*i+1]= av_clip_uint8(v>>19);
  532. }
  533. else
  534. for (i=0; i<chrDstW; i++)
  535. {
  536. int u=1<<18;
  537. int v=1<<18;
  538. int j;
  539. for (j=0; j<chrFilterSize; j++)
  540. {
  541. u += chrSrc[j][i] * chrFilter[j];
  542. v += chrSrc[j][i + VOFW] * chrFilter[j];
  543. }
  544. uDest[2*i]= av_clip_uint8(v>>19);
  545. uDest[2*i+1]= av_clip_uint8(u>>19);
  546. }
  547. }
  548. #define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha) \
  549. for (i=0; i<(dstW>>1); i++){\
  550. int j;\
  551. int Y1 = 1<<18;\
  552. int Y2 = 1<<18;\
  553. int U = 1<<18;\
  554. int V = 1<<18;\
  555. int av_unused A1, A2;\
  556. type av_unused *r, *b, *g;\
  557. const int i2= 2*i;\
  558. \
  559. for (j=0; j<lumFilterSize; j++)\
  560. {\
  561. Y1 += lumSrc[j][i2] * lumFilter[j];\
  562. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  563. }\
  564. for (j=0; j<chrFilterSize; j++)\
  565. {\
  566. U += chrSrc[j][i] * chrFilter[j];\
  567. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  568. }\
  569. Y1>>=19;\
  570. Y2>>=19;\
  571. U >>=19;\
  572. V >>=19;\
  573. if (alpha){\
  574. A1 = 1<<18;\
  575. A2 = 1<<18;\
  576. for (j=0; j<lumFilterSize; j++){\
  577. A1 += alpSrc[j][i2 ] * lumFilter[j];\
  578. A2 += alpSrc[j][i2+1] * lumFilter[j];\
  579. }\
  580. A1>>=19;\
  581. A2>>=19;\
  582. }\
  583. #define YSCALE_YUV_2_PACKEDX_C(type,alpha) \
  584. YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha)\
  585. if ((Y1|Y2|U|V)&256)\
  586. {\
  587. if (Y1>255) Y1=255; \
  588. else if (Y1<0)Y1=0; \
  589. if (Y2>255) Y2=255; \
  590. else if (Y2<0)Y2=0; \
  591. if (U>255) U=255; \
  592. else if (U<0) U=0; \
  593. if (V>255) V=255; \
  594. else if (V<0) V=0; \
  595. }\
  596. if (alpha && ((A1|A2)&256)){\
  597. A1=av_clip_uint8(A1);\
  598. A2=av_clip_uint8(A2);\
  599. }
  600. #define YSCALE_YUV_2_PACKEDX_FULL_C(rnd,alpha) \
  601. for (i=0; i<dstW; i++){\
  602. int j;\
  603. int Y = 0;\
  604. int U = -128<<19;\
  605. int V = -128<<19;\
  606. int av_unused A;\
  607. int R,G,B;\
  608. \
  609. for (j=0; j<lumFilterSize; j++){\
  610. Y += lumSrc[j][i ] * lumFilter[j];\
  611. }\
  612. for (j=0; j<chrFilterSize; j++){\
  613. U += chrSrc[j][i ] * chrFilter[j];\
  614. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  615. }\
  616. Y >>=10;\
  617. U >>=10;\
  618. V >>=10;\
  619. if (alpha){\
  620. A = rnd;\
  621. for (j=0; j<lumFilterSize; j++)\
  622. A += alpSrc[j][i ] * lumFilter[j];\
  623. A >>=19;\
  624. if (A&256)\
  625. A = av_clip_uint8(A);\
  626. }\
  627. #define YSCALE_YUV_2_RGBX_FULL_C(rnd,alpha) \
  628. YSCALE_YUV_2_PACKEDX_FULL_C(rnd>>3,alpha)\
  629. Y-= c->yuv2rgb_y_offset;\
  630. Y*= c->yuv2rgb_y_coeff;\
  631. Y+= rnd;\
  632. R= Y + V*c->yuv2rgb_v2r_coeff;\
  633. G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
  634. B= Y + U*c->yuv2rgb_u2b_coeff;\
  635. if ((R|G|B)&(0xC0000000)){\
  636. if (R>=(256<<22)) R=(256<<22)-1; \
  637. else if (R<0)R=0; \
  638. if (G>=(256<<22)) G=(256<<22)-1; \
  639. else if (G<0)G=0; \
  640. if (B>=(256<<22)) B=(256<<22)-1; \
  641. else if (B<0)B=0; \
  642. }\
  643. #define YSCALE_YUV_2_GRAY16_C \
  644. for (i=0; i<(dstW>>1); i++){\
  645. int j;\
  646. int Y1 = 1<<18;\
  647. int Y2 = 1<<18;\
  648. int U = 1<<18;\
  649. int V = 1<<18;\
  650. \
  651. const int i2= 2*i;\
  652. \
  653. for (j=0; j<lumFilterSize; j++)\
  654. {\
  655. Y1 += lumSrc[j][i2] * lumFilter[j];\
  656. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  657. }\
  658. Y1>>=11;\
  659. Y2>>=11;\
  660. if ((Y1|Y2|U|V)&65536)\
  661. {\
  662. if (Y1>65535) Y1=65535; \
  663. else if (Y1<0)Y1=0; \
  664. if (Y2>65535) Y2=65535; \
  665. else if (Y2<0)Y2=0; \
  666. }
  667. #define YSCALE_YUV_2_RGBX_C(type,alpha) \
  668. YSCALE_YUV_2_PACKEDX_C(type,alpha) /* FIXME fix tables so that clipping is not needed and then use _NOCLIP*/\
  669. r = (type *)c->table_rV[V]; \
  670. g = (type *)(c->table_gU[U] + c->table_gV[V]); \
  671. b = (type *)c->table_bU[U]; \
  672. #define YSCALE_YUV_2_PACKED2_C(type,alpha) \
  673. for (i=0; i<(dstW>>1); i++){ \
  674. const int i2= 2*i; \
  675. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
  676. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
  677. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
  678. int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
  679. type av_unused *r, *b, *g; \
  680. int av_unused A1, A2; \
  681. if (alpha){\
  682. A1= (abuf0[i2 ]*yalpha1+abuf1[i2 ]*yalpha)>>19; \
  683. A2= (abuf0[i2+1]*yalpha1+abuf1[i2+1]*yalpha)>>19; \
  684. }\
  685. #define YSCALE_YUV_2_GRAY16_2_C \
  686. for (i=0; i<(dstW>>1); i++){ \
  687. const int i2= 2*i; \
  688. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \
  689. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11; \
  690. #define YSCALE_YUV_2_RGB2_C(type,alpha) \
  691. YSCALE_YUV_2_PACKED2_C(type,alpha)\
  692. r = (type *)c->table_rV[V];\
  693. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  694. b = (type *)c->table_bU[U];\
  695. #define YSCALE_YUV_2_PACKED1_C(type,alpha) \
  696. for (i=0; i<(dstW>>1); i++){\
  697. const int i2= 2*i;\
  698. int Y1= buf0[i2 ]>>7;\
  699. int Y2= buf0[i2+1]>>7;\
  700. int U= (uvbuf1[i ])>>7;\
  701. int V= (uvbuf1[i+VOFW])>>7;\
  702. type av_unused *r, *b, *g;\
  703. int av_unused A1, A2;\
  704. if (alpha){\
  705. A1= abuf0[i2 ]>>7;\
  706. A2= abuf0[i2+1]>>7;\
  707. }\
  708. #define YSCALE_YUV_2_GRAY16_1_C \
  709. for (i=0; i<(dstW>>1); i++){\
  710. const int i2= 2*i;\
  711. int Y1= buf0[i2 ]<<1;\
  712. int Y2= buf0[i2+1]<<1;\
  713. #define YSCALE_YUV_2_RGB1_C(type,alpha) \
  714. YSCALE_YUV_2_PACKED1_C(type,alpha)\
  715. r = (type *)c->table_rV[V];\
  716. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  717. b = (type *)c->table_bU[U];\
  718. #define YSCALE_YUV_2_PACKED1B_C(type,alpha) \
  719. for (i=0; i<(dstW>>1); i++){\
  720. const int i2= 2*i;\
  721. int Y1= buf0[i2 ]>>7;\
  722. int Y2= buf0[i2+1]>>7;\
  723. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  724. int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
  725. type av_unused *r, *b, *g;\
  726. int av_unused A1, A2;\
  727. if (alpha){\
  728. A1= abuf0[i2 ]>>7;\
  729. A2= abuf0[i2+1]>>7;\
  730. }\
  731. #define YSCALE_YUV_2_RGB1B_C(type,alpha) \
  732. YSCALE_YUV_2_PACKED1B_C(type,alpha)\
  733. r = (type *)c->table_rV[V];\
  734. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  735. b = (type *)c->table_bU[U];\
  736. #define YSCALE_YUV_2_MONO2_C \
  737. const uint8_t * const d128=dither_8x8_220[y&7];\
  738. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  739. for (i=0; i<dstW-7; i+=8){\
  740. int acc;\
  741. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  742. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  743. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  744. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  745. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  746. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  747. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  748. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  749. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  750. dest++;\
  751. }\
  752. #define YSCALE_YUV_2_MONOX_C \
  753. const uint8_t * const d128=dither_8x8_220[y&7];\
  754. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  755. int acc=0;\
  756. for (i=0; i<dstW-1; i+=2){\
  757. int j;\
  758. int Y1=1<<18;\
  759. int Y2=1<<18;\
  760. \
  761. for (j=0; j<lumFilterSize; j++)\
  762. {\
  763. Y1 += lumSrc[j][i] * lumFilter[j];\
  764. Y2 += lumSrc[j][i+1] * lumFilter[j];\
  765. }\
  766. Y1>>=19;\
  767. Y2>>=19;\
  768. if ((Y1|Y2)&256)\
  769. {\
  770. if (Y1>255) Y1=255;\
  771. else if (Y1<0)Y1=0;\
  772. if (Y2>255) Y2=255;\
  773. else if (Y2<0)Y2=0;\
  774. }\
  775. acc+= acc + g[Y1+d128[(i+0)&7]];\
  776. acc+= acc + g[Y2+d128[(i+1)&7]];\
  777. if ((i&7)==6){\
  778. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  779. dest++;\
  780. }\
  781. }
  782. #define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
  783. switch(c->dstFormat)\
  784. {\
  785. case PIX_FMT_RGB48BE:\
  786. case PIX_FMT_RGB48LE:\
  787. func(uint8_t,0)\
  788. ((uint8_t*)dest)[ 0]= r[Y1];\
  789. ((uint8_t*)dest)[ 1]= r[Y1];\
  790. ((uint8_t*)dest)[ 2]= g[Y1];\
  791. ((uint8_t*)dest)[ 3]= g[Y1];\
  792. ((uint8_t*)dest)[ 4]= b[Y1];\
  793. ((uint8_t*)dest)[ 5]= b[Y1];\
  794. ((uint8_t*)dest)[ 6]= r[Y2];\
  795. ((uint8_t*)dest)[ 7]= r[Y2];\
  796. ((uint8_t*)dest)[ 8]= g[Y2];\
  797. ((uint8_t*)dest)[ 9]= g[Y2];\
  798. ((uint8_t*)dest)[10]= b[Y2];\
  799. ((uint8_t*)dest)[11]= b[Y2];\
  800. dest+=12;\
  801. }\
  802. break;\
  803. case PIX_FMT_RGBA:\
  804. case PIX_FMT_BGRA:\
  805. if (CONFIG_SMALL){\
  806. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
  807. func(uint32_t,needAlpha)\
  808. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? (A1<<24) : 0);\
  809. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? (A2<<24) : 0);\
  810. }\
  811. }else{\
  812. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){\
  813. func(uint32_t,1)\
  814. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (A1<<24);\
  815. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (A2<<24);\
  816. }\
  817. }else{\
  818. func(uint32_t,0)\
  819. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  820. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  821. }\
  822. }\
  823. }\
  824. break;\
  825. case PIX_FMT_ARGB:\
  826. case PIX_FMT_ABGR:\
  827. if (CONFIG_SMALL){\
  828. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
  829. func(uint32_t,needAlpha)\
  830. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? A1 : 0);\
  831. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? A2 : 0);\
  832. }\
  833. }else{\
  834. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){\
  835. func(uint32_t,1)\
  836. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + A1;\
  837. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + A2;\
  838. }\
  839. }else{\
  840. func(uint32_t,0)\
  841. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  842. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  843. }\
  844. }\
  845. } \
  846. break;\
  847. case PIX_FMT_RGB24:\
  848. func(uint8_t,0)\
  849. ((uint8_t*)dest)[0]= r[Y1];\
  850. ((uint8_t*)dest)[1]= g[Y1];\
  851. ((uint8_t*)dest)[2]= b[Y1];\
  852. ((uint8_t*)dest)[3]= r[Y2];\
  853. ((uint8_t*)dest)[4]= g[Y2];\
  854. ((uint8_t*)dest)[5]= b[Y2];\
  855. dest+=6;\
  856. }\
  857. break;\
  858. case PIX_FMT_BGR24:\
  859. func(uint8_t,0)\
  860. ((uint8_t*)dest)[0]= b[Y1];\
  861. ((uint8_t*)dest)[1]= g[Y1];\
  862. ((uint8_t*)dest)[2]= r[Y1];\
  863. ((uint8_t*)dest)[3]= b[Y2];\
  864. ((uint8_t*)dest)[4]= g[Y2];\
  865. ((uint8_t*)dest)[5]= r[Y2];\
  866. dest+=6;\
  867. }\
  868. break;\
  869. case PIX_FMT_RGB565:\
  870. case PIX_FMT_BGR565:\
  871. {\
  872. const int dr1= dither_2x2_8[y&1 ][0];\
  873. const int dg1= dither_2x2_4[y&1 ][0];\
  874. const int db1= dither_2x2_8[(y&1)^1][0];\
  875. const int dr2= dither_2x2_8[y&1 ][1];\
  876. const int dg2= dither_2x2_4[y&1 ][1];\
  877. const int db2= dither_2x2_8[(y&1)^1][1];\
  878. func(uint16_t,0)\
  879. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  880. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  881. }\
  882. }\
  883. break;\
  884. case PIX_FMT_RGB555:\
  885. case PIX_FMT_BGR555:\
  886. {\
  887. const int dr1= dither_2x2_8[y&1 ][0];\
  888. const int dg1= dither_2x2_8[y&1 ][1];\
  889. const int db1= dither_2x2_8[(y&1)^1][0];\
  890. const int dr2= dither_2x2_8[y&1 ][1];\
  891. const int dg2= dither_2x2_8[y&1 ][0];\
  892. const int db2= dither_2x2_8[(y&1)^1][1];\
  893. func(uint16_t,0)\
  894. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  895. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  896. }\
  897. }\
  898. break;\
  899. case PIX_FMT_RGB8:\
  900. case PIX_FMT_BGR8:\
  901. {\
  902. const uint8_t * const d64= dither_8x8_73[y&7];\
  903. const uint8_t * const d32= dither_8x8_32[y&7];\
  904. func(uint8_t,0)\
  905. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  906. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  907. }\
  908. }\
  909. break;\
  910. case PIX_FMT_RGB4:\
  911. case PIX_FMT_BGR4:\
  912. {\
  913. const uint8_t * const d64= dither_8x8_73 [y&7];\
  914. const uint8_t * const d128=dither_8x8_220[y&7];\
  915. func(uint8_t,0)\
  916. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  917. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  918. }\
  919. }\
  920. break;\
  921. case PIX_FMT_RGB4_BYTE:\
  922. case PIX_FMT_BGR4_BYTE:\
  923. {\
  924. const uint8_t * const d64= dither_8x8_73 [y&7];\
  925. const uint8_t * const d128=dither_8x8_220[y&7];\
  926. func(uint8_t,0)\
  927. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  928. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  929. }\
  930. }\
  931. break;\
  932. case PIX_FMT_MONOBLACK:\
  933. case PIX_FMT_MONOWHITE:\
  934. {\
  935. func_monoblack\
  936. }\
  937. break;\
  938. case PIX_FMT_YUYV422:\
  939. func2\
  940. ((uint8_t*)dest)[2*i2+0]= Y1;\
  941. ((uint8_t*)dest)[2*i2+1]= U;\
  942. ((uint8_t*)dest)[2*i2+2]= Y2;\
  943. ((uint8_t*)dest)[2*i2+3]= V;\
  944. } \
  945. break;\
  946. case PIX_FMT_UYVY422:\
  947. func2\
  948. ((uint8_t*)dest)[2*i2+0]= U;\
  949. ((uint8_t*)dest)[2*i2+1]= Y1;\
  950. ((uint8_t*)dest)[2*i2+2]= V;\
  951. ((uint8_t*)dest)[2*i2+3]= Y2;\
  952. } \
  953. break;\
  954. case PIX_FMT_GRAY16BE:\
  955. func_g16\
  956. ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
  957. ((uint8_t*)dest)[2*i2+1]= Y1;\
  958. ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
  959. ((uint8_t*)dest)[2*i2+3]= Y2;\
  960. } \
  961. break;\
  962. case PIX_FMT_GRAY16LE:\
  963. func_g16\
  964. ((uint8_t*)dest)[2*i2+0]= Y1;\
  965. ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
  966. ((uint8_t*)dest)[2*i2+2]= Y2;\
  967. ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
  968. } \
  969. break;\
  970. }\
  971. static inline void yuv2packedXinC(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  972. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  973. const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
  974. {
  975. int i;
  976. YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void,0), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
  977. }
  978. static inline void yuv2rgbXinC_full(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  979. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  980. const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
  981. {
  982. int i;
  983. int step= fmt_depth(c->dstFormat)/8;
  984. int aidx= 3;
  985. switch(c->dstFormat){
  986. case PIX_FMT_ARGB:
  987. dest++;
  988. aidx= 0;
  989. case PIX_FMT_RGB24:
  990. aidx--;
  991. case PIX_FMT_RGBA:
  992. if (CONFIG_SMALL){
  993. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
  994. YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
  995. dest[aidx]= needAlpha ? A : 255;
  996. dest[0]= R>>22;
  997. dest[1]= G>>22;
  998. dest[2]= B>>22;
  999. dest+= step;
  1000. }
  1001. }else{
  1002. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  1003. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
  1004. dest[aidx]= A;
  1005. dest[0]= R>>22;
  1006. dest[1]= G>>22;
  1007. dest[2]= B>>22;
  1008. dest+= step;
  1009. }
  1010. }else{
  1011. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
  1012. dest[aidx]= 255;
  1013. dest[0]= R>>22;
  1014. dest[1]= G>>22;
  1015. dest[2]= B>>22;
  1016. dest+= step;
  1017. }
  1018. }
  1019. }
  1020. break;
  1021. case PIX_FMT_ABGR:
  1022. dest++;
  1023. aidx= 0;
  1024. case PIX_FMT_BGR24:
  1025. aidx--;
  1026. case PIX_FMT_BGRA:
  1027. if (CONFIG_SMALL){
  1028. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
  1029. YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
  1030. dest[aidx]= needAlpha ? A : 255;
  1031. dest[0]= B>>22;
  1032. dest[1]= G>>22;
  1033. dest[2]= R>>22;
  1034. dest+= step;
  1035. }
  1036. }else{
  1037. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  1038. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
  1039. dest[aidx]= A;
  1040. dest[0]= B>>22;
  1041. dest[1]= G>>22;
  1042. dest[2]= R>>22;
  1043. dest+= step;
  1044. }
  1045. }else{
  1046. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
  1047. dest[aidx]= 255;
  1048. dest[0]= B>>22;
  1049. dest[1]= G>>22;
  1050. dest[2]= R>>22;
  1051. dest+= step;
  1052. }
  1053. }
  1054. }
  1055. break;
  1056. default:
  1057. assert(0);
  1058. }
  1059. }
  1060. static void fillPlane(uint8_t* plane, int stride, int width, int height, int y, uint8_t val){
  1061. int i;
  1062. uint8_t *ptr = plane + stride*y;
  1063. for (i=0; i<height; i++){
  1064. memset(ptr, val, width);
  1065. ptr += stride;
  1066. }
  1067. }
  1068. static inline void rgb48ToY(uint8_t *dst, const uint8_t *src, int width)
  1069. {
  1070. int i;
  1071. for (i = 0; i < width; i++) {
  1072. int r = src[i*6+0];
  1073. int g = src[i*6+2];
  1074. int b = src[i*6+4];
  1075. dst[i] = (RY*r + GY*g + BY*b + (33<<(RGB2YUV_SHIFT-1))) >> RGB2YUV_SHIFT;
  1076. }
  1077. }
  1078. static inline void rgb48ToUV(uint8_t *dstU, uint8_t *dstV,
  1079. uint8_t *src1, uint8_t *src2, int width)
  1080. {
  1081. int i;
  1082. assert(src1==src2);
  1083. for (i = 0; i < width; i++) {
  1084. int r = src1[6*i + 0];
  1085. int g = src1[6*i + 2];
  1086. int b = src1[6*i + 4];
  1087. dstU[i] = (RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1))) >> RGB2YUV_SHIFT;
  1088. dstV[i] = (RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1))) >> RGB2YUV_SHIFT;
  1089. }
  1090. }
  1091. static inline void rgb48ToUV_half(uint8_t *dstU, uint8_t *dstV,
  1092. uint8_t *src1, uint8_t *src2, int width)
  1093. {
  1094. int i;
  1095. assert(src1==src2);
  1096. for (i = 0; i < width; i++) {
  1097. int r= src1[12*i + 0] + src1[12*i + 6];
  1098. int g= src1[12*i + 2] + src1[12*i + 8];
  1099. int b= src1[12*i + 4] + src1[12*i + 10];
  1100. dstU[i]= (RU*r + GU*g + BU*b + (257<<RGB2YUV_SHIFT)) >> (RGB2YUV_SHIFT+1);
  1101. dstV[i]= (RV*r + GV*g + BV*b + (257<<RGB2YUV_SHIFT)) >> (RGB2YUV_SHIFT+1);
  1102. }
  1103. }
  1104. #define BGR2Y(type, name, shr, shg, shb, maskr, maskg, maskb, RY, GY, BY, S)\
  1105. static inline void name(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)\
  1106. {\
  1107. int i;\
  1108. for (i=0; i<width; i++)\
  1109. {\
  1110. int b= (((const type*)src)[i]>>shb)&maskb;\
  1111. int g= (((const type*)src)[i]>>shg)&maskg;\
  1112. int r= (((const type*)src)[i]>>shr)&maskr;\
  1113. \
  1114. dst[i]= (((RY)*r + (GY)*g + (BY)*b + (33<<((S)-1)))>>(S));\
  1115. }\
  1116. }
  1117. BGR2Y(uint32_t, bgr32ToY,16, 0, 0, 0x00FF, 0xFF00, 0x00FF, RY<< 8, GY , BY<< 8, RGB2YUV_SHIFT+8)
  1118. BGR2Y(uint32_t, rgb32ToY, 0, 0,16, 0x00FF, 0xFF00, 0x00FF, RY<< 8, GY , BY<< 8, RGB2YUV_SHIFT+8)
  1119. BGR2Y(uint16_t, bgr16ToY, 0, 0, 0, 0x001F, 0x07E0, 0xF800, RY<<11, GY<<5, BY , RGB2YUV_SHIFT+8)
  1120. BGR2Y(uint16_t, bgr15ToY, 0, 0, 0, 0x001F, 0x03E0, 0x7C00, RY<<10, GY<<5, BY , RGB2YUV_SHIFT+7)
  1121. BGR2Y(uint16_t, rgb16ToY, 0, 0, 0, 0xF800, 0x07E0, 0x001F, RY , GY<<5, BY<<11, RGB2YUV_SHIFT+8)
  1122. BGR2Y(uint16_t, rgb15ToY, 0, 0, 0, 0x7C00, 0x03E0, 0x001F, RY , GY<<5, BY<<10, RGB2YUV_SHIFT+7)
  1123. static inline void abgrToA(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused){
  1124. int i;
  1125. for (i=0; i<width; i++){
  1126. dst[i]= src[4*i];
  1127. }
  1128. }
  1129. #define BGR2UV(type, name, shr, shg, shb, maska, maskr, maskg, maskb, RU, GU, BU, RV, GV, BV, S)\
  1130. static inline void name(uint8_t *dstU, uint8_t *dstV, const uint8_t *src, const uint8_t *dummy, long width, uint32_t *unused)\
  1131. {\
  1132. int i;\
  1133. for (i=0; i<width; i++)\
  1134. {\
  1135. int b= (((const type*)src)[i]&maskb)>>shb;\
  1136. int g= (((const type*)src)[i]&maskg)>>shg;\
  1137. int r= (((const type*)src)[i]&maskr)>>shr;\
  1138. \
  1139. dstU[i]= ((RU)*r + (GU)*g + (BU)*b + (257<<((S)-1)))>>(S);\
  1140. dstV[i]= ((RV)*r + (GV)*g + (BV)*b + (257<<((S)-1)))>>(S);\
  1141. }\
  1142. }\
  1143. static inline void name ## _half(uint8_t *dstU, uint8_t *dstV, const uint8_t *src, const uint8_t *dummy, long width, uint32_t *unused)\
  1144. {\
  1145. int i;\
  1146. for (i=0; i<width; i++)\
  1147. {\
  1148. int pix0= ((const type*)src)[2*i+0];\
  1149. int pix1= ((const type*)src)[2*i+1];\
  1150. int g= (pix0&~(maskr|maskb))+(pix1&~(maskr|maskb));\
  1151. int b= ((pix0+pix1-g)&(maskb|(2*maskb)))>>shb;\
  1152. int r= ((pix0+pix1-g)&(maskr|(2*maskr)))>>shr;\
  1153. g&= maskg|(2*maskg);\
  1154. \
  1155. g>>=shg;\
  1156. \
  1157. dstU[i]= ((RU)*r + (GU)*g + (BU)*b + (257<<(S)))>>((S)+1);\
  1158. dstV[i]= ((RV)*r + (GV)*g + (BV)*b + (257<<(S)))>>((S)+1);\
  1159. }\
  1160. }
  1161. BGR2UV(uint32_t, bgr32ToUV,16, 0, 0, 0xFF000000, 0xFF0000, 0xFF00, 0x00FF, RU<< 8, GU , BU<< 8, RV<< 8, GV , BV<< 8, RGB2YUV_SHIFT+8)
  1162. BGR2UV(uint32_t, rgb32ToUV, 0, 0,16, 0xFF000000, 0x00FF, 0xFF00, 0xFF0000, RU<< 8, GU , BU<< 8, RV<< 8, GV , BV<< 8, RGB2YUV_SHIFT+8)
  1163. BGR2UV(uint16_t, bgr16ToUV, 0, 0, 0, 0, 0x001F, 0x07E0, 0xF800, RU<<11, GU<<5, BU , RV<<11, GV<<5, BV , RGB2YUV_SHIFT+8)
  1164. BGR2UV(uint16_t, bgr15ToUV, 0, 0, 0, 0, 0x001F, 0x03E0, 0x7C00, RU<<10, GU<<5, BU , RV<<10, GV<<5, BV , RGB2YUV_SHIFT+7)
  1165. BGR2UV(uint16_t, rgb16ToUV, 0, 0, 0, 0, 0xF800, 0x07E0, 0x001F, RU , GU<<5, BU<<11, RV , GV<<5, BV<<11, RGB2YUV_SHIFT+8)
  1166. BGR2UV(uint16_t, rgb15ToUV, 0, 0, 0, 0, 0x7C00, 0x03E0, 0x001F, RU , GU<<5, BU<<10, RV , GV<<5, BV<<10, RGB2YUV_SHIFT+7)
  1167. static inline void palToY(uint8_t *dst, const uint8_t *src, long width, uint32_t *pal)
  1168. {
  1169. int i;
  1170. for (i=0; i<width; i++)
  1171. {
  1172. int d= src[i];
  1173. dst[i]= pal[d] & 0xFF;
  1174. }
  1175. }
  1176. static inline void palToUV(uint8_t *dstU, uint8_t *dstV,
  1177. const uint8_t *src1, const uint8_t *src2,
  1178. long width, uint32_t *pal)
  1179. {
  1180. int i;
  1181. assert(src1 == src2);
  1182. for (i=0; i<width; i++)
  1183. {
  1184. int p= pal[src1[i]];
  1185. dstU[i]= p>>8;
  1186. dstV[i]= p>>16;
  1187. }
  1188. }
  1189. static inline void monowhite2Y(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)
  1190. {
  1191. int i, j;
  1192. for (i=0; i<width/8; i++){
  1193. int d= ~src[i];
  1194. for(j=0; j<8; j++)
  1195. dst[8*i+j]= ((d>>(7-j))&1)*255;
  1196. }
  1197. }
  1198. static inline void monoblack2Y(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)
  1199. {
  1200. int i, j;
  1201. for (i=0; i<width/8; i++){
  1202. int d= src[i];
  1203. for(j=0; j<8; j++)
  1204. dst[8*i+j]= ((d>>(7-j))&1)*255;
  1205. }
  1206. }
  1207. //Note: we have C, MMX, MMX2, 3DNOW versions, there is no 3DNOW+MMX2 one
  1208. //Plain C versions
  1209. #if ((!HAVE_MMX || !CONFIG_GPL) && !HAVE_ALTIVEC) || CONFIG_RUNTIME_CPUDETECT
  1210. #define COMPILE_C
  1211. #endif
  1212. #if ARCH_PPC
  1213. #if HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT
  1214. #define COMPILE_ALTIVEC
  1215. #endif
  1216. #endif //ARCH_PPC
  1217. #if ARCH_X86
  1218. #if ((HAVE_MMX && !HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1219. #define COMPILE_MMX
  1220. #endif
  1221. #if (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1222. #define COMPILE_MMX2
  1223. #endif
  1224. #if ((HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1225. #define COMPILE_3DNOW
  1226. #endif
  1227. #endif //ARCH_X86
  1228. #undef HAVE_MMX
  1229. #undef HAVE_MMX2
  1230. #undef HAVE_AMD3DNOW
  1231. #undef HAVE_ALTIVEC
  1232. #define HAVE_MMX 0
  1233. #define HAVE_MMX2 0
  1234. #define HAVE_AMD3DNOW 0
  1235. #define HAVE_ALTIVEC 0
  1236. #ifdef COMPILE_C
  1237. #define RENAME(a) a ## _C
  1238. #include "swscale_template.c"
  1239. #endif
  1240. #ifdef COMPILE_ALTIVEC
  1241. #undef RENAME
  1242. #undef HAVE_ALTIVEC
  1243. #define HAVE_ALTIVEC 1
  1244. #define RENAME(a) a ## _altivec
  1245. #include "swscale_template.c"
  1246. #endif
  1247. #if ARCH_X86
  1248. //MMX versions
  1249. #ifdef COMPILE_MMX
  1250. #undef RENAME
  1251. #undef HAVE_MMX
  1252. #undef HAVE_MMX2
  1253. #undef HAVE_AMD3DNOW
  1254. #define HAVE_MMX 1
  1255. #define HAVE_MMX2 0
  1256. #define HAVE_AMD3DNOW 0
  1257. #define RENAME(a) a ## _MMX
  1258. #include "swscale_template.c"
  1259. #endif
  1260. //MMX2 versions
  1261. #ifdef COMPILE_MMX2
  1262. #undef RENAME
  1263. #undef HAVE_MMX
  1264. #undef HAVE_MMX2
  1265. #undef HAVE_AMD3DNOW
  1266. #define HAVE_MMX 1
  1267. #define HAVE_MMX2 1
  1268. #define HAVE_AMD3DNOW 0
  1269. #define RENAME(a) a ## _MMX2
  1270. #include "swscale_template.c"
  1271. #endif
  1272. //3DNOW versions
  1273. #ifdef COMPILE_3DNOW
  1274. #undef RENAME
  1275. #undef HAVE_MMX
  1276. #undef HAVE_MMX2
  1277. #undef HAVE_AMD3DNOW
  1278. #define HAVE_MMX 1
  1279. #define HAVE_MMX2 0
  1280. #define HAVE_AMD3DNOW 1
  1281. #define RENAME(a) a ## _3DNow
  1282. #include "swscale_template.c"
  1283. #endif
  1284. #endif //ARCH_X86
  1285. // minor note: the HAVE_xyz are messed up after this line so don't use them
  1286. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  1287. {
  1288. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  1289. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  1290. else return getSplineCoeff( 0.0,
  1291. b+ 2.0*c + 3.0*d,
  1292. c + 3.0*d,
  1293. -b- 3.0*c - 6.0*d,
  1294. dist-1.0);
  1295. }
  1296. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  1297. int srcW, int dstW, int filterAlign, int one, int flags,
  1298. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  1299. {
  1300. int i;
  1301. int filterSize;
  1302. int filter2Size;
  1303. int minFilterSize;
  1304. int64_t *filter=NULL;
  1305. int64_t *filter2=NULL;
  1306. const int64_t fone= 1LL<<54;
  1307. int ret= -1;
  1308. #if ARCH_X86
  1309. if (flags & SWS_CPU_CAPS_MMX)
  1310. __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
  1311. #endif
  1312. // NOTE: the +1 is for the MMX scaler which reads over the end
  1313. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  1314. if (FFABS(xInc - 0x10000) <10) // unscaled
  1315. {
  1316. int i;
  1317. filterSize= 1;
  1318. filter= av_mallocz(dstW*sizeof(*filter)*filterSize);
  1319. for (i=0; i<dstW; i++)
  1320. {
  1321. filter[i*filterSize]= fone;
  1322. (*filterPos)[i]=i;
  1323. }
  1324. }
  1325. else if (flags&SWS_POINT) // lame looking point sampling mode
  1326. {
  1327. int i;
  1328. int xDstInSrc;
  1329. filterSize= 1;
  1330. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1331. xDstInSrc= xInc/2 - 0x8000;
  1332. for (i=0; i<dstW; i++)
  1333. {
  1334. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1335. (*filterPos)[i]= xx;
  1336. filter[i]= fone;
  1337. xDstInSrc+= xInc;
  1338. }
  1339. }
  1340. else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  1341. {
  1342. int i;
  1343. int xDstInSrc;
  1344. if (flags&SWS_BICUBIC) filterSize= 4;
  1345. else if (flags&SWS_X ) filterSize= 4;
  1346. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  1347. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1348. xDstInSrc= xInc/2 - 0x8000;
  1349. for (i=0; i<dstW; i++)
  1350. {
  1351. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1352. int j;
  1353. (*filterPos)[i]= xx;
  1354. //bilinear upscale / linear interpolate / area averaging
  1355. for (j=0; j<filterSize; j++)
  1356. {
  1357. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  1358. if (coeff<0) coeff=0;
  1359. filter[i*filterSize + j]= coeff;
  1360. xx++;
  1361. }
  1362. xDstInSrc+= xInc;
  1363. }
  1364. }
  1365. else
  1366. {
  1367. int xDstInSrc;
  1368. int sizeFactor;
  1369. if (flags&SWS_BICUBIC) sizeFactor= 4;
  1370. else if (flags&SWS_X) sizeFactor= 8;
  1371. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  1372. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  1373. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  1374. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  1375. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  1376. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  1377. else {
  1378. sizeFactor= 0; //GCC warning killer
  1379. assert(0);
  1380. }
  1381. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  1382. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  1383. if (filterSize > srcW-2) filterSize=srcW-2;
  1384. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1385. xDstInSrc= xInc - 0x10000;
  1386. for (i=0; i<dstW; i++)
  1387. {
  1388. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  1389. int j;
  1390. (*filterPos)[i]= xx;
  1391. for (j=0; j<filterSize; j++)
  1392. {
  1393. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  1394. double floatd;
  1395. int64_t coeff;
  1396. if (xInc > 1<<16)
  1397. d= d*dstW/srcW;
  1398. floatd= d * (1.0/(1<<30));
  1399. if (flags & SWS_BICUBIC)
  1400. {
  1401. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  1402. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  1403. int64_t dd = ( d*d)>>30;
  1404. int64_t ddd= (dd*d)>>30;
  1405. if (d < 1LL<<30)
  1406. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  1407. else if (d < 1LL<<31)
  1408. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  1409. else
  1410. coeff=0.0;
  1411. coeff *= fone>>(30+24);
  1412. }
  1413. /* else if (flags & SWS_X)
  1414. {
  1415. double p= param ? param*0.01 : 0.3;
  1416. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  1417. coeff*= pow(2.0, - p*d*d);
  1418. }*/
  1419. else if (flags & SWS_X)
  1420. {
  1421. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  1422. double c;
  1423. if (floatd<1.0)
  1424. c = cos(floatd*PI);
  1425. else
  1426. c=-1.0;
  1427. if (c<0.0) c= -pow(-c, A);
  1428. else c= pow( c, A);
  1429. coeff= (c*0.5 + 0.5)*fone;
  1430. }
  1431. else if (flags & SWS_AREA)
  1432. {
  1433. int64_t d2= d - (1<<29);
  1434. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  1435. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  1436. else coeff=0.0;
  1437. coeff *= fone>>(30+16);
  1438. }
  1439. else if (flags & SWS_GAUSS)
  1440. {
  1441. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1442. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  1443. }
  1444. else if (flags & SWS_SINC)
  1445. {
  1446. coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone;
  1447. }
  1448. else if (flags & SWS_LANCZOS)
  1449. {
  1450. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1451. coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone;
  1452. if (floatd>p) coeff=0;
  1453. }
  1454. else if (flags & SWS_BILINEAR)
  1455. {
  1456. coeff= (1<<30) - d;
  1457. if (coeff<0) coeff=0;
  1458. coeff *= fone >> 30;
  1459. }
  1460. else if (flags & SWS_SPLINE)
  1461. {
  1462. double p=-2.196152422706632;
  1463. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  1464. }
  1465. else {
  1466. coeff= 0.0; //GCC warning killer
  1467. assert(0);
  1468. }
  1469. filter[i*filterSize + j]= coeff;
  1470. xx++;
  1471. }
  1472. xDstInSrc+= 2*xInc;
  1473. }
  1474. }
  1475. /* apply src & dst Filter to filter -> filter2
  1476. av_free(filter);
  1477. */
  1478. assert(filterSize>0);
  1479. filter2Size= filterSize;
  1480. if (srcFilter) filter2Size+= srcFilter->length - 1;
  1481. if (dstFilter) filter2Size+= dstFilter->length - 1;
  1482. assert(filter2Size>0);
  1483. filter2= av_mallocz(filter2Size*dstW*sizeof(*filter2));
  1484. for (i=0; i<dstW; i++)
  1485. {
  1486. int j, k;
  1487. if(srcFilter){
  1488. for (k=0; k<srcFilter->length; k++){
  1489. for (j=0; j<filterSize; j++)
  1490. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  1491. }
  1492. }else{
  1493. for (j=0; j<filterSize; j++)
  1494. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  1495. }
  1496. //FIXME dstFilter
  1497. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1498. }
  1499. av_freep(&filter);
  1500. /* try to reduce the filter-size (step1 find size and shift left) */
  1501. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  1502. minFilterSize= 0;
  1503. for (i=dstW-1; i>=0; i--)
  1504. {
  1505. int min= filter2Size;
  1506. int j;
  1507. int64_t cutOff=0.0;
  1508. /* get rid off near zero elements on the left by shifting left */
  1509. for (j=0; j<filter2Size; j++)
  1510. {
  1511. int k;
  1512. cutOff += FFABS(filter2[i*filter2Size]);
  1513. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1514. /* preserve monotonicity because the core can't handle the filter otherwise */
  1515. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1516. // move filter coefficients left
  1517. for (k=1; k<filter2Size; k++)
  1518. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1519. filter2[i*filter2Size + k - 1]= 0;
  1520. (*filterPos)[i]++;
  1521. }
  1522. cutOff=0;
  1523. /* count near zeros on the right */
  1524. for (j=filter2Size-1; j>0; j--)
  1525. {
  1526. cutOff += FFABS(filter2[i*filter2Size + j]);
  1527. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1528. min--;
  1529. }
  1530. if (min>minFilterSize) minFilterSize= min;
  1531. }
  1532. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1533. // we can handle the special case 4,
  1534. // so we don't want to go to the full 8
  1535. if (minFilterSize < 5)
  1536. filterAlign = 4;
  1537. // We really don't want to waste our time
  1538. // doing useless computation, so fall back on
  1539. // the scalar C code for very small filters.
  1540. // Vectorizing is worth it only if you have a
  1541. // decent-sized vector.
  1542. if (minFilterSize < 3)
  1543. filterAlign = 1;
  1544. }
  1545. if (flags & SWS_CPU_CAPS_MMX) {
  1546. // special case for unscaled vertical filtering
  1547. if (minFilterSize == 1 && filterAlign == 2)
  1548. filterAlign= 1;
  1549. }
  1550. assert(minFilterSize > 0);
  1551. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1552. assert(filterSize > 0);
  1553. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  1554. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  1555. goto error;
  1556. *outFilterSize= filterSize;
  1557. if (flags&SWS_PRINT_INFO)
  1558. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1559. /* try to reduce the filter-size (step2 reduce it) */
  1560. for (i=0; i<dstW; i++)
  1561. {
  1562. int j;
  1563. for (j=0; j<filterSize; j++)
  1564. {
  1565. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  1566. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1567. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  1568. filter[i*filterSize + j]= 0;
  1569. }
  1570. }
  1571. //FIXME try to align filterPos if possible
  1572. //fix borders
  1573. for (i=0; i<dstW; i++)
  1574. {
  1575. int j;
  1576. if ((*filterPos)[i] < 0)
  1577. {
  1578. // move filter coefficients left to compensate for filterPos
  1579. for (j=1; j<filterSize; j++)
  1580. {
  1581. int left= FFMAX(j + (*filterPos)[i], 0);
  1582. filter[i*filterSize + left] += filter[i*filterSize + j];
  1583. filter[i*filterSize + j]=0;
  1584. }
  1585. (*filterPos)[i]= 0;
  1586. }
  1587. if ((*filterPos)[i] + filterSize > srcW)
  1588. {
  1589. int shift= (*filterPos)[i] + filterSize - srcW;
  1590. // move filter coefficients right to compensate for filterPos
  1591. for (j=filterSize-2; j>=0; j--)
  1592. {
  1593. int right= FFMIN(j + shift, filterSize-1);
  1594. filter[i*filterSize +right] += filter[i*filterSize +j];
  1595. filter[i*filterSize +j]=0;
  1596. }
  1597. (*filterPos)[i]= srcW - filterSize;
  1598. }
  1599. }
  1600. // Note the +1 is for the MMX scaler which reads over the end
  1601. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1602. *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1603. /* normalize & store in outFilter */
  1604. for (i=0; i<dstW; i++)
  1605. {
  1606. int j;
  1607. int64_t error=0;
  1608. int64_t sum=0;
  1609. for (j=0; j<filterSize; j++)
  1610. {
  1611. sum+= filter[i*filterSize + j];
  1612. }
  1613. sum= (sum + one/2)/ one;
  1614. for (j=0; j<*outFilterSize; j++)
  1615. {
  1616. int64_t v= filter[i*filterSize + j] + error;
  1617. int intV= ROUNDED_DIV(v, sum);
  1618. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1619. error= v - intV*sum;
  1620. }
  1621. }
  1622. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1623. for (i=0; i<*outFilterSize; i++)
  1624. {
  1625. int j= dstW*(*outFilterSize);
  1626. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1627. }
  1628. ret=0;
  1629. error:
  1630. av_free(filter);
  1631. av_free(filter2);
  1632. return ret;
  1633. }
  1634. #ifdef COMPILE_MMX2
  1635. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1636. {
  1637. uint8_t *fragmentA;
  1638. x86_reg imm8OfPShufW1A;
  1639. x86_reg imm8OfPShufW2A;
  1640. x86_reg fragmentLengthA;
  1641. uint8_t *fragmentB;
  1642. x86_reg imm8OfPShufW1B;
  1643. x86_reg imm8OfPShufW2B;
  1644. x86_reg fragmentLengthB;
  1645. int fragmentPos;
  1646. int xpos, i;
  1647. // create an optimized horizontal scaling routine
  1648. //code fragment
  1649. __asm__ volatile(
  1650. "jmp 9f \n\t"
  1651. // Begin
  1652. "0: \n\t"
  1653. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1654. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1655. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  1656. "punpcklbw %%mm7, %%mm1 \n\t"
  1657. "punpcklbw %%mm7, %%mm0 \n\t"
  1658. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1659. "1: \n\t"
  1660. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1661. "2: \n\t"
  1662. "psubw %%mm1, %%mm0 \n\t"
  1663. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1664. "pmullw %%mm3, %%mm0 \n\t"
  1665. "psllw $7, %%mm1 \n\t"
  1666. "paddw %%mm1, %%mm0 \n\t"
  1667. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1668. "add $8, %%"REG_a" \n\t"
  1669. // End
  1670. "9: \n\t"
  1671. // "int $3 \n\t"
  1672. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1673. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1674. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1675. "dec %1 \n\t"
  1676. "dec %2 \n\t"
  1677. "sub %0, %1 \n\t"
  1678. "sub %0, %2 \n\t"
  1679. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1680. "sub %0, %3 \n\t"
  1681. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1682. "=r" (fragmentLengthA)
  1683. );
  1684. __asm__ volatile(
  1685. "jmp 9f \n\t"
  1686. // Begin
  1687. "0: \n\t"
  1688. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1689. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1690. "punpcklbw %%mm7, %%mm0 \n\t"
  1691. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1692. "1: \n\t"
  1693. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1694. "2: \n\t"
  1695. "psubw %%mm1, %%mm0 \n\t"
  1696. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1697. "pmullw %%mm3, %%mm0 \n\t"
  1698. "psllw $7, %%mm1 \n\t"
  1699. "paddw %%mm1, %%mm0 \n\t"
  1700. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1701. "add $8, %%"REG_a" \n\t"
  1702. // End
  1703. "9: \n\t"
  1704. // "int $3 \n\t"
  1705. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1706. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1707. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1708. "dec %1 \n\t"
  1709. "dec %2 \n\t"
  1710. "sub %0, %1 \n\t"
  1711. "sub %0, %2 \n\t"
  1712. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1713. "sub %0, %3 \n\t"
  1714. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1715. "=r" (fragmentLengthB)
  1716. );
  1717. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1718. fragmentPos=0;
  1719. for (i=0; i<dstW/numSplits; i++)
  1720. {
  1721. int xx=xpos>>16;
  1722. if ((i&3) == 0)
  1723. {
  1724. int a=0;
  1725. int b=((xpos+xInc)>>16) - xx;
  1726. int c=((xpos+xInc*2)>>16) - xx;
  1727. int d=((xpos+xInc*3)>>16) - xx;
  1728. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1729. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1730. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1731. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1732. filterPos[i/2]= xx;
  1733. if (d+1<4)
  1734. {
  1735. int maxShift= 3-(d+1);
  1736. int shift=0;
  1737. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1738. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1739. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1740. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1741. a | (b<<2) | (c<<4) | (d<<6);
  1742. if (i+3>=dstW) shift=maxShift; //avoid overread
  1743. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1744. if (shift && i>=shift)
  1745. {
  1746. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1747. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1748. filterPos[i/2]-=shift;
  1749. }
  1750. fragmentPos+= fragmentLengthB;
  1751. }
  1752. else
  1753. {
  1754. int maxShift= 3-d;
  1755. int shift=0;
  1756. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1757. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1758. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1759. a | (b<<2) | (c<<4) | (d<<6);
  1760. if (i+4>=dstW) shift=maxShift; //avoid overread
  1761. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1762. if (shift && i>=shift)
  1763. {
  1764. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1765. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1766. filterPos[i/2]-=shift;
  1767. }
  1768. fragmentPos+= fragmentLengthA;
  1769. }
  1770. funnyCode[fragmentPos]= RET;
  1771. }
  1772. xpos+=xInc;
  1773. }
  1774. filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
  1775. }
  1776. #endif /* COMPILE_MMX2 */
  1777. static void globalInit(void){
  1778. // generating tables:
  1779. int i;
  1780. for (i=0; i<768; i++){
  1781. int c= av_clip_uint8(i-256);
  1782. clip_table[i]=c;
  1783. }
  1784. }
  1785. static SwsFunc getSwsFunc(SwsContext *c)
  1786. {
  1787. #if CONFIG_RUNTIME_CPUDETECT
  1788. int flags = c->flags;
  1789. #if ARCH_X86 && CONFIG_GPL
  1790. // ordered per speed fastest first
  1791. if (flags & SWS_CPU_CAPS_MMX2) {
  1792. sws_init_swScale_MMX2(c);
  1793. return swScale_MMX2;
  1794. } else if (flags & SWS_CPU_CAPS_3DNOW) {
  1795. sws_init_swScale_3DNow(c);
  1796. return swScale_3DNow;
  1797. } else if (flags & SWS_CPU_CAPS_MMX) {
  1798. sws_init_swScale_MMX(c);
  1799. return swScale_MMX;
  1800. } else {
  1801. sws_init_swScale_C(c);
  1802. return swScale_C;
  1803. }
  1804. #else
  1805. #if ARCH_PPC
  1806. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1807. sws_init_swScale_altivec(c);
  1808. return swScale_altivec;
  1809. } else {
  1810. sws_init_swScale_C(c);
  1811. return swScale_C;
  1812. }
  1813. #endif
  1814. sws_init_swScale_C(c);
  1815. return swScale_C;
  1816. #endif /* ARCH_X86 && CONFIG_GPL */
  1817. #else //CONFIG_RUNTIME_CPUDETECT
  1818. #if HAVE_MMX2
  1819. sws_init_swScale_MMX2(c);
  1820. return swScale_MMX2;
  1821. #elif HAVE_AMD3DNOW
  1822. sws_init_swScale_3DNow(c);
  1823. return swScale_3DNow;
  1824. #elif HAVE_MMX
  1825. sws_init_swScale_MMX(c);
  1826. return swScale_MMX;
  1827. #elif HAVE_ALTIVEC
  1828. sws_init_swScale_altivec(c);
  1829. return swScale_altivec;
  1830. #else
  1831. sws_init_swScale_C(c);
  1832. return swScale_C;
  1833. #endif
  1834. #endif //!CONFIG_RUNTIME_CPUDETECT
  1835. }
  1836. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1837. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1838. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1839. /* Copy Y plane */
  1840. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1841. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1842. else
  1843. {
  1844. int i;
  1845. const uint8_t *srcPtr= src[0];
  1846. uint8_t *dstPtr= dst;
  1847. for (i=0; i<srcSliceH; i++)
  1848. {
  1849. memcpy(dstPtr, srcPtr, c->srcW);
  1850. srcPtr+= srcStride[0];
  1851. dstPtr+= dstStride[0];
  1852. }
  1853. }
  1854. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1855. if (c->dstFormat == PIX_FMT_NV12)
  1856. interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
  1857. else
  1858. interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
  1859. return srcSliceH;
  1860. }
  1861. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1862. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1863. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1864. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1865. return srcSliceH;
  1866. }
  1867. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1868. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1869. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1870. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1871. return srcSliceH;
  1872. }
  1873. static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1874. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1875. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1876. yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1877. return srcSliceH;
  1878. }
  1879. static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1880. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1881. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1882. yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1883. return srcSliceH;
  1884. }
  1885. static int YUYV2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1886. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1887. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1888. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1889. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1890. yuyvtoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1891. if (dstParam[3])
  1892. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1893. return srcSliceH;
  1894. }
  1895. static int YUYV2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1896. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1897. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1898. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1899. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1900. yuyvtoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1901. return srcSliceH;
  1902. }
  1903. static int UYVY2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1904. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1905. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1906. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1907. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1908. uyvytoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1909. if (dstParam[3])
  1910. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1911. return srcSliceH;
  1912. }
  1913. static int UYVY2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1914. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1915. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1916. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1917. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1918. uyvytoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1919. return srcSliceH;
  1920. }
  1921. static int pal2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1922. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1923. const enum PixelFormat srcFormat= c->srcFormat;
  1924. const enum PixelFormat dstFormat= c->dstFormat;
  1925. void (*conv)(const uint8_t *src, uint8_t *dst, long num_pixels,
  1926. const uint8_t *palette)=NULL;
  1927. int i;
  1928. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1929. uint8_t *srcPtr= src[0];
  1930. if (!usePal(srcFormat))
  1931. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1932. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1933. switch(dstFormat){
  1934. case PIX_FMT_RGB32 : conv = palette8topacked32; break;
  1935. case PIX_FMT_BGR32 : conv = palette8topacked32; break;
  1936. case PIX_FMT_BGR32_1: conv = palette8topacked32; break;
  1937. case PIX_FMT_RGB32_1: conv = palette8topacked32; break;
  1938. case PIX_FMT_RGB24 : conv = palette8topacked24; break;
  1939. case PIX_FMT_BGR24 : conv = palette8topacked24; break;
  1940. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1941. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1942. }
  1943. for (i=0; i<srcSliceH; i++) {
  1944. conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
  1945. srcPtr+= srcStride[0];
  1946. dstPtr+= dstStride[0];
  1947. }
  1948. return srcSliceH;
  1949. }
  1950. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  1951. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1952. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1953. const enum PixelFormat srcFormat= c->srcFormat;
  1954. const enum PixelFormat dstFormat= c->dstFormat;
  1955. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1956. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1957. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1958. const int dstId= fmt_depth(dstFormat) >> 2;
  1959. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1960. /* BGR -> BGR */
  1961. if ( (isBGR(srcFormat) && isBGR(dstFormat))
  1962. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1963. switch(srcId | (dstId<<4)){
  1964. case 0x34: conv= rgb16to15; break;
  1965. case 0x36: conv= rgb24to15; break;
  1966. case 0x38: conv= rgb32to15; break;
  1967. case 0x43: conv= rgb15to16; break;
  1968. case 0x46: conv= rgb24to16; break;
  1969. case 0x48: conv= rgb32to16; break;
  1970. case 0x63: conv= rgb15to24; break;
  1971. case 0x64: conv= rgb16to24; break;
  1972. case 0x68: conv= rgb32to24; break;
  1973. case 0x83: conv= rgb15to32; break;
  1974. case 0x84: conv= rgb16to32; break;
  1975. case 0x86: conv= rgb24to32; break;
  1976. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1977. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1978. }
  1979. }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
  1980. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1981. switch(srcId | (dstId<<4)){
  1982. case 0x33: conv= rgb15tobgr15; break;
  1983. case 0x34: conv= rgb16tobgr15; break;
  1984. case 0x36: conv= rgb24tobgr15; break;
  1985. case 0x38: conv= rgb32tobgr15; break;
  1986. case 0x43: conv= rgb15tobgr16; break;
  1987. case 0x44: conv= rgb16tobgr16; break;
  1988. case 0x46: conv= rgb24tobgr16; break;
  1989. case 0x48: conv= rgb32tobgr16; break;
  1990. case 0x63: conv= rgb15tobgr24; break;
  1991. case 0x64: conv= rgb16tobgr24; break;
  1992. case 0x66: conv= rgb24tobgr24; break;
  1993. case 0x68: conv= rgb32tobgr24; break;
  1994. case 0x83: conv= rgb15tobgr32; break;
  1995. case 0x84: conv= rgb16tobgr32; break;
  1996. case 0x86: conv= rgb24tobgr32; break;
  1997. case 0x88: conv= rgb32tobgr32; break;
  1998. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1999. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  2000. }
  2001. }else{
  2002. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  2003. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2004. }
  2005. if(conv)
  2006. {
  2007. uint8_t *srcPtr= src[0];
  2008. if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
  2009. srcPtr += ALT32_CORR;
  2010. if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
  2011. conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  2012. else
  2013. {
  2014. int i;
  2015. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  2016. for (i=0; i<srcSliceH; i++)
  2017. {
  2018. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  2019. srcPtr+= srcStride[0];
  2020. dstPtr+= dstStride[0];
  2021. }
  2022. }
  2023. }
  2024. return srcSliceH;
  2025. }
  2026. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2027. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2028. rgb24toyv12(
  2029. src[0],
  2030. dst[0]+ srcSliceY *dstStride[0],
  2031. dst[1]+(srcSliceY>>1)*dstStride[1],
  2032. dst[2]+(srcSliceY>>1)*dstStride[2],
  2033. c->srcW, srcSliceH,
  2034. dstStride[0], dstStride[1], srcStride[0]);
  2035. if (dst[3])
  2036. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  2037. return srcSliceH;
  2038. }
  2039. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2040. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2041. int i;
  2042. /* copy Y */
  2043. if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
  2044. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  2045. else{
  2046. uint8_t *srcPtr= src[0];
  2047. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  2048. for (i=0; i<srcSliceH; i++)
  2049. {
  2050. memcpy(dstPtr, srcPtr, c->srcW);
  2051. srcPtr+= srcStride[0];
  2052. dstPtr+= dstStride[0];
  2053. }
  2054. }
  2055. if (c->dstFormat==PIX_FMT_YUV420P || c->dstFormat==PIX_FMT_YUVA420P){
  2056. planar2x(src[1], dst[1] + dstStride[1]*(srcSliceY >> 1), c->chrSrcW,
  2057. srcSliceH >> 2, srcStride[1], dstStride[1]);
  2058. planar2x(src[2], dst[2] + dstStride[2]*(srcSliceY >> 1), c->chrSrcW,
  2059. srcSliceH >> 2, srcStride[2], dstStride[2]);
  2060. }else{
  2061. planar2x(src[1], dst[2] + dstStride[2]*(srcSliceY >> 1), c->chrSrcW,
  2062. srcSliceH >> 2, srcStride[1], dstStride[2]);
  2063. planar2x(src[2], dst[1] + dstStride[1]*(srcSliceY >> 1), c->chrSrcW,
  2064. srcSliceH >> 2, srcStride[2], dstStride[1]);
  2065. }
  2066. if (dst[3])
  2067. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  2068. return srcSliceH;
  2069. }
  2070. /* unscaled copy like stuff (assumes nearly identical formats) */
  2071. static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2072. int srcSliceH, uint8_t* dst[], int dstStride[])
  2073. {
  2074. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  2075. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  2076. else
  2077. {
  2078. int i;
  2079. uint8_t *srcPtr= src[0];
  2080. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  2081. int length=0;
  2082. /* universal length finder */
  2083. while(length+c->srcW <= FFABS(dstStride[0])
  2084. && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
  2085. assert(length!=0);
  2086. for (i=0; i<srcSliceH; i++)
  2087. {
  2088. memcpy(dstPtr, srcPtr, length);
  2089. srcPtr+= srcStride[0];
  2090. dstPtr+= dstStride[0];
  2091. }
  2092. }
  2093. return srcSliceH;
  2094. }
  2095. static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2096. int srcSliceH, uint8_t* dst[], int dstStride[])
  2097. {
  2098. int plane, i, j;
  2099. for (plane=0; plane<4; plane++)
  2100. {
  2101. int length= (plane==0 || plane==3) ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  2102. int y= (plane==0 || plane==3) ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  2103. int height= (plane==0 || plane==3) ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  2104. uint8_t *srcPtr= src[plane];
  2105. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  2106. if (!dst[plane]) continue;
  2107. // ignore palette for GRAY8
  2108. if (plane == 1 && !dst[2]) continue;
  2109. if (!src[plane] || (plane == 1 && !src[2])){
  2110. if(is16BPS(c->dstFormat))
  2111. length*=2;
  2112. fillPlane(dst[plane], dstStride[plane], length, height, y, (plane==3) ? 255 : 128);
  2113. }else
  2114. {
  2115. if(is16BPS(c->srcFormat) && !is16BPS(c->dstFormat)){
  2116. if (!isBE(c->srcFormat)) srcPtr++;
  2117. for (i=0; i<height; i++){
  2118. for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
  2119. srcPtr+= srcStride[plane];
  2120. dstPtr+= dstStride[plane];
  2121. }
  2122. }else if(!is16BPS(c->srcFormat) && is16BPS(c->dstFormat)){
  2123. for (i=0; i<height; i++){
  2124. for (j=0; j<length; j++){
  2125. dstPtr[ j<<1 ] = srcPtr[j];
  2126. dstPtr[(j<<1)+1] = srcPtr[j];
  2127. }
  2128. srcPtr+= srcStride[plane];
  2129. dstPtr+= dstStride[plane];
  2130. }
  2131. }else if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat)
  2132. && isBE(c->srcFormat) != isBE(c->dstFormat)){
  2133. for (i=0; i<height; i++){
  2134. for (j=0; j<length; j++)
  2135. ((uint16_t*)dstPtr)[j] = bswap_16(((uint16_t*)srcPtr)[j]);
  2136. srcPtr+= srcStride[plane];
  2137. dstPtr+= dstStride[plane];
  2138. }
  2139. } else if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  2140. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  2141. else
  2142. {
  2143. if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat))
  2144. length*=2;
  2145. for (i=0; i<height; i++)
  2146. {
  2147. memcpy(dstPtr, srcPtr, length);
  2148. srcPtr+= srcStride[plane];
  2149. dstPtr+= dstStride[plane];
  2150. }
  2151. }
  2152. }
  2153. }
  2154. return srcSliceH;
  2155. }
  2156. static void getSubSampleFactors(int *h, int *v, int format){
  2157. switch(format){
  2158. case PIX_FMT_UYVY422:
  2159. case PIX_FMT_YUYV422:
  2160. *h=1;
  2161. *v=0;
  2162. break;
  2163. case PIX_FMT_YUV420P:
  2164. case PIX_FMT_YUV420PLE:
  2165. case PIX_FMT_YUV420PBE:
  2166. case PIX_FMT_YUVA420P:
  2167. case PIX_FMT_GRAY16BE:
  2168. case PIX_FMT_GRAY16LE:
  2169. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  2170. case PIX_FMT_NV12:
  2171. case PIX_FMT_NV21:
  2172. *h=1;
  2173. *v=1;
  2174. break;
  2175. case PIX_FMT_YUV440P:
  2176. *h=0;
  2177. *v=1;
  2178. break;
  2179. case PIX_FMT_YUV410P:
  2180. *h=2;
  2181. *v=2;
  2182. break;
  2183. case PIX_FMT_YUV444P:
  2184. case PIX_FMT_YUV444PLE:
  2185. case PIX_FMT_YUV444PBE:
  2186. *h=0;
  2187. *v=0;
  2188. break;
  2189. case PIX_FMT_YUV422P:
  2190. case PIX_FMT_YUV422PLE:
  2191. case PIX_FMT_YUV422PBE:
  2192. *h=1;
  2193. *v=0;
  2194. break;
  2195. case PIX_FMT_YUV411P:
  2196. *h=2;
  2197. *v=0;
  2198. break;
  2199. default:
  2200. *h=0;
  2201. *v=0;
  2202. break;
  2203. }
  2204. }
  2205. static uint16_t roundToInt16(int64_t f){
  2206. int r= (f + (1<<15))>>16;
  2207. if (r<-0x7FFF) return 0x8000;
  2208. else if (r> 0x7FFF) return 0x7FFF;
  2209. else return r;
  2210. }
  2211. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  2212. int64_t crv = inv_table[0];
  2213. int64_t cbu = inv_table[1];
  2214. int64_t cgu = -inv_table[2];
  2215. int64_t cgv = -inv_table[3];
  2216. int64_t cy = 1<<16;
  2217. int64_t oy = 0;
  2218. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  2219. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  2220. c->brightness= brightness;
  2221. c->contrast = contrast;
  2222. c->saturation= saturation;
  2223. c->srcRange = srcRange;
  2224. c->dstRange = dstRange;
  2225. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  2226. c->uOffset= 0x0400040004000400LL;
  2227. c->vOffset= 0x0400040004000400LL;
  2228. if (!srcRange){
  2229. cy= (cy*255) / 219;
  2230. oy= 16<<16;
  2231. }else{
  2232. crv= (crv*224) / 255;
  2233. cbu= (cbu*224) / 255;
  2234. cgu= (cgu*224) / 255;
  2235. cgv= (cgv*224) / 255;
  2236. }
  2237. cy = (cy *contrast )>>16;
  2238. crv= (crv*contrast * saturation)>>32;
  2239. cbu= (cbu*contrast * saturation)>>32;
  2240. cgu= (cgu*contrast * saturation)>>32;
  2241. cgv= (cgv*contrast * saturation)>>32;
  2242. oy -= 256*brightness;
  2243. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  2244. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  2245. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  2246. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  2247. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  2248. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  2249. c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
  2250. c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
  2251. c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
  2252. c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
  2253. c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
  2254. c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
  2255. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  2256. //FIXME factorize
  2257. #ifdef COMPILE_ALTIVEC
  2258. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  2259. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
  2260. #endif
  2261. return 0;
  2262. }
  2263. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  2264. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  2265. *inv_table = c->srcColorspaceTable;
  2266. *table = c->dstColorspaceTable;
  2267. *srcRange = c->srcRange;
  2268. *dstRange = c->dstRange;
  2269. *brightness= c->brightness;
  2270. *contrast = c->contrast;
  2271. *saturation= c->saturation;
  2272. return 0;
  2273. }
  2274. static int handle_jpeg(enum PixelFormat *format)
  2275. {
  2276. switch (*format) {
  2277. case PIX_FMT_YUVJ420P:
  2278. *format = PIX_FMT_YUV420P;
  2279. return 1;
  2280. case PIX_FMT_YUVJ422P:
  2281. *format = PIX_FMT_YUV422P;
  2282. return 1;
  2283. case PIX_FMT_YUVJ444P:
  2284. *format = PIX_FMT_YUV444P;
  2285. return 1;
  2286. case PIX_FMT_YUVJ440P:
  2287. *format = PIX_FMT_YUV440P;
  2288. return 1;
  2289. default:
  2290. return 0;
  2291. }
  2292. }
  2293. SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  2294. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  2295. {
  2296. SwsContext *c;
  2297. int i;
  2298. int usesVFilter, usesHFilter;
  2299. int unscaled, needsDither;
  2300. int srcRange, dstRange;
  2301. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  2302. #if ARCH_X86
  2303. if (flags & SWS_CPU_CAPS_MMX)
  2304. __asm__ volatile("emms\n\t"::: "memory");
  2305. #endif
  2306. #if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
  2307. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
  2308. #if HAVE_MMX2
  2309. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  2310. #elif HAVE_AMD3DNOW
  2311. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  2312. #elif HAVE_MMX
  2313. flags |= SWS_CPU_CAPS_MMX;
  2314. #elif HAVE_ALTIVEC
  2315. flags |= SWS_CPU_CAPS_ALTIVEC;
  2316. #elif ARCH_BFIN
  2317. flags |= SWS_CPU_CAPS_BFIN;
  2318. #endif
  2319. #endif /* CONFIG_RUNTIME_CPUDETECT */
  2320. if (clip_table[512] != 255) globalInit();
  2321. if (!rgb15to16) sws_rgb2rgb_init(flags);
  2322. unscaled = (srcW == dstW && srcH == dstH);
  2323. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  2324. && (fmt_depth(dstFormat))<24
  2325. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  2326. srcRange = handle_jpeg(&srcFormat);
  2327. dstRange = handle_jpeg(&dstFormat);
  2328. if (!isSupportedIn(srcFormat))
  2329. {
  2330. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
  2331. return NULL;
  2332. }
  2333. if (!isSupportedOut(dstFormat))
  2334. {
  2335. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
  2336. return NULL;
  2337. }
  2338. i= flags & ( SWS_POINT
  2339. |SWS_AREA
  2340. |SWS_BILINEAR
  2341. |SWS_FAST_BILINEAR
  2342. |SWS_BICUBIC
  2343. |SWS_X
  2344. |SWS_GAUSS
  2345. |SWS_LANCZOS
  2346. |SWS_SINC
  2347. |SWS_SPLINE
  2348. |SWS_BICUBLIN);
  2349. if(!i || (i & (i-1)))
  2350. {
  2351. av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
  2352. return NULL;
  2353. }
  2354. /* sanity check */
  2355. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  2356. {
  2357. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  2358. srcW, srcH, dstW, dstH);
  2359. return NULL;
  2360. }
  2361. if(srcW > VOFW || dstW > VOFW){
  2362. av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
  2363. return NULL;
  2364. }
  2365. if (!dstFilter) dstFilter= &dummyFilter;
  2366. if (!srcFilter) srcFilter= &dummyFilter;
  2367. c= av_mallocz(sizeof(SwsContext));
  2368. c->av_class = &sws_context_class;
  2369. c->srcW= srcW;
  2370. c->srcH= srcH;
  2371. c->dstW= dstW;
  2372. c->dstH= dstH;
  2373. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  2374. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  2375. c->flags= flags;
  2376. c->dstFormat= dstFormat;
  2377. c->srcFormat= srcFormat;
  2378. c->vRounder= 4* 0x0001000100010001ULL;
  2379. usesHFilter= usesVFilter= 0;
  2380. if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
  2381. if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
  2382. if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
  2383. if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
  2384. if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
  2385. if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
  2386. if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
  2387. if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
  2388. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  2389. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  2390. // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
  2391. if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  2392. // drop some chroma lines if the user wants it
  2393. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  2394. c->chrSrcVSubSample+= c->vChrDrop;
  2395. // drop every other pixel for chroma calculation unless user wants full chroma
  2396. if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
  2397. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  2398. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  2399. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  2400. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2401. c->chrSrcHSubSample=1;
  2402. if (param){
  2403. c->param[0] = param[0];
  2404. c->param[1] = param[1];
  2405. }else{
  2406. c->param[0] =
  2407. c->param[1] = SWS_PARAM_DEFAULT;
  2408. }
  2409. // Note the -((-x)>>y) is so that we always round toward +inf.
  2410. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  2411. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  2412. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  2413. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  2414. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  2415. /* unscaled special cases */
  2416. if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
  2417. {
  2418. /* yv12_to_nv12 */
  2419. if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  2420. {
  2421. c->swScale= PlanarToNV12Wrapper;
  2422. }
  2423. /* yuv2bgr */
  2424. if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P || srcFormat==PIX_FMT_YUVA420P) && (isBGR(dstFormat) || isRGB(dstFormat))
  2425. && !(flags & SWS_ACCURATE_RND) && !(dstH&1))
  2426. {
  2427. c->swScale= ff_yuv2rgb_get_func_ptr(c);
  2428. }
  2429. if (srcFormat==PIX_FMT_YUV410P && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_BITEXACT))
  2430. {
  2431. c->swScale= yvu9toyv12Wrapper;
  2432. }
  2433. /* bgr24toYV12 */
  2434. if (srcFormat==PIX_FMT_BGR24 && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_ACCURATE_RND))
  2435. c->swScale= bgr24toyv12Wrapper;
  2436. /* RGB/BGR -> RGB/BGR (no dither needed forms) */
  2437. if ( (isBGR(srcFormat) || isRGB(srcFormat))
  2438. && (isBGR(dstFormat) || isRGB(dstFormat))
  2439. && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
  2440. && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
  2441. && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
  2442. && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
  2443. && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
  2444. && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
  2445. && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
  2446. && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
  2447. && dstFormat != PIX_FMT_RGB32_1
  2448. && dstFormat != PIX_FMT_BGR32_1
  2449. && srcFormat != PIX_FMT_RGB48LE && dstFormat != PIX_FMT_RGB48LE
  2450. && srcFormat != PIX_FMT_RGB48BE && dstFormat != PIX_FMT_RGB48BE
  2451. && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2452. c->swScale= rgb2rgbWrapper;
  2453. if ((usePal(srcFormat) && (
  2454. dstFormat == PIX_FMT_RGB32 ||
  2455. dstFormat == PIX_FMT_RGB32_1 ||
  2456. dstFormat == PIX_FMT_RGB24 ||
  2457. dstFormat == PIX_FMT_BGR32 ||
  2458. dstFormat == PIX_FMT_BGR32_1 ||
  2459. dstFormat == PIX_FMT_BGR24)))
  2460. c->swScale= pal2rgbWrapper;
  2461. if (srcFormat == PIX_FMT_YUV422P)
  2462. {
  2463. if (dstFormat == PIX_FMT_YUYV422)
  2464. c->swScale= YUV422PToYuy2Wrapper;
  2465. else if (dstFormat == PIX_FMT_UYVY422)
  2466. c->swScale= YUV422PToUyvyWrapper;
  2467. }
  2468. /* LQ converters if -sws 0 or -sws 4*/
  2469. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  2470. /* yv12_to_yuy2 */
  2471. if (srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P)
  2472. {
  2473. if (dstFormat == PIX_FMT_YUYV422)
  2474. c->swScale= PlanarToYuy2Wrapper;
  2475. else if (dstFormat == PIX_FMT_UYVY422)
  2476. c->swScale= PlanarToUyvyWrapper;
  2477. }
  2478. }
  2479. if(srcFormat == PIX_FMT_YUYV422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  2480. c->swScale= YUYV2YUV420Wrapper;
  2481. if(srcFormat == PIX_FMT_UYVY422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  2482. c->swScale= UYVY2YUV420Wrapper;
  2483. if(srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV422P)
  2484. c->swScale= YUYV2YUV422Wrapper;
  2485. if(srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV422P)
  2486. c->swScale= UYVY2YUV422Wrapper;
  2487. #ifdef COMPILE_ALTIVEC
  2488. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  2489. !(c->flags & SWS_BITEXACT) &&
  2490. srcFormat == PIX_FMT_YUV420P) {
  2491. // unscaled YV12 -> packed YUV, we want speed
  2492. if (dstFormat == PIX_FMT_YUYV422)
  2493. c->swScale= yv12toyuy2_unscaled_altivec;
  2494. else if (dstFormat == PIX_FMT_UYVY422)
  2495. c->swScale= yv12touyvy_unscaled_altivec;
  2496. }
  2497. #endif
  2498. /* simple copy */
  2499. if ( srcFormat == dstFormat
  2500. || (srcFormat == PIX_FMT_YUVA420P && dstFormat == PIX_FMT_YUV420P)
  2501. || (srcFormat == PIX_FMT_YUV420P && dstFormat == PIX_FMT_YUVA420P)
  2502. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  2503. || (isPlanarYUV(dstFormat) && isGray(srcFormat))
  2504. || (isGray(dstFormat) && isGray(srcFormat))
  2505. || (isPlanarYUV(srcFormat) && isPlanarYUV(dstFormat)
  2506. && c->chrDstHSubSample == c->chrSrcHSubSample
  2507. && c->chrDstVSubSample == c->chrSrcVSubSample))
  2508. {
  2509. if (isPacked(c->srcFormat))
  2510. c->swScale= packedCopy;
  2511. else /* Planar YUV or gray */
  2512. c->swScale= planarCopy;
  2513. }
  2514. #if ARCH_BFIN
  2515. if (flags & SWS_CPU_CAPS_BFIN)
  2516. ff_bfin_get_unscaled_swscale (c);
  2517. #endif
  2518. if (c->swScale){
  2519. if (flags&SWS_PRINT_INFO)
  2520. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  2521. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2522. return c;
  2523. }
  2524. }
  2525. if (flags & SWS_CPU_CAPS_MMX2)
  2526. {
  2527. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  2528. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  2529. {
  2530. if (flags&SWS_PRINT_INFO)
  2531. av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
  2532. }
  2533. if (usesHFilter) c->canMMX2BeUsed=0;
  2534. }
  2535. else
  2536. c->canMMX2BeUsed=0;
  2537. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  2538. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  2539. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  2540. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  2541. // n-2 is the last chrominance sample available
  2542. // this is not perfect, but no one should notice the difference, the more correct variant
  2543. // would be like the vertical one, but that would require some special code for the
  2544. // first and last pixel
  2545. if (flags&SWS_FAST_BILINEAR)
  2546. {
  2547. if (c->canMMX2BeUsed)
  2548. {
  2549. c->lumXInc+= 20;
  2550. c->chrXInc+= 20;
  2551. }
  2552. //we don't use the x86 asm scaler if MMX is available
  2553. else if (flags & SWS_CPU_CAPS_MMX)
  2554. {
  2555. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  2556. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  2557. }
  2558. }
  2559. /* precalculate horizontal scaler filter coefficients */
  2560. {
  2561. const int filterAlign=
  2562. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  2563. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2564. 1;
  2565. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  2566. srcW , dstW, filterAlign, 1<<14,
  2567. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2568. srcFilter->lumH, dstFilter->lumH, c->param);
  2569. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  2570. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  2571. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2572. srcFilter->chrH, dstFilter->chrH, c->param);
  2573. #define MAX_FUNNY_CODE_SIZE 10000
  2574. #if defined(COMPILE_MMX2)
  2575. // can't downscale !!!
  2576. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  2577. {
  2578. #ifdef MAP_ANONYMOUS
  2579. c->funnyYCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2580. c->funnyUVCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2581. #elif HAVE_VIRTUALALLOC
  2582. c->funnyYCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  2583. c->funnyUVCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  2584. #else
  2585. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2586. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2587. #endif
  2588. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  2589. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  2590. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  2591. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  2592. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  2593. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  2594. }
  2595. #endif /* defined(COMPILE_MMX2) */
  2596. } // initialize horizontal stuff
  2597. /* precalculate vertical scaler filter coefficients */
  2598. {
  2599. const int filterAlign=
  2600. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  2601. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2602. 1;
  2603. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  2604. srcH , dstH, filterAlign, (1<<12),
  2605. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2606. srcFilter->lumV, dstFilter->lumV, c->param);
  2607. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  2608. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  2609. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2610. srcFilter->chrV, dstFilter->chrV, c->param);
  2611. #if HAVE_ALTIVEC
  2612. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  2613. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  2614. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  2615. int j;
  2616. short *p = (short *)&c->vYCoeffsBank[i];
  2617. for (j=0;j<8;j++)
  2618. p[j] = c->vLumFilter[i];
  2619. }
  2620. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  2621. int j;
  2622. short *p = (short *)&c->vCCoeffsBank[i];
  2623. for (j=0;j<8;j++)
  2624. p[j] = c->vChrFilter[i];
  2625. }
  2626. #endif
  2627. }
  2628. // calculate buffer sizes so that they won't run out while handling these damn slices
  2629. c->vLumBufSize= c->vLumFilterSize;
  2630. c->vChrBufSize= c->vChrFilterSize;
  2631. for (i=0; i<dstH; i++)
  2632. {
  2633. int chrI= i*c->chrDstH / dstH;
  2634. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  2635. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  2636. nextSlice>>= c->chrSrcVSubSample;
  2637. nextSlice<<= c->chrSrcVSubSample;
  2638. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  2639. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  2640. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  2641. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  2642. }
  2643. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  2644. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2645. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  2646. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  2647. c->alpPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2648. //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
  2649. /* align at 16 bytes for AltiVec */
  2650. for (i=0; i<c->vLumBufSize; i++)
  2651. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2652. for (i=0; i<c->vChrBufSize; i++)
  2653. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
  2654. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  2655. for (i=0; i<c->vLumBufSize; i++)
  2656. c->alpPixBuf[i]= c->alpPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2657. //try to avoid drawing green stuff between the right end and the stride end
  2658. for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
  2659. assert(2*VOFW == VOF);
  2660. assert(c->chrDstH <= dstH);
  2661. if (flags&SWS_PRINT_INFO)
  2662. {
  2663. #ifdef DITHER1XBPP
  2664. const char *dither= " dithered";
  2665. #else
  2666. const char *dither= "";
  2667. #endif
  2668. if (flags&SWS_FAST_BILINEAR)
  2669. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  2670. else if (flags&SWS_BILINEAR)
  2671. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  2672. else if (flags&SWS_BICUBIC)
  2673. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  2674. else if (flags&SWS_X)
  2675. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  2676. else if (flags&SWS_POINT)
  2677. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  2678. else if (flags&SWS_AREA)
  2679. av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
  2680. else if (flags&SWS_BICUBLIN)
  2681. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  2682. else if (flags&SWS_GAUSS)
  2683. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  2684. else if (flags&SWS_SINC)
  2685. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  2686. else if (flags&SWS_LANCZOS)
  2687. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  2688. else if (flags&SWS_SPLINE)
  2689. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  2690. else
  2691. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  2692. if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  2693. av_log(c, AV_LOG_INFO, "from %s to%s %s ",
  2694. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2695. else
  2696. av_log(c, AV_LOG_INFO, "from %s to %s ",
  2697. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2698. if (flags & SWS_CPU_CAPS_MMX2)
  2699. av_log(c, AV_LOG_INFO, "using MMX2\n");
  2700. else if (flags & SWS_CPU_CAPS_3DNOW)
  2701. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  2702. else if (flags & SWS_CPU_CAPS_MMX)
  2703. av_log(c, AV_LOG_INFO, "using MMX\n");
  2704. else if (flags & SWS_CPU_CAPS_ALTIVEC)
  2705. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  2706. else
  2707. av_log(c, AV_LOG_INFO, "using C\n");
  2708. }
  2709. if (flags & SWS_PRINT_INFO)
  2710. {
  2711. if (flags & SWS_CPU_CAPS_MMX)
  2712. {
  2713. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2714. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2715. else
  2716. {
  2717. if (c->hLumFilterSize==4)
  2718. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  2719. else if (c->hLumFilterSize==8)
  2720. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  2721. else
  2722. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  2723. if (c->hChrFilterSize==4)
  2724. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2725. else if (c->hChrFilterSize==8)
  2726. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2727. else
  2728. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  2729. }
  2730. }
  2731. else
  2732. {
  2733. #if ARCH_X86
  2734. av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
  2735. #else
  2736. if (flags & SWS_FAST_BILINEAR)
  2737. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  2738. else
  2739. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  2740. #endif
  2741. }
  2742. if (isPlanarYUV(dstFormat))
  2743. {
  2744. if (c->vLumFilterSize==1)
  2745. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2746. else
  2747. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2748. }
  2749. else
  2750. {
  2751. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2752. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2753. " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2754. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2755. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2756. else
  2757. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2758. }
  2759. if (dstFormat==PIX_FMT_BGR24)
  2760. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
  2761. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2762. else if (dstFormat==PIX_FMT_RGB32)
  2763. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2764. else if (dstFormat==PIX_FMT_BGR565)
  2765. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2766. else if (dstFormat==PIX_FMT_BGR555)
  2767. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2768. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2769. }
  2770. if (flags & SWS_PRINT_INFO)
  2771. {
  2772. av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2773. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2774. av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2775. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2776. }
  2777. c->swScale= getSwsFunc(c);
  2778. return c;
  2779. }
  2780. static void reset_ptr(uint8_t* src[], int format){
  2781. if(!isALPHA(format))
  2782. src[3]=NULL;
  2783. if(!isPlanarYUV(format)){
  2784. src[3]=src[2]=NULL;
  2785. if( format != PIX_FMT_PAL8
  2786. && format != PIX_FMT_RGB8
  2787. && format != PIX_FMT_BGR8
  2788. && format != PIX_FMT_RGB4_BYTE
  2789. && format != PIX_FMT_BGR4_BYTE
  2790. )
  2791. src[1]= NULL;
  2792. }
  2793. }
  2794. /**
  2795. * swscale wrapper, so we don't need to export the SwsContext.
  2796. * Assumes planar YUV to be in YUV order instead of YVU.
  2797. */
  2798. int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2799. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2800. int i;
  2801. uint8_t* src2[4]= {src[0], src[1], src[2], src[3]};
  2802. uint8_t* dst2[4]= {dst[0], dst[1], dst[2], dst[3]};
  2803. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2804. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  2805. return 0;
  2806. }
  2807. if (c->sliceDir == 0) {
  2808. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2809. }
  2810. if (usePal(c->srcFormat)){
  2811. for (i=0; i<256; i++){
  2812. int p, r, g, b,y,u,v;
  2813. if(c->srcFormat == PIX_FMT_PAL8){
  2814. p=((uint32_t*)(src[1]))[i];
  2815. r= (p>>16)&0xFF;
  2816. g= (p>> 8)&0xFF;
  2817. b= p &0xFF;
  2818. }else if(c->srcFormat == PIX_FMT_RGB8){
  2819. r= (i>>5 )*36;
  2820. g= ((i>>2)&7)*36;
  2821. b= (i&3 )*85;
  2822. }else if(c->srcFormat == PIX_FMT_BGR8){
  2823. b= (i>>6 )*85;
  2824. g= ((i>>3)&7)*36;
  2825. r= (i&7 )*36;
  2826. }else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
  2827. r= (i>>3 )*255;
  2828. g= ((i>>1)&3)*85;
  2829. b= (i&1 )*255;
  2830. }else {
  2831. assert(c->srcFormat == PIX_FMT_BGR4_BYTE);
  2832. b= (i>>3 )*255;
  2833. g= ((i>>1)&3)*85;
  2834. r= (i&1 )*255;
  2835. }
  2836. y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2837. u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2838. v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2839. c->pal_yuv[i]= y + (u<<8) + (v<<16);
  2840. switch(c->dstFormat) {
  2841. case PIX_FMT_BGR32:
  2842. #ifndef WORDS_BIGENDIAN
  2843. case PIX_FMT_RGB24:
  2844. #endif
  2845. c->pal_rgb[i]= r + (g<<8) + (b<<16);
  2846. break;
  2847. case PIX_FMT_BGR32_1:
  2848. #ifdef WORDS_BIGENDIAN
  2849. case PIX_FMT_BGR24:
  2850. #endif
  2851. c->pal_rgb[i]= (r + (g<<8) + (b<<16)) << 8;
  2852. break;
  2853. case PIX_FMT_RGB32_1:
  2854. #ifdef WORDS_BIGENDIAN
  2855. case PIX_FMT_RGB24:
  2856. #endif
  2857. c->pal_rgb[i]= (b + (g<<8) + (r<<16)) << 8;
  2858. break;
  2859. case PIX_FMT_RGB32:
  2860. #ifndef WORDS_BIGENDIAN
  2861. case PIX_FMT_BGR24:
  2862. #endif
  2863. default:
  2864. c->pal_rgb[i]= b + (g<<8) + (r<<16);
  2865. }
  2866. }
  2867. }
  2868. // copy strides, so they can safely be modified
  2869. if (c->sliceDir == 1) {
  2870. // slices go from top to bottom
  2871. int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2], srcStride[3]};
  2872. int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2], dstStride[3]};
  2873. reset_ptr(src2, c->srcFormat);
  2874. reset_ptr(dst2, c->dstFormat);
  2875. return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2, dstStride2);
  2876. } else {
  2877. // slices go from bottom to top => we flip the image internally
  2878. int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2], -srcStride[3]};
  2879. int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2], -dstStride[3]};
  2880. src2[0] += (srcSliceH-1)*srcStride[0];
  2881. if (!usePal(c->srcFormat))
  2882. src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
  2883. src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
  2884. src2[3] += (srcSliceH-1)*srcStride[3];
  2885. dst2[0] += ( c->dstH -1)*dstStride[0];
  2886. dst2[1] += ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1];
  2887. dst2[2] += ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2];
  2888. dst2[3] += ( c->dstH -1)*dstStride[3];
  2889. reset_ptr(src2, c->srcFormat);
  2890. reset_ptr(dst2, c->dstFormat);
  2891. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2892. }
  2893. }
  2894. #if LIBSWSCALE_VERSION_MAJOR < 1
  2895. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2896. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2897. return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2898. }
  2899. #endif
  2900. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2901. float lumaSharpen, float chromaSharpen,
  2902. float chromaHShift, float chromaVShift,
  2903. int verbose)
  2904. {
  2905. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2906. if (lumaGBlur!=0.0){
  2907. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2908. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2909. }else{
  2910. filter->lumH= sws_getIdentityVec();
  2911. filter->lumV= sws_getIdentityVec();
  2912. }
  2913. if (chromaGBlur!=0.0){
  2914. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2915. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2916. }else{
  2917. filter->chrH= sws_getIdentityVec();
  2918. filter->chrV= sws_getIdentityVec();
  2919. }
  2920. if (chromaSharpen!=0.0){
  2921. SwsVector *id= sws_getIdentityVec();
  2922. sws_scaleVec(filter->chrH, -chromaSharpen);
  2923. sws_scaleVec(filter->chrV, -chromaSharpen);
  2924. sws_addVec(filter->chrH, id);
  2925. sws_addVec(filter->chrV, id);
  2926. sws_freeVec(id);
  2927. }
  2928. if (lumaSharpen!=0.0){
  2929. SwsVector *id= sws_getIdentityVec();
  2930. sws_scaleVec(filter->lumH, -lumaSharpen);
  2931. sws_scaleVec(filter->lumV, -lumaSharpen);
  2932. sws_addVec(filter->lumH, id);
  2933. sws_addVec(filter->lumV, id);
  2934. sws_freeVec(id);
  2935. }
  2936. if (chromaHShift != 0.0)
  2937. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2938. if (chromaVShift != 0.0)
  2939. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2940. sws_normalizeVec(filter->chrH, 1.0);
  2941. sws_normalizeVec(filter->chrV, 1.0);
  2942. sws_normalizeVec(filter->lumH, 1.0);
  2943. sws_normalizeVec(filter->lumV, 1.0);
  2944. if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  2945. if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  2946. return filter;
  2947. }
  2948. SwsVector *sws_getGaussianVec(double variance, double quality){
  2949. const int length= (int)(variance*quality + 0.5) | 1;
  2950. int i;
  2951. double *coeff= av_malloc(length*sizeof(double));
  2952. double middle= (length-1)*0.5;
  2953. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2954. vec->coeff= coeff;
  2955. vec->length= length;
  2956. for (i=0; i<length; i++)
  2957. {
  2958. double dist= i-middle;
  2959. coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
  2960. }
  2961. sws_normalizeVec(vec, 1.0);
  2962. return vec;
  2963. }
  2964. SwsVector *sws_getConstVec(double c, int length){
  2965. int i;
  2966. double *coeff= av_malloc(length*sizeof(double));
  2967. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2968. vec->coeff= coeff;
  2969. vec->length= length;
  2970. for (i=0; i<length; i++)
  2971. coeff[i]= c;
  2972. return vec;
  2973. }
  2974. SwsVector *sws_getIdentityVec(void){
  2975. return sws_getConstVec(1.0, 1);
  2976. }
  2977. double sws_dcVec(SwsVector *a){
  2978. int i;
  2979. double sum=0;
  2980. for (i=0; i<a->length; i++)
  2981. sum+= a->coeff[i];
  2982. return sum;
  2983. }
  2984. void sws_scaleVec(SwsVector *a, double scalar){
  2985. int i;
  2986. for (i=0; i<a->length; i++)
  2987. a->coeff[i]*= scalar;
  2988. }
  2989. void sws_normalizeVec(SwsVector *a, double height){
  2990. sws_scaleVec(a, height/sws_dcVec(a));
  2991. }
  2992. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2993. int length= a->length + b->length - 1;
  2994. double *coeff= av_malloc(length*sizeof(double));
  2995. int i, j;
  2996. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2997. vec->coeff= coeff;
  2998. vec->length= length;
  2999. for (i=0; i<length; i++) coeff[i]= 0.0;
  3000. for (i=0; i<a->length; i++)
  3001. {
  3002. for (j=0; j<b->length; j++)
  3003. {
  3004. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  3005. }
  3006. }
  3007. return vec;
  3008. }
  3009. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  3010. int length= FFMAX(a->length, b->length);
  3011. double *coeff= av_malloc(length*sizeof(double));
  3012. int i;
  3013. SwsVector *vec= av_malloc(sizeof(SwsVector));
  3014. vec->coeff= coeff;
  3015. vec->length= length;
  3016. for (i=0; i<length; i++) coeff[i]= 0.0;
  3017. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  3018. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  3019. return vec;
  3020. }
  3021. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  3022. int length= FFMAX(a->length, b->length);
  3023. double *coeff= av_malloc(length*sizeof(double));
  3024. int i;
  3025. SwsVector *vec= av_malloc(sizeof(SwsVector));
  3026. vec->coeff= coeff;
  3027. vec->length= length;
  3028. for (i=0; i<length; i++) coeff[i]= 0.0;
  3029. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  3030. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  3031. return vec;
  3032. }
  3033. /* shift left / or right if "shift" is negative */
  3034. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  3035. int length= a->length + FFABS(shift)*2;
  3036. double *coeff= av_malloc(length*sizeof(double));
  3037. int i;
  3038. SwsVector *vec= av_malloc(sizeof(SwsVector));
  3039. vec->coeff= coeff;
  3040. vec->length= length;
  3041. for (i=0; i<length; i++) coeff[i]= 0.0;
  3042. for (i=0; i<a->length; i++)
  3043. {
  3044. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  3045. }
  3046. return vec;
  3047. }
  3048. void sws_shiftVec(SwsVector *a, int shift){
  3049. SwsVector *shifted= sws_getShiftedVec(a, shift);
  3050. av_free(a->coeff);
  3051. a->coeff= shifted->coeff;
  3052. a->length= shifted->length;
  3053. av_free(shifted);
  3054. }
  3055. void sws_addVec(SwsVector *a, SwsVector *b){
  3056. SwsVector *sum= sws_sumVec(a, b);
  3057. av_free(a->coeff);
  3058. a->coeff= sum->coeff;
  3059. a->length= sum->length;
  3060. av_free(sum);
  3061. }
  3062. void sws_subVec(SwsVector *a, SwsVector *b){
  3063. SwsVector *diff= sws_diffVec(a, b);
  3064. av_free(a->coeff);
  3065. a->coeff= diff->coeff;
  3066. a->length= diff->length;
  3067. av_free(diff);
  3068. }
  3069. void sws_convVec(SwsVector *a, SwsVector *b){
  3070. SwsVector *conv= sws_getConvVec(a, b);
  3071. av_free(a->coeff);
  3072. a->coeff= conv->coeff;
  3073. a->length= conv->length;
  3074. av_free(conv);
  3075. }
  3076. SwsVector *sws_cloneVec(SwsVector *a){
  3077. double *coeff= av_malloc(a->length*sizeof(double));
  3078. int i;
  3079. SwsVector *vec= av_malloc(sizeof(SwsVector));
  3080. vec->coeff= coeff;
  3081. vec->length= a->length;
  3082. for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  3083. return vec;
  3084. }
  3085. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level){
  3086. int i;
  3087. double max=0;
  3088. double min=0;
  3089. double range;
  3090. for (i=0; i<a->length; i++)
  3091. if (a->coeff[i]>max) max= a->coeff[i];
  3092. for (i=0; i<a->length; i++)
  3093. if (a->coeff[i]<min) min= a->coeff[i];
  3094. range= max - min;
  3095. for (i=0; i<a->length; i++)
  3096. {
  3097. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  3098. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  3099. for (;x>0; x--) av_log(log_ctx, log_level, " ");
  3100. av_log(log_ctx, log_level, "|\n");
  3101. }
  3102. }
  3103. #if LIBSWSCALE_VERSION_MAJOR < 1
  3104. void sws_printVec(SwsVector *a){
  3105. sws_printVec2(a, NULL, AV_LOG_DEBUG);
  3106. }
  3107. #endif
  3108. void sws_freeVec(SwsVector *a){
  3109. if (!a) return;
  3110. av_freep(&a->coeff);
  3111. a->length=0;
  3112. av_free(a);
  3113. }
  3114. void sws_freeFilter(SwsFilter *filter){
  3115. if (!filter) return;
  3116. if (filter->lumH) sws_freeVec(filter->lumH);
  3117. if (filter->lumV) sws_freeVec(filter->lumV);
  3118. if (filter->chrH) sws_freeVec(filter->chrH);
  3119. if (filter->chrV) sws_freeVec(filter->chrV);
  3120. av_free(filter);
  3121. }
  3122. void sws_freeContext(SwsContext *c){
  3123. int i;
  3124. if (!c) return;
  3125. if (c->lumPixBuf)
  3126. {
  3127. for (i=0; i<c->vLumBufSize; i++)
  3128. av_freep(&c->lumPixBuf[i]);
  3129. av_freep(&c->lumPixBuf);
  3130. }
  3131. if (c->chrPixBuf)
  3132. {
  3133. for (i=0; i<c->vChrBufSize; i++)
  3134. av_freep(&c->chrPixBuf[i]);
  3135. av_freep(&c->chrPixBuf);
  3136. }
  3137. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  3138. for (i=0; i<c->vLumBufSize; i++)
  3139. av_freep(&c->alpPixBuf[i]);
  3140. av_freep(&c->alpPixBuf);
  3141. }
  3142. av_freep(&c->vLumFilter);
  3143. av_freep(&c->vChrFilter);
  3144. av_freep(&c->hLumFilter);
  3145. av_freep(&c->hChrFilter);
  3146. #if HAVE_ALTIVEC
  3147. av_freep(&c->vYCoeffsBank);
  3148. av_freep(&c->vCCoeffsBank);
  3149. #endif
  3150. av_freep(&c->vLumFilterPos);
  3151. av_freep(&c->vChrFilterPos);
  3152. av_freep(&c->hLumFilterPos);
  3153. av_freep(&c->hChrFilterPos);
  3154. #if ARCH_X86 && CONFIG_GPL
  3155. #ifdef MAP_ANONYMOUS
  3156. if (c->funnyYCode ) munmap(c->funnyYCode , MAX_FUNNY_CODE_SIZE);
  3157. if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  3158. #elif HAVE_VIRTUALALLOC
  3159. if (c->funnyYCode ) VirtualFree(c->funnyYCode , MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
  3160. if (c->funnyUVCode) VirtualFree(c->funnyUVCode, MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
  3161. #else
  3162. av_free(c->funnyYCode );
  3163. av_free(c->funnyUVCode);
  3164. #endif
  3165. c->funnyYCode=NULL;
  3166. c->funnyUVCode=NULL;
  3167. #endif /* ARCH_X86 && CONFIG_GPL */
  3168. av_freep(&c->lumMmx2Filter);
  3169. av_freep(&c->chrMmx2Filter);
  3170. av_freep(&c->lumMmx2FilterPos);
  3171. av_freep(&c->chrMmx2FilterPos);
  3172. av_freep(&c->yuvTable);
  3173. av_free(c);
  3174. }
  3175. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  3176. int srcW, int srcH, enum PixelFormat srcFormat,
  3177. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  3178. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  3179. {
  3180. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  3181. if (!param)
  3182. param = default_param;
  3183. if (context) {
  3184. if (context->srcW != srcW || context->srcH != srcH ||
  3185. context->srcFormat != srcFormat ||
  3186. context->dstW != dstW || context->dstH != dstH ||
  3187. context->dstFormat != dstFormat || context->flags != flags ||
  3188. context->param[0] != param[0] || context->param[1] != param[1])
  3189. {
  3190. sws_freeContext(context);
  3191. context = NULL;
  3192. }
  3193. }
  3194. if (!context) {
  3195. return sws_getContext(srcW, srcH, srcFormat,
  3196. dstW, dstH, dstFormat, flags,
  3197. srcFilter, dstFilter, param);
  3198. }
  3199. return context;
  3200. }