You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

5784 lines
223KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2011 Mashiat Sarker Shakkhar
  4. * Copyright (c) 2006-2007 Konstantin Shishkov
  5. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * VC-1 and WMV3 decoder
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h263.h"
  32. #include "vc1.h"
  33. #include "vc1data.h"
  34. #include "vc1acdata.h"
  35. #include "msmpeg4data.h"
  36. #include "unary.h"
  37. #include "simple_idct.h"
  38. #include "mathops.h"
  39. #include "vdpau_internal.h"
  40. #include "libavutil/avassert.h"
  41. #undef NDEBUG
  42. #include <assert.h>
  43. #define MB_INTRA_VLC_BITS 9
  44. #define DC_VLC_BITS 9
  45. // offset tables for interlaced picture MVDATA decoding
  46. static const int offset_table1[9] = { 0, 1, 2, 4, 8, 16, 32, 64, 128 };
  47. static const int offset_table2[9] = { 0, 1, 3, 7, 15, 31, 63, 127, 255 };
  48. /***********************************************************************/
  49. /**
  50. * @name VC-1 Bitplane decoding
  51. * @see 8.7, p56
  52. * @{
  53. */
  54. /**
  55. * Imode types
  56. * @{
  57. */
  58. enum Imode {
  59. IMODE_RAW,
  60. IMODE_NORM2,
  61. IMODE_DIFF2,
  62. IMODE_NORM6,
  63. IMODE_DIFF6,
  64. IMODE_ROWSKIP,
  65. IMODE_COLSKIP
  66. };
  67. /** @} */ //imode defines
  68. /** @} */ //Bitplane group
  69. static void vc1_put_signed_blocks_clamped(VC1Context *v)
  70. {
  71. MpegEncContext *s = &v->s;
  72. int topleft_mb_pos, top_mb_pos;
  73. int stride_y, fieldtx;
  74. int v_dist;
  75. /* The put pixels loop is always one MB row behind the decoding loop,
  76. * because we can only put pixels when overlap filtering is done, and
  77. * for filtering of the bottom edge of a MB, we need the next MB row
  78. * present as well.
  79. * Within the row, the put pixels loop is also one MB col behind the
  80. * decoding loop. The reason for this is again, because for filtering
  81. * of the right MB edge, we need the next MB present. */
  82. if (!s->first_slice_line) {
  83. if (s->mb_x) {
  84. topleft_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x - 1;
  85. fieldtx = v->fieldtx_plane[topleft_mb_pos];
  86. stride_y = s->linesize << fieldtx;
  87. v_dist = (16 - fieldtx) >> (fieldtx == 0);
  88. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][0],
  89. s->dest[0] - 16 * s->linesize - 16,
  90. stride_y);
  91. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][1],
  92. s->dest[0] - 16 * s->linesize - 8,
  93. stride_y);
  94. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][2],
  95. s->dest[0] - v_dist * s->linesize - 16,
  96. stride_y);
  97. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][3],
  98. s->dest[0] - v_dist * s->linesize - 8,
  99. stride_y);
  100. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][4],
  101. s->dest[1] - 8 * s->uvlinesize - 8,
  102. s->uvlinesize);
  103. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][5],
  104. s->dest[2] - 8 * s->uvlinesize - 8,
  105. s->uvlinesize);
  106. }
  107. if (s->mb_x == s->mb_width - 1) {
  108. top_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x;
  109. fieldtx = v->fieldtx_plane[top_mb_pos];
  110. stride_y = s->linesize << fieldtx;
  111. v_dist = fieldtx ? 15 : 8;
  112. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][0],
  113. s->dest[0] - 16 * s->linesize,
  114. stride_y);
  115. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][1],
  116. s->dest[0] - 16 * s->linesize + 8,
  117. stride_y);
  118. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][2],
  119. s->dest[0] - v_dist * s->linesize,
  120. stride_y);
  121. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][3],
  122. s->dest[0] - v_dist * s->linesize + 8,
  123. stride_y);
  124. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][4],
  125. s->dest[1] - 8 * s->uvlinesize,
  126. s->uvlinesize);
  127. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][5],
  128. s->dest[2] - 8 * s->uvlinesize,
  129. s->uvlinesize);
  130. }
  131. }
  132. #define inc_blk_idx(idx) do { \
  133. idx++; \
  134. if (idx >= v->n_allocated_blks) \
  135. idx = 0; \
  136. } while (0)
  137. inc_blk_idx(v->topleft_blk_idx);
  138. inc_blk_idx(v->top_blk_idx);
  139. inc_blk_idx(v->left_blk_idx);
  140. inc_blk_idx(v->cur_blk_idx);
  141. }
  142. static void vc1_loop_filter_iblk(VC1Context *v, int pq)
  143. {
  144. MpegEncContext *s = &v->s;
  145. int j;
  146. if (!s->first_slice_line) {
  147. v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  148. if (s->mb_x)
  149. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  150. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
  151. for (j = 0; j < 2; j++) {
  152. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1], s->uvlinesize, pq);
  153. if (s->mb_x)
  154. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  155. }
  156. }
  157. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8 * s->linesize, s->linesize, pq);
  158. if (s->mb_y == s->end_mb_y - 1) {
  159. if (s->mb_x) {
  160. v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
  161. v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
  162. v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
  163. }
  164. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
  165. }
  166. }
  167. static void vc1_loop_filter_iblk_delayed(VC1Context *v, int pq)
  168. {
  169. MpegEncContext *s = &v->s;
  170. int j;
  171. /* The loopfilter runs 1 row and 1 column behind the overlap filter, which
  172. * means it runs two rows/cols behind the decoding loop. */
  173. if (!s->first_slice_line) {
  174. if (s->mb_x) {
  175. if (s->mb_y >= s->start_mb_y + 2) {
  176. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
  177. if (s->mb_x >= 2)
  178. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 16, s->linesize, pq);
  179. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 8, s->linesize, pq);
  180. for (j = 0; j < 2; j++) {
  181. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
  182. if (s->mb_x >= 2) {
  183. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize - 8, s->uvlinesize, pq);
  184. }
  185. }
  186. }
  187. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize - 16, s->linesize, pq);
  188. }
  189. if (s->mb_x == s->mb_width - 1) {
  190. if (s->mb_y >= s->start_mb_y + 2) {
  191. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  192. if (s->mb_x)
  193. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize, s->linesize, pq);
  194. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize + 8, s->linesize, pq);
  195. for (j = 0; j < 2; j++) {
  196. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  197. if (s->mb_x >= 2) {
  198. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize, s->uvlinesize, pq);
  199. }
  200. }
  201. }
  202. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize, s->linesize, pq);
  203. }
  204. if (s->mb_y == s->end_mb_y) {
  205. if (s->mb_x) {
  206. if (s->mb_x >= 2)
  207. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
  208. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 8, s->linesize, pq);
  209. if (s->mb_x >= 2) {
  210. for (j = 0; j < 2; j++) {
  211. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
  212. }
  213. }
  214. }
  215. if (s->mb_x == s->mb_width - 1) {
  216. if (s->mb_x)
  217. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  218. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
  219. if (s->mb_x) {
  220. for (j = 0; j < 2; j++) {
  221. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  222. }
  223. }
  224. }
  225. }
  226. }
  227. }
  228. static void vc1_smooth_overlap_filter_iblk(VC1Context *v)
  229. {
  230. MpegEncContext *s = &v->s;
  231. int mb_pos;
  232. if (v->condover == CONDOVER_NONE)
  233. return;
  234. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  235. /* Within a MB, the horizontal overlap always runs before the vertical.
  236. * To accomplish that, we run the H on left and internal borders of the
  237. * currently decoded MB. Then, we wait for the next overlap iteration
  238. * to do H overlap on the right edge of this MB, before moving over and
  239. * running the V overlap. Therefore, the V overlap makes us trail by one
  240. * MB col and the H overlap filter makes us trail by one MB row. This
  241. * is reflected in the time at which we run the put_pixels loop. */
  242. if (v->condover == CONDOVER_ALL || v->pq >= 9 || v->over_flags_plane[mb_pos]) {
  243. if (s->mb_x && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  244. v->over_flags_plane[mb_pos - 1])) {
  245. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][1],
  246. v->block[v->cur_blk_idx][0]);
  247. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][3],
  248. v->block[v->cur_blk_idx][2]);
  249. if (!(s->flags & CODEC_FLAG_GRAY)) {
  250. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][4],
  251. v->block[v->cur_blk_idx][4]);
  252. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][5],
  253. v->block[v->cur_blk_idx][5]);
  254. }
  255. }
  256. v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][0],
  257. v->block[v->cur_blk_idx][1]);
  258. v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][2],
  259. v->block[v->cur_blk_idx][3]);
  260. if (s->mb_x == s->mb_width - 1) {
  261. if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  262. v->over_flags_plane[mb_pos - s->mb_stride])) {
  263. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][2],
  264. v->block[v->cur_blk_idx][0]);
  265. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][3],
  266. v->block[v->cur_blk_idx][1]);
  267. if (!(s->flags & CODEC_FLAG_GRAY)) {
  268. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][4],
  269. v->block[v->cur_blk_idx][4]);
  270. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][5],
  271. v->block[v->cur_blk_idx][5]);
  272. }
  273. }
  274. v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][0],
  275. v->block[v->cur_blk_idx][2]);
  276. v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][1],
  277. v->block[v->cur_blk_idx][3]);
  278. }
  279. }
  280. if (s->mb_x && (v->condover == CONDOVER_ALL || v->over_flags_plane[mb_pos - 1])) {
  281. if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  282. v->over_flags_plane[mb_pos - s->mb_stride - 1])) {
  283. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][2],
  284. v->block[v->left_blk_idx][0]);
  285. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][3],
  286. v->block[v->left_blk_idx][1]);
  287. if (!(s->flags & CODEC_FLAG_GRAY)) {
  288. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][4],
  289. v->block[v->left_blk_idx][4]);
  290. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][5],
  291. v->block[v->left_blk_idx][5]);
  292. }
  293. }
  294. v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][0],
  295. v->block[v->left_blk_idx][2]);
  296. v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][1],
  297. v->block[v->left_blk_idx][3]);
  298. }
  299. }
  300. /** Do motion compensation over 1 macroblock
  301. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  302. */
  303. static void vc1_mc_1mv(VC1Context *v, int dir)
  304. {
  305. MpegEncContext *s = &v->s;
  306. DSPContext *dsp = &v->s.dsp;
  307. uint8_t *srcY, *srcU, *srcV;
  308. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  309. int off, off_uv;
  310. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  311. if ((!v->field_mode ||
  312. (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
  313. !v->s.last_picture.f.data[0])
  314. return;
  315. mx = s->mv[dir][0][0];
  316. my = s->mv[dir][0][1];
  317. // store motion vectors for further use in B frames
  318. if (s->pict_type == AV_PICTURE_TYPE_P) {
  319. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = mx;
  320. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = my;
  321. }
  322. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  323. uvmy = (my + ((my & 3) == 3)) >> 1;
  324. v->luma_mv[s->mb_x][0] = uvmx;
  325. v->luma_mv[s->mb_x][1] = uvmy;
  326. if (v->field_mode &&
  327. v->cur_field_type != v->ref_field_type[dir]) {
  328. my = my - 2 + 4 * v->cur_field_type;
  329. uvmy = uvmy - 2 + 4 * v->cur_field_type;
  330. }
  331. // fastuvmc shall be ignored for interlaced frame picture
  332. if (v->fastuvmc && (v->fcm != ILACE_FRAME)) {
  333. uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
  334. uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
  335. }
  336. if (v->field_mode) { // interlaced field picture
  337. if (!dir) {
  338. if ((v->cur_field_type != v->ref_field_type[dir]) && v->second_field) {
  339. srcY = s->current_picture.f.data[0];
  340. srcU = s->current_picture.f.data[1];
  341. srcV = s->current_picture.f.data[2];
  342. } else {
  343. srcY = s->last_picture.f.data[0];
  344. srcU = s->last_picture.f.data[1];
  345. srcV = s->last_picture.f.data[2];
  346. }
  347. } else {
  348. srcY = s->next_picture.f.data[0];
  349. srcU = s->next_picture.f.data[1];
  350. srcV = s->next_picture.f.data[2];
  351. }
  352. } else {
  353. if (!dir) {
  354. srcY = s->last_picture.f.data[0];
  355. srcU = s->last_picture.f.data[1];
  356. srcV = s->last_picture.f.data[2];
  357. } else {
  358. srcY = s->next_picture.f.data[0];
  359. srcU = s->next_picture.f.data[1];
  360. srcV = s->next_picture.f.data[2];
  361. }
  362. }
  363. src_x = s->mb_x * 16 + (mx >> 2);
  364. src_y = s->mb_y * 16 + (my >> 2);
  365. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  366. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  367. if (v->profile != PROFILE_ADVANCED) {
  368. src_x = av_clip( src_x, -16, s->mb_width * 16);
  369. src_y = av_clip( src_y, -16, s->mb_height * 16);
  370. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  371. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  372. } else {
  373. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  374. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  375. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  376. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  377. }
  378. srcY += src_y * s->linesize + src_x;
  379. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  380. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  381. if (v->field_mode && v->ref_field_type[dir]) {
  382. srcY += s->current_picture_ptr->f.linesize[0];
  383. srcU += s->current_picture_ptr->f.linesize[1];
  384. srcV += s->current_picture_ptr->f.linesize[2];
  385. }
  386. /* for grayscale we should not try to read from unknown area */
  387. if (s->flags & CODEC_FLAG_GRAY) {
  388. srcU = s->edge_emu_buffer + 18 * s->linesize;
  389. srcV = s->edge_emu_buffer + 18 * s->linesize;
  390. }
  391. if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  392. || s->h_edge_pos < 22 || v_edge_pos < 22
  393. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel * 3
  394. || (unsigned)(src_y - s->mspel) > v_edge_pos - (my&3) - 16 - s->mspel * 3) {
  395. uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
  396. srcY -= s->mspel * (1 + s->linesize);
  397. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
  398. 17 + s->mspel * 2, 17 + s->mspel * 2,
  399. src_x - s->mspel, src_y - s->mspel,
  400. s->h_edge_pos, v_edge_pos);
  401. srcY = s->edge_emu_buffer;
  402. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
  403. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  404. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
  405. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  406. srcU = uvbuf;
  407. srcV = uvbuf + 16;
  408. /* if we deal with range reduction we need to scale source blocks */
  409. if (v->rangeredfrm) {
  410. int i, j;
  411. uint8_t *src, *src2;
  412. src = srcY;
  413. for (j = 0; j < 17 + s->mspel * 2; j++) {
  414. for (i = 0; i < 17 + s->mspel * 2; i++)
  415. src[i] = ((src[i] - 128) >> 1) + 128;
  416. src += s->linesize;
  417. }
  418. src = srcU;
  419. src2 = srcV;
  420. for (j = 0; j < 9; j++) {
  421. for (i = 0; i < 9; i++) {
  422. src[i] = ((src[i] - 128) >> 1) + 128;
  423. src2[i] = ((src2[i] - 128) >> 1) + 128;
  424. }
  425. src += s->uvlinesize;
  426. src2 += s->uvlinesize;
  427. }
  428. }
  429. /* if we deal with intensity compensation we need to scale source blocks */
  430. if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  431. int i, j;
  432. uint8_t *src, *src2;
  433. src = srcY;
  434. for (j = 0; j < 17 + s->mspel * 2; j++) {
  435. for (i = 0; i < 17 + s->mspel * 2; i++)
  436. src[i] = v->luty[src[i]];
  437. src += s->linesize;
  438. }
  439. src = srcU;
  440. src2 = srcV;
  441. for (j = 0; j < 9; j++) {
  442. for (i = 0; i < 9; i++) {
  443. src[i] = v->lutuv[src[i]];
  444. src2[i] = v->lutuv[src2[i]];
  445. }
  446. src += s->uvlinesize;
  447. src2 += s->uvlinesize;
  448. }
  449. }
  450. srcY += s->mspel * (1 + s->linesize);
  451. }
  452. if (v->field_mode && v->second_field) {
  453. off = s->current_picture_ptr->f.linesize[0];
  454. off_uv = s->current_picture_ptr->f.linesize[1];
  455. } else {
  456. off = 0;
  457. off_uv = 0;
  458. }
  459. if (s->mspel) {
  460. dxy = ((my & 3) << 2) | (mx & 3);
  461. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
  462. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
  463. srcY += s->linesize * 8;
  464. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
  465. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  466. } else { // hpel mc - always used for luma
  467. dxy = (my & 2) | ((mx & 2) >> 1);
  468. if (!v->rnd)
  469. dsp->put_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
  470. else
  471. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
  472. }
  473. if (s->flags & CODEC_FLAG_GRAY) return;
  474. /* Chroma MC always uses qpel bilinear */
  475. uvmx = (uvmx & 3) << 1;
  476. uvmy = (uvmy & 3) << 1;
  477. if (!v->rnd) {
  478. dsp->put_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  479. dsp->put_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  480. } else {
  481. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  482. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  483. }
  484. }
  485. static inline int median4(int a, int b, int c, int d)
  486. {
  487. if (a < b) {
  488. if (c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  489. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  490. } else {
  491. if (c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  492. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  493. }
  494. }
  495. /** Do motion compensation for 4-MV macroblock - luminance block
  496. */
  497. static void vc1_mc_4mv_luma(VC1Context *v, int n, int dir)
  498. {
  499. MpegEncContext *s = &v->s;
  500. DSPContext *dsp = &v->s.dsp;
  501. uint8_t *srcY;
  502. int dxy, mx, my, src_x, src_y;
  503. int off;
  504. int fieldmv = (v->fcm == ILACE_FRAME) ? v->blk_mv_type[s->block_index[n]] : 0;
  505. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  506. if ((!v->field_mode ||
  507. (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
  508. !v->s.last_picture.f.data[0])
  509. return;
  510. mx = s->mv[dir][n][0];
  511. my = s->mv[dir][n][1];
  512. if (!dir) {
  513. if (v->field_mode) {
  514. if ((v->cur_field_type != v->ref_field_type[dir]) && v->second_field)
  515. srcY = s->current_picture.f.data[0];
  516. else
  517. srcY = s->last_picture.f.data[0];
  518. } else
  519. srcY = s->last_picture.f.data[0];
  520. } else
  521. srcY = s->next_picture.f.data[0];
  522. if (v->field_mode) {
  523. if (v->cur_field_type != v->ref_field_type[dir])
  524. my = my - 2 + 4 * v->cur_field_type;
  525. }
  526. if (s->pict_type == AV_PICTURE_TYPE_P && n == 3 && v->field_mode) {
  527. int same_count = 0, opp_count = 0, k;
  528. int chosen_mv[2][4][2], f;
  529. int tx, ty;
  530. for (k = 0; k < 4; k++) {
  531. f = v->mv_f[0][s->block_index[k] + v->blocks_off];
  532. chosen_mv[f][f ? opp_count : same_count][0] = s->mv[0][k][0];
  533. chosen_mv[f][f ? opp_count : same_count][1] = s->mv[0][k][1];
  534. opp_count += f;
  535. same_count += 1 - f;
  536. }
  537. f = opp_count > same_count;
  538. switch (f ? opp_count : same_count) {
  539. case 4:
  540. tx = median4(chosen_mv[f][0][0], chosen_mv[f][1][0],
  541. chosen_mv[f][2][0], chosen_mv[f][3][0]);
  542. ty = median4(chosen_mv[f][0][1], chosen_mv[f][1][1],
  543. chosen_mv[f][2][1], chosen_mv[f][3][1]);
  544. break;
  545. case 3:
  546. tx = mid_pred(chosen_mv[f][0][0], chosen_mv[f][1][0], chosen_mv[f][2][0]);
  547. ty = mid_pred(chosen_mv[f][0][1], chosen_mv[f][1][1], chosen_mv[f][2][1]);
  548. break;
  549. case 2:
  550. tx = (chosen_mv[f][0][0] + chosen_mv[f][1][0]) / 2;
  551. ty = (chosen_mv[f][0][1] + chosen_mv[f][1][1]) / 2;
  552. break;
  553. }
  554. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
  555. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
  556. for (k = 0; k < 4; k++)
  557. v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
  558. }
  559. if (v->fcm == ILACE_FRAME) { // not sure if needed for other types of picture
  560. int qx, qy;
  561. int width = s->avctx->coded_width;
  562. int height = s->avctx->coded_height >> 1;
  563. qx = (s->mb_x * 16) + (mx >> 2);
  564. qy = (s->mb_y * 8) + (my >> 3);
  565. if (qx < -17)
  566. mx -= 4 * (qx + 17);
  567. else if (qx > width)
  568. mx -= 4 * (qx - width);
  569. if (qy < -18)
  570. my -= 8 * (qy + 18);
  571. else if (qy > height + 1)
  572. my -= 8 * (qy - height - 1);
  573. }
  574. if ((v->fcm == ILACE_FRAME) && fieldmv)
  575. off = ((n > 1) ? s->linesize : 0) + (n & 1) * 8;
  576. else
  577. off = s->linesize * 4 * (n & 2) + (n & 1) * 8;
  578. if (v->field_mode && v->second_field)
  579. off += s->current_picture_ptr->f.linesize[0];
  580. src_x = s->mb_x * 16 + (n & 1) * 8 + (mx >> 2);
  581. if (!fieldmv)
  582. src_y = s->mb_y * 16 + (n & 2) * 4 + (my >> 2);
  583. else
  584. src_y = s->mb_y * 16 + ((n > 1) ? 1 : 0) + (my >> 2);
  585. if (v->profile != PROFILE_ADVANCED) {
  586. src_x = av_clip(src_x, -16, s->mb_width * 16);
  587. src_y = av_clip(src_y, -16, s->mb_height * 16);
  588. } else {
  589. src_x = av_clip(src_x, -17, s->avctx->coded_width);
  590. if (v->fcm == ILACE_FRAME) {
  591. if (src_y & 1)
  592. src_y = av_clip(src_y, -17, s->avctx->coded_height + 1);
  593. else
  594. src_y = av_clip(src_y, -18, s->avctx->coded_height);
  595. } else {
  596. src_y = av_clip(src_y, -18, s->avctx->coded_height + 1);
  597. }
  598. }
  599. srcY += src_y * s->linesize + src_x;
  600. if (v->field_mode && v->ref_field_type[dir])
  601. srcY += s->current_picture_ptr->f.linesize[0];
  602. if (fieldmv && !(src_y & 1))
  603. v_edge_pos--;
  604. if (fieldmv && (src_y & 1) && src_y < 4)
  605. src_y--;
  606. if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  607. || s->h_edge_pos < 13 || v_edge_pos < 23
  608. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 8 - s->mspel * 2
  609. || (unsigned)(src_y - (s->mspel << fieldmv)) > v_edge_pos - (my & 3) - ((8 + s->mspel * 2) << fieldmv)) {
  610. srcY -= s->mspel * (1 + (s->linesize << fieldmv));
  611. /* check emulate edge stride and offset */
  612. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
  613. 9 + s->mspel * 2, (9 + s->mspel * 2) << fieldmv,
  614. src_x - s->mspel, src_y - (s->mspel << fieldmv),
  615. s->h_edge_pos, v_edge_pos);
  616. srcY = s->edge_emu_buffer;
  617. /* if we deal with range reduction we need to scale source blocks */
  618. if (v->rangeredfrm) {
  619. int i, j;
  620. uint8_t *src;
  621. src = srcY;
  622. for (j = 0; j < 9 + s->mspel * 2; j++) {
  623. for (i = 0; i < 9 + s->mspel * 2; i++)
  624. src[i] = ((src[i] - 128) >> 1) + 128;
  625. src += s->linesize << fieldmv;
  626. }
  627. }
  628. /* if we deal with intensity compensation we need to scale source blocks */
  629. if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  630. int i, j;
  631. uint8_t *src;
  632. src = srcY;
  633. for (j = 0; j < 9 + s->mspel * 2; j++) {
  634. for (i = 0; i < 9 + s->mspel * 2; i++)
  635. src[i] = v->luty[src[i]];
  636. src += s->linesize << fieldmv;
  637. }
  638. }
  639. srcY += s->mspel * (1 + (s->linesize << fieldmv));
  640. }
  641. if (s->mspel) {
  642. dxy = ((my & 3) << 2) | (mx & 3);
  643. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
  644. } else { // hpel mc - always used for luma
  645. dxy = (my & 2) | ((mx & 2) >> 1);
  646. if (!v->rnd)
  647. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  648. else
  649. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  650. }
  651. }
  652. static av_always_inline int get_chroma_mv(int *mvx, int *mvy, int *a, int flag, int *tx, int *ty)
  653. {
  654. int idx, i;
  655. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  656. idx = ((a[3] != flag) << 3)
  657. | ((a[2] != flag) << 2)
  658. | ((a[1] != flag) << 1)
  659. | (a[0] != flag);
  660. if (!idx) {
  661. *tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  662. *ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  663. return 4;
  664. } else if (count[idx] == 1) {
  665. switch (idx) {
  666. case 0x1:
  667. *tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  668. *ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  669. return 3;
  670. case 0x2:
  671. *tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  672. *ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  673. return 3;
  674. case 0x4:
  675. *tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  676. *ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  677. return 3;
  678. case 0x8:
  679. *tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  680. *ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  681. return 3;
  682. }
  683. } else if (count[idx] == 2) {
  684. int t1 = 0, t2 = 0;
  685. for (i = 0; i < 3; i++)
  686. if (!a[i]) {
  687. t1 = i;
  688. break;
  689. }
  690. for (i = t1 + 1; i < 4; i++)
  691. if (!a[i]) {
  692. t2 = i;
  693. break;
  694. }
  695. *tx = (mvx[t1] + mvx[t2]) / 2;
  696. *ty = (mvy[t1] + mvy[t2]) / 2;
  697. return 2;
  698. } else {
  699. return 0;
  700. }
  701. return -1;
  702. }
  703. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  704. */
  705. static void vc1_mc_4mv_chroma(VC1Context *v, int dir)
  706. {
  707. MpegEncContext *s = &v->s;
  708. DSPContext *dsp = &v->s.dsp;
  709. uint8_t *srcU, *srcV;
  710. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  711. int k, tx = 0, ty = 0;
  712. int mvx[4], mvy[4], intra[4], mv_f[4];
  713. int valid_count;
  714. int chroma_ref_type = v->cur_field_type, off = 0;
  715. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  716. if (!v->field_mode && !v->s.last_picture.f.data[0])
  717. return;
  718. if (s->flags & CODEC_FLAG_GRAY)
  719. return;
  720. for (k = 0; k < 4; k++) {
  721. mvx[k] = s->mv[dir][k][0];
  722. mvy[k] = s->mv[dir][k][1];
  723. intra[k] = v->mb_type[0][s->block_index[k]];
  724. if (v->field_mode)
  725. mv_f[k] = v->mv_f[dir][s->block_index[k] + v->blocks_off];
  726. }
  727. /* calculate chroma MV vector from four luma MVs */
  728. if (!v->field_mode || (v->field_mode && !v->numref)) {
  729. valid_count = get_chroma_mv(mvx, mvy, intra, 0, &tx, &ty);
  730. if (!valid_count) {
  731. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  732. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  733. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  734. return; //no need to do MC for intra blocks
  735. }
  736. } else {
  737. int dominant = 0;
  738. if (mv_f[0] + mv_f[1] + mv_f[2] + mv_f[3] > 2)
  739. dominant = 1;
  740. valid_count = get_chroma_mv(mvx, mvy, mv_f, dominant, &tx, &ty);
  741. if (dominant)
  742. chroma_ref_type = !v->cur_field_type;
  743. }
  744. if (v->field_mode && chroma_ref_type == 1 && v->cur_field_type == 1 && !v->s.last_picture.f.data[0])
  745. return;
  746. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
  747. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
  748. uvmx = (tx + ((tx & 3) == 3)) >> 1;
  749. uvmy = (ty + ((ty & 3) == 3)) >> 1;
  750. v->luma_mv[s->mb_x][0] = uvmx;
  751. v->luma_mv[s->mb_x][1] = uvmy;
  752. if (v->fastuvmc) {
  753. uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
  754. uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
  755. }
  756. // Field conversion bias
  757. if (v->cur_field_type != chroma_ref_type)
  758. uvmy += 2 - 4 * chroma_ref_type;
  759. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  760. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  761. if (v->profile != PROFILE_ADVANCED) {
  762. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  763. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  764. } else {
  765. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  766. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  767. }
  768. if (!dir) {
  769. if (v->field_mode) {
  770. if ((v->cur_field_type != chroma_ref_type) && v->cur_field_type) {
  771. srcU = s->current_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  772. srcV = s->current_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  773. } else {
  774. srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  775. srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  776. }
  777. } else {
  778. srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  779. srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  780. }
  781. } else {
  782. srcU = s->next_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  783. srcV = s->next_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  784. }
  785. if (v->field_mode) {
  786. if (chroma_ref_type) {
  787. srcU += s->current_picture_ptr->f.linesize[1];
  788. srcV += s->current_picture_ptr->f.linesize[2];
  789. }
  790. off = v->second_field ? s->current_picture_ptr->f.linesize[1] : 0;
  791. }
  792. if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  793. || s->h_edge_pos < 18 || v_edge_pos < 18
  794. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  795. || (unsigned)uvsrc_y > (v_edge_pos >> 1) - 9) {
  796. s->dsp.emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize,
  797. 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
  798. s->h_edge_pos >> 1, v_edge_pos >> 1);
  799. s->dsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
  800. 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
  801. s->h_edge_pos >> 1, v_edge_pos >> 1);
  802. srcU = s->edge_emu_buffer;
  803. srcV = s->edge_emu_buffer + 16;
  804. /* if we deal with range reduction we need to scale source blocks */
  805. if (v->rangeredfrm) {
  806. int i, j;
  807. uint8_t *src, *src2;
  808. src = srcU;
  809. src2 = srcV;
  810. for (j = 0; j < 9; j++) {
  811. for (i = 0; i < 9; i++) {
  812. src[i] = ((src[i] - 128) >> 1) + 128;
  813. src2[i] = ((src2[i] - 128) >> 1) + 128;
  814. }
  815. src += s->uvlinesize;
  816. src2 += s->uvlinesize;
  817. }
  818. }
  819. /* if we deal with intensity compensation we need to scale source blocks */
  820. if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  821. int i, j;
  822. uint8_t *src, *src2;
  823. src = srcU;
  824. src2 = srcV;
  825. for (j = 0; j < 9; j++) {
  826. for (i = 0; i < 9; i++) {
  827. src[i] = v->lutuv[src[i]];
  828. src2[i] = v->lutuv[src2[i]];
  829. }
  830. src += s->uvlinesize;
  831. src2 += s->uvlinesize;
  832. }
  833. }
  834. }
  835. /* Chroma MC always uses qpel bilinear */
  836. uvmx = (uvmx & 3) << 1;
  837. uvmy = (uvmy & 3) << 1;
  838. if (!v->rnd) {
  839. dsp->put_h264_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
  840. dsp->put_h264_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
  841. } else {
  842. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
  843. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
  844. }
  845. }
  846. /** Do motion compensation for 4-MV field chroma macroblock (both U and V)
  847. */
  848. static void vc1_mc_4mv_chroma4(VC1Context *v)
  849. {
  850. MpegEncContext *s = &v->s;
  851. DSPContext *dsp = &v->s.dsp;
  852. uint8_t *srcU, *srcV;
  853. int uvsrc_x, uvsrc_y;
  854. int uvmx_field[4], uvmy_field[4];
  855. int i, off, tx, ty;
  856. int fieldmv = v->blk_mv_type[s->block_index[0]];
  857. static const int s_rndtblfield[16] = { 0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12 };
  858. int v_dist = fieldmv ? 1 : 4; // vertical offset for lower sub-blocks
  859. int v_edge_pos = s->v_edge_pos >> 1;
  860. if (!v->s.last_picture.f.data[0])
  861. return;
  862. if (s->flags & CODEC_FLAG_GRAY)
  863. return;
  864. for (i = 0; i < 4; i++) {
  865. tx = s->mv[0][i][0];
  866. uvmx_field[i] = (tx + ((tx & 3) == 3)) >> 1;
  867. ty = s->mv[0][i][1];
  868. if (fieldmv)
  869. uvmy_field[i] = (ty >> 4) * 8 + s_rndtblfield[ty & 0xF];
  870. else
  871. uvmy_field[i] = (ty + ((ty & 3) == 3)) >> 1;
  872. }
  873. for (i = 0; i < 4; i++) {
  874. off = (i & 1) * 4 + ((i & 2) ? v_dist * s->uvlinesize : 0);
  875. uvsrc_x = s->mb_x * 8 + (i & 1) * 4 + (uvmx_field[i] >> 2);
  876. uvsrc_y = s->mb_y * 8 + ((i & 2) ? v_dist : 0) + (uvmy_field[i] >> 2);
  877. // FIXME: implement proper pull-back (see vc1cropmv.c, vc1CROPMV_ChromaPullBack())
  878. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  879. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  880. srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  881. srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  882. uvmx_field[i] = (uvmx_field[i] & 3) << 1;
  883. uvmy_field[i] = (uvmy_field[i] & 3) << 1;
  884. if (fieldmv && !(uvsrc_y & 1))
  885. v_edge_pos--;
  886. if (fieldmv && (uvsrc_y & 1) && uvsrc_y < 2)
  887. uvsrc_y--;
  888. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP)
  889. || s->h_edge_pos < 10 || v_edge_pos < (5 << fieldmv)
  890. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 5
  891. || (unsigned)uvsrc_y > v_edge_pos - (5 << fieldmv)) {
  892. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcU, s->uvlinesize,
  893. 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
  894. s->h_edge_pos >> 1, v_edge_pos);
  895. s->dsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
  896. 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
  897. s->h_edge_pos >> 1, v_edge_pos);
  898. srcU = s->edge_emu_buffer;
  899. srcV = s->edge_emu_buffer + 16;
  900. /* if we deal with intensity compensation we need to scale source blocks */
  901. if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  902. int i, j;
  903. uint8_t *src, *src2;
  904. src = srcU;
  905. src2 = srcV;
  906. for (j = 0; j < 5; j++) {
  907. for (i = 0; i < 5; i++) {
  908. src[i] = v->lutuv[src[i]];
  909. src2[i] = v->lutuv[src2[i]];
  910. }
  911. src += s->uvlinesize << 1;
  912. src2 += s->uvlinesize << 1;
  913. }
  914. }
  915. }
  916. if (!v->rnd) {
  917. dsp->put_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  918. dsp->put_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  919. } else {
  920. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  921. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  922. }
  923. }
  924. }
  925. /***********************************************************************/
  926. /**
  927. * @name VC-1 Block-level functions
  928. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  929. * @{
  930. */
  931. /**
  932. * @def GET_MQUANT
  933. * @brief Get macroblock-level quantizer scale
  934. */
  935. #define GET_MQUANT() \
  936. if (v->dquantfrm) { \
  937. int edges = 0; \
  938. if (v->dqprofile == DQPROFILE_ALL_MBS) { \
  939. if (v->dqbilevel) { \
  940. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  941. } else { \
  942. mqdiff = get_bits(gb, 3); \
  943. if (mqdiff != 7) \
  944. mquant = v->pq + mqdiff; \
  945. else \
  946. mquant = get_bits(gb, 5); \
  947. } \
  948. } \
  949. if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  950. edges = 1 << v->dqsbedge; \
  951. else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  952. edges = (3 << v->dqsbedge) % 15; \
  953. else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
  954. edges = 15; \
  955. if ((edges&1) && !s->mb_x) \
  956. mquant = v->altpq; \
  957. if ((edges&2) && s->first_slice_line) \
  958. mquant = v->altpq; \
  959. if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
  960. mquant = v->altpq; \
  961. if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
  962. mquant = v->altpq; \
  963. if (!mquant || mquant > 31) { \
  964. av_log(v->s.avctx, AV_LOG_ERROR, "invalid mquant %d\n", mquant); \
  965. mquant = 1; \
  966. } \
  967. }
  968. /**
  969. * @def GET_MVDATA(_dmv_x, _dmv_y)
  970. * @brief Get MV differentials
  971. * @see MVDATA decoding from 8.3.5.2, p(1)20
  972. * @param _dmv_x Horizontal differential for decoded MV
  973. * @param _dmv_y Vertical differential for decoded MV
  974. */
  975. #define GET_MVDATA(_dmv_x, _dmv_y) \
  976. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
  977. VC1_MV_DIFF_VLC_BITS, 2); \
  978. if (index > 36) { \
  979. mb_has_coeffs = 1; \
  980. index -= 37; \
  981. } else \
  982. mb_has_coeffs = 0; \
  983. s->mb_intra = 0; \
  984. if (!index) { \
  985. _dmv_x = _dmv_y = 0; \
  986. } else if (index == 35) { \
  987. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  988. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  989. } else if (index == 36) { \
  990. _dmv_x = 0; \
  991. _dmv_y = 0; \
  992. s->mb_intra = 1; \
  993. } else { \
  994. index1 = index % 6; \
  995. if (!s->quarter_sample && index1 == 5) val = 1; \
  996. else val = 0; \
  997. if (size_table[index1] - val > 0) \
  998. val = get_bits(gb, size_table[index1] - val); \
  999. else val = 0; \
  1000. sign = 0 - (val&1); \
  1001. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1002. \
  1003. index1 = index / 6; \
  1004. if (!s->quarter_sample && index1 == 5) val = 1; \
  1005. else val = 0; \
  1006. if (size_table[index1] - val > 0) \
  1007. val = get_bits(gb, size_table[index1] - val); \
  1008. else val = 0; \
  1009. sign = 0 - (val & 1); \
  1010. _dmv_y = (sign ^ ((val >> 1) + offset_table[index1])) - sign; \
  1011. }
  1012. static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
  1013. int *dmv_y, int *pred_flag)
  1014. {
  1015. int index, index1;
  1016. int extend_x = 0, extend_y = 0;
  1017. GetBitContext *gb = &v->s.gb;
  1018. int bits, esc;
  1019. int val, sign;
  1020. const int* offs_tab;
  1021. if (v->numref) {
  1022. bits = VC1_2REF_MVDATA_VLC_BITS;
  1023. esc = 125;
  1024. } else {
  1025. bits = VC1_1REF_MVDATA_VLC_BITS;
  1026. esc = 71;
  1027. }
  1028. switch (v->dmvrange) {
  1029. case 1:
  1030. extend_x = 1;
  1031. break;
  1032. case 2:
  1033. extend_y = 1;
  1034. break;
  1035. case 3:
  1036. extend_x = extend_y = 1;
  1037. break;
  1038. }
  1039. index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
  1040. if (index == esc) {
  1041. *dmv_x = get_bits(gb, v->k_x);
  1042. *dmv_y = get_bits(gb, v->k_y);
  1043. if (v->numref) {
  1044. *pred_flag = *dmv_y & 1;
  1045. *dmv_y = (*dmv_y + *pred_flag) >> 1;
  1046. }
  1047. }
  1048. else {
  1049. av_assert0(index < esc);
  1050. if (extend_x)
  1051. offs_tab = offset_table2;
  1052. else
  1053. offs_tab = offset_table1;
  1054. index1 = (index + 1) % 9;
  1055. if (index1 != 0) {
  1056. val = get_bits(gb, index1 + extend_x);
  1057. sign = 0 -(val & 1);
  1058. *dmv_x = (sign ^ ((val >> 1) + offs_tab[index1])) - sign;
  1059. } else
  1060. *dmv_x = 0;
  1061. if (extend_y)
  1062. offs_tab = offset_table2;
  1063. else
  1064. offs_tab = offset_table1;
  1065. index1 = (index + 1) / 9;
  1066. if (index1 > v->numref) {
  1067. val = get_bits(gb, (index1 + (extend_y << v->numref)) >> v->numref);
  1068. sign = 0 - (val & 1);
  1069. *dmv_y = (sign ^ ((val >> 1) + offs_tab[index1 >> v->numref])) - sign;
  1070. } else
  1071. *dmv_y = 0;
  1072. if (v->numref)
  1073. *pred_flag = index1 & 1;
  1074. }
  1075. }
  1076. static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
  1077. {
  1078. int scaledvalue, refdist;
  1079. int scalesame1, scalesame2;
  1080. int scalezone1_x, zone1offset_x;
  1081. int table_index = dir ^ v->second_field;
  1082. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1083. refdist = v->refdist;
  1084. else
  1085. refdist = dir ? v->brfd : v->frfd;
  1086. if (refdist > 3)
  1087. refdist = 3;
  1088. scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
  1089. scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
  1090. scalezone1_x = ff_vc1_field_mvpred_scales[table_index][3][refdist];
  1091. zone1offset_x = ff_vc1_field_mvpred_scales[table_index][5][refdist];
  1092. if (FFABS(n) > 255)
  1093. scaledvalue = n;
  1094. else {
  1095. if (FFABS(n) < scalezone1_x)
  1096. scaledvalue = (n * scalesame1) >> 8;
  1097. else {
  1098. if (n < 0)
  1099. scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
  1100. else
  1101. scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
  1102. }
  1103. }
  1104. return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
  1105. }
  1106. static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
  1107. {
  1108. int scaledvalue, refdist;
  1109. int scalesame1, scalesame2;
  1110. int scalezone1_y, zone1offset_y;
  1111. int table_index = dir ^ v->second_field;
  1112. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1113. refdist = v->refdist;
  1114. else
  1115. refdist = dir ? v->brfd : v->frfd;
  1116. if (refdist > 3)
  1117. refdist = 3;
  1118. scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
  1119. scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
  1120. scalezone1_y = ff_vc1_field_mvpred_scales[table_index][4][refdist];
  1121. zone1offset_y = ff_vc1_field_mvpred_scales[table_index][6][refdist];
  1122. if (FFABS(n) > 63)
  1123. scaledvalue = n;
  1124. else {
  1125. if (FFABS(n) < scalezone1_y)
  1126. scaledvalue = (n * scalesame1) >> 8;
  1127. else {
  1128. if (n < 0)
  1129. scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
  1130. else
  1131. scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
  1132. }
  1133. }
  1134. if (v->cur_field_type && !v->ref_field_type[dir])
  1135. return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
  1136. else
  1137. return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
  1138. }
  1139. static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
  1140. {
  1141. int scalezone1_x, zone1offset_x;
  1142. int scaleopp1, scaleopp2, brfd;
  1143. int scaledvalue;
  1144. brfd = FFMIN(v->brfd, 3);
  1145. scalezone1_x = ff_vc1_b_field_mvpred_scales[3][brfd];
  1146. zone1offset_x = ff_vc1_b_field_mvpred_scales[5][brfd];
  1147. scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
  1148. scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
  1149. if (FFABS(n) > 255)
  1150. scaledvalue = n;
  1151. else {
  1152. if (FFABS(n) < scalezone1_x)
  1153. scaledvalue = (n * scaleopp1) >> 8;
  1154. else {
  1155. if (n < 0)
  1156. scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
  1157. else
  1158. scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
  1159. }
  1160. }
  1161. return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
  1162. }
  1163. static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
  1164. {
  1165. int scalezone1_y, zone1offset_y;
  1166. int scaleopp1, scaleopp2, brfd;
  1167. int scaledvalue;
  1168. brfd = FFMIN(v->brfd, 3);
  1169. scalezone1_y = ff_vc1_b_field_mvpred_scales[4][brfd];
  1170. zone1offset_y = ff_vc1_b_field_mvpred_scales[6][brfd];
  1171. scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
  1172. scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
  1173. if (FFABS(n) > 63)
  1174. scaledvalue = n;
  1175. else {
  1176. if (FFABS(n) < scalezone1_y)
  1177. scaledvalue = (n * scaleopp1) >> 8;
  1178. else {
  1179. if (n < 0)
  1180. scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
  1181. else
  1182. scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
  1183. }
  1184. }
  1185. if (v->cur_field_type && !v->ref_field_type[dir]) {
  1186. return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
  1187. } else {
  1188. return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
  1189. }
  1190. }
  1191. static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
  1192. int dim, int dir)
  1193. {
  1194. int brfd, scalesame;
  1195. int hpel = 1 - v->s.quarter_sample;
  1196. n >>= hpel;
  1197. if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
  1198. if (dim)
  1199. n = scaleforsame_y(v, i, n, dir) << hpel;
  1200. else
  1201. n = scaleforsame_x(v, n, dir) << hpel;
  1202. return n;
  1203. }
  1204. brfd = FFMIN(v->brfd, 3);
  1205. scalesame = ff_vc1_b_field_mvpred_scales[0][brfd];
  1206. n = (n * scalesame >> 8) << hpel;
  1207. return n;
  1208. }
  1209. static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
  1210. int dim, int dir)
  1211. {
  1212. int refdist, scaleopp;
  1213. int hpel = 1 - v->s.quarter_sample;
  1214. n >>= hpel;
  1215. if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
  1216. if (dim)
  1217. n = scaleforopp_y(v, n, dir) << hpel;
  1218. else
  1219. n = scaleforopp_x(v, n) << hpel;
  1220. return n;
  1221. }
  1222. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1223. refdist = FFMIN(v->refdist, 3);
  1224. else
  1225. refdist = dir ? v->brfd : v->frfd;
  1226. scaleopp = ff_vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
  1227. n = (n * scaleopp >> 8) << hpel;
  1228. return n;
  1229. }
  1230. /** Predict and set motion vector
  1231. */
  1232. static inline void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
  1233. int mv1, int r_x, int r_y, uint8_t* is_intra,
  1234. int pred_flag, int dir)
  1235. {
  1236. MpegEncContext *s = &v->s;
  1237. int xy, wrap, off = 0;
  1238. int16_t *A, *B, *C;
  1239. int px, py;
  1240. int sum;
  1241. int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
  1242. int opposit, a_f, b_f, c_f;
  1243. int16_t field_predA[2];
  1244. int16_t field_predB[2];
  1245. int16_t field_predC[2];
  1246. int a_valid, b_valid, c_valid;
  1247. int hybridmv_thresh, y_bias = 0;
  1248. if (v->mv_mode == MV_PMODE_MIXED_MV ||
  1249. ((v->mv_mode == MV_PMODE_INTENSITY_COMP) && (v->mv_mode2 == MV_PMODE_MIXED_MV)))
  1250. mixedmv_pic = 1;
  1251. else
  1252. mixedmv_pic = 0;
  1253. /* scale MV difference to be quad-pel */
  1254. dmv_x <<= 1 - s->quarter_sample;
  1255. dmv_y <<= 1 - s->quarter_sample;
  1256. wrap = s->b8_stride;
  1257. xy = s->block_index[n];
  1258. if (s->mb_intra) {
  1259. s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy + v->blocks_off][0] = 0;
  1260. s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy + v->blocks_off][1] = 0;
  1261. s->current_picture.f.motion_val[1][xy + v->blocks_off][0] = 0;
  1262. s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = 0;
  1263. if (mv1) { /* duplicate motion data for 1-MV block */
  1264. s->current_picture.f.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
  1265. s->current_picture.f.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
  1266. s->current_picture.f.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
  1267. s->current_picture.f.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
  1268. s->current_picture.f.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
  1269. s->current_picture.f.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
  1270. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  1271. s->current_picture.f.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
  1272. s->current_picture.f.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
  1273. s->current_picture.f.motion_val[1][xy + wrap][0] = 0;
  1274. s->current_picture.f.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
  1275. s->current_picture.f.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
  1276. s->current_picture.f.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
  1277. }
  1278. return;
  1279. }
  1280. C = s->current_picture.f.motion_val[dir][xy - 1 + v->blocks_off];
  1281. A = s->current_picture.f.motion_val[dir][xy - wrap + v->blocks_off];
  1282. if (mv1) {
  1283. if (v->field_mode && mixedmv_pic)
  1284. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1285. else
  1286. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1287. } else {
  1288. //in 4-MV mode different blocks have different B predictor position
  1289. switch (n) {
  1290. case 0:
  1291. off = (s->mb_x > 0) ? -1 : 1;
  1292. break;
  1293. case 1:
  1294. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1295. break;
  1296. case 2:
  1297. off = 1;
  1298. break;
  1299. case 3:
  1300. off = -1;
  1301. }
  1302. }
  1303. B = s->current_picture.f.motion_val[dir][xy - wrap + off + v->blocks_off];
  1304. a_valid = !s->first_slice_line || (n == 2 || n == 3);
  1305. b_valid = a_valid && (s->mb_width > 1);
  1306. c_valid = s->mb_x || (n == 1 || n == 3);
  1307. if (v->field_mode) {
  1308. a_valid = a_valid && !is_intra[xy - wrap];
  1309. b_valid = b_valid && !is_intra[xy - wrap + off];
  1310. c_valid = c_valid && !is_intra[xy - 1];
  1311. }
  1312. if (a_valid) {
  1313. a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
  1314. num_oppfield += a_f;
  1315. num_samefield += 1 - a_f;
  1316. field_predA[0] = A[0];
  1317. field_predA[1] = A[1];
  1318. } else {
  1319. field_predA[0] = field_predA[1] = 0;
  1320. a_f = 0;
  1321. }
  1322. if (b_valid) {
  1323. b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
  1324. num_oppfield += b_f;
  1325. num_samefield += 1 - b_f;
  1326. field_predB[0] = B[0];
  1327. field_predB[1] = B[1];
  1328. } else {
  1329. field_predB[0] = field_predB[1] = 0;
  1330. b_f = 0;
  1331. }
  1332. if (c_valid) {
  1333. c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
  1334. num_oppfield += c_f;
  1335. num_samefield += 1 - c_f;
  1336. field_predC[0] = C[0];
  1337. field_predC[1] = C[1];
  1338. } else {
  1339. field_predC[0] = field_predC[1] = 0;
  1340. c_f = 0;
  1341. }
  1342. if (v->field_mode) {
  1343. if (num_samefield <= num_oppfield)
  1344. opposit = 1 - pred_flag;
  1345. else
  1346. opposit = pred_flag;
  1347. } else
  1348. opposit = 0;
  1349. if (opposit) {
  1350. if (a_valid && !a_f) {
  1351. field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
  1352. field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
  1353. }
  1354. if (b_valid && !b_f) {
  1355. field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
  1356. field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
  1357. }
  1358. if (c_valid && !c_f) {
  1359. field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
  1360. field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
  1361. }
  1362. v->mv_f[dir][xy + v->blocks_off] = 1;
  1363. v->ref_field_type[dir] = !v->cur_field_type;
  1364. } else {
  1365. if (a_valid && a_f) {
  1366. field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
  1367. field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
  1368. }
  1369. if (b_valid && b_f) {
  1370. field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
  1371. field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
  1372. }
  1373. if (c_valid && c_f) {
  1374. field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
  1375. field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
  1376. }
  1377. v->mv_f[dir][xy + v->blocks_off] = 0;
  1378. v->ref_field_type[dir] = v->cur_field_type;
  1379. }
  1380. if (a_valid) {
  1381. px = field_predA[0];
  1382. py = field_predA[1];
  1383. } else if (c_valid) {
  1384. px = field_predC[0];
  1385. py = field_predC[1];
  1386. } else if (b_valid) {
  1387. px = field_predB[0];
  1388. py = field_predB[1];
  1389. } else {
  1390. px = 0;
  1391. py = 0;
  1392. }
  1393. if (num_samefield + num_oppfield > 1) {
  1394. px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
  1395. py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
  1396. }
  1397. /* Pullback MV as specified in 8.3.5.3.4 */
  1398. if (!v->field_mode) {
  1399. int qx, qy, X, Y;
  1400. qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
  1401. qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
  1402. X = (s->mb_width << 6) - 4;
  1403. Y = (s->mb_height << 6) - 4;
  1404. if (mv1) {
  1405. if (qx + px < -60) px = -60 - qx;
  1406. if (qy + py < -60) py = -60 - qy;
  1407. } else {
  1408. if (qx + px < -28) px = -28 - qx;
  1409. if (qy + py < -28) py = -28 - qy;
  1410. }
  1411. if (qx + px > X) px = X - qx;
  1412. if (qy + py > Y) py = Y - qy;
  1413. }
  1414. if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
  1415. /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
  1416. hybridmv_thresh = 32;
  1417. if (a_valid && c_valid) {
  1418. if (is_intra[xy - wrap])
  1419. sum = FFABS(px) + FFABS(py);
  1420. else
  1421. sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
  1422. if (sum > hybridmv_thresh) {
  1423. if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
  1424. px = field_predA[0];
  1425. py = field_predA[1];
  1426. } else {
  1427. px = field_predC[0];
  1428. py = field_predC[1];
  1429. }
  1430. } else {
  1431. if (is_intra[xy - 1])
  1432. sum = FFABS(px) + FFABS(py);
  1433. else
  1434. sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
  1435. if (sum > hybridmv_thresh) {
  1436. if (get_bits1(&s->gb)) {
  1437. px = field_predA[0];
  1438. py = field_predA[1];
  1439. } else {
  1440. px = field_predC[0];
  1441. py = field_predC[1];
  1442. }
  1443. }
  1444. }
  1445. }
  1446. }
  1447. if (v->field_mode && !s->quarter_sample) {
  1448. r_x <<= 1;
  1449. r_y <<= 1;
  1450. }
  1451. if (v->field_mode && v->numref)
  1452. r_y >>= 1;
  1453. if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
  1454. y_bias = 1;
  1455. /* store MV using signed modulus of MV range defined in 4.11 */
  1456. s->mv[dir][n][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1457. s->mv[dir][n][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
  1458. if (mv1) { /* duplicate motion data for 1-MV block */
  1459. s->current_picture.f.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
  1460. s->current_picture.f.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
  1461. s->current_picture.f.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
  1462. s->current_picture.f.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
  1463. s->current_picture.f.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
  1464. s->current_picture.f.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
  1465. v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
  1466. v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
  1467. }
  1468. }
  1469. /** Predict and set motion vector for interlaced frame picture MBs
  1470. */
  1471. static inline void vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
  1472. int mvn, int r_x, int r_y, uint8_t* is_intra)
  1473. {
  1474. MpegEncContext *s = &v->s;
  1475. int xy, wrap, off = 0;
  1476. int A[2], B[2], C[2];
  1477. int px, py;
  1478. int a_valid = 0, b_valid = 0, c_valid = 0;
  1479. int field_a, field_b, field_c; // 0: same, 1: opposit
  1480. int total_valid, num_samefield, num_oppfield;
  1481. int pos_c, pos_b, n_adj;
  1482. wrap = s->b8_stride;
  1483. xy = s->block_index[n];
  1484. if (s->mb_intra) {
  1485. s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy][0] = 0;
  1486. s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy][1] = 0;
  1487. s->current_picture.f.motion_val[1][xy][0] = 0;
  1488. s->current_picture.f.motion_val[1][xy][1] = 0;
  1489. if (mvn == 1) { /* duplicate motion data for 1-MV block */
  1490. s->current_picture.f.motion_val[0][xy + 1][0] = 0;
  1491. s->current_picture.f.motion_val[0][xy + 1][1] = 0;
  1492. s->current_picture.f.motion_val[0][xy + wrap][0] = 0;
  1493. s->current_picture.f.motion_val[0][xy + wrap][1] = 0;
  1494. s->current_picture.f.motion_val[0][xy + wrap + 1][0] = 0;
  1495. s->current_picture.f.motion_val[0][xy + wrap + 1][1] = 0;
  1496. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  1497. s->current_picture.f.motion_val[1][xy + 1][0] = 0;
  1498. s->current_picture.f.motion_val[1][xy + 1][1] = 0;
  1499. s->current_picture.f.motion_val[1][xy + wrap][0] = 0;
  1500. s->current_picture.f.motion_val[1][xy + wrap][1] = 0;
  1501. s->current_picture.f.motion_val[1][xy + wrap + 1][0] = 0;
  1502. s->current_picture.f.motion_val[1][xy + wrap + 1][1] = 0;
  1503. }
  1504. return;
  1505. }
  1506. off = ((n == 0) || (n == 1)) ? 1 : -1;
  1507. /* predict A */
  1508. if (s->mb_x || (n == 1) || (n == 3)) {
  1509. if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
  1510. || (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
  1511. A[0] = s->current_picture.f.motion_val[0][xy - 1][0];
  1512. A[1] = s->current_picture.f.motion_val[0][xy - 1][1];
  1513. a_valid = 1;
  1514. } else { // current block has frame mv and cand. has field MV (so average)
  1515. A[0] = (s->current_picture.f.motion_val[0][xy - 1][0]
  1516. + s->current_picture.f.motion_val[0][xy - 1 + off * wrap][0] + 1) >> 1;
  1517. A[1] = (s->current_picture.f.motion_val[0][xy - 1][1]
  1518. + s->current_picture.f.motion_val[0][xy - 1 + off * wrap][1] + 1) >> 1;
  1519. a_valid = 1;
  1520. }
  1521. if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
  1522. a_valid = 0;
  1523. A[0] = A[1] = 0;
  1524. }
  1525. } else
  1526. A[0] = A[1] = 0;
  1527. /* Predict B and C */
  1528. B[0] = B[1] = C[0] = C[1] = 0;
  1529. if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
  1530. if (!s->first_slice_line) {
  1531. if (!v->is_intra[s->mb_x - s->mb_stride]) {
  1532. b_valid = 1;
  1533. n_adj = n | 2;
  1534. pos_b = s->block_index[n_adj] - 2 * wrap;
  1535. if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
  1536. n_adj = (n & 2) | (n & 1);
  1537. }
  1538. B[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap][0];
  1539. B[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap][1];
  1540. if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
  1541. B[0] = (B[0] + s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
  1542. B[1] = (B[1] + s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
  1543. }
  1544. }
  1545. if (s->mb_width > 1) {
  1546. if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
  1547. c_valid = 1;
  1548. n_adj = 2;
  1549. pos_c = s->block_index[2] - 2 * wrap + 2;
  1550. if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
  1551. n_adj = n & 2;
  1552. }
  1553. C[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap + 2][0];
  1554. C[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap + 2][1];
  1555. if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
  1556. C[0] = (1 + C[0] + (s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
  1557. C[1] = (1 + C[1] + (s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
  1558. }
  1559. if (s->mb_x == s->mb_width - 1) {
  1560. if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
  1561. c_valid = 1;
  1562. n_adj = 3;
  1563. pos_c = s->block_index[3] - 2 * wrap - 2;
  1564. if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
  1565. n_adj = n | 1;
  1566. }
  1567. C[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap - 2][0];
  1568. C[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap - 2][1];
  1569. if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
  1570. C[0] = (1 + C[0] + s->current_picture.f.motion_val[0][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
  1571. C[1] = (1 + C[1] + s->current_picture.f.motion_val[0][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
  1572. }
  1573. } else
  1574. c_valid = 0;
  1575. }
  1576. }
  1577. }
  1578. }
  1579. } else {
  1580. pos_b = s->block_index[1];
  1581. b_valid = 1;
  1582. B[0] = s->current_picture.f.motion_val[0][pos_b][0];
  1583. B[1] = s->current_picture.f.motion_val[0][pos_b][1];
  1584. pos_c = s->block_index[0];
  1585. c_valid = 1;
  1586. C[0] = s->current_picture.f.motion_val[0][pos_c][0];
  1587. C[1] = s->current_picture.f.motion_val[0][pos_c][1];
  1588. }
  1589. total_valid = a_valid + b_valid + c_valid;
  1590. // check if predictor A is out of bounds
  1591. if (!s->mb_x && !(n == 1 || n == 3)) {
  1592. A[0] = A[1] = 0;
  1593. }
  1594. // check if predictor B is out of bounds
  1595. if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
  1596. B[0] = B[1] = C[0] = C[1] = 0;
  1597. }
  1598. if (!v->blk_mv_type[xy]) {
  1599. if (s->mb_width == 1) {
  1600. px = B[0];
  1601. py = B[1];
  1602. } else {
  1603. if (total_valid >= 2) {
  1604. px = mid_pred(A[0], B[0], C[0]);
  1605. py = mid_pred(A[1], B[1], C[1]);
  1606. } else if (total_valid) {
  1607. if (a_valid) { px = A[0]; py = A[1]; }
  1608. if (b_valid) { px = B[0]; py = B[1]; }
  1609. if (c_valid) { px = C[0]; py = C[1]; }
  1610. } else
  1611. px = py = 0;
  1612. }
  1613. } else {
  1614. if (a_valid)
  1615. field_a = (A[1] & 4) ? 1 : 0;
  1616. else
  1617. field_a = 0;
  1618. if (b_valid)
  1619. field_b = (B[1] & 4) ? 1 : 0;
  1620. else
  1621. field_b = 0;
  1622. if (c_valid)
  1623. field_c = (C[1] & 4) ? 1 : 0;
  1624. else
  1625. field_c = 0;
  1626. num_oppfield = field_a + field_b + field_c;
  1627. num_samefield = total_valid - num_oppfield;
  1628. if (total_valid == 3) {
  1629. if ((num_samefield == 3) || (num_oppfield == 3)) {
  1630. px = mid_pred(A[0], B[0], C[0]);
  1631. py = mid_pred(A[1], B[1], C[1]);
  1632. } else if (num_samefield >= num_oppfield) {
  1633. /* take one MV from same field set depending on priority
  1634. the check for B may not be necessary */
  1635. px = !field_a ? A[0] : B[0];
  1636. py = !field_a ? A[1] : B[1];
  1637. } else {
  1638. px = field_a ? A[0] : B[0];
  1639. py = field_a ? A[1] : B[1];
  1640. }
  1641. } else if (total_valid == 2) {
  1642. if (num_samefield >= num_oppfield) {
  1643. if (!field_a && a_valid) {
  1644. px = A[0];
  1645. py = A[1];
  1646. } else if (!field_b && b_valid) {
  1647. px = B[0];
  1648. py = B[1];
  1649. } else if (c_valid) {
  1650. px = C[0];
  1651. py = C[1];
  1652. } else px = py = 0;
  1653. } else {
  1654. if (field_a && a_valid) {
  1655. px = A[0];
  1656. py = A[1];
  1657. } else if (field_b && b_valid) {
  1658. px = B[0];
  1659. py = B[1];
  1660. } else if (c_valid) {
  1661. px = C[0];
  1662. py = C[1];
  1663. } else px = py = 0;
  1664. }
  1665. } else if (total_valid == 1) {
  1666. px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
  1667. py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
  1668. } else
  1669. px = py = 0;
  1670. }
  1671. /* store MV using signed modulus of MV range defined in 4.11 */
  1672. s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1673. s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1674. if (mvn == 1) { /* duplicate motion data for 1-MV block */
  1675. s->current_picture.f.motion_val[0][xy + 1 ][0] = s->current_picture.f.motion_val[0][xy][0];
  1676. s->current_picture.f.motion_val[0][xy + 1 ][1] = s->current_picture.f.motion_val[0][xy][1];
  1677. s->current_picture.f.motion_val[0][xy + wrap ][0] = s->current_picture.f.motion_val[0][xy][0];
  1678. s->current_picture.f.motion_val[0][xy + wrap ][1] = s->current_picture.f.motion_val[0][xy][1];
  1679. s->current_picture.f.motion_val[0][xy + wrap + 1][0] = s->current_picture.f.motion_val[0][xy][0];
  1680. s->current_picture.f.motion_val[0][xy + wrap + 1][1] = s->current_picture.f.motion_val[0][xy][1];
  1681. } else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
  1682. s->current_picture.f.motion_val[0][xy + 1][0] = s->current_picture.f.motion_val[0][xy][0];
  1683. s->current_picture.f.motion_val[0][xy + 1][1] = s->current_picture.f.motion_val[0][xy][1];
  1684. s->mv[0][n + 1][0] = s->mv[0][n][0];
  1685. s->mv[0][n + 1][1] = s->mv[0][n][1];
  1686. }
  1687. }
  1688. /** Motion compensation for direct or interpolated blocks in B-frames
  1689. */
  1690. static void vc1_interp_mc(VC1Context *v)
  1691. {
  1692. MpegEncContext *s = &v->s;
  1693. DSPContext *dsp = &v->s.dsp;
  1694. uint8_t *srcY, *srcU, *srcV;
  1695. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1696. int off, off_uv;
  1697. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  1698. if (!v->field_mode && !v->s.next_picture.f.data[0])
  1699. return;
  1700. mx = s->mv[1][0][0];
  1701. my = s->mv[1][0][1];
  1702. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1703. uvmy = (my + ((my & 3) == 3)) >> 1;
  1704. if (v->field_mode) {
  1705. if (v->cur_field_type != v->ref_field_type[1])
  1706. my = my - 2 + 4 * v->cur_field_type;
  1707. uvmy = uvmy - 2 + 4 * v->cur_field_type;
  1708. }
  1709. if (v->fastuvmc) {
  1710. uvmx = uvmx + ((uvmx < 0) ? -(uvmx & 1) : (uvmx & 1));
  1711. uvmy = uvmy + ((uvmy < 0) ? -(uvmy & 1) : (uvmy & 1));
  1712. }
  1713. srcY = s->next_picture.f.data[0];
  1714. srcU = s->next_picture.f.data[1];
  1715. srcV = s->next_picture.f.data[2];
  1716. src_x = s->mb_x * 16 + (mx >> 2);
  1717. src_y = s->mb_y * 16 + (my >> 2);
  1718. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1719. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1720. if (v->profile != PROFILE_ADVANCED) {
  1721. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1722. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1723. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1724. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1725. } else {
  1726. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1727. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1728. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1729. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1730. }
  1731. srcY += src_y * s->linesize + src_x;
  1732. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1733. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1734. if (v->field_mode && v->ref_field_type[1]) {
  1735. srcY += s->current_picture_ptr->f.linesize[0];
  1736. srcU += s->current_picture_ptr->f.linesize[1];
  1737. srcV += s->current_picture_ptr->f.linesize[2];
  1738. }
  1739. /* for grayscale we should not try to read from unknown area */
  1740. if (s->flags & CODEC_FLAG_GRAY) {
  1741. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1742. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1743. }
  1744. if (v->rangeredfrm || s->h_edge_pos < 22 || v_edge_pos < 22
  1745. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 16 - s->mspel * 3
  1746. || (unsigned)(src_y - s->mspel) > v_edge_pos - (my & 3) - 16 - s->mspel * 3) {
  1747. uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
  1748. srcY -= s->mspel * (1 + s->linesize);
  1749. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
  1750. 17 + s->mspel * 2, 17 + s->mspel * 2,
  1751. src_x - s->mspel, src_y - s->mspel,
  1752. s->h_edge_pos, v_edge_pos);
  1753. srcY = s->edge_emu_buffer;
  1754. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
  1755. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  1756. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
  1757. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  1758. srcU = uvbuf;
  1759. srcV = uvbuf + 16;
  1760. /* if we deal with range reduction we need to scale source blocks */
  1761. if (v->rangeredfrm) {
  1762. int i, j;
  1763. uint8_t *src, *src2;
  1764. src = srcY;
  1765. for (j = 0; j < 17 + s->mspel * 2; j++) {
  1766. for (i = 0; i < 17 + s->mspel * 2; i++)
  1767. src[i] = ((src[i] - 128) >> 1) + 128;
  1768. src += s->linesize;
  1769. }
  1770. src = srcU;
  1771. src2 = srcV;
  1772. for (j = 0; j < 9; j++) {
  1773. for (i = 0; i < 9; i++) {
  1774. src[i] = ((src[i] - 128) >> 1) + 128;
  1775. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1776. }
  1777. src += s->uvlinesize;
  1778. src2 += s->uvlinesize;
  1779. }
  1780. }
  1781. srcY += s->mspel * (1 + s->linesize);
  1782. }
  1783. if (v->field_mode && v->second_field) {
  1784. off = s->current_picture_ptr->f.linesize[0];
  1785. off_uv = s->current_picture_ptr->f.linesize[1];
  1786. } else {
  1787. off = 0;
  1788. off_uv = 0;
  1789. }
  1790. if (s->mspel) {
  1791. dxy = ((my & 3) << 2) | (mx & 3);
  1792. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
  1793. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
  1794. srcY += s->linesize * 8;
  1795. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
  1796. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  1797. } else { // hpel mc
  1798. dxy = (my & 2) | ((mx & 2) >> 1);
  1799. if (!v->rnd)
  1800. dsp->avg_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
  1801. else
  1802. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
  1803. }
  1804. if (s->flags & CODEC_FLAG_GRAY) return;
  1805. /* Chroma MC always uses qpel blilinear */
  1806. uvmx = (uvmx & 3) << 1;
  1807. uvmy = (uvmy & 3) << 1;
  1808. if (!v->rnd) {
  1809. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  1810. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  1811. } else {
  1812. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  1813. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  1814. }
  1815. }
  1816. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1817. {
  1818. int n = bfrac;
  1819. #if B_FRACTION_DEN==256
  1820. if (inv)
  1821. n -= 256;
  1822. if (!qs)
  1823. return 2 * ((value * n + 255) >> 9);
  1824. return (value * n + 128) >> 8;
  1825. #else
  1826. if (inv)
  1827. n -= B_FRACTION_DEN;
  1828. if (!qs)
  1829. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1830. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1831. #endif
  1832. }
  1833. static av_always_inline int scale_mv_intfi(int value, int bfrac, int inv,
  1834. int qs, int qs_last)
  1835. {
  1836. int n = bfrac;
  1837. if (inv)
  1838. n -= 256;
  1839. n <<= !qs_last;
  1840. if (!qs)
  1841. return (value * n + 255) >> 9;
  1842. else
  1843. return (value * n + 128) >> 8;
  1844. }
  1845. /** Reconstruct motion vector for B-frame and do motion compensation
  1846. */
  1847. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
  1848. int direct, int mode)
  1849. {
  1850. if (v->use_ic) {
  1851. v->mv_mode2 = v->mv_mode;
  1852. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1853. }
  1854. if (direct) {
  1855. vc1_mc_1mv(v, 0);
  1856. vc1_interp_mc(v);
  1857. if (v->use_ic)
  1858. v->mv_mode = v->mv_mode2;
  1859. return;
  1860. }
  1861. if (mode == BMV_TYPE_INTERPOLATED) {
  1862. vc1_mc_1mv(v, 0);
  1863. vc1_interp_mc(v);
  1864. if (v->use_ic)
  1865. v->mv_mode = v->mv_mode2;
  1866. return;
  1867. }
  1868. if (v->use_ic && (mode == BMV_TYPE_BACKWARD))
  1869. v->mv_mode = v->mv_mode2;
  1870. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1871. if (v->use_ic)
  1872. v->mv_mode = v->mv_mode2;
  1873. }
  1874. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
  1875. int direct, int mvtype)
  1876. {
  1877. MpegEncContext *s = &v->s;
  1878. int xy, wrap, off = 0;
  1879. int16_t *A, *B, *C;
  1880. int px, py;
  1881. int sum;
  1882. int r_x, r_y;
  1883. const uint8_t *is_intra = v->mb_type[0];
  1884. r_x = v->range_x;
  1885. r_y = v->range_y;
  1886. /* scale MV difference to be quad-pel */
  1887. dmv_x[0] <<= 1 - s->quarter_sample;
  1888. dmv_y[0] <<= 1 - s->quarter_sample;
  1889. dmv_x[1] <<= 1 - s->quarter_sample;
  1890. dmv_y[1] <<= 1 - s->quarter_sample;
  1891. wrap = s->b8_stride;
  1892. xy = s->block_index[0];
  1893. if (s->mb_intra) {
  1894. s->current_picture.f.motion_val[0][xy + v->blocks_off][0] =
  1895. s->current_picture.f.motion_val[0][xy + v->blocks_off][1] =
  1896. s->current_picture.f.motion_val[1][xy + v->blocks_off][0] =
  1897. s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = 0;
  1898. return;
  1899. }
  1900. if (!v->field_mode) {
  1901. s->mv[0][0][0] = scale_mv(s->next_picture.f.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1902. s->mv[0][0][1] = scale_mv(s->next_picture.f.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1903. s->mv[1][0][0] = scale_mv(s->next_picture.f.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1904. s->mv[1][0][1] = scale_mv(s->next_picture.f.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1905. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1906. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1907. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1908. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1909. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1910. }
  1911. if (direct) {
  1912. s->current_picture.f.motion_val[0][xy + v->blocks_off][0] = s->mv[0][0][0];
  1913. s->current_picture.f.motion_val[0][xy + v->blocks_off][1] = s->mv[0][0][1];
  1914. s->current_picture.f.motion_val[1][xy + v->blocks_off][0] = s->mv[1][0][0];
  1915. s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = s->mv[1][0][1];
  1916. return;
  1917. }
  1918. if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1919. C = s->current_picture.f.motion_val[0][xy - 2];
  1920. A = s->current_picture.f.motion_val[0][xy - wrap * 2];
  1921. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1922. B = s->current_picture.f.motion_val[0][xy - wrap * 2 + off];
  1923. if (!s->mb_x) C[0] = C[1] = 0;
  1924. if (!s->first_slice_line) { // predictor A is not out of bounds
  1925. if (s->mb_width == 1) {
  1926. px = A[0];
  1927. py = A[1];
  1928. } else {
  1929. px = mid_pred(A[0], B[0], C[0]);
  1930. py = mid_pred(A[1], B[1], C[1]);
  1931. }
  1932. } else if (s->mb_x) { // predictor C is not out of bounds
  1933. px = C[0];
  1934. py = C[1];
  1935. } else {
  1936. px = py = 0;
  1937. }
  1938. /* Pullback MV as specified in 8.3.5.3.4 */
  1939. {
  1940. int qx, qy, X, Y;
  1941. if (v->profile < PROFILE_ADVANCED) {
  1942. qx = (s->mb_x << 5);
  1943. qy = (s->mb_y << 5);
  1944. X = (s->mb_width << 5) - 4;
  1945. Y = (s->mb_height << 5) - 4;
  1946. if (qx + px < -28) px = -28 - qx;
  1947. if (qy + py < -28) py = -28 - qy;
  1948. if (qx + px > X) px = X - qx;
  1949. if (qy + py > Y) py = Y - qy;
  1950. } else {
  1951. qx = (s->mb_x << 6);
  1952. qy = (s->mb_y << 6);
  1953. X = (s->mb_width << 6) - 4;
  1954. Y = (s->mb_height << 6) - 4;
  1955. if (qx + px < -60) px = -60 - qx;
  1956. if (qy + py < -60) py = -60 - qy;
  1957. if (qx + px > X) px = X - qx;
  1958. if (qy + py > Y) py = Y - qy;
  1959. }
  1960. }
  1961. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1962. if (0 && !s->first_slice_line && s->mb_x) {
  1963. if (is_intra[xy - wrap])
  1964. sum = FFABS(px) + FFABS(py);
  1965. else
  1966. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1967. if (sum > 32) {
  1968. if (get_bits1(&s->gb)) {
  1969. px = A[0];
  1970. py = A[1];
  1971. } else {
  1972. px = C[0];
  1973. py = C[1];
  1974. }
  1975. } else {
  1976. if (is_intra[xy - 2])
  1977. sum = FFABS(px) + FFABS(py);
  1978. else
  1979. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1980. if (sum > 32) {
  1981. if (get_bits1(&s->gb)) {
  1982. px = A[0];
  1983. py = A[1];
  1984. } else {
  1985. px = C[0];
  1986. py = C[1];
  1987. }
  1988. }
  1989. }
  1990. }
  1991. /* store MV using signed modulus of MV range defined in 4.11 */
  1992. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1993. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1994. }
  1995. if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1996. C = s->current_picture.f.motion_val[1][xy - 2];
  1997. A = s->current_picture.f.motion_val[1][xy - wrap * 2];
  1998. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1999. B = s->current_picture.f.motion_val[1][xy - wrap * 2 + off];
  2000. if (!s->mb_x)
  2001. C[0] = C[1] = 0;
  2002. if (!s->first_slice_line) { // predictor A is not out of bounds
  2003. if (s->mb_width == 1) {
  2004. px = A[0];
  2005. py = A[1];
  2006. } else {
  2007. px = mid_pred(A[0], B[0], C[0]);
  2008. py = mid_pred(A[1], B[1], C[1]);
  2009. }
  2010. } else if (s->mb_x) { // predictor C is not out of bounds
  2011. px = C[0];
  2012. py = C[1];
  2013. } else {
  2014. px = py = 0;
  2015. }
  2016. /* Pullback MV as specified in 8.3.5.3.4 */
  2017. {
  2018. int qx, qy, X, Y;
  2019. if (v->profile < PROFILE_ADVANCED) {
  2020. qx = (s->mb_x << 5);
  2021. qy = (s->mb_y << 5);
  2022. X = (s->mb_width << 5) - 4;
  2023. Y = (s->mb_height << 5) - 4;
  2024. if (qx + px < -28) px = -28 - qx;
  2025. if (qy + py < -28) py = -28 - qy;
  2026. if (qx + px > X) px = X - qx;
  2027. if (qy + py > Y) py = Y - qy;
  2028. } else {
  2029. qx = (s->mb_x << 6);
  2030. qy = (s->mb_y << 6);
  2031. X = (s->mb_width << 6) - 4;
  2032. Y = (s->mb_height << 6) - 4;
  2033. if (qx + px < -60) px = -60 - qx;
  2034. if (qy + py < -60) py = -60 - qy;
  2035. if (qx + px > X) px = X - qx;
  2036. if (qy + py > Y) py = Y - qy;
  2037. }
  2038. }
  2039. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2040. if (0 && !s->first_slice_line && s->mb_x) {
  2041. if (is_intra[xy - wrap])
  2042. sum = FFABS(px) + FFABS(py);
  2043. else
  2044. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2045. if (sum > 32) {
  2046. if (get_bits1(&s->gb)) {
  2047. px = A[0];
  2048. py = A[1];
  2049. } else {
  2050. px = C[0];
  2051. py = C[1];
  2052. }
  2053. } else {
  2054. if (is_intra[xy - 2])
  2055. sum = FFABS(px) + FFABS(py);
  2056. else
  2057. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2058. if (sum > 32) {
  2059. if (get_bits1(&s->gb)) {
  2060. px = A[0];
  2061. py = A[1];
  2062. } else {
  2063. px = C[0];
  2064. py = C[1];
  2065. }
  2066. }
  2067. }
  2068. }
  2069. /* store MV using signed modulus of MV range defined in 4.11 */
  2070. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2071. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2072. }
  2073. s->current_picture.f.motion_val[0][xy][0] = s->mv[0][0][0];
  2074. s->current_picture.f.motion_val[0][xy][1] = s->mv[0][0][1];
  2075. s->current_picture.f.motion_val[1][xy][0] = s->mv[1][0][0];
  2076. s->current_picture.f.motion_val[1][xy][1] = s->mv[1][0][1];
  2077. }
  2078. static inline void vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
  2079. {
  2080. int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
  2081. MpegEncContext *s = &v->s;
  2082. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2083. if (v->bmvtype == BMV_TYPE_DIRECT) {
  2084. int total_opp, k, f;
  2085. if (s->next_picture.f.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
  2086. s->mv[0][0][0] = scale_mv_intfi(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0],
  2087. v->bfraction, 0, s->quarter_sample, v->qs_last);
  2088. s->mv[0][0][1] = scale_mv_intfi(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1],
  2089. v->bfraction, 0, s->quarter_sample, v->qs_last);
  2090. s->mv[1][0][0] = scale_mv_intfi(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0],
  2091. v->bfraction, 1, s->quarter_sample, v->qs_last);
  2092. s->mv[1][0][1] = scale_mv_intfi(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1],
  2093. v->bfraction, 1, s->quarter_sample, v->qs_last);
  2094. total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
  2095. + v->mv_f_next[0][s->block_index[1] + v->blocks_off]
  2096. + v->mv_f_next[0][s->block_index[2] + v->blocks_off]
  2097. + v->mv_f_next[0][s->block_index[3] + v->blocks_off];
  2098. f = (total_opp > 2) ? 1 : 0;
  2099. } else {
  2100. s->mv[0][0][0] = s->mv[0][0][1] = 0;
  2101. s->mv[1][0][0] = s->mv[1][0][1] = 0;
  2102. f = 0;
  2103. }
  2104. v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
  2105. for (k = 0; k < 4; k++) {
  2106. s->current_picture.f.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
  2107. s->current_picture.f.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
  2108. s->current_picture.f.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
  2109. s->current_picture.f.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
  2110. v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
  2111. v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
  2112. }
  2113. return;
  2114. }
  2115. if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
  2116. vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
  2117. vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
  2118. return;
  2119. }
  2120. if (dir) { // backward
  2121. vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
  2122. if (n == 3 || mv1) {
  2123. vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  2124. }
  2125. } else { // forward
  2126. vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
  2127. if (n == 3 || mv1) {
  2128. vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
  2129. }
  2130. }
  2131. }
  2132. /** Get predicted DC value for I-frames only
  2133. * prediction dir: left=0, top=1
  2134. * @param s MpegEncContext
  2135. * @param overlap flag indicating that overlap filtering is used
  2136. * @param pq integer part of picture quantizer
  2137. * @param[in] n block index in the current MB
  2138. * @param dc_val_ptr Pointer to DC predictor
  2139. * @param dir_ptr Prediction direction for use in AC prediction
  2140. */
  2141. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2142. int16_t **dc_val_ptr, int *dir_ptr)
  2143. {
  2144. int a, b, c, wrap, pred, scale;
  2145. int16_t *dc_val;
  2146. static const uint16_t dcpred[32] = {
  2147. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2148. 114, 102, 93, 85, 79, 73, 68, 64,
  2149. 60, 57, 54, 51, 49, 47, 45, 43,
  2150. 41, 39, 38, 37, 35, 34, 33
  2151. };
  2152. /* find prediction - wmv3_dc_scale always used here in fact */
  2153. if (n < 4) scale = s->y_dc_scale;
  2154. else scale = s->c_dc_scale;
  2155. wrap = s->block_wrap[n];
  2156. dc_val = s->dc_val[0] + s->block_index[n];
  2157. /* B A
  2158. * C X
  2159. */
  2160. c = dc_val[ - 1];
  2161. b = dc_val[ - 1 - wrap];
  2162. a = dc_val[ - wrap];
  2163. if (pq < 9 || !overlap) {
  2164. /* Set outer values */
  2165. if (s->first_slice_line && (n != 2 && n != 3))
  2166. b = a = dcpred[scale];
  2167. if (s->mb_x == 0 && (n != 1 && n != 3))
  2168. b = c = dcpred[scale];
  2169. } else {
  2170. /* Set outer values */
  2171. if (s->first_slice_line && (n != 2 && n != 3))
  2172. b = a = 0;
  2173. if (s->mb_x == 0 && (n != 1 && n != 3))
  2174. b = c = 0;
  2175. }
  2176. if (abs(a - b) <= abs(b - c)) {
  2177. pred = c;
  2178. *dir_ptr = 1; // left
  2179. } else {
  2180. pred = a;
  2181. *dir_ptr = 0; // top
  2182. }
  2183. /* update predictor */
  2184. *dc_val_ptr = &dc_val[0];
  2185. return pred;
  2186. }
  2187. /** Get predicted DC value
  2188. * prediction dir: left=0, top=1
  2189. * @param s MpegEncContext
  2190. * @param overlap flag indicating that overlap filtering is used
  2191. * @param pq integer part of picture quantizer
  2192. * @param[in] n block index in the current MB
  2193. * @param a_avail flag indicating top block availability
  2194. * @param c_avail flag indicating left block availability
  2195. * @param dc_val_ptr Pointer to DC predictor
  2196. * @param dir_ptr Prediction direction for use in AC prediction
  2197. */
  2198. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2199. int a_avail, int c_avail,
  2200. int16_t **dc_val_ptr, int *dir_ptr)
  2201. {
  2202. int a, b, c, wrap, pred;
  2203. int16_t *dc_val;
  2204. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2205. int q1, q2 = 0;
  2206. int dqscale_index;
  2207. wrap = s->block_wrap[n];
  2208. dc_val = s->dc_val[0] + s->block_index[n];
  2209. /* B A
  2210. * C X
  2211. */
  2212. c = dc_val[ - 1];
  2213. b = dc_val[ - 1 - wrap];
  2214. a = dc_val[ - wrap];
  2215. /* scale predictors if needed */
  2216. q1 = s->current_picture.f.qscale_table[mb_pos];
  2217. dqscale_index = s->y_dc_scale_table[q1] - 1;
  2218. if (dqscale_index < 0)
  2219. return 0;
  2220. if (c_avail && (n != 1 && n != 3)) {
  2221. q2 = s->current_picture.f.qscale_table[mb_pos - 1];
  2222. if (q2 && q2 != q1)
  2223. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  2224. }
  2225. if (a_avail && (n != 2 && n != 3)) {
  2226. q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
  2227. if (q2 && q2 != q1)
  2228. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  2229. }
  2230. if (a_avail && c_avail && (n != 3)) {
  2231. int off = mb_pos;
  2232. if (n != 1)
  2233. off--;
  2234. if (n != 2)
  2235. off -= s->mb_stride;
  2236. q2 = s->current_picture.f.qscale_table[off];
  2237. if (q2 && q2 != q1)
  2238. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  2239. }
  2240. if (a_avail && c_avail) {
  2241. if (abs(a - b) <= abs(b - c)) {
  2242. pred = c;
  2243. *dir_ptr = 1; // left
  2244. } else {
  2245. pred = a;
  2246. *dir_ptr = 0; // top
  2247. }
  2248. } else if (a_avail) {
  2249. pred = a;
  2250. *dir_ptr = 0; // top
  2251. } else if (c_avail) {
  2252. pred = c;
  2253. *dir_ptr = 1; // left
  2254. } else {
  2255. pred = 0;
  2256. *dir_ptr = 1; // left
  2257. }
  2258. /* update predictor */
  2259. *dc_val_ptr = &dc_val[0];
  2260. return pred;
  2261. }
  2262. /** @} */ // Block group
  2263. /**
  2264. * @name VC1 Macroblock-level functions in Simple/Main Profiles
  2265. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2266. * @{
  2267. */
  2268. static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
  2269. uint8_t **coded_block_ptr)
  2270. {
  2271. int xy, wrap, pred, a, b, c;
  2272. xy = s->block_index[n];
  2273. wrap = s->b8_stride;
  2274. /* B C
  2275. * A X
  2276. */
  2277. a = s->coded_block[xy - 1 ];
  2278. b = s->coded_block[xy - 1 - wrap];
  2279. c = s->coded_block[xy - wrap];
  2280. if (b == c) {
  2281. pred = a;
  2282. } else {
  2283. pred = c;
  2284. }
  2285. /* store value */
  2286. *coded_block_ptr = &s->coded_block[xy];
  2287. return pred;
  2288. }
  2289. /**
  2290. * Decode one AC coefficient
  2291. * @param v The VC1 context
  2292. * @param last Last coefficient
  2293. * @param skip How much zero coefficients to skip
  2294. * @param value Decoded AC coefficient value
  2295. * @param codingset set of VLC to decode data
  2296. * @see 8.1.3.4
  2297. */
  2298. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
  2299. int *value, int codingset)
  2300. {
  2301. GetBitContext *gb = &v->s.gb;
  2302. int index, escape, run = 0, level = 0, lst = 0;
  2303. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2304. if (index != ff_vc1_ac_sizes[codingset] - 1) {
  2305. run = vc1_index_decode_table[codingset][index][0];
  2306. level = vc1_index_decode_table[codingset][index][1];
  2307. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  2308. if (get_bits1(gb))
  2309. level = -level;
  2310. } else {
  2311. escape = decode210(gb);
  2312. if (escape != 2) {
  2313. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2314. run = vc1_index_decode_table[codingset][index][0];
  2315. level = vc1_index_decode_table[codingset][index][1];
  2316. lst = index >= vc1_last_decode_table[codingset];
  2317. if (escape == 0) {
  2318. if (lst)
  2319. level += vc1_last_delta_level_table[codingset][run];
  2320. else
  2321. level += vc1_delta_level_table[codingset][run];
  2322. } else {
  2323. if (lst)
  2324. run += vc1_last_delta_run_table[codingset][level] + 1;
  2325. else
  2326. run += vc1_delta_run_table[codingset][level] + 1;
  2327. }
  2328. if (get_bits1(gb))
  2329. level = -level;
  2330. } else {
  2331. int sign;
  2332. lst = get_bits1(gb);
  2333. if (v->s.esc3_level_length == 0) {
  2334. if (v->pq < 8 || v->dquantfrm) { // table 59
  2335. v->s.esc3_level_length = get_bits(gb, 3);
  2336. if (!v->s.esc3_level_length)
  2337. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2338. } else { // table 60
  2339. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2340. }
  2341. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2342. }
  2343. run = get_bits(gb, v->s.esc3_run_length);
  2344. sign = get_bits1(gb);
  2345. level = get_bits(gb, v->s.esc3_level_length);
  2346. if (sign)
  2347. level = -level;
  2348. }
  2349. }
  2350. *last = lst;
  2351. *skip = run;
  2352. *value = level;
  2353. }
  2354. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2355. * @param v VC1Context
  2356. * @param block block to decode
  2357. * @param[in] n subblock index
  2358. * @param coded are AC coeffs present or not
  2359. * @param codingset set of VLC to decode data
  2360. */
  2361. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n,
  2362. int coded, int codingset)
  2363. {
  2364. GetBitContext *gb = &v->s.gb;
  2365. MpegEncContext *s = &v->s;
  2366. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2367. int i;
  2368. int16_t *dc_val;
  2369. int16_t *ac_val, *ac_val2;
  2370. int dcdiff;
  2371. /* Get DC differential */
  2372. if (n < 4) {
  2373. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2374. } else {
  2375. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2376. }
  2377. if (dcdiff < 0) {
  2378. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2379. return -1;
  2380. }
  2381. if (dcdiff) {
  2382. if (dcdiff == 119 /* ESC index value */) {
  2383. /* TODO: Optimize */
  2384. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2385. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2386. else dcdiff = get_bits(gb, 8);
  2387. } else {
  2388. if (v->pq == 1)
  2389. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2390. else if (v->pq == 2)
  2391. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2392. }
  2393. if (get_bits1(gb))
  2394. dcdiff = -dcdiff;
  2395. }
  2396. /* Prediction */
  2397. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2398. *dc_val = dcdiff;
  2399. /* Store the quantized DC coeff, used for prediction */
  2400. if (n < 4) {
  2401. block[0] = dcdiff * s->y_dc_scale;
  2402. } else {
  2403. block[0] = dcdiff * s->c_dc_scale;
  2404. }
  2405. /* Skip ? */
  2406. if (!coded) {
  2407. goto not_coded;
  2408. }
  2409. // AC Decoding
  2410. i = 1;
  2411. {
  2412. int last = 0, skip, value;
  2413. const uint8_t *zz_table;
  2414. int scale;
  2415. int k;
  2416. scale = v->pq * 2 + v->halfpq;
  2417. if (v->s.ac_pred) {
  2418. if (!dc_pred_dir)
  2419. zz_table = v->zz_8x8[2];
  2420. else
  2421. zz_table = v->zz_8x8[3];
  2422. } else
  2423. zz_table = v->zz_8x8[1];
  2424. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2425. ac_val2 = ac_val;
  2426. if (dc_pred_dir) // left
  2427. ac_val -= 16;
  2428. else // top
  2429. ac_val -= 16 * s->block_wrap[n];
  2430. while (!last) {
  2431. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2432. i += skip;
  2433. if (i > 63)
  2434. break;
  2435. block[zz_table[i++]] = value;
  2436. }
  2437. /* apply AC prediction if needed */
  2438. if (s->ac_pred) {
  2439. if (dc_pred_dir) { // left
  2440. for (k = 1; k < 8; k++)
  2441. block[k << v->left_blk_sh] += ac_val[k];
  2442. } else { // top
  2443. for (k = 1; k < 8; k++)
  2444. block[k << v->top_blk_sh] += ac_val[k + 8];
  2445. }
  2446. }
  2447. /* save AC coeffs for further prediction */
  2448. for (k = 1; k < 8; k++) {
  2449. ac_val2[k] = block[k << v->left_blk_sh];
  2450. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2451. }
  2452. /* scale AC coeffs */
  2453. for (k = 1; k < 64; k++)
  2454. if (block[k]) {
  2455. block[k] *= scale;
  2456. if (!v->pquantizer)
  2457. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2458. }
  2459. if (s->ac_pred) i = 63;
  2460. }
  2461. not_coded:
  2462. if (!coded) {
  2463. int k, scale;
  2464. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2465. ac_val2 = ac_val;
  2466. i = 0;
  2467. scale = v->pq * 2 + v->halfpq;
  2468. memset(ac_val2, 0, 16 * 2);
  2469. if (dc_pred_dir) { // left
  2470. ac_val -= 16;
  2471. if (s->ac_pred)
  2472. memcpy(ac_val2, ac_val, 8 * 2);
  2473. } else { // top
  2474. ac_val -= 16 * s->block_wrap[n];
  2475. if (s->ac_pred)
  2476. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2477. }
  2478. /* apply AC prediction if needed */
  2479. if (s->ac_pred) {
  2480. if (dc_pred_dir) { //left
  2481. for (k = 1; k < 8; k++) {
  2482. block[k << v->left_blk_sh] = ac_val[k] * scale;
  2483. if (!v->pquantizer && block[k << v->left_blk_sh])
  2484. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -v->pq : v->pq;
  2485. }
  2486. } else { // top
  2487. for (k = 1; k < 8; k++) {
  2488. block[k << v->top_blk_sh] = ac_val[k + 8] * scale;
  2489. if (!v->pquantizer && block[k << v->top_blk_sh])
  2490. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -v->pq : v->pq;
  2491. }
  2492. }
  2493. i = 63;
  2494. }
  2495. }
  2496. s->block_last_index[n] = i;
  2497. return 0;
  2498. }
  2499. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2500. * @param v VC1Context
  2501. * @param block block to decode
  2502. * @param[in] n subblock number
  2503. * @param coded are AC coeffs present or not
  2504. * @param codingset set of VLC to decode data
  2505. * @param mquant quantizer value for this macroblock
  2506. */
  2507. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n,
  2508. int coded, int codingset, int mquant)
  2509. {
  2510. GetBitContext *gb = &v->s.gb;
  2511. MpegEncContext *s = &v->s;
  2512. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2513. int i;
  2514. int16_t *dc_val;
  2515. int16_t *ac_val, *ac_val2;
  2516. int dcdiff;
  2517. int a_avail = v->a_avail, c_avail = v->c_avail;
  2518. int use_pred = s->ac_pred;
  2519. int scale;
  2520. int q1, q2 = 0;
  2521. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2522. /* Get DC differential */
  2523. if (n < 4) {
  2524. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2525. } else {
  2526. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2527. }
  2528. if (dcdiff < 0) {
  2529. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2530. return -1;
  2531. }
  2532. if (dcdiff) {
  2533. if (dcdiff == 119 /* ESC index value */) {
  2534. /* TODO: Optimize */
  2535. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2536. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2537. else dcdiff = get_bits(gb, 8);
  2538. } else {
  2539. if (mquant == 1)
  2540. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2541. else if (mquant == 2)
  2542. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2543. }
  2544. if (get_bits1(gb))
  2545. dcdiff = -dcdiff;
  2546. }
  2547. /* Prediction */
  2548. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2549. *dc_val = dcdiff;
  2550. /* Store the quantized DC coeff, used for prediction */
  2551. if (n < 4) {
  2552. block[0] = dcdiff * s->y_dc_scale;
  2553. } else {
  2554. block[0] = dcdiff * s->c_dc_scale;
  2555. }
  2556. //AC Decoding
  2557. i = 1;
  2558. /* check if AC is needed at all */
  2559. if (!a_avail && !c_avail)
  2560. use_pred = 0;
  2561. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2562. ac_val2 = ac_val;
  2563. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2564. if (dc_pred_dir) // left
  2565. ac_val -= 16;
  2566. else // top
  2567. ac_val -= 16 * s->block_wrap[n];
  2568. q1 = s->current_picture.f.qscale_table[mb_pos];
  2569. if ( dc_pred_dir && c_avail && mb_pos)
  2570. q2 = s->current_picture.f.qscale_table[mb_pos - 1];
  2571. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  2572. q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
  2573. if ( dc_pred_dir && n == 1)
  2574. q2 = q1;
  2575. if (!dc_pred_dir && n == 2)
  2576. q2 = q1;
  2577. if (n == 3)
  2578. q2 = q1;
  2579. if (coded) {
  2580. int last = 0, skip, value;
  2581. const uint8_t *zz_table;
  2582. int k;
  2583. if (v->s.ac_pred) {
  2584. if (!use_pred && v->fcm == ILACE_FRAME) {
  2585. zz_table = v->zzi_8x8;
  2586. } else {
  2587. if (!dc_pred_dir) // top
  2588. zz_table = v->zz_8x8[2];
  2589. else // left
  2590. zz_table = v->zz_8x8[3];
  2591. }
  2592. } else {
  2593. if (v->fcm != ILACE_FRAME)
  2594. zz_table = v->zz_8x8[1];
  2595. else
  2596. zz_table = v->zzi_8x8;
  2597. }
  2598. while (!last) {
  2599. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2600. i += skip;
  2601. if (i > 63)
  2602. break;
  2603. block[zz_table[i++]] = value;
  2604. }
  2605. /* apply AC prediction if needed */
  2606. if (use_pred) {
  2607. /* scale predictors if needed*/
  2608. if (q2 && q1 != q2) {
  2609. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2610. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2611. if (q1 < 1)
  2612. return AVERROR_INVALIDDATA;
  2613. if (dc_pred_dir) { // left
  2614. for (k = 1; k < 8; k++)
  2615. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2616. } else { // top
  2617. for (k = 1; k < 8; k++)
  2618. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2619. }
  2620. } else {
  2621. if (dc_pred_dir) { //left
  2622. for (k = 1; k < 8; k++)
  2623. block[k << v->left_blk_sh] += ac_val[k];
  2624. } else { //top
  2625. for (k = 1; k < 8; k++)
  2626. block[k << v->top_blk_sh] += ac_val[k + 8];
  2627. }
  2628. }
  2629. }
  2630. /* save AC coeffs for further prediction */
  2631. for (k = 1; k < 8; k++) {
  2632. ac_val2[k ] = block[k << v->left_blk_sh];
  2633. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2634. }
  2635. /* scale AC coeffs */
  2636. for (k = 1; k < 64; k++)
  2637. if (block[k]) {
  2638. block[k] *= scale;
  2639. if (!v->pquantizer)
  2640. block[k] += (block[k] < 0) ? -mquant : mquant;
  2641. }
  2642. if (use_pred) i = 63;
  2643. } else { // no AC coeffs
  2644. int k;
  2645. memset(ac_val2, 0, 16 * 2);
  2646. if (dc_pred_dir) { // left
  2647. if (use_pred) {
  2648. memcpy(ac_val2, ac_val, 8 * 2);
  2649. if (q2 && q1 != q2) {
  2650. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2651. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2652. if (q1 < 1)
  2653. return AVERROR_INVALIDDATA;
  2654. for (k = 1; k < 8; k++)
  2655. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2656. }
  2657. }
  2658. } else { // top
  2659. if (use_pred) {
  2660. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2661. if (q2 && q1 != q2) {
  2662. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2663. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2664. if (q1 < 1)
  2665. return AVERROR_INVALIDDATA;
  2666. for (k = 1; k < 8; k++)
  2667. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2668. }
  2669. }
  2670. }
  2671. /* apply AC prediction if needed */
  2672. if (use_pred) {
  2673. if (dc_pred_dir) { // left
  2674. for (k = 1; k < 8; k++) {
  2675. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  2676. if (!v->pquantizer && block[k << v->left_blk_sh])
  2677. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  2678. }
  2679. } else { // top
  2680. for (k = 1; k < 8; k++) {
  2681. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  2682. if (!v->pquantizer && block[k << v->top_blk_sh])
  2683. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  2684. }
  2685. }
  2686. i = 63;
  2687. }
  2688. }
  2689. s->block_last_index[n] = i;
  2690. return 0;
  2691. }
  2692. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2693. * @param v VC1Context
  2694. * @param block block to decode
  2695. * @param[in] n subblock index
  2696. * @param coded are AC coeffs present or not
  2697. * @param mquant block quantizer
  2698. * @param codingset set of VLC to decode data
  2699. */
  2700. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n,
  2701. int coded, int mquant, int codingset)
  2702. {
  2703. GetBitContext *gb = &v->s.gb;
  2704. MpegEncContext *s = &v->s;
  2705. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2706. int i;
  2707. int16_t *dc_val;
  2708. int16_t *ac_val, *ac_val2;
  2709. int dcdiff;
  2710. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2711. int a_avail = v->a_avail, c_avail = v->c_avail;
  2712. int use_pred = s->ac_pred;
  2713. int scale;
  2714. int q1, q2 = 0;
  2715. s->dsp.clear_block(block);
  2716. /* XXX: Guard against dumb values of mquant */
  2717. mquant = (mquant < 1) ? 0 : ((mquant > 31) ? 31 : mquant);
  2718. /* Set DC scale - y and c use the same */
  2719. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2720. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2721. /* Get DC differential */
  2722. if (n < 4) {
  2723. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2724. } else {
  2725. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2726. }
  2727. if (dcdiff < 0) {
  2728. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2729. return -1;
  2730. }
  2731. if (dcdiff) {
  2732. if (dcdiff == 119 /* ESC index value */) {
  2733. /* TODO: Optimize */
  2734. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2735. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2736. else dcdiff = get_bits(gb, 8);
  2737. } else {
  2738. if (mquant == 1)
  2739. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2740. else if (mquant == 2)
  2741. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2742. }
  2743. if (get_bits1(gb))
  2744. dcdiff = -dcdiff;
  2745. }
  2746. /* Prediction */
  2747. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2748. *dc_val = dcdiff;
  2749. /* Store the quantized DC coeff, used for prediction */
  2750. if (n < 4) {
  2751. block[0] = dcdiff * s->y_dc_scale;
  2752. } else {
  2753. block[0] = dcdiff * s->c_dc_scale;
  2754. }
  2755. //AC Decoding
  2756. i = 1;
  2757. /* check if AC is needed at all and adjust direction if needed */
  2758. if (!a_avail) dc_pred_dir = 1;
  2759. if (!c_avail) dc_pred_dir = 0;
  2760. if (!a_avail && !c_avail) use_pred = 0;
  2761. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2762. ac_val2 = ac_val;
  2763. scale = mquant * 2 + v->halfpq;
  2764. if (dc_pred_dir) //left
  2765. ac_val -= 16;
  2766. else //top
  2767. ac_val -= 16 * s->block_wrap[n];
  2768. q1 = s->current_picture.f.qscale_table[mb_pos];
  2769. if (dc_pred_dir && c_avail && mb_pos)
  2770. q2 = s->current_picture.f.qscale_table[mb_pos - 1];
  2771. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  2772. q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
  2773. if ( dc_pred_dir && n == 1)
  2774. q2 = q1;
  2775. if (!dc_pred_dir && n == 2)
  2776. q2 = q1;
  2777. if (n == 3) q2 = q1;
  2778. if (coded) {
  2779. int last = 0, skip, value;
  2780. int k;
  2781. while (!last) {
  2782. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2783. i += skip;
  2784. if (i > 63)
  2785. break;
  2786. if (v->fcm == PROGRESSIVE)
  2787. block[v->zz_8x8[0][i++]] = value;
  2788. else {
  2789. if (use_pred && (v->fcm == ILACE_FRAME)) {
  2790. if (!dc_pred_dir) // top
  2791. block[v->zz_8x8[2][i++]] = value;
  2792. else // left
  2793. block[v->zz_8x8[3][i++]] = value;
  2794. } else {
  2795. block[v->zzi_8x8[i++]] = value;
  2796. }
  2797. }
  2798. }
  2799. /* apply AC prediction if needed */
  2800. if (use_pred) {
  2801. /* scale predictors if needed*/
  2802. if (q2 && q1 != q2) {
  2803. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2804. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2805. if (q1 < 1)
  2806. return AVERROR_INVALIDDATA;
  2807. if (dc_pred_dir) { // left
  2808. for (k = 1; k < 8; k++)
  2809. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2810. } else { //top
  2811. for (k = 1; k < 8; k++)
  2812. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2813. }
  2814. } else {
  2815. if (dc_pred_dir) { // left
  2816. for (k = 1; k < 8; k++)
  2817. block[k << v->left_blk_sh] += ac_val[k];
  2818. } else { // top
  2819. for (k = 1; k < 8; k++)
  2820. block[k << v->top_blk_sh] += ac_val[k + 8];
  2821. }
  2822. }
  2823. }
  2824. /* save AC coeffs for further prediction */
  2825. for (k = 1; k < 8; k++) {
  2826. ac_val2[k ] = block[k << v->left_blk_sh];
  2827. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2828. }
  2829. /* scale AC coeffs */
  2830. for (k = 1; k < 64; k++)
  2831. if (block[k]) {
  2832. block[k] *= scale;
  2833. if (!v->pquantizer)
  2834. block[k] += (block[k] < 0) ? -mquant : mquant;
  2835. }
  2836. if (use_pred) i = 63;
  2837. } else { // no AC coeffs
  2838. int k;
  2839. memset(ac_val2, 0, 16 * 2);
  2840. if (dc_pred_dir) { // left
  2841. if (use_pred) {
  2842. memcpy(ac_val2, ac_val, 8 * 2);
  2843. if (q2 && q1 != q2) {
  2844. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2845. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2846. if (q1 < 1)
  2847. return AVERROR_INVALIDDATA;
  2848. for (k = 1; k < 8; k++)
  2849. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2850. }
  2851. }
  2852. } else { // top
  2853. if (use_pred) {
  2854. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2855. if (q2 && q1 != q2) {
  2856. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2857. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2858. if (q1 < 1)
  2859. return AVERROR_INVALIDDATA;
  2860. for (k = 1; k < 8; k++)
  2861. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2862. }
  2863. }
  2864. }
  2865. /* apply AC prediction if needed */
  2866. if (use_pred) {
  2867. if (dc_pred_dir) { // left
  2868. for (k = 1; k < 8; k++) {
  2869. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  2870. if (!v->pquantizer && block[k << v->left_blk_sh])
  2871. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  2872. }
  2873. } else { // top
  2874. for (k = 1; k < 8; k++) {
  2875. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  2876. if (!v->pquantizer && block[k << v->top_blk_sh])
  2877. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  2878. }
  2879. }
  2880. i = 63;
  2881. }
  2882. }
  2883. s->block_last_index[n] = i;
  2884. return 0;
  2885. }
  2886. /** Decode P block
  2887. */
  2888. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n,
  2889. int mquant, int ttmb, int first_block,
  2890. uint8_t *dst, int linesize, int skip_block,
  2891. int *ttmb_out)
  2892. {
  2893. MpegEncContext *s = &v->s;
  2894. GetBitContext *gb = &s->gb;
  2895. int i, j;
  2896. int subblkpat = 0;
  2897. int scale, off, idx, last, skip, value;
  2898. int ttblk = ttmb & 7;
  2899. int pat = 0;
  2900. s->dsp.clear_block(block);
  2901. if (ttmb == -1) {
  2902. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2903. }
  2904. if (ttblk == TT_4X4) {
  2905. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2906. }
  2907. if ((ttblk != TT_8X8 && ttblk != TT_4X4)
  2908. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  2909. || (!v->res_rtm_flag && !first_block))) {
  2910. subblkpat = decode012(gb);
  2911. if (subblkpat)
  2912. subblkpat ^= 3; // swap decoded pattern bits
  2913. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
  2914. ttblk = TT_8X4;
  2915. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
  2916. ttblk = TT_4X8;
  2917. }
  2918. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2919. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2920. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2921. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2922. ttblk = TT_8X4;
  2923. }
  2924. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2925. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2926. ttblk = TT_4X8;
  2927. }
  2928. switch (ttblk) {
  2929. case TT_8X8:
  2930. pat = 0xF;
  2931. i = 0;
  2932. last = 0;
  2933. while (!last) {
  2934. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2935. i += skip;
  2936. if (i > 63)
  2937. break;
  2938. if (!v->fcm)
  2939. idx = v->zz_8x8[0][i++];
  2940. else
  2941. idx = v->zzi_8x8[i++];
  2942. block[idx] = value * scale;
  2943. if (!v->pquantizer)
  2944. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2945. }
  2946. if (!skip_block) {
  2947. if (i == 1)
  2948. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  2949. else {
  2950. v->vc1dsp.vc1_inv_trans_8x8(block);
  2951. s->dsp.add_pixels_clamped(block, dst, linesize);
  2952. }
  2953. }
  2954. break;
  2955. case TT_4X4:
  2956. pat = ~subblkpat & 0xF;
  2957. for (j = 0; j < 4; j++) {
  2958. last = subblkpat & (1 << (3 - j));
  2959. i = 0;
  2960. off = (j & 1) * 4 + (j & 2) * 16;
  2961. while (!last) {
  2962. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2963. i += skip;
  2964. if (i > 15)
  2965. break;
  2966. if (!v->fcm)
  2967. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2968. else
  2969. idx = ff_vc1_adv_interlaced_4x4_zz[i++];
  2970. block[idx + off] = value * scale;
  2971. if (!v->pquantizer)
  2972. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2973. }
  2974. if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
  2975. if (i == 1)
  2976. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  2977. else
  2978. v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  2979. }
  2980. }
  2981. break;
  2982. case TT_8X4:
  2983. pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
  2984. for (j = 0; j < 2; j++) {
  2985. last = subblkpat & (1 << (1 - j));
  2986. i = 0;
  2987. off = j * 32;
  2988. while (!last) {
  2989. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2990. i += skip;
  2991. if (i > 31)
  2992. break;
  2993. if (!v->fcm)
  2994. idx = v->zz_8x4[i++] + off;
  2995. else
  2996. idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
  2997. block[idx] = value * scale;
  2998. if (!v->pquantizer)
  2999. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3000. }
  3001. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  3002. if (i == 1)
  3003. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
  3004. else
  3005. v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
  3006. }
  3007. }
  3008. break;
  3009. case TT_4X8:
  3010. pat = ~(subblkpat * 5) & 0xF;
  3011. for (j = 0; j < 2; j++) {
  3012. last = subblkpat & (1 << (1 - j));
  3013. i = 0;
  3014. off = j * 4;
  3015. while (!last) {
  3016. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3017. i += skip;
  3018. if (i > 31)
  3019. break;
  3020. if (!v->fcm)
  3021. idx = v->zz_4x8[i++] + off;
  3022. else
  3023. idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
  3024. block[idx] = value * scale;
  3025. if (!v->pquantizer)
  3026. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3027. }
  3028. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  3029. if (i == 1)
  3030. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
  3031. else
  3032. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  3033. }
  3034. }
  3035. break;
  3036. }
  3037. if (ttmb_out)
  3038. *ttmb_out |= ttblk << (n * 4);
  3039. return pat;
  3040. }
  3041. /** @} */ // Macroblock group
  3042. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  3043. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3044. static av_always_inline void vc1_apply_p_v_loop_filter(VC1Context *v, int block_num)
  3045. {
  3046. MpegEncContext *s = &v->s;
  3047. int mb_cbp = v->cbp[s->mb_x - s->mb_stride],
  3048. block_cbp = mb_cbp >> (block_num * 4), bottom_cbp,
  3049. mb_is_intra = v->is_intra[s->mb_x - s->mb_stride],
  3050. block_is_intra = mb_is_intra >> (block_num * 4), bottom_is_intra;
  3051. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  3052. uint8_t *dst;
  3053. if (block_num > 3) {
  3054. dst = s->dest[block_num - 3];
  3055. } else {
  3056. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 8) * linesize;
  3057. }
  3058. if (s->mb_y != s->end_mb_y || block_num < 2) {
  3059. int16_t (*mv)[2];
  3060. int mv_stride;
  3061. if (block_num > 3) {
  3062. bottom_cbp = v->cbp[s->mb_x] >> (block_num * 4);
  3063. bottom_is_intra = v->is_intra[s->mb_x] >> (block_num * 4);
  3064. mv = &v->luma_mv[s->mb_x - s->mb_stride];
  3065. mv_stride = s->mb_stride;
  3066. } else {
  3067. bottom_cbp = (block_num < 2) ? (mb_cbp >> ((block_num + 2) * 4))
  3068. : (v->cbp[s->mb_x] >> ((block_num - 2) * 4));
  3069. bottom_is_intra = (block_num < 2) ? (mb_is_intra >> ((block_num + 2) * 4))
  3070. : (v->is_intra[s->mb_x] >> ((block_num - 2) * 4));
  3071. mv_stride = s->b8_stride;
  3072. mv = &s->current_picture.f.motion_val[0][s->block_index[block_num] - 2 * mv_stride];
  3073. }
  3074. if (bottom_is_intra & 1 || block_is_intra & 1 ||
  3075. mv[0][0] != mv[mv_stride][0] || mv[0][1] != mv[mv_stride][1]) {
  3076. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3077. } else {
  3078. idx = ((bottom_cbp >> 2) | block_cbp) & 3;
  3079. if (idx == 3) {
  3080. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3081. } else if (idx) {
  3082. if (idx == 1)
  3083. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  3084. else
  3085. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  3086. }
  3087. }
  3088. }
  3089. dst -= 4 * linesize;
  3090. ttblk = (v->ttblk[s->mb_x - s->mb_stride] >> (block_num * 4)) & 0xF;
  3091. if (ttblk == TT_4X4 || ttblk == TT_8X4) {
  3092. idx = (block_cbp | (block_cbp >> 2)) & 3;
  3093. if (idx == 3) {
  3094. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3095. } else if (idx) {
  3096. if (idx == 1)
  3097. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  3098. else
  3099. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  3100. }
  3101. }
  3102. }
  3103. static av_always_inline void vc1_apply_p_h_loop_filter(VC1Context *v, int block_num)
  3104. {
  3105. MpegEncContext *s = &v->s;
  3106. int mb_cbp = v->cbp[s->mb_x - 1 - s->mb_stride],
  3107. block_cbp = mb_cbp >> (block_num * 4), right_cbp,
  3108. mb_is_intra = v->is_intra[s->mb_x - 1 - s->mb_stride],
  3109. block_is_intra = mb_is_intra >> (block_num * 4), right_is_intra;
  3110. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  3111. uint8_t *dst;
  3112. if (block_num > 3) {
  3113. dst = s->dest[block_num - 3] - 8 * linesize;
  3114. } else {
  3115. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 16) * linesize - 8;
  3116. }
  3117. if (s->mb_x != s->mb_width || !(block_num & 5)) {
  3118. int16_t (*mv)[2];
  3119. if (block_num > 3) {
  3120. right_cbp = v->cbp[s->mb_x - s->mb_stride] >> (block_num * 4);
  3121. right_is_intra = v->is_intra[s->mb_x - s->mb_stride] >> (block_num * 4);
  3122. mv = &v->luma_mv[s->mb_x - s->mb_stride - 1];
  3123. } else {
  3124. right_cbp = (block_num & 1) ? (v->cbp[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
  3125. : (mb_cbp >> ((block_num + 1) * 4));
  3126. right_is_intra = (block_num & 1) ? (v->is_intra[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
  3127. : (mb_is_intra >> ((block_num + 1) * 4));
  3128. mv = &s->current_picture.f.motion_val[0][s->block_index[block_num] - s->b8_stride * 2 - 2];
  3129. }
  3130. if (block_is_intra & 1 || right_is_intra & 1 || mv[0][0] != mv[1][0] || mv[0][1] != mv[1][1]) {
  3131. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3132. } else {
  3133. idx = ((right_cbp >> 1) | block_cbp) & 5; // FIXME check
  3134. if (idx == 5) {
  3135. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3136. } else if (idx) {
  3137. if (idx == 1)
  3138. v->vc1dsp.vc1_h_loop_filter4(dst + 4 * linesize, linesize, v->pq);
  3139. else
  3140. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  3141. }
  3142. }
  3143. }
  3144. dst -= 4;
  3145. ttblk = (v->ttblk[s->mb_x - s->mb_stride - 1] >> (block_num * 4)) & 0xf;
  3146. if (ttblk == TT_4X4 || ttblk == TT_4X8) {
  3147. idx = (block_cbp | (block_cbp >> 1)) & 5;
  3148. if (idx == 5) {
  3149. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3150. } else if (idx) {
  3151. if (idx == 1)
  3152. v->vc1dsp.vc1_h_loop_filter4(dst + linesize * 4, linesize, v->pq);
  3153. else
  3154. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  3155. }
  3156. }
  3157. }
  3158. static void vc1_apply_p_loop_filter(VC1Context *v)
  3159. {
  3160. MpegEncContext *s = &v->s;
  3161. int i;
  3162. for (i = 0; i < 6; i++) {
  3163. vc1_apply_p_v_loop_filter(v, i);
  3164. }
  3165. /* V always precedes H, therefore we run H one MB before V;
  3166. * at the end of a row, we catch up to complete the row */
  3167. if (s->mb_x) {
  3168. for (i = 0; i < 6; i++) {
  3169. vc1_apply_p_h_loop_filter(v, i);
  3170. }
  3171. if (s->mb_x == s->mb_width - 1) {
  3172. s->mb_x++;
  3173. ff_update_block_index(s);
  3174. for (i = 0; i < 6; i++) {
  3175. vc1_apply_p_h_loop_filter(v, i);
  3176. }
  3177. }
  3178. }
  3179. }
  3180. /** Decode one P-frame MB
  3181. */
  3182. static int vc1_decode_p_mb(VC1Context *v)
  3183. {
  3184. MpegEncContext *s = &v->s;
  3185. GetBitContext *gb = &s->gb;
  3186. int i, j;
  3187. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3188. int cbp; /* cbp decoding stuff */
  3189. int mqdiff, mquant; /* MB quantization */
  3190. int ttmb = v->ttfrm; /* MB Transform type */
  3191. int mb_has_coeffs = 1; /* last_flag */
  3192. int dmv_x, dmv_y; /* Differential MV components */
  3193. int index, index1; /* LUT indexes */
  3194. int val, sign; /* temp values */
  3195. int first_block = 1;
  3196. int dst_idx, off;
  3197. int skipped, fourmv;
  3198. int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
  3199. mquant = v->pq; /* lossy initialization */
  3200. if (v->mv_type_is_raw)
  3201. fourmv = get_bits1(gb);
  3202. else
  3203. fourmv = v->mv_type_mb_plane[mb_pos];
  3204. if (v->skip_is_raw)
  3205. skipped = get_bits1(gb);
  3206. else
  3207. skipped = v->s.mbskip_table[mb_pos];
  3208. if (!fourmv) { /* 1MV mode */
  3209. if (!skipped) {
  3210. GET_MVDATA(dmv_x, dmv_y);
  3211. if (s->mb_intra) {
  3212. s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
  3213. s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
  3214. }
  3215. s->current_picture.f.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3216. vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3217. /* FIXME Set DC val for inter block ? */
  3218. if (s->mb_intra && !mb_has_coeffs) {
  3219. GET_MQUANT();
  3220. s->ac_pred = get_bits1(gb);
  3221. cbp = 0;
  3222. } else if (mb_has_coeffs) {
  3223. if (s->mb_intra)
  3224. s->ac_pred = get_bits1(gb);
  3225. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3226. GET_MQUANT();
  3227. } else {
  3228. mquant = v->pq;
  3229. cbp = 0;
  3230. }
  3231. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3232. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3233. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  3234. VC1_TTMB_VLC_BITS, 2);
  3235. if (!s->mb_intra) vc1_mc_1mv(v, 0);
  3236. dst_idx = 0;
  3237. for (i = 0; i < 6; i++) {
  3238. s->dc_val[0][s->block_index[i]] = 0;
  3239. dst_idx += i >> 2;
  3240. val = ((cbp >> (5 - i)) & 1);
  3241. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3242. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3243. if (s->mb_intra) {
  3244. /* check if prediction blocks A and C are available */
  3245. v->a_avail = v->c_avail = 0;
  3246. if (i == 2 || i == 3 || !s->first_slice_line)
  3247. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3248. if (i == 1 || i == 3 || s->mb_x)
  3249. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3250. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3251. (i & 4) ? v->codingset2 : v->codingset);
  3252. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3253. continue;
  3254. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3255. if (v->rangeredfrm)
  3256. for (j = 0; j < 64; j++)
  3257. s->block[i][j] <<= 1;
  3258. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3259. if (v->pq >= 9 && v->overlap) {
  3260. if (v->c_avail)
  3261. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3262. if (v->a_avail)
  3263. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3264. }
  3265. block_cbp |= 0xF << (i << 2);
  3266. block_intra |= 1 << i;
  3267. } else if (val) {
  3268. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block,
  3269. s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
  3270. (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  3271. block_cbp |= pat << (i << 2);
  3272. if (!v->ttmbf && ttmb < 8)
  3273. ttmb = -1;
  3274. first_block = 0;
  3275. }
  3276. }
  3277. } else { // skipped
  3278. s->mb_intra = 0;
  3279. for (i = 0; i < 6; i++) {
  3280. v->mb_type[0][s->block_index[i]] = 0;
  3281. s->dc_val[0][s->block_index[i]] = 0;
  3282. }
  3283. s->current_picture.f.mb_type[mb_pos] = MB_TYPE_SKIP;
  3284. s->current_picture.f.qscale_table[mb_pos] = 0;
  3285. vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3286. vc1_mc_1mv(v, 0);
  3287. }
  3288. } else { // 4MV mode
  3289. if (!skipped /* unskipped MB */) {
  3290. int intra_count = 0, coded_inter = 0;
  3291. int is_intra[6], is_coded[6];
  3292. /* Get CBPCY */
  3293. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3294. for (i = 0; i < 6; i++) {
  3295. val = ((cbp >> (5 - i)) & 1);
  3296. s->dc_val[0][s->block_index[i]] = 0;
  3297. s->mb_intra = 0;
  3298. if (i < 4) {
  3299. dmv_x = dmv_y = 0;
  3300. s->mb_intra = 0;
  3301. mb_has_coeffs = 0;
  3302. if (val) {
  3303. GET_MVDATA(dmv_x, dmv_y);
  3304. }
  3305. vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3306. if (!s->mb_intra)
  3307. vc1_mc_4mv_luma(v, i, 0);
  3308. intra_count += s->mb_intra;
  3309. is_intra[i] = s->mb_intra;
  3310. is_coded[i] = mb_has_coeffs;
  3311. }
  3312. if (i & 4) {
  3313. is_intra[i] = (intra_count >= 3);
  3314. is_coded[i] = val;
  3315. }
  3316. if (i == 4)
  3317. vc1_mc_4mv_chroma(v, 0);
  3318. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3319. if (!coded_inter)
  3320. coded_inter = !is_intra[i] & is_coded[i];
  3321. }
  3322. // if there are no coded blocks then don't do anything more
  3323. dst_idx = 0;
  3324. if (!intra_count && !coded_inter)
  3325. goto end;
  3326. GET_MQUANT();
  3327. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3328. /* test if block is intra and has pred */
  3329. {
  3330. int intrapred = 0;
  3331. for (i = 0; i < 6; i++)
  3332. if (is_intra[i]) {
  3333. if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3334. || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3335. intrapred = 1;
  3336. break;
  3337. }
  3338. }
  3339. if (intrapred)
  3340. s->ac_pred = get_bits1(gb);
  3341. else
  3342. s->ac_pred = 0;
  3343. }
  3344. if (!v->ttmbf && coded_inter)
  3345. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3346. for (i = 0; i < 6; i++) {
  3347. dst_idx += i >> 2;
  3348. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3349. s->mb_intra = is_intra[i];
  3350. if (is_intra[i]) {
  3351. /* check if prediction blocks A and C are available */
  3352. v->a_avail = v->c_avail = 0;
  3353. if (i == 2 || i == 3 || !s->first_slice_line)
  3354. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3355. if (i == 1 || i == 3 || s->mb_x)
  3356. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3357. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant,
  3358. (i & 4) ? v->codingset2 : v->codingset);
  3359. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3360. continue;
  3361. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3362. if (v->rangeredfrm)
  3363. for (j = 0; j < 64; j++)
  3364. s->block[i][j] <<= 1;
  3365. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off,
  3366. (i & 4) ? s->uvlinesize : s->linesize);
  3367. if (v->pq >= 9 && v->overlap) {
  3368. if (v->c_avail)
  3369. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3370. if (v->a_avail)
  3371. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3372. }
  3373. block_cbp |= 0xF << (i << 2);
  3374. block_intra |= 1 << i;
  3375. } else if (is_coded[i]) {
  3376. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3377. first_block, s->dest[dst_idx] + off,
  3378. (i & 4) ? s->uvlinesize : s->linesize,
  3379. (i & 4) && (s->flags & CODEC_FLAG_GRAY),
  3380. &block_tt);
  3381. block_cbp |= pat << (i << 2);
  3382. if (!v->ttmbf && ttmb < 8)
  3383. ttmb = -1;
  3384. first_block = 0;
  3385. }
  3386. }
  3387. } else { // skipped MB
  3388. s->mb_intra = 0;
  3389. s->current_picture.f.qscale_table[mb_pos] = 0;
  3390. for (i = 0; i < 6; i++) {
  3391. v->mb_type[0][s->block_index[i]] = 0;
  3392. s->dc_val[0][s->block_index[i]] = 0;
  3393. }
  3394. for (i = 0; i < 4; i++) {
  3395. vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3396. vc1_mc_4mv_luma(v, i, 0);
  3397. }
  3398. vc1_mc_4mv_chroma(v, 0);
  3399. s->current_picture.f.qscale_table[mb_pos] = 0;
  3400. }
  3401. }
  3402. end:
  3403. v->cbp[s->mb_x] = block_cbp;
  3404. v->ttblk[s->mb_x] = block_tt;
  3405. v->is_intra[s->mb_x] = block_intra;
  3406. return 0;
  3407. }
  3408. /* Decode one macroblock in an interlaced frame p picture */
  3409. static int vc1_decode_p_mb_intfr(VC1Context *v)
  3410. {
  3411. MpegEncContext *s = &v->s;
  3412. GetBitContext *gb = &s->gb;
  3413. int i;
  3414. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3415. int cbp = 0; /* cbp decoding stuff */
  3416. int mqdiff, mquant; /* MB quantization */
  3417. int ttmb = v->ttfrm; /* MB Transform type */
  3418. int mb_has_coeffs = 1; /* last_flag */
  3419. int dmv_x, dmv_y; /* Differential MV components */
  3420. int val; /* temp value */
  3421. int first_block = 1;
  3422. int dst_idx, off;
  3423. int skipped, fourmv = 0, twomv = 0;
  3424. int block_cbp = 0, pat, block_tt = 0;
  3425. int idx_mbmode = 0, mvbp;
  3426. int stride_y, fieldtx;
  3427. mquant = v->pq; /* Lossy initialization */
  3428. if (v->skip_is_raw)
  3429. skipped = get_bits1(gb);
  3430. else
  3431. skipped = v->s.mbskip_table[mb_pos];
  3432. if (!skipped) {
  3433. if (v->fourmvswitch)
  3434. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
  3435. else
  3436. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
  3437. switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
  3438. /* store the motion vector type in a flag (useful later) */
  3439. case MV_PMODE_INTFR_4MV:
  3440. fourmv = 1;
  3441. v->blk_mv_type[s->block_index[0]] = 0;
  3442. v->blk_mv_type[s->block_index[1]] = 0;
  3443. v->blk_mv_type[s->block_index[2]] = 0;
  3444. v->blk_mv_type[s->block_index[3]] = 0;
  3445. break;
  3446. case MV_PMODE_INTFR_4MV_FIELD:
  3447. fourmv = 1;
  3448. v->blk_mv_type[s->block_index[0]] = 1;
  3449. v->blk_mv_type[s->block_index[1]] = 1;
  3450. v->blk_mv_type[s->block_index[2]] = 1;
  3451. v->blk_mv_type[s->block_index[3]] = 1;
  3452. break;
  3453. case MV_PMODE_INTFR_2MV_FIELD:
  3454. twomv = 1;
  3455. v->blk_mv_type[s->block_index[0]] = 1;
  3456. v->blk_mv_type[s->block_index[1]] = 1;
  3457. v->blk_mv_type[s->block_index[2]] = 1;
  3458. v->blk_mv_type[s->block_index[3]] = 1;
  3459. break;
  3460. case MV_PMODE_INTFR_1MV:
  3461. v->blk_mv_type[s->block_index[0]] = 0;
  3462. v->blk_mv_type[s->block_index[1]] = 0;
  3463. v->blk_mv_type[s->block_index[2]] = 0;
  3464. v->blk_mv_type[s->block_index[3]] = 0;
  3465. break;
  3466. }
  3467. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  3468. s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
  3469. s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
  3470. s->current_picture.f.mb_type[mb_pos] = MB_TYPE_INTRA;
  3471. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3472. for (i = 0; i < 6; i++)
  3473. v->mb_type[0][s->block_index[i]] = 1;
  3474. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  3475. mb_has_coeffs = get_bits1(gb);
  3476. if (mb_has_coeffs)
  3477. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3478. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  3479. GET_MQUANT();
  3480. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3481. /* Set DC scale - y and c use the same (not sure if necessary here) */
  3482. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3483. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3484. dst_idx = 0;
  3485. for (i = 0; i < 6; i++) {
  3486. s->dc_val[0][s->block_index[i]] = 0;
  3487. dst_idx += i >> 2;
  3488. val = ((cbp >> (5 - i)) & 1);
  3489. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3490. v->a_avail = v->c_avail = 0;
  3491. if (i == 2 || i == 3 || !s->first_slice_line)
  3492. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3493. if (i == 1 || i == 3 || s->mb_x)
  3494. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3495. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3496. (i & 4) ? v->codingset2 : v->codingset);
  3497. if ((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3498. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3499. if (i < 4) {
  3500. stride_y = s->linesize << fieldtx;
  3501. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  3502. } else {
  3503. stride_y = s->uvlinesize;
  3504. off = 0;
  3505. }
  3506. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, stride_y);
  3507. //TODO: loop filter
  3508. }
  3509. } else { // inter MB
  3510. mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
  3511. if (mb_has_coeffs)
  3512. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3513. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  3514. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  3515. } else {
  3516. if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
  3517. || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
  3518. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  3519. }
  3520. }
  3521. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3522. for (i = 0; i < 6; i++)
  3523. v->mb_type[0][s->block_index[i]] = 0;
  3524. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
  3525. /* for all motion vector read MVDATA and motion compensate each block */
  3526. dst_idx = 0;
  3527. if (fourmv) {
  3528. mvbp = v->fourmvbp;
  3529. for (i = 0; i < 6; i++) {
  3530. if (i < 4) {
  3531. dmv_x = dmv_y = 0;
  3532. val = ((mvbp >> (3 - i)) & 1);
  3533. if (val) {
  3534. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3535. }
  3536. vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3537. vc1_mc_4mv_luma(v, i, 0);
  3538. } else if (i == 4) {
  3539. vc1_mc_4mv_chroma4(v);
  3540. }
  3541. }
  3542. } else if (twomv) {
  3543. mvbp = v->twomvbp;
  3544. dmv_x = dmv_y = 0;
  3545. if (mvbp & 2) {
  3546. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3547. }
  3548. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0]);
  3549. vc1_mc_4mv_luma(v, 0, 0);
  3550. vc1_mc_4mv_luma(v, 1, 0);
  3551. dmv_x = dmv_y = 0;
  3552. if (mvbp & 1) {
  3553. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3554. }
  3555. vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0]);
  3556. vc1_mc_4mv_luma(v, 2, 0);
  3557. vc1_mc_4mv_luma(v, 3, 0);
  3558. vc1_mc_4mv_chroma4(v);
  3559. } else {
  3560. mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
  3561. dmv_x = dmv_y = 0;
  3562. if (mvbp) {
  3563. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3564. }
  3565. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3566. vc1_mc_1mv(v, 0);
  3567. }
  3568. if (cbp)
  3569. GET_MQUANT(); // p. 227
  3570. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3571. if (!v->ttmbf && cbp)
  3572. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3573. for (i = 0; i < 6; i++) {
  3574. s->dc_val[0][s->block_index[i]] = 0;
  3575. dst_idx += i >> 2;
  3576. val = ((cbp >> (5 - i)) & 1);
  3577. if (!fieldtx)
  3578. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3579. else
  3580. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  3581. if (val) {
  3582. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3583. first_block, s->dest[dst_idx] + off,
  3584. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  3585. (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  3586. block_cbp |= pat << (i << 2);
  3587. if (!v->ttmbf && ttmb < 8)
  3588. ttmb = -1;
  3589. first_block = 0;
  3590. }
  3591. }
  3592. }
  3593. } else { // skipped
  3594. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3595. for (i = 0; i < 6; i++) {
  3596. v->mb_type[0][s->block_index[i]] = 0;
  3597. s->dc_val[0][s->block_index[i]] = 0;
  3598. }
  3599. s->current_picture.f.mb_type[mb_pos] = MB_TYPE_SKIP;
  3600. s->current_picture.f.qscale_table[mb_pos] = 0;
  3601. v->blk_mv_type[s->block_index[0]] = 0;
  3602. v->blk_mv_type[s->block_index[1]] = 0;
  3603. v->blk_mv_type[s->block_index[2]] = 0;
  3604. v->blk_mv_type[s->block_index[3]] = 0;
  3605. vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3606. vc1_mc_1mv(v, 0);
  3607. }
  3608. if (s->mb_x == s->mb_width - 1)
  3609. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
  3610. return 0;
  3611. }
  3612. static int vc1_decode_p_mb_intfi(VC1Context *v)
  3613. {
  3614. MpegEncContext *s = &v->s;
  3615. GetBitContext *gb = &s->gb;
  3616. int i;
  3617. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3618. int cbp = 0; /* cbp decoding stuff */
  3619. int mqdiff, mquant; /* MB quantization */
  3620. int ttmb = v->ttfrm; /* MB Transform type */
  3621. int mb_has_coeffs = 1; /* last_flag */
  3622. int dmv_x, dmv_y; /* Differential MV components */
  3623. int val; /* temp values */
  3624. int first_block = 1;
  3625. int dst_idx, off;
  3626. int pred_flag = 0;
  3627. int block_cbp = 0, pat, block_tt = 0;
  3628. int idx_mbmode = 0;
  3629. mquant = v->pq; /* Lossy initialization */
  3630. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  3631. if (idx_mbmode <= 1) { // intra MB
  3632. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3633. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  3634. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  3635. s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  3636. GET_MQUANT();
  3637. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3638. /* Set DC scale - y and c use the same (not sure if necessary here) */
  3639. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3640. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3641. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  3642. mb_has_coeffs = idx_mbmode & 1;
  3643. if (mb_has_coeffs)
  3644. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  3645. dst_idx = 0;
  3646. for (i = 0; i < 6; i++) {
  3647. s->dc_val[0][s->block_index[i]] = 0;
  3648. v->mb_type[0][s->block_index[i]] = 1;
  3649. dst_idx += i >> 2;
  3650. val = ((cbp >> (5 - i)) & 1);
  3651. v->a_avail = v->c_avail = 0;
  3652. if (i == 2 || i == 3 || !s->first_slice_line)
  3653. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3654. if (i == 1 || i == 3 || s->mb_x)
  3655. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3656. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3657. (i & 4) ? v->codingset2 : v->codingset);
  3658. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3659. continue;
  3660. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3661. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3662. off += v->second_field ? ((i & 4) ? s->current_picture_ptr->f.linesize[1] : s->current_picture_ptr->f.linesize[0]) : 0;
  3663. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
  3664. // TODO: loop filter
  3665. }
  3666. } else {
  3667. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3668. s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  3669. for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
  3670. if (idx_mbmode <= 5) { // 1-MV
  3671. dmv_x = dmv_y = 0;
  3672. if (idx_mbmode & 1) {
  3673. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  3674. }
  3675. vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  3676. vc1_mc_1mv(v, 0);
  3677. mb_has_coeffs = !(idx_mbmode & 2);
  3678. } else { // 4-MV
  3679. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  3680. for (i = 0; i < 6; i++) {
  3681. if (i < 4) {
  3682. dmv_x = dmv_y = pred_flag = 0;
  3683. val = ((v->fourmvbp >> (3 - i)) & 1);
  3684. if (val) {
  3685. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  3686. }
  3687. vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  3688. vc1_mc_4mv_luma(v, i, 0);
  3689. } else if (i == 4)
  3690. vc1_mc_4mv_chroma(v, 0);
  3691. }
  3692. mb_has_coeffs = idx_mbmode & 1;
  3693. }
  3694. if (mb_has_coeffs)
  3695. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3696. if (cbp) {
  3697. GET_MQUANT();
  3698. }
  3699. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3700. if (!v->ttmbf && cbp) {
  3701. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3702. }
  3703. dst_idx = 0;
  3704. for (i = 0; i < 6; i++) {
  3705. s->dc_val[0][s->block_index[i]] = 0;
  3706. dst_idx += i >> 2;
  3707. val = ((cbp >> (5 - i)) & 1);
  3708. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  3709. if (v->second_field)
  3710. off += (i & 4) ? s->current_picture_ptr->f.linesize[1] : s->current_picture_ptr->f.linesize[0];
  3711. if (val) {
  3712. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3713. first_block, s->dest[dst_idx] + off,
  3714. (i & 4) ? s->uvlinesize : s->linesize,
  3715. (i & 4) && (s->flags & CODEC_FLAG_GRAY),
  3716. &block_tt);
  3717. block_cbp |= pat << (i << 2);
  3718. if (!v->ttmbf && ttmb < 8) ttmb = -1;
  3719. first_block = 0;
  3720. }
  3721. }
  3722. }
  3723. if (s->mb_x == s->mb_width - 1)
  3724. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  3725. return 0;
  3726. }
  3727. /** Decode one B-frame MB (in Main profile)
  3728. */
  3729. static void vc1_decode_b_mb(VC1Context *v)
  3730. {
  3731. MpegEncContext *s = &v->s;
  3732. GetBitContext *gb = &s->gb;
  3733. int i, j;
  3734. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3735. int cbp = 0; /* cbp decoding stuff */
  3736. int mqdiff, mquant; /* MB quantization */
  3737. int ttmb = v->ttfrm; /* MB Transform type */
  3738. int mb_has_coeffs = 0; /* last_flag */
  3739. int index, index1; /* LUT indexes */
  3740. int val, sign; /* temp values */
  3741. int first_block = 1;
  3742. int dst_idx, off;
  3743. int skipped, direct;
  3744. int dmv_x[2], dmv_y[2];
  3745. int bmvtype = BMV_TYPE_BACKWARD;
  3746. mquant = v->pq; /* lossy initialization */
  3747. s->mb_intra = 0;
  3748. if (v->dmb_is_raw)
  3749. direct = get_bits1(gb);
  3750. else
  3751. direct = v->direct_mb_plane[mb_pos];
  3752. if (v->skip_is_raw)
  3753. skipped = get_bits1(gb);
  3754. else
  3755. skipped = v->s.mbskip_table[mb_pos];
  3756. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3757. for (i = 0; i < 6; i++) {
  3758. v->mb_type[0][s->block_index[i]] = 0;
  3759. s->dc_val[0][s->block_index[i]] = 0;
  3760. }
  3761. s->current_picture.f.qscale_table[mb_pos] = 0;
  3762. if (!direct) {
  3763. if (!skipped) {
  3764. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3765. dmv_x[1] = dmv_x[0];
  3766. dmv_y[1] = dmv_y[0];
  3767. }
  3768. if (skipped || !s->mb_intra) {
  3769. bmvtype = decode012(gb);
  3770. switch (bmvtype) {
  3771. case 0:
  3772. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3773. break;
  3774. case 1:
  3775. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3776. break;
  3777. case 2:
  3778. bmvtype = BMV_TYPE_INTERPOLATED;
  3779. dmv_x[0] = dmv_y[0] = 0;
  3780. }
  3781. }
  3782. }
  3783. for (i = 0; i < 6; i++)
  3784. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3785. if (skipped) {
  3786. if (direct)
  3787. bmvtype = BMV_TYPE_INTERPOLATED;
  3788. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3789. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3790. return;
  3791. }
  3792. if (direct) {
  3793. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3794. GET_MQUANT();
  3795. s->mb_intra = 0;
  3796. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3797. if (!v->ttmbf)
  3798. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3799. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3800. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3801. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3802. } else {
  3803. if (!mb_has_coeffs && !s->mb_intra) {
  3804. /* no coded blocks - effectively skipped */
  3805. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3806. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3807. return;
  3808. }
  3809. if (s->mb_intra && !mb_has_coeffs) {
  3810. GET_MQUANT();
  3811. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3812. s->ac_pred = get_bits1(gb);
  3813. cbp = 0;
  3814. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3815. } else {
  3816. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  3817. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3818. if (!mb_has_coeffs) {
  3819. /* interpolated skipped block */
  3820. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3821. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3822. return;
  3823. }
  3824. }
  3825. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3826. if (!s->mb_intra) {
  3827. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3828. }
  3829. if (s->mb_intra)
  3830. s->ac_pred = get_bits1(gb);
  3831. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3832. GET_MQUANT();
  3833. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3834. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3835. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3836. }
  3837. }
  3838. dst_idx = 0;
  3839. for (i = 0; i < 6; i++) {
  3840. s->dc_val[0][s->block_index[i]] = 0;
  3841. dst_idx += i >> 2;
  3842. val = ((cbp >> (5 - i)) & 1);
  3843. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3844. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3845. if (s->mb_intra) {
  3846. /* check if prediction blocks A and C are available */
  3847. v->a_avail = v->c_avail = 0;
  3848. if (i == 2 || i == 3 || !s->first_slice_line)
  3849. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3850. if (i == 1 || i == 3 || s->mb_x)
  3851. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3852. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3853. (i & 4) ? v->codingset2 : v->codingset);
  3854. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3855. continue;
  3856. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3857. if (v->rangeredfrm)
  3858. for (j = 0; j < 64; j++)
  3859. s->block[i][j] <<= 1;
  3860. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3861. } else if (val) {
  3862. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3863. first_block, s->dest[dst_idx] + off,
  3864. (i & 4) ? s->uvlinesize : s->linesize,
  3865. (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  3866. if (!v->ttmbf && ttmb < 8)
  3867. ttmb = -1;
  3868. first_block = 0;
  3869. }
  3870. }
  3871. }
  3872. /** Decode one B-frame MB (in interlaced field B picture)
  3873. */
  3874. static void vc1_decode_b_mb_intfi(VC1Context *v)
  3875. {
  3876. MpegEncContext *s = &v->s;
  3877. GetBitContext *gb = &s->gb;
  3878. int i, j;
  3879. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3880. int cbp = 0; /* cbp decoding stuff */
  3881. int mqdiff, mquant; /* MB quantization */
  3882. int ttmb = v->ttfrm; /* MB Transform type */
  3883. int mb_has_coeffs = 0; /* last_flag */
  3884. int val; /* temp value */
  3885. int first_block = 1;
  3886. int dst_idx, off;
  3887. int fwd;
  3888. int dmv_x[2], dmv_y[2], pred_flag[2];
  3889. int bmvtype = BMV_TYPE_BACKWARD;
  3890. int idx_mbmode, interpmvp;
  3891. mquant = v->pq; /* Lossy initialization */
  3892. s->mb_intra = 0;
  3893. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  3894. if (idx_mbmode <= 1) { // intra MB
  3895. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3896. s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
  3897. s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
  3898. s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  3899. GET_MQUANT();
  3900. s->current_picture.f.qscale_table[mb_pos] = mquant;
  3901. /* Set DC scale - y and c use the same (not sure if necessary here) */
  3902. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3903. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3904. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  3905. mb_has_coeffs = idx_mbmode & 1;
  3906. if (mb_has_coeffs)
  3907. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  3908. dst_idx = 0;
  3909. for (i = 0; i < 6; i++) {
  3910. s->dc_val[0][s->block_index[i]] = 0;
  3911. dst_idx += i >> 2;
  3912. val = ((cbp >> (5 - i)) & 1);
  3913. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3914. v->a_avail = v->c_avail = 0;
  3915. if (i == 2 || i == 3 || !s->first_slice_line)
  3916. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3917. if (i == 1 || i == 3 || s->mb_x)
  3918. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3919. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3920. (i & 4) ? v->codingset2 : v->codingset);
  3921. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3922. continue;
  3923. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3924. if (v->rangeredfrm)
  3925. for (j = 0; j < 64; j++)
  3926. s->block[i][j] <<= 1;
  3927. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3928. off += v->second_field ? ((i & 4) ? s->current_picture_ptr->f.linesize[1] : s->current_picture_ptr->f.linesize[0]) : 0;
  3929. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
  3930. // TODO: yet to perform loop filter
  3931. }
  3932. } else {
  3933. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3934. s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  3935. for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
  3936. if (v->fmb_is_raw)
  3937. fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
  3938. else
  3939. fwd = v->forward_mb_plane[mb_pos];
  3940. if (idx_mbmode <= 5) { // 1-MV
  3941. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3942. pred_flag[0] = pred_flag[1] = 0;
  3943. if (fwd)
  3944. bmvtype = BMV_TYPE_FORWARD;
  3945. else {
  3946. bmvtype = decode012(gb);
  3947. switch (bmvtype) {
  3948. case 0:
  3949. bmvtype = BMV_TYPE_BACKWARD;
  3950. break;
  3951. case 1:
  3952. bmvtype = BMV_TYPE_DIRECT;
  3953. break;
  3954. case 2:
  3955. bmvtype = BMV_TYPE_INTERPOLATED;
  3956. interpmvp = get_bits1(gb);
  3957. }
  3958. }
  3959. v->bmvtype = bmvtype;
  3960. if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
  3961. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  3962. }
  3963. if (bmvtype == BMV_TYPE_INTERPOLATED && interpmvp) {
  3964. get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
  3965. }
  3966. if (bmvtype == BMV_TYPE_DIRECT) {
  3967. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  3968. dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
  3969. }
  3970. vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
  3971. vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);
  3972. mb_has_coeffs = !(idx_mbmode & 2);
  3973. } else { // 4-MV
  3974. if (fwd)
  3975. bmvtype = BMV_TYPE_FORWARD;
  3976. v->bmvtype = bmvtype;
  3977. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  3978. for (i = 0; i < 6; i++) {
  3979. if (i < 4) {
  3980. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  3981. dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
  3982. val = ((v->fourmvbp >> (3 - i)) & 1);
  3983. if (val) {
  3984. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD],
  3985. &dmv_y[bmvtype == BMV_TYPE_BACKWARD],
  3986. &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  3987. }
  3988. vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag);
  3989. vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD);
  3990. } else if (i == 4)
  3991. vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD);
  3992. }
  3993. mb_has_coeffs = idx_mbmode & 1;
  3994. }
  3995. if (mb_has_coeffs)
  3996. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3997. if (cbp) {
  3998. GET_MQUANT();
  3999. }
  4000. s->current_picture.f.qscale_table[mb_pos] = mquant;
  4001. if (!v->ttmbf && cbp) {
  4002. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  4003. }
  4004. dst_idx = 0;
  4005. for (i = 0; i < 6; i++) {
  4006. s->dc_val[0][s->block_index[i]] = 0;
  4007. dst_idx += i >> 2;
  4008. val = ((cbp >> (5 - i)) & 1);
  4009. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  4010. if (v->second_field)
  4011. off += (i & 4) ? s->current_picture_ptr->f.linesize[1] : s->current_picture_ptr->f.linesize[0];
  4012. if (val) {
  4013. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  4014. first_block, s->dest[dst_idx] + off,
  4015. (i & 4) ? s->uvlinesize : s->linesize,
  4016. (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  4017. if (!v->ttmbf && ttmb < 8)
  4018. ttmb = -1;
  4019. first_block = 0;
  4020. }
  4021. }
  4022. }
  4023. }
  4024. /** Decode blocks of I-frame
  4025. */
  4026. static void vc1_decode_i_blocks(VC1Context *v)
  4027. {
  4028. int k, j;
  4029. MpegEncContext *s = &v->s;
  4030. int cbp, val;
  4031. uint8_t *coded_val;
  4032. int mb_pos;
  4033. /* select codingmode used for VLC tables selection */
  4034. switch (v->y_ac_table_index) {
  4035. case 0:
  4036. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4037. break;
  4038. case 1:
  4039. v->codingset = CS_HIGH_MOT_INTRA;
  4040. break;
  4041. case 2:
  4042. v->codingset = CS_MID_RATE_INTRA;
  4043. break;
  4044. }
  4045. switch (v->c_ac_table_index) {
  4046. case 0:
  4047. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4048. break;
  4049. case 1:
  4050. v->codingset2 = CS_HIGH_MOT_INTER;
  4051. break;
  4052. case 2:
  4053. v->codingset2 = CS_MID_RATE_INTER;
  4054. break;
  4055. }
  4056. /* Set DC scale - y and c use the same */
  4057. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  4058. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  4059. //do frame decode
  4060. s->mb_x = s->mb_y = 0;
  4061. s->mb_intra = 1;
  4062. s->first_slice_line = 1;
  4063. for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  4064. s->mb_x = 0;
  4065. ff_init_block_index(s);
  4066. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4067. uint8_t *dst[6];
  4068. ff_update_block_index(s);
  4069. dst[0] = s->dest[0];
  4070. dst[1] = dst[0] + 8;
  4071. dst[2] = s->dest[0] + s->linesize * 8;
  4072. dst[3] = dst[2] + 8;
  4073. dst[4] = s->dest[1];
  4074. dst[5] = s->dest[2];
  4075. s->dsp.clear_blocks(s->block[0]);
  4076. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  4077. s->current_picture.f.mb_type[mb_pos] = MB_TYPE_INTRA;
  4078. s->current_picture.f.qscale_table[mb_pos] = v->pq;
  4079. s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
  4080. s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
  4081. // do actual MB decoding and displaying
  4082. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  4083. v->s.ac_pred = get_bits1(&v->s.gb);
  4084. for (k = 0; k < 6; k++) {
  4085. val = ((cbp >> (5 - k)) & 1);
  4086. if (k < 4) {
  4087. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  4088. val = val ^ pred;
  4089. *coded_val = val;
  4090. }
  4091. cbp |= val << (5 - k);
  4092. vc1_decode_i_block(v, s->block[k], k, val, (k < 4) ? v->codingset : v->codingset2);
  4093. if (k > 3 && (s->flags & CODEC_FLAG_GRAY))
  4094. continue;
  4095. v->vc1dsp.vc1_inv_trans_8x8(s->block[k]);
  4096. if (v->pq >= 9 && v->overlap) {
  4097. if (v->rangeredfrm)
  4098. for (j = 0; j < 64; j++)
  4099. s->block[k][j] <<= 1;
  4100. s->dsp.put_signed_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
  4101. } else {
  4102. if (v->rangeredfrm)
  4103. for (j = 0; j < 64; j++)
  4104. s->block[k][j] = (s->block[k][j] - 64) << 1;
  4105. s->dsp.put_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
  4106. }
  4107. }
  4108. if (v->pq >= 9 && v->overlap) {
  4109. if (s->mb_x) {
  4110. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  4111. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  4112. if (!(s->flags & CODEC_FLAG_GRAY)) {
  4113. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  4114. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  4115. }
  4116. }
  4117. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  4118. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  4119. if (!s->first_slice_line) {
  4120. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  4121. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  4122. if (!(s->flags & CODEC_FLAG_GRAY)) {
  4123. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  4124. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  4125. }
  4126. }
  4127. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  4128. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  4129. }
  4130. if (v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  4131. if (get_bits_count(&s->gb) > v->bits) {
  4132. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, ER_MB_ERROR);
  4133. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  4134. get_bits_count(&s->gb), v->bits);
  4135. return;
  4136. }
  4137. }
  4138. if (!v->s.loop_filter)
  4139. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  4140. else if (s->mb_y)
  4141. ff_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4142. s->first_slice_line = 0;
  4143. }
  4144. if (v->s.loop_filter)
  4145. ff_draw_horiz_band(s, (s->mb_height - 1) * 16, 16);
  4146. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, ER_MB_END);
  4147. }
  4148. /** Decode blocks of I-frame for advanced profile
  4149. */
  4150. static void vc1_decode_i_blocks_adv(VC1Context *v)
  4151. {
  4152. int k;
  4153. MpegEncContext *s = &v->s;
  4154. int cbp, val;
  4155. uint8_t *coded_val;
  4156. int mb_pos;
  4157. int mquant = v->pq;
  4158. int mqdiff;
  4159. GetBitContext *gb = &s->gb;
  4160. /* select codingmode used for VLC tables selection */
  4161. switch (v->y_ac_table_index) {
  4162. case 0:
  4163. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4164. break;
  4165. case 1:
  4166. v->codingset = CS_HIGH_MOT_INTRA;
  4167. break;
  4168. case 2:
  4169. v->codingset = CS_MID_RATE_INTRA;
  4170. break;
  4171. }
  4172. switch (v->c_ac_table_index) {
  4173. case 0:
  4174. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4175. break;
  4176. case 1:
  4177. v->codingset2 = CS_HIGH_MOT_INTER;
  4178. break;
  4179. case 2:
  4180. v->codingset2 = CS_MID_RATE_INTER;
  4181. break;
  4182. }
  4183. // do frame decode
  4184. s->mb_x = s->mb_y = 0;
  4185. s->mb_intra = 1;
  4186. s->first_slice_line = 1;
  4187. s->mb_y = s->start_mb_y;
  4188. if (s->start_mb_y) {
  4189. s->mb_x = 0;
  4190. ff_init_block_index(s);
  4191. memset(&s->coded_block[s->block_index[0] - s->b8_stride], 0,
  4192. (1 + s->b8_stride) * sizeof(*s->coded_block));
  4193. }
  4194. for (; s->mb_y < s->end_mb_y; s->mb_y++) {
  4195. s->mb_x = 0;
  4196. ff_init_block_index(s);
  4197. for (;s->mb_x < s->mb_width; s->mb_x++) {
  4198. DCTELEM (*block)[64] = v->block[v->cur_blk_idx];
  4199. ff_update_block_index(s);
  4200. s->dsp.clear_blocks(block[0]);
  4201. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  4202. s->current_picture.f.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  4203. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  4204. s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  4205. // do actual MB decoding and displaying
  4206. if (v->fieldtx_is_raw)
  4207. v->fieldtx_plane[mb_pos] = get_bits1(&v->s.gb);
  4208. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  4209. if ( v->acpred_is_raw)
  4210. v->s.ac_pred = get_bits1(&v->s.gb);
  4211. else
  4212. v->s.ac_pred = v->acpred_plane[mb_pos];
  4213. if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
  4214. v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
  4215. GET_MQUANT();
  4216. s->current_picture.f.qscale_table[mb_pos] = mquant;
  4217. /* Set DC scale - y and c use the same */
  4218. s->y_dc_scale = s->y_dc_scale_table[mquant];
  4219. s->c_dc_scale = s->c_dc_scale_table[mquant];
  4220. for (k = 0; k < 6; k++) {
  4221. val = ((cbp >> (5 - k)) & 1);
  4222. if (k < 4) {
  4223. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  4224. val = val ^ pred;
  4225. *coded_val = val;
  4226. }
  4227. cbp |= val << (5 - k);
  4228. v->a_avail = !s->first_slice_line || (k == 2 || k == 3);
  4229. v->c_avail = !!s->mb_x || (k == 1 || k == 3);
  4230. vc1_decode_i_block_adv(v, block[k], k, val,
  4231. (k < 4) ? v->codingset : v->codingset2, mquant);
  4232. if (k > 3 && (s->flags & CODEC_FLAG_GRAY))
  4233. continue;
  4234. v->vc1dsp.vc1_inv_trans_8x8(block[k]);
  4235. }
  4236. vc1_smooth_overlap_filter_iblk(v);
  4237. vc1_put_signed_blocks_clamped(v);
  4238. if (v->s.loop_filter) vc1_loop_filter_iblk_delayed(v, v->pq);
  4239. if (get_bits_count(&s->gb) > v->bits) {
  4240. // TODO: may need modification to handle slice coding
  4241. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4242. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  4243. get_bits_count(&s->gb), v->bits);
  4244. return;
  4245. }
  4246. }
  4247. if (!v->s.loop_filter)
  4248. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  4249. else if (s->mb_y)
  4250. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  4251. s->first_slice_line = 0;
  4252. }
  4253. /* raw bottom MB row */
  4254. s->mb_x = 0;
  4255. ff_init_block_index(s);
  4256. for (;s->mb_x < s->mb_width; s->mb_x++) {
  4257. ff_update_block_index(s);
  4258. vc1_put_signed_blocks_clamped(v);
  4259. if (v->s.loop_filter)
  4260. vc1_loop_filter_iblk_delayed(v, v->pq);
  4261. }
  4262. if (v->s.loop_filter)
  4263. ff_draw_horiz_band(s, (s->end_mb_y-1)*16, 16);
  4264. ff_er_add_slice(s, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4265. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4266. }
  4267. static void vc1_decode_p_blocks(VC1Context *v)
  4268. {
  4269. MpegEncContext *s = &v->s;
  4270. int apply_loop_filter;
  4271. /* select codingmode used for VLC tables selection */
  4272. switch (v->c_ac_table_index) {
  4273. case 0:
  4274. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4275. break;
  4276. case 1:
  4277. v->codingset = CS_HIGH_MOT_INTRA;
  4278. break;
  4279. case 2:
  4280. v->codingset = CS_MID_RATE_INTRA;
  4281. break;
  4282. }
  4283. switch (v->c_ac_table_index) {
  4284. case 0:
  4285. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4286. break;
  4287. case 1:
  4288. v->codingset2 = CS_HIGH_MOT_INTER;
  4289. break;
  4290. case 2:
  4291. v->codingset2 = CS_MID_RATE_INTER;
  4292. break;
  4293. }
  4294. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  4295. s->first_slice_line = 1;
  4296. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  4297. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4298. s->mb_x = 0;
  4299. ff_init_block_index(s);
  4300. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4301. ff_update_block_index(s);
  4302. if (v->fcm == ILACE_FIELD)
  4303. vc1_decode_p_mb_intfi(v);
  4304. else if (v->fcm == ILACE_FRAME)
  4305. vc1_decode_p_mb_intfr(v);
  4306. else vc1_decode_p_mb(v);
  4307. if (s->mb_y != s->start_mb_y && apply_loop_filter && v->fcm == PROGRESSIVE)
  4308. vc1_apply_p_loop_filter(v);
  4309. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  4310. // TODO: may need modification to handle slice coding
  4311. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4312. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  4313. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  4314. return;
  4315. }
  4316. }
  4317. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0]) * s->mb_stride);
  4318. memmove(v->ttblk_base, v->ttblk, sizeof(v->ttblk_base[0]) * s->mb_stride);
  4319. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  4320. memmove(v->luma_mv_base, v->luma_mv, sizeof(v->luma_mv_base[0]) * s->mb_stride);
  4321. if (s->mb_y != s->start_mb_y) ff_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4322. s->first_slice_line = 0;
  4323. }
  4324. if (apply_loop_filter) {
  4325. s->mb_x = 0;
  4326. ff_init_block_index(s);
  4327. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4328. ff_update_block_index(s);
  4329. vc1_apply_p_loop_filter(v);
  4330. }
  4331. }
  4332. if (s->end_mb_y >= s->start_mb_y)
  4333. ff_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  4334. ff_er_add_slice(s, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4335. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4336. }
  4337. static void vc1_decode_b_blocks(VC1Context *v)
  4338. {
  4339. MpegEncContext *s = &v->s;
  4340. /* select codingmode used for VLC tables selection */
  4341. switch (v->c_ac_table_index) {
  4342. case 0:
  4343. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4344. break;
  4345. case 1:
  4346. v->codingset = CS_HIGH_MOT_INTRA;
  4347. break;
  4348. case 2:
  4349. v->codingset = CS_MID_RATE_INTRA;
  4350. break;
  4351. }
  4352. switch (v->c_ac_table_index) {
  4353. case 0:
  4354. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4355. break;
  4356. case 1:
  4357. v->codingset2 = CS_HIGH_MOT_INTER;
  4358. break;
  4359. case 2:
  4360. v->codingset2 = CS_MID_RATE_INTER;
  4361. break;
  4362. }
  4363. s->first_slice_line = 1;
  4364. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4365. s->mb_x = 0;
  4366. ff_init_block_index(s);
  4367. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4368. ff_update_block_index(s);
  4369. if (v->fcm == ILACE_FIELD)
  4370. vc1_decode_b_mb_intfi(v);
  4371. else
  4372. vc1_decode_b_mb(v);
  4373. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  4374. // TODO: may need modification to handle slice coding
  4375. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4376. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  4377. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  4378. return;
  4379. }
  4380. if (v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  4381. }
  4382. if (!v->s.loop_filter)
  4383. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  4384. else if (s->mb_y)
  4385. ff_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4386. s->first_slice_line = 0;
  4387. }
  4388. if (v->s.loop_filter)
  4389. ff_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  4390. ff_er_add_slice(s, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4391. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4392. }
  4393. static void vc1_decode_skip_blocks(VC1Context *v)
  4394. {
  4395. MpegEncContext *s = &v->s;
  4396. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, ER_MB_END);
  4397. s->first_slice_line = 1;
  4398. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4399. s->mb_x = 0;
  4400. ff_init_block_index(s);
  4401. ff_update_block_index(s);
  4402. memcpy(s->dest[0], s->last_picture.f.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  4403. memcpy(s->dest[1], s->last_picture.f.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  4404. memcpy(s->dest[2], s->last_picture.f.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  4405. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  4406. s->first_slice_line = 0;
  4407. }
  4408. s->pict_type = AV_PICTURE_TYPE_P;
  4409. }
  4410. static void vc1_decode_blocks(VC1Context *v)
  4411. {
  4412. v->s.esc3_level_length = 0;
  4413. if (v->x8_type) {
  4414. ff_intrax8_decode_picture(&v->x8, 2*v->pq + v->halfpq, v->pq * !v->pquantizer);
  4415. } else {
  4416. v->cur_blk_idx = 0;
  4417. v->left_blk_idx = -1;
  4418. v->topleft_blk_idx = 1;
  4419. v->top_blk_idx = 2;
  4420. switch (v->s.pict_type) {
  4421. case AV_PICTURE_TYPE_I:
  4422. if (v->profile == PROFILE_ADVANCED)
  4423. vc1_decode_i_blocks_adv(v);
  4424. else
  4425. vc1_decode_i_blocks(v);
  4426. break;
  4427. case AV_PICTURE_TYPE_P:
  4428. if (v->p_frame_skipped)
  4429. vc1_decode_skip_blocks(v);
  4430. else
  4431. vc1_decode_p_blocks(v);
  4432. break;
  4433. case AV_PICTURE_TYPE_B:
  4434. if (v->bi_type) {
  4435. if (v->profile == PROFILE_ADVANCED)
  4436. vc1_decode_i_blocks_adv(v);
  4437. else
  4438. vc1_decode_i_blocks(v);
  4439. } else
  4440. vc1_decode_b_blocks(v);
  4441. break;
  4442. }
  4443. }
  4444. }
  4445. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  4446. typedef struct {
  4447. /**
  4448. * Transform coefficients for both sprites in 16.16 fixed point format,
  4449. * in the order they appear in the bitstream:
  4450. * x scale
  4451. * rotation 1 (unused)
  4452. * x offset
  4453. * rotation 2 (unused)
  4454. * y scale
  4455. * y offset
  4456. * alpha
  4457. */
  4458. int coefs[2][7];
  4459. int effect_type, effect_flag;
  4460. int effect_pcount1, effect_pcount2; ///< amount of effect parameters stored in effect_params
  4461. int effect_params1[15], effect_params2[10]; ///< effect parameters in 16.16 fixed point format
  4462. } SpriteData;
  4463. static inline int get_fp_val(GetBitContext* gb)
  4464. {
  4465. return (get_bits_long(gb, 30) - (1 << 29)) << 1;
  4466. }
  4467. static void vc1_sprite_parse_transform(GetBitContext* gb, int c[7])
  4468. {
  4469. c[1] = c[3] = 0;
  4470. switch (get_bits(gb, 2)) {
  4471. case 0:
  4472. c[0] = 1 << 16;
  4473. c[2] = get_fp_val(gb);
  4474. c[4] = 1 << 16;
  4475. break;
  4476. case 1:
  4477. c[0] = c[4] = get_fp_val(gb);
  4478. c[2] = get_fp_val(gb);
  4479. break;
  4480. case 2:
  4481. c[0] = get_fp_val(gb);
  4482. c[2] = get_fp_val(gb);
  4483. c[4] = get_fp_val(gb);
  4484. break;
  4485. case 3:
  4486. c[0] = get_fp_val(gb);
  4487. c[1] = get_fp_val(gb);
  4488. c[2] = get_fp_val(gb);
  4489. c[3] = get_fp_val(gb);
  4490. c[4] = get_fp_val(gb);
  4491. break;
  4492. }
  4493. c[5] = get_fp_val(gb);
  4494. if (get_bits1(gb))
  4495. c[6] = get_fp_val(gb);
  4496. else
  4497. c[6] = 1 << 16;
  4498. }
  4499. static void vc1_parse_sprites(VC1Context *v, GetBitContext* gb, SpriteData* sd)
  4500. {
  4501. AVCodecContext *avctx = v->s.avctx;
  4502. int sprite, i;
  4503. for (sprite = 0; sprite <= v->two_sprites; sprite++) {
  4504. vc1_sprite_parse_transform(gb, sd->coefs[sprite]);
  4505. if (sd->coefs[sprite][1] || sd->coefs[sprite][3])
  4506. av_log_ask_for_sample(avctx, "Rotation coefficients are not zero");
  4507. av_log(avctx, AV_LOG_DEBUG, sprite ? "S2:" : "S1:");
  4508. for (i = 0; i < 7; i++)
  4509. av_log(avctx, AV_LOG_DEBUG, " %d.%.3d",
  4510. sd->coefs[sprite][i] / (1<<16),
  4511. (abs(sd->coefs[sprite][i]) & 0xFFFF) * 1000 / (1 << 16));
  4512. av_log(avctx, AV_LOG_DEBUG, "\n");
  4513. }
  4514. skip_bits(gb, 2);
  4515. if (sd->effect_type = get_bits_long(gb, 30)) {
  4516. switch (sd->effect_pcount1 = get_bits(gb, 4)) {
  4517. case 7:
  4518. vc1_sprite_parse_transform(gb, sd->effect_params1);
  4519. break;
  4520. case 14:
  4521. vc1_sprite_parse_transform(gb, sd->effect_params1);
  4522. vc1_sprite_parse_transform(gb, sd->effect_params1 + 7);
  4523. break;
  4524. default:
  4525. for (i = 0; i < sd->effect_pcount1; i++)
  4526. sd->effect_params1[i] = get_fp_val(gb);
  4527. }
  4528. if (sd->effect_type != 13 || sd->effect_params1[0] != sd->coefs[0][6]) {
  4529. // effect 13 is simple alpha blending and matches the opacity above
  4530. av_log(avctx, AV_LOG_DEBUG, "Effect: %d; params: ", sd->effect_type);
  4531. for (i = 0; i < sd->effect_pcount1; i++)
  4532. av_log(avctx, AV_LOG_DEBUG, " %d.%.2d",
  4533. sd->effect_params1[i] / (1 << 16),
  4534. (abs(sd->effect_params1[i]) & 0xFFFF) * 1000 / (1 << 16));
  4535. av_log(avctx, AV_LOG_DEBUG, "\n");
  4536. }
  4537. sd->effect_pcount2 = get_bits(gb, 16);
  4538. if (sd->effect_pcount2 > 10) {
  4539. av_log(avctx, AV_LOG_ERROR, "Too many effect parameters\n");
  4540. return;
  4541. } else if (sd->effect_pcount2) {
  4542. i = -1;
  4543. av_log(avctx, AV_LOG_DEBUG, "Effect params 2: ");
  4544. while (++i < sd->effect_pcount2) {
  4545. sd->effect_params2[i] = get_fp_val(gb);
  4546. av_log(avctx, AV_LOG_DEBUG, " %d.%.2d",
  4547. sd->effect_params2[i] / (1 << 16),
  4548. (abs(sd->effect_params2[i]) & 0xFFFF) * 1000 / (1 << 16));
  4549. }
  4550. av_log(avctx, AV_LOG_DEBUG, "\n");
  4551. }
  4552. }
  4553. if (sd->effect_flag = get_bits1(gb))
  4554. av_log(avctx, AV_LOG_DEBUG, "Effect flag set\n");
  4555. if (get_bits_count(gb) >= gb->size_in_bits +
  4556. (avctx->codec_id == CODEC_ID_WMV3IMAGE ? 64 : 0))
  4557. av_log(avctx, AV_LOG_ERROR, "Buffer overrun\n");
  4558. if (get_bits_count(gb) < gb->size_in_bits - 8)
  4559. av_log(avctx, AV_LOG_WARNING, "Buffer not fully read\n");
  4560. }
  4561. static void vc1_draw_sprites(VC1Context *v, SpriteData* sd)
  4562. {
  4563. int i, plane, row, sprite;
  4564. int sr_cache[2][2] = { { -1, -1 }, { -1, -1 } };
  4565. uint8_t* src_h[2][2];
  4566. int xoff[2], xadv[2], yoff[2], yadv[2], alpha;
  4567. int ysub[2];
  4568. MpegEncContext *s = &v->s;
  4569. for (i = 0; i < 2; i++) {
  4570. xoff[i] = av_clip(sd->coefs[i][2], 0, v->sprite_width-1 << 16);
  4571. xadv[i] = sd->coefs[i][0];
  4572. if (xadv[i] != 1<<16 || (v->sprite_width << 16) - (v->output_width << 16) - xoff[i])
  4573. xadv[i] = av_clip(xadv[i], 0, ((v->sprite_width<<16) - xoff[i] - 1) / v->output_width);
  4574. yoff[i] = av_clip(sd->coefs[i][5], 0, v->sprite_height-1 << 16);
  4575. yadv[i] = av_clip(sd->coefs[i][4], 0, ((v->sprite_height << 16) - yoff[i]) / v->output_height);
  4576. }
  4577. alpha = av_clip(sd->coefs[1][6], 0, (1<<16) - 1);
  4578. for (plane = 0; plane < (s->flags&CODEC_FLAG_GRAY ? 1 : 3); plane++) {
  4579. int width = v->output_width>>!!plane;
  4580. for (row = 0; row < v->output_height>>!!plane; row++) {
  4581. uint8_t *dst = v->sprite_output_frame.data[plane] +
  4582. v->sprite_output_frame.linesize[plane] * row;
  4583. for (sprite = 0; sprite <= v->two_sprites; sprite++) {
  4584. uint8_t *iplane = s->current_picture.f.data[plane];
  4585. int iline = s->current_picture.f.linesize[plane];
  4586. int ycoord = yoff[sprite] + yadv[sprite] * row;
  4587. int yline = ycoord >> 16;
  4588. ysub[sprite] = ycoord & 0xFFFF;
  4589. if (sprite) {
  4590. iplane = s->last_picture.f.data[plane];
  4591. iline = s->last_picture.f.linesize[plane];
  4592. }
  4593. if (!(xoff[sprite] & 0xFFFF) && xadv[sprite] == 1 << 16) {
  4594. src_h[sprite][0] = iplane + (xoff[sprite] >> 16) + yline * iline;
  4595. if (ysub[sprite])
  4596. src_h[sprite][1] = iplane + (xoff[sprite] >> 16) + FFMIN(yline + 1, (v->sprite_height>>!!plane)-1) * iline;
  4597. } else {
  4598. if (sr_cache[sprite][0] != yline) {
  4599. if (sr_cache[sprite][1] == yline) {
  4600. FFSWAP(uint8_t*, v->sr_rows[sprite][0], v->sr_rows[sprite][1]);
  4601. FFSWAP(int, sr_cache[sprite][0], sr_cache[sprite][1]);
  4602. } else {
  4603. v->vc1dsp.sprite_h(v->sr_rows[sprite][0], iplane + yline * iline, xoff[sprite], xadv[sprite], width);
  4604. sr_cache[sprite][0] = yline;
  4605. }
  4606. }
  4607. if (ysub[sprite] && sr_cache[sprite][1] != yline + 1) {
  4608. v->vc1dsp.sprite_h(v->sr_rows[sprite][1], iplane + FFMIN(yline + 1, (v->sprite_height>>!!plane)-1) * iline, xoff[sprite], xadv[sprite], width);
  4609. sr_cache[sprite][1] = yline + 1;
  4610. }
  4611. src_h[sprite][0] = v->sr_rows[sprite][0];
  4612. src_h[sprite][1] = v->sr_rows[sprite][1];
  4613. }
  4614. }
  4615. if (!v->two_sprites) {
  4616. if (ysub[0]) {
  4617. v->vc1dsp.sprite_v_single(dst, src_h[0][0], src_h[0][1], ysub[0], width);
  4618. } else {
  4619. memcpy(dst, src_h[0][0], width);
  4620. }
  4621. } else {
  4622. if (ysub[0] && ysub[1]) {
  4623. v->vc1dsp.sprite_v_double_twoscale(dst, src_h[0][0], src_h[0][1], ysub[0],
  4624. src_h[1][0], src_h[1][1], ysub[1], alpha, width);
  4625. } else if (ysub[0]) {
  4626. v->vc1dsp.sprite_v_double_onescale(dst, src_h[0][0], src_h[0][1], ysub[0],
  4627. src_h[1][0], alpha, width);
  4628. } else if (ysub[1]) {
  4629. v->vc1dsp.sprite_v_double_onescale(dst, src_h[1][0], src_h[1][1], ysub[1],
  4630. src_h[0][0], (1<<16)-1-alpha, width);
  4631. } else {
  4632. v->vc1dsp.sprite_v_double_noscale(dst, src_h[0][0], src_h[1][0], alpha, width);
  4633. }
  4634. }
  4635. }
  4636. if (!plane) {
  4637. for (i = 0; i < 2; i++) {
  4638. xoff[i] >>= 1;
  4639. yoff[i] >>= 1;
  4640. }
  4641. }
  4642. }
  4643. }
  4644. static int vc1_decode_sprites(VC1Context *v, GetBitContext* gb)
  4645. {
  4646. MpegEncContext *s = &v->s;
  4647. AVCodecContext *avctx = s->avctx;
  4648. SpriteData sd;
  4649. vc1_parse_sprites(v, gb, &sd);
  4650. if (!s->current_picture.f.data[0]) {
  4651. av_log(avctx, AV_LOG_ERROR, "Got no sprites\n");
  4652. return -1;
  4653. }
  4654. if (v->two_sprites && (!s->last_picture_ptr || !s->last_picture.f.data[0])) {
  4655. av_log(avctx, AV_LOG_WARNING, "Need two sprites, only got one\n");
  4656. v->two_sprites = 0;
  4657. }
  4658. if (v->sprite_output_frame.data[0])
  4659. avctx->release_buffer(avctx, &v->sprite_output_frame);
  4660. v->sprite_output_frame.buffer_hints = FF_BUFFER_HINTS_VALID;
  4661. v->sprite_output_frame.reference = 0;
  4662. if (avctx->get_buffer(avctx, &v->sprite_output_frame) < 0) {
  4663. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  4664. return -1;
  4665. }
  4666. vc1_draw_sprites(v, &sd);
  4667. return 0;
  4668. }
  4669. static void vc1_sprite_flush(AVCodecContext *avctx)
  4670. {
  4671. VC1Context *v = avctx->priv_data;
  4672. MpegEncContext *s = &v->s;
  4673. AVFrame *f = &s->current_picture.f;
  4674. int plane, i;
  4675. /* Windows Media Image codecs have a convergence interval of two keyframes.
  4676. Since we can't enforce it, clear to black the missing sprite. This is
  4677. wrong but it looks better than doing nothing. */
  4678. if (f->data[0])
  4679. for (plane = 0; plane < (s->flags&CODEC_FLAG_GRAY ? 1 : 3); plane++)
  4680. for (i = 0; i < v->sprite_height>>!!plane; i++)
  4681. memset(f->data[plane] + i * f->linesize[plane],
  4682. plane ? 128 : 0, f->linesize[plane]);
  4683. }
  4684. #endif
  4685. static av_cold int vc1_decode_init_alloc_tables(VC1Context *v)
  4686. {
  4687. MpegEncContext *s = &v->s;
  4688. int i;
  4689. /* Allocate mb bitplanes */
  4690. v->mv_type_mb_plane = av_malloc (s->mb_stride * s->mb_height);
  4691. v->direct_mb_plane = av_malloc (s->mb_stride * s->mb_height);
  4692. v->forward_mb_plane = av_malloc (s->mb_stride * s->mb_height);
  4693. v->fieldtx_plane = av_mallocz(s->mb_stride * s->mb_height);
  4694. v->acpred_plane = av_malloc (s->mb_stride * s->mb_height);
  4695. v->over_flags_plane = av_malloc (s->mb_stride * s->mb_height);
  4696. v->n_allocated_blks = s->mb_width + 2;
  4697. v->block = av_malloc(sizeof(*v->block) * v->n_allocated_blks);
  4698. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  4699. v->cbp = v->cbp_base + s->mb_stride;
  4700. v->ttblk_base = av_malloc(sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
  4701. v->ttblk = v->ttblk_base + s->mb_stride;
  4702. v->is_intra_base = av_mallocz(sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
  4703. v->is_intra = v->is_intra_base + s->mb_stride;
  4704. v->luma_mv_base = av_malloc(sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride);
  4705. v->luma_mv = v->luma_mv_base + s->mb_stride;
  4706. /* allocate block type info in that way so it could be used with s->block_index[] */
  4707. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4708. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  4709. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  4710. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  4711. /* allocate memory to store block level MV info */
  4712. v->blk_mv_type_base = av_mallocz( s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4713. v->blk_mv_type = v->blk_mv_type_base + s->b8_stride + 1;
  4714. v->mv_f_base = av_mallocz(2 * (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2));
  4715. v->mv_f[0] = v->mv_f_base + s->b8_stride + 1;
  4716. v->mv_f[1] = v->mv_f[0] + (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4717. v->mv_f_last_base = av_mallocz(2 * (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2));
  4718. v->mv_f_last[0] = v->mv_f_last_base + s->b8_stride + 1;
  4719. v->mv_f_last[1] = v->mv_f_last[0] + (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4720. v->mv_f_next_base = av_mallocz(2 * (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2));
  4721. v->mv_f_next[0] = v->mv_f_next_base + s->b8_stride + 1;
  4722. v->mv_f_next[1] = v->mv_f_next[0] + (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4723. /* Init coded blocks info */
  4724. if (v->profile == PROFILE_ADVANCED) {
  4725. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  4726. // return -1;
  4727. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  4728. // return -1;
  4729. }
  4730. ff_intrax8_common_init(&v->x8,s);
  4731. if (s->avctx->codec_id == CODEC_ID_WMV3IMAGE || s->avctx->codec_id == CODEC_ID_VC1IMAGE) {
  4732. for (i = 0; i < 4; i++)
  4733. if (!(v->sr_rows[i >> 1][i & 1] = av_malloc(v->output_width))) return -1;
  4734. }
  4735. if (!v->mv_type_mb_plane || !v->direct_mb_plane || !v->acpred_plane || !v->over_flags_plane ||
  4736. !v->block || !v->cbp_base || !v->ttblk_base || !v->is_intra_base || !v->luma_mv_base ||
  4737. !v->mb_type_base)
  4738. return -1;
  4739. return 0;
  4740. }
  4741. /** Initialize a VC1/WMV3 decoder
  4742. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  4743. * @todo TODO: Decypher remaining bits in extra_data
  4744. */
  4745. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  4746. {
  4747. VC1Context *v = avctx->priv_data;
  4748. MpegEncContext *s = &v->s;
  4749. GetBitContext gb;
  4750. int i;
  4751. /* save the container output size for WMImage */
  4752. v->output_width = avctx->width;
  4753. v->output_height = avctx->height;
  4754. if (!avctx->extradata_size || !avctx->extradata)
  4755. return -1;
  4756. if (!(avctx->flags & CODEC_FLAG_GRAY))
  4757. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  4758. else
  4759. avctx->pix_fmt = PIX_FMT_GRAY8;
  4760. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  4761. v->s.avctx = avctx;
  4762. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  4763. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  4764. if (avctx->idct_algo == FF_IDCT_AUTO) {
  4765. avctx->idct_algo = FF_IDCT_WMV2;
  4766. }
  4767. if (ff_vc1_init_common(v) < 0)
  4768. return -1;
  4769. ff_vc1dsp_init(&v->vc1dsp);
  4770. if (avctx->codec_id == CODEC_ID_WMV3 || avctx->codec_id == CODEC_ID_WMV3IMAGE) {
  4771. int count = 0;
  4772. // looks like WMV3 has a sequence header stored in the extradata
  4773. // advanced sequence header may be before the first frame
  4774. // the last byte of the extradata is a version number, 1 for the
  4775. // samples we can decode
  4776. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  4777. if (ff_vc1_decode_sequence_header(avctx, v, &gb) < 0)
  4778. return -1;
  4779. count = avctx->extradata_size*8 - get_bits_count(&gb);
  4780. if (count > 0) {
  4781. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  4782. count, get_bits(&gb, count));
  4783. } else if (count < 0) {
  4784. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  4785. }
  4786. } else { // VC1/WVC1/WVP2
  4787. const uint8_t *start = avctx->extradata;
  4788. uint8_t *end = avctx->extradata + avctx->extradata_size;
  4789. const uint8_t *next;
  4790. int size, buf2_size;
  4791. uint8_t *buf2 = NULL;
  4792. int seq_initialized = 0, ep_initialized = 0;
  4793. if (avctx->extradata_size < 16) {
  4794. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  4795. return -1;
  4796. }
  4797. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  4798. start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
  4799. next = start;
  4800. for (; next < end; start = next) {
  4801. next = find_next_marker(start + 4, end);
  4802. size = next - start - 4;
  4803. if (size <= 0)
  4804. continue;
  4805. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  4806. init_get_bits(&gb, buf2, buf2_size * 8);
  4807. switch (AV_RB32(start)) {
  4808. case VC1_CODE_SEQHDR:
  4809. if (ff_vc1_decode_sequence_header(avctx, v, &gb) < 0) {
  4810. av_free(buf2);
  4811. return -1;
  4812. }
  4813. seq_initialized = 1;
  4814. break;
  4815. case VC1_CODE_ENTRYPOINT:
  4816. if (ff_vc1_decode_entry_point(avctx, v, &gb) < 0) {
  4817. av_free(buf2);
  4818. return -1;
  4819. }
  4820. ep_initialized = 1;
  4821. break;
  4822. }
  4823. }
  4824. av_free(buf2);
  4825. if (!seq_initialized || !ep_initialized) {
  4826. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  4827. return -1;
  4828. }
  4829. v->res_sprite = (avctx->codec_tag == MKTAG('W','V','P','2'));
  4830. }
  4831. avctx->profile = v->profile;
  4832. if (v->profile == PROFILE_ADVANCED)
  4833. avctx->level = v->level;
  4834. avctx->has_b_frames = !!avctx->max_b_frames;
  4835. s->mb_width = (avctx->coded_width + 15) >> 4;
  4836. s->mb_height = (avctx->coded_height + 15) >> 4;
  4837. if (v->profile == PROFILE_ADVANCED || v->res_fasttx) {
  4838. for (i = 0; i < 64; i++) {
  4839. #define transpose(x) ((x >> 3) | ((x & 7) << 3))
  4840. v->zz_8x8[0][i] = transpose(ff_wmv1_scantable[0][i]);
  4841. v->zz_8x8[1][i] = transpose(ff_wmv1_scantable[1][i]);
  4842. v->zz_8x8[2][i] = transpose(ff_wmv1_scantable[2][i]);
  4843. v->zz_8x8[3][i] = transpose(ff_wmv1_scantable[3][i]);
  4844. v->zzi_8x8[i] = transpose(ff_vc1_adv_interlaced_8x8_zz[i]);
  4845. }
  4846. v->left_blk_sh = 0;
  4847. v->top_blk_sh = 3;
  4848. } else {
  4849. memcpy(v->zz_8x8, ff_wmv1_scantable, 4*64);
  4850. v->left_blk_sh = 3;
  4851. v->top_blk_sh = 0;
  4852. }
  4853. if (avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE) {
  4854. v->sprite_width = avctx->coded_width;
  4855. v->sprite_height = avctx->coded_height;
  4856. avctx->coded_width = avctx->width = v->output_width;
  4857. avctx->coded_height = avctx->height = v->output_height;
  4858. // prevent 16.16 overflows
  4859. if (v->sprite_width > 1 << 14 ||
  4860. v->sprite_height > 1 << 14 ||
  4861. v->output_width > 1 << 14 ||
  4862. v->output_height > 1 << 14) return -1;
  4863. }
  4864. return 0;
  4865. }
  4866. /** Close a VC1/WMV3 decoder
  4867. * @warning Initial try at using MpegEncContext stuff
  4868. */
  4869. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  4870. {
  4871. VC1Context *v = avctx->priv_data;
  4872. int i;
  4873. if ((avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE)
  4874. && v->sprite_output_frame.data[0])
  4875. avctx->release_buffer(avctx, &v->sprite_output_frame);
  4876. for (i = 0; i < 4; i++)
  4877. av_freep(&v->sr_rows[i >> 1][i & 1]);
  4878. av_freep(&v->hrd_rate);
  4879. av_freep(&v->hrd_buffer);
  4880. ff_MPV_common_end(&v->s);
  4881. av_freep(&v->mv_type_mb_plane);
  4882. av_freep(&v->direct_mb_plane);
  4883. av_freep(&v->forward_mb_plane);
  4884. av_freep(&v->fieldtx_plane);
  4885. av_freep(&v->acpred_plane);
  4886. av_freep(&v->over_flags_plane);
  4887. av_freep(&v->mb_type_base);
  4888. av_freep(&v->blk_mv_type_base);
  4889. av_freep(&v->mv_f_base);
  4890. av_freep(&v->mv_f_last_base);
  4891. av_freep(&v->mv_f_next_base);
  4892. av_freep(&v->block);
  4893. av_freep(&v->cbp_base);
  4894. av_freep(&v->ttblk_base);
  4895. av_freep(&v->is_intra_base); // FIXME use v->mb_type[]
  4896. av_freep(&v->luma_mv_base);
  4897. ff_intrax8_common_end(&v->x8);
  4898. return 0;
  4899. }
  4900. /** Decode a VC1/WMV3 frame
  4901. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  4902. */
  4903. static int vc1_decode_frame(AVCodecContext *avctx, void *data,
  4904. int *data_size, AVPacket *avpkt)
  4905. {
  4906. const uint8_t *buf = avpkt->data;
  4907. int buf_size = avpkt->size, n_slices = 0, i;
  4908. VC1Context *v = avctx->priv_data;
  4909. MpegEncContext *s = &v->s;
  4910. AVFrame *pict = data;
  4911. uint8_t *buf2 = NULL;
  4912. const uint8_t *buf_start = buf;
  4913. int mb_height, n_slices1=-1;
  4914. struct {
  4915. uint8_t *buf;
  4916. GetBitContext gb;
  4917. int mby_start;
  4918. } *slices = NULL, *tmp;
  4919. if(s->flags & CODEC_FLAG_LOW_DELAY)
  4920. s->low_delay = 1;
  4921. /* no supplementary picture */
  4922. if (buf_size == 0 || (buf_size == 4 && AV_RB32(buf) == VC1_CODE_ENDOFSEQ)) {
  4923. /* special case for last picture */
  4924. if (s->low_delay == 0 && s->next_picture_ptr) {
  4925. *pict = s->next_picture_ptr->f;
  4926. s->next_picture_ptr = NULL;
  4927. *data_size = sizeof(AVFrame);
  4928. }
  4929. return 0;
  4930. }
  4931. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU) {
  4932. if (v->profile < PROFILE_ADVANCED)
  4933. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  4934. else
  4935. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  4936. }
  4937. //for advanced profile we may need to parse and unescape data
  4938. if (avctx->codec_id == CODEC_ID_VC1 || avctx->codec_id == CODEC_ID_VC1IMAGE) {
  4939. int buf_size2 = 0;
  4940. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  4941. if (IS_MARKER(AV_RB32(buf))) { /* frame starts with marker and needs to be parsed */
  4942. const uint8_t *start, *end, *next;
  4943. int size;
  4944. next = buf;
  4945. for (start = buf, end = buf + buf_size; next < end; start = next) {
  4946. next = find_next_marker(start + 4, end);
  4947. size = next - start - 4;
  4948. if (size <= 0) continue;
  4949. switch (AV_RB32(start)) {
  4950. case VC1_CODE_FRAME:
  4951. if (avctx->hwaccel ||
  4952. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  4953. buf_start = start;
  4954. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  4955. break;
  4956. case VC1_CODE_FIELD: {
  4957. int buf_size3;
  4958. slices = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  4959. if (!slices)
  4960. goto err;
  4961. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  4962. if (!slices[n_slices].buf)
  4963. goto err;
  4964. buf_size3 = vc1_unescape_buffer(start + 4, size,
  4965. slices[n_slices].buf);
  4966. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  4967. buf_size3 << 3);
  4968. /* assuming that the field marker is at the exact middle,
  4969. hope it's correct */
  4970. slices[n_slices].mby_start = s->mb_height >> 1;
  4971. n_slices1 = n_slices - 1; // index of the last slice of the first field
  4972. n_slices++;
  4973. break;
  4974. }
  4975. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  4976. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  4977. init_get_bits(&s->gb, buf2, buf_size2 * 8);
  4978. ff_vc1_decode_entry_point(avctx, v, &s->gb);
  4979. break;
  4980. case VC1_CODE_SLICE: {
  4981. int buf_size3;
  4982. slices = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  4983. if (!slices)
  4984. goto err;
  4985. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  4986. if (!slices[n_slices].buf)
  4987. goto err;
  4988. buf_size3 = vc1_unescape_buffer(start + 4, size,
  4989. slices[n_slices].buf);
  4990. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  4991. buf_size3 << 3);
  4992. slices[n_slices].mby_start = get_bits(&slices[n_slices].gb, 9);
  4993. n_slices++;
  4994. break;
  4995. }
  4996. }
  4997. }
  4998. } else if (v->interlace && ((buf[0] & 0xC0) == 0xC0)) { /* WVC1 interlaced stores both fields divided by marker */
  4999. const uint8_t *divider;
  5000. int buf_size3;
  5001. divider = find_next_marker(buf, buf + buf_size);
  5002. if ((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD) {
  5003. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  5004. goto err;
  5005. } else { // found field marker, unescape second field
  5006. tmp = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  5007. if (!tmp)
  5008. goto err;
  5009. slices = tmp;
  5010. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5011. if (!slices[n_slices].buf)
  5012. goto err;
  5013. buf_size3 = vc1_unescape_buffer(divider + 4, buf + buf_size - divider - 4, slices[n_slices].buf);
  5014. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  5015. buf_size3 << 3);
  5016. slices[n_slices].mby_start = s->mb_height >> 1;
  5017. n_slices1 = n_slices - 1;
  5018. n_slices++;
  5019. }
  5020. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  5021. } else {
  5022. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  5023. }
  5024. init_get_bits(&s->gb, buf2, buf_size2*8);
  5025. } else
  5026. init_get_bits(&s->gb, buf, buf_size*8);
  5027. if (v->res_sprite) {
  5028. v->new_sprite = !get_bits1(&s->gb);
  5029. v->two_sprites = get_bits1(&s->gb);
  5030. /* res_sprite means a Windows Media Image stream, CODEC_ID_*IMAGE means
  5031. we're using the sprite compositor. These are intentionally kept separate
  5032. so you can get the raw sprites by using the wmv3 decoder for WMVP or
  5033. the vc1 one for WVP2 */
  5034. if (avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE) {
  5035. if (v->new_sprite) {
  5036. // switch AVCodecContext parameters to those of the sprites
  5037. avctx->width = avctx->coded_width = v->sprite_width;
  5038. avctx->height = avctx->coded_height = v->sprite_height;
  5039. } else {
  5040. goto image;
  5041. }
  5042. }
  5043. }
  5044. if (s->context_initialized &&
  5045. (s->width != avctx->coded_width ||
  5046. s->height != avctx->coded_height)) {
  5047. vc1_decode_end(avctx);
  5048. }
  5049. if (!s->context_initialized) {
  5050. if (ff_msmpeg4_decode_init(avctx) < 0 || vc1_decode_init_alloc_tables(v) < 0)
  5051. return -1;
  5052. s->low_delay = !avctx->has_b_frames || v->res_sprite;
  5053. if (v->profile == PROFILE_ADVANCED) {
  5054. s->h_edge_pos = avctx->coded_width;
  5055. s->v_edge_pos = avctx->coded_height;
  5056. }
  5057. }
  5058. /* We need to set current_picture_ptr before reading the header,
  5059. * otherwise we cannot store anything in there. */
  5060. if (s->current_picture_ptr == NULL || s->current_picture_ptr->f.data[0]) {
  5061. int i = ff_find_unused_picture(s, 0);
  5062. if (i < 0)
  5063. goto err;
  5064. s->current_picture_ptr = &s->picture[i];
  5065. }
  5066. // do parse frame header
  5067. v->pic_header_flag = 0;
  5068. if (v->profile < PROFILE_ADVANCED) {
  5069. if (ff_vc1_parse_frame_header(v, &s->gb) < 0) {
  5070. goto err;
  5071. }
  5072. } else {
  5073. if (ff_vc1_parse_frame_header_adv(v, &s->gb) < 0) {
  5074. goto err;
  5075. }
  5076. }
  5077. if ((avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE)
  5078. && s->pict_type != AV_PICTURE_TYPE_I) {
  5079. av_log(v->s.avctx, AV_LOG_ERROR, "Sprite decoder: expected I-frame\n");
  5080. goto err;
  5081. }
  5082. // process pulldown flags
  5083. s->current_picture_ptr->f.repeat_pict = 0;
  5084. // Pulldown flags are only valid when 'broadcast' has been set.
  5085. // So ticks_per_frame will be 2
  5086. if (v->rff) {
  5087. // repeat field
  5088. s->current_picture_ptr->f.repeat_pict = 1;
  5089. } else if (v->rptfrm) {
  5090. // repeat frames
  5091. s->current_picture_ptr->f.repeat_pict = v->rptfrm * 2;
  5092. }
  5093. // for skipping the frame
  5094. s->current_picture.f.pict_type = s->pict_type;
  5095. s->current_picture.f.key_frame = s->pict_type == AV_PICTURE_TYPE_I;
  5096. /* skip B-frames if we don't have reference frames */
  5097. if (s->last_picture_ptr == NULL && (s->pict_type == AV_PICTURE_TYPE_B || s->dropable)) {
  5098. goto err;
  5099. }
  5100. if ((avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B) ||
  5101. (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I) ||
  5102. avctx->skip_frame >= AVDISCARD_ALL) {
  5103. goto end;
  5104. }
  5105. if (s->next_p_frame_damaged) {
  5106. if (s->pict_type == AV_PICTURE_TYPE_B)
  5107. goto end;
  5108. else
  5109. s->next_p_frame_damaged = 0;
  5110. }
  5111. if (ff_MPV_frame_start(s, avctx) < 0) {
  5112. goto err;
  5113. }
  5114. s->me.qpel_put = s->dsp.put_qpel_pixels_tab;
  5115. s->me.qpel_avg = s->dsp.avg_qpel_pixels_tab;
  5116. if ((CONFIG_VC1_VDPAU_DECODER)
  5117. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  5118. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  5119. else if (avctx->hwaccel) {
  5120. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  5121. goto err;
  5122. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  5123. goto err;
  5124. if (avctx->hwaccel->end_frame(avctx) < 0)
  5125. goto err;
  5126. } else {
  5127. ff_er_frame_start(s);
  5128. v->bits = buf_size * 8;
  5129. if (v->field_mode) {
  5130. uint8_t *tmp[2];
  5131. s->current_picture.f.linesize[0] <<= 1;
  5132. s->current_picture.f.linesize[1] <<= 1;
  5133. s->current_picture.f.linesize[2] <<= 1;
  5134. s->linesize <<= 1;
  5135. s->uvlinesize <<= 1;
  5136. tmp[0] = v->mv_f_last[0];
  5137. tmp[1] = v->mv_f_last[1];
  5138. v->mv_f_last[0] = v->mv_f_next[0];
  5139. v->mv_f_last[1] = v->mv_f_next[1];
  5140. v->mv_f_next[0] = v->mv_f[0];
  5141. v->mv_f_next[1] = v->mv_f[1];
  5142. v->mv_f[0] = tmp[0];
  5143. v->mv_f[1] = tmp[1];
  5144. }
  5145. mb_height = s->mb_height >> v->field_mode;
  5146. for (i = 0; i <= n_slices; i++) {
  5147. if (i > 0 && slices[i - 1].mby_start >= mb_height) {
  5148. if(v->field_mode <= 0) {
  5149. av_log(v->s.avctx, AV_LOG_ERROR, "invalid end_mb_y %d\n", slices[i - 1].mby_start);
  5150. continue;
  5151. }
  5152. v->second_field = 1;
  5153. v->blocks_off = s->mb_width * s->mb_height << 1;
  5154. v->mb_off = s->mb_stride * s->mb_height >> 1;
  5155. } else {
  5156. v->second_field = 0;
  5157. v->blocks_off = 0;
  5158. v->mb_off = 0;
  5159. }
  5160. if (i) {
  5161. v->pic_header_flag = 0;
  5162. if (v->field_mode && i == n_slices1 + 2) {
  5163. if (ff_vc1_parse_frame_header_adv(v, &s->gb) < 0) {
  5164. av_log(v->s.avctx, AV_LOG_ERROR, "slice header damaged\n");
  5165. continue;
  5166. }
  5167. } else if (get_bits1(&s->gb)) {
  5168. v->pic_header_flag = 1;
  5169. if (ff_vc1_parse_frame_header_adv(v, &s->gb) < 0) {
  5170. av_log(v->s.avctx, AV_LOG_ERROR, "slice header damaged\n");
  5171. continue;
  5172. }
  5173. }
  5174. }
  5175. s->start_mb_y = (i == 0) ? 0 : FFMAX(0, slices[i-1].mby_start % mb_height);
  5176. if (!v->field_mode || v->second_field)
  5177. s->end_mb_y = (i == n_slices ) ? mb_height : FFMIN(mb_height, slices[i].mby_start % mb_height);
  5178. else
  5179. s->end_mb_y = (i <= n_slices1 + 1) ? mb_height : FFMIN(mb_height, slices[i].mby_start % mb_height);
  5180. if (s->end_mb_y <= s->start_mb_y) {
  5181. av_log(v->s.avctx, AV_LOG_ERROR, "end mb y %d %d invalid\n", s->end_mb_y, s->start_mb_y);
  5182. continue;
  5183. }
  5184. vc1_decode_blocks(v);
  5185. if (i != n_slices)
  5186. s->gb = slices[i].gb;
  5187. }
  5188. if (v->field_mode) {
  5189. v->second_field = 0;
  5190. if (s->pict_type == AV_PICTURE_TYPE_B) {
  5191. memcpy(v->mv_f_base, v->mv_f_next_base,
  5192. 2 * (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2));
  5193. }
  5194. s->current_picture.f.linesize[0] >>= 1;
  5195. s->current_picture.f.linesize[1] >>= 1;
  5196. s->current_picture.f.linesize[2] >>= 1;
  5197. s->linesize >>= 1;
  5198. s->uvlinesize >>= 1;
  5199. }
  5200. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  5201. // if (get_bits_count(&s->gb) > buf_size * 8)
  5202. // return -1;
  5203. if(s->error_occurred && s->pict_type == AV_PICTURE_TYPE_B)
  5204. goto err;
  5205. ff_er_frame_end(s);
  5206. }
  5207. ff_MPV_frame_end(s);
  5208. if (avctx->codec_id == CODEC_ID_WMV3IMAGE || avctx->codec_id == CODEC_ID_VC1IMAGE) {
  5209. image:
  5210. avctx->width = avctx->coded_width = v->output_width;
  5211. avctx->height = avctx->coded_height = v->output_height;
  5212. if (avctx->skip_frame >= AVDISCARD_NONREF)
  5213. goto end;
  5214. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  5215. if (vc1_decode_sprites(v, &s->gb))
  5216. goto err;
  5217. #endif
  5218. *pict = v->sprite_output_frame;
  5219. *data_size = sizeof(AVFrame);
  5220. } else {
  5221. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  5222. *pict = s->current_picture_ptr->f;
  5223. } else if (s->last_picture_ptr != NULL) {
  5224. *pict = s->last_picture_ptr->f;
  5225. }
  5226. if (s->last_picture_ptr || s->low_delay) {
  5227. *data_size = sizeof(AVFrame);
  5228. ff_print_debug_info(s, pict);
  5229. }
  5230. }
  5231. end:
  5232. av_free(buf2);
  5233. for (i = 0; i < n_slices; i++)
  5234. av_free(slices[i].buf);
  5235. av_free(slices);
  5236. return buf_size;
  5237. err:
  5238. av_free(buf2);
  5239. for (i = 0; i < n_slices; i++)
  5240. av_free(slices[i].buf);
  5241. av_free(slices);
  5242. return -1;
  5243. }
  5244. static const AVProfile profiles[] = {
  5245. { FF_PROFILE_VC1_SIMPLE, "Simple" },
  5246. { FF_PROFILE_VC1_MAIN, "Main" },
  5247. { FF_PROFILE_VC1_COMPLEX, "Complex" },
  5248. { FF_PROFILE_VC1_ADVANCED, "Advanced" },
  5249. { FF_PROFILE_UNKNOWN },
  5250. };
  5251. AVCodec ff_vc1_decoder = {
  5252. .name = "vc1",
  5253. .type = AVMEDIA_TYPE_VIDEO,
  5254. .id = CODEC_ID_VC1,
  5255. .priv_data_size = sizeof(VC1Context),
  5256. .init = vc1_decode_init,
  5257. .close = vc1_decode_end,
  5258. .decode = vc1_decode_frame,
  5259. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  5260. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  5261. .pix_fmts = ff_hwaccel_pixfmt_list_420,
  5262. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5263. };
  5264. #if CONFIG_WMV3_DECODER
  5265. AVCodec ff_wmv3_decoder = {
  5266. .name = "wmv3",
  5267. .type = AVMEDIA_TYPE_VIDEO,
  5268. .id = CODEC_ID_WMV3,
  5269. .priv_data_size = sizeof(VC1Context),
  5270. .init = vc1_decode_init,
  5271. .close = vc1_decode_end,
  5272. .decode = vc1_decode_frame,
  5273. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  5274. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  5275. .pix_fmts = ff_hwaccel_pixfmt_list_420,
  5276. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5277. };
  5278. #endif
  5279. #if CONFIG_WMV3_VDPAU_DECODER
  5280. AVCodec ff_wmv3_vdpau_decoder = {
  5281. .name = "wmv3_vdpau",
  5282. .type = AVMEDIA_TYPE_VIDEO,
  5283. .id = CODEC_ID_WMV3,
  5284. .priv_data_size = sizeof(VC1Context),
  5285. .init = vc1_decode_init,
  5286. .close = vc1_decode_end,
  5287. .decode = vc1_decode_frame,
  5288. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  5289. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  5290. .pix_fmts = (const enum PixelFormat[]){ PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE },
  5291. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5292. };
  5293. #endif
  5294. #if CONFIG_VC1_VDPAU_DECODER
  5295. AVCodec ff_vc1_vdpau_decoder = {
  5296. .name = "vc1_vdpau",
  5297. .type = AVMEDIA_TYPE_VIDEO,
  5298. .id = CODEC_ID_VC1,
  5299. .priv_data_size = sizeof(VC1Context),
  5300. .init = vc1_decode_init,
  5301. .close = vc1_decode_end,
  5302. .decode = vc1_decode_frame,
  5303. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  5304. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  5305. .pix_fmts = (const enum PixelFormat[]){ PIX_FMT_VDPAU_VC1, PIX_FMT_NONE },
  5306. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5307. };
  5308. #endif
  5309. #if CONFIG_WMV3IMAGE_DECODER
  5310. AVCodec ff_wmv3image_decoder = {
  5311. .name = "wmv3image",
  5312. .type = AVMEDIA_TYPE_VIDEO,
  5313. .id = CODEC_ID_WMV3IMAGE,
  5314. .priv_data_size = sizeof(VC1Context),
  5315. .init = vc1_decode_init,
  5316. .close = vc1_decode_end,
  5317. .decode = vc1_decode_frame,
  5318. .capabilities = CODEC_CAP_DR1,
  5319. .flush = vc1_sprite_flush,
  5320. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 Image"),
  5321. .pix_fmts = ff_pixfmt_list_420
  5322. };
  5323. #endif
  5324. #if CONFIG_VC1IMAGE_DECODER
  5325. AVCodec ff_vc1image_decoder = {
  5326. .name = "vc1image",
  5327. .type = AVMEDIA_TYPE_VIDEO,
  5328. .id = CODEC_ID_VC1IMAGE,
  5329. .priv_data_size = sizeof(VC1Context),
  5330. .init = vc1_decode_init,
  5331. .close = vc1_decode_end,
  5332. .decode = vc1_decode_frame,
  5333. .capabilities = CODEC_CAP_DR1,
  5334. .flush = vc1_sprite_flush,
  5335. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 Image v2"),
  5336. .pix_fmts = ff_pixfmt_list_420
  5337. };
  5338. #endif