You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2067 lines
67KB

  1. /*
  2. * FFV1 codec for libavcodec
  3. *
  4. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec)
  25. */
  26. #include "avcodec.h"
  27. #include "internal.h"
  28. #include "get_bits.h"
  29. #include "put_bits.h"
  30. #include "dsputil.h"
  31. #include "rangecoder.h"
  32. #include "golomb.h"
  33. #include "mathops.h"
  34. #include "libavutil/pixdesc.h"
  35. #include "libavutil/avassert.h"
  36. #include "libavutil/crc.h"
  37. #include "libavutil/opt.h"
  38. #ifdef __INTEL_COMPILER
  39. #undef av_flatten
  40. #define av_flatten
  41. #endif
  42. #define MAX_PLANES 4
  43. #define CONTEXT_SIZE 32
  44. #define MAX_QUANT_TABLES 8
  45. #define MAX_CONTEXT_INPUTS 5
  46. extern const uint8_t ff_log2_run[41];
  47. static const int8_t quant5_10bit[256]={
  48. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  49. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  50. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  51. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  52. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  53. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  54. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  55. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  56. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  57. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  58. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  59. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  60. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,
  61. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  62. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  63. -1,-1,-1,-1,-1,-1,-0,-0,-0,-0,-0,-0,-0,-0,-0,-0,
  64. };
  65. static const int8_t quant5[256]={
  66. 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  67. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  68. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  69. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  70. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  71. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  72. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  73. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  74. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  75. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  76. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  77. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  78. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  79. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  80. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  81. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
  82. };
  83. static const int8_t quant9_10bit[256]={
  84. 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  85. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
  86. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  87. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  88. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  89. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  90. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  91. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  92. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  93. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  94. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  95. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  96. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,
  97. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  98. -3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  99. -2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-0,-0,-0,-0,
  100. };
  101. static const int8_t quant11[256]={
  102. 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
  103. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  104. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  105. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  106. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  107. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  108. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  109. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  110. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  111. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  112. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  113. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  114. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  115. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
  116. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  117. -4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
  118. };
  119. static const uint8_t ver2_state[256]= {
  120. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
  121. 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
  122. 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
  123. 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
  124. 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
  125. 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
  126. 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
  127. 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
  128. 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
  129. 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
  130. 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
  131. 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
  132. 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
  133. 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
  134. 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
  135. 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
  136. };
  137. typedef struct VlcState{
  138. int16_t drift;
  139. uint16_t error_sum;
  140. int8_t bias;
  141. uint8_t count;
  142. } VlcState;
  143. typedef struct PlaneContext{
  144. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  145. int quant_table_index;
  146. int context_count;
  147. uint8_t (*state)[CONTEXT_SIZE];
  148. VlcState *vlc_state;
  149. uint8_t interlace_bit_state[2];
  150. } PlaneContext;
  151. #define MAX_SLICES 256
  152. typedef struct FFV1Context{
  153. AVClass *class;
  154. AVCodecContext *avctx;
  155. RangeCoder c;
  156. GetBitContext gb;
  157. PutBitContext pb;
  158. uint64_t rc_stat[256][2];
  159. uint64_t (*rc_stat2[MAX_QUANT_TABLES])[32][2];
  160. int version;
  161. int minor_version;
  162. int width, height;
  163. int chroma_h_shift, chroma_v_shift;
  164. int chroma_planes;
  165. int transparency;
  166. int flags;
  167. int picture_number;
  168. AVFrame picture;
  169. int plane_count;
  170. int ac; ///< 1=range coder <-> 0=golomb rice
  171. int ac_byte_count; ///< number of bytes used for AC coding
  172. PlaneContext plane[MAX_PLANES];
  173. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  174. int16_t quant_tables[MAX_QUANT_TABLES][MAX_CONTEXT_INPUTS][256];
  175. int context_count[MAX_QUANT_TABLES];
  176. uint8_t state_transition[256];
  177. uint8_t (*initial_states[MAX_QUANT_TABLES])[32];
  178. int run_index;
  179. int colorspace;
  180. int16_t *sample_buffer;
  181. int gob_count;
  182. int packed_at_lsb;
  183. int ec;
  184. int key_frame_ok;
  185. int quant_table_count;
  186. DSPContext dsp;
  187. struct FFV1Context *slice_context[MAX_SLICES];
  188. int slice_count;
  189. int num_v_slices;
  190. int num_h_slices;
  191. int slice_width;
  192. int slice_height;
  193. int slice_x;
  194. int slice_y;
  195. int bits_per_raw_sample;
  196. }FFV1Context;
  197. static av_always_inline int fold(int diff, int bits){
  198. if(bits==8)
  199. diff= (int8_t)diff;
  200. else{
  201. diff+= 1<<(bits-1);
  202. diff&=(1<<bits)-1;
  203. diff-= 1<<(bits-1);
  204. }
  205. return diff;
  206. }
  207. static inline int predict(int16_t *src, int16_t *last)
  208. {
  209. const int LT= last[-1];
  210. const int T= last[ 0];
  211. const int L = src[-1];
  212. return mid_pred(L, L + T - LT, T);
  213. }
  214. static inline int get_context(PlaneContext *p, int16_t *src,
  215. int16_t *last, int16_t *last2)
  216. {
  217. const int LT= last[-1];
  218. const int T= last[ 0];
  219. const int RT= last[ 1];
  220. const int L = src[-1];
  221. if(p->quant_table[3][127]){
  222. const int TT= last2[0];
  223. const int LL= src[-2];
  224. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF]
  225. +p->quant_table[3][(LL-L) & 0xFF] + p->quant_table[4][(TT-T) & 0xFF];
  226. }else
  227. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF];
  228. }
  229. static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256]){
  230. int i,j,k,m;
  231. double l2tab[256];
  232. for(i=1; i<256; i++)
  233. l2tab[i]= log2(i/256.0);
  234. for(i=0; i<256; i++){
  235. double best_len[256];
  236. double p= i/256.0;
  237. for(j=0; j<256; j++)
  238. best_len[j]= 1<<30;
  239. for(j=FFMAX(i-10,1); j<FFMIN(i+11,256); j++){
  240. double occ[256]={0};
  241. double len=0;
  242. occ[j]=1.0;
  243. for(k=0; k<256; k++){
  244. double newocc[256]={0};
  245. for(m=0; m<256; m++){
  246. if(occ[m]){
  247. len -=occ[m]*( p *l2tab[ m]
  248. + (1-p)*l2tab[256-m]);
  249. }
  250. }
  251. if(len < best_len[k]){
  252. best_len[k]= len;
  253. best_state[i][k]= j;
  254. }
  255. for(m=0; m<256; m++){
  256. if(occ[m]){
  257. newocc[ one_state[ m]] += occ[m]* p ;
  258. newocc[256-one_state[256-m]] += occ[m]*(1-p);
  259. }
  260. }
  261. memcpy(occ, newocc, sizeof(occ));
  262. }
  263. }
  264. }
  265. }
  266. static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){
  267. int i;
  268. #define put_rac(C,S,B) \
  269. do{\
  270. if(rc_stat){\
  271. rc_stat[*(S)][B]++;\
  272. rc_stat2[(S)-state][B]++;\
  273. }\
  274. put_rac(C,S,B);\
  275. }while(0)
  276. if(v){
  277. const int a= FFABS(v);
  278. const int e= av_log2(a);
  279. put_rac(c, state+0, 0);
  280. if(e<=9){
  281. for(i=0; i<e; i++){
  282. put_rac(c, state+1+i, 1); //1..10
  283. }
  284. put_rac(c, state+1+i, 0);
  285. for(i=e-1; i>=0; i--){
  286. put_rac(c, state+22+i, (a>>i)&1); //22..31
  287. }
  288. if(is_signed)
  289. put_rac(c, state+11 + e, v < 0); //11..21
  290. }else{
  291. for(i=0; i<e; i++){
  292. put_rac(c, state+1+FFMIN(i,9), 1); //1..10
  293. }
  294. put_rac(c, state+1+9, 0);
  295. for(i=e-1; i>=0; i--){
  296. put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
  297. }
  298. if(is_signed)
  299. put_rac(c, state+11 + 10, v < 0); //11..21
  300. }
  301. }else{
  302. put_rac(c, state+0, 1);
  303. }
  304. #undef put_rac
  305. }
  306. static av_noinline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
  307. put_symbol_inline(c, state, v, is_signed, NULL, NULL);
  308. }
  309. static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed){
  310. if(get_rac(c, state+0))
  311. return 0;
  312. else{
  313. int i, e, a;
  314. e= 0;
  315. while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
  316. e++;
  317. }
  318. a= 1;
  319. for(i=e-1; i>=0; i--){
  320. a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
  321. }
  322. e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
  323. return (a^e)-e;
  324. }
  325. }
  326. static av_noinline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
  327. return get_symbol_inline(c, state, is_signed);
  328. }
  329. static inline void update_vlc_state(VlcState * const state, const int v){
  330. int drift= state->drift;
  331. int count= state->count;
  332. state->error_sum += FFABS(v);
  333. drift += v;
  334. if(count == 128){ //FIXME variable
  335. count >>= 1;
  336. drift >>= 1;
  337. state->error_sum >>= 1;
  338. }
  339. count++;
  340. if(drift <= -count){
  341. if(state->bias > -128) state->bias--;
  342. drift += count;
  343. if(drift <= -count)
  344. drift= -count + 1;
  345. }else if(drift > 0){
  346. if(state->bias < 127) state->bias++;
  347. drift -= count;
  348. if(drift > 0)
  349. drift= 0;
  350. }
  351. state->drift= drift;
  352. state->count= count;
  353. }
  354. static inline void put_vlc_symbol(PutBitContext *pb, VlcState * const state, int v, int bits){
  355. int i, k, code;
  356. //printf("final: %d ", v);
  357. v = fold(v - state->bias, bits);
  358. i= state->count;
  359. k=0;
  360. while(i < state->error_sum){ //FIXME optimize
  361. k++;
  362. i += i;
  363. }
  364. assert(k<=8);
  365. #if 0 // JPEG LS
  366. if(k==0 && 2*state->drift <= - state->count) code= v ^ (-1);
  367. else code= v;
  368. #else
  369. code= v ^ ((2*state->drift + state->count)>>31);
  370. #endif
  371. //printf("v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code, state->bias, state->error_sum, state->drift, state->count, k);
  372. set_sr_golomb(pb, code, k, 12, bits);
  373. update_vlc_state(state, v);
  374. }
  375. static inline int get_vlc_symbol(GetBitContext *gb, VlcState * const state, int bits){
  376. int k, i, v, ret;
  377. i= state->count;
  378. k=0;
  379. while(i < state->error_sum){ //FIXME optimize
  380. k++;
  381. i += i;
  382. }
  383. assert(k<=8);
  384. v= get_sr_golomb(gb, k, 12, bits);
  385. //printf("v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k);
  386. #if 0 // JPEG LS
  387. if(k==0 && 2*state->drift <= - state->count) v ^= (-1);
  388. #else
  389. v ^= ((2*state->drift + state->count)>>31);
  390. #endif
  391. ret= fold(v + state->bias, bits);
  392. update_vlc_state(state, v);
  393. //printf("final: %d\n", ret);
  394. return ret;
  395. }
  396. #if CONFIG_FFV1_ENCODER
  397. static av_always_inline int encode_line(FFV1Context *s, int w,
  398. int16_t *sample[3],
  399. int plane_index, int bits)
  400. {
  401. PlaneContext * const p= &s->plane[plane_index];
  402. RangeCoder * const c= &s->c;
  403. int x;
  404. int run_index= s->run_index;
  405. int run_count=0;
  406. int run_mode=0;
  407. if(s->ac){
  408. if(c->bytestream_end - c->bytestream < w*20){
  409. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  410. return -1;
  411. }
  412. }else{
  413. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < w*4){
  414. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  415. return -1;
  416. }
  417. }
  418. for(x=0; x<w; x++){
  419. int diff, context;
  420. context= get_context(p, sample[0]+x, sample[1]+x, sample[2]+x);
  421. diff= sample[0][x] - predict(sample[0]+x, sample[1]+x);
  422. if(context < 0){
  423. context = -context;
  424. diff= -diff;
  425. }
  426. diff= fold(diff, bits);
  427. if(s->ac){
  428. if(s->flags & CODEC_FLAG_PASS1){
  429. put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat, s->rc_stat2[p->quant_table_index][context]);
  430. }else{
  431. put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
  432. }
  433. }else{
  434. if(context == 0) run_mode=1;
  435. if(run_mode){
  436. if(diff){
  437. while(run_count >= 1<<ff_log2_run[run_index]){
  438. run_count -= 1<<ff_log2_run[run_index];
  439. run_index++;
  440. put_bits(&s->pb, 1, 1);
  441. }
  442. put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
  443. if(run_index) run_index--;
  444. run_count=0;
  445. run_mode=0;
  446. if(diff>0) diff--;
  447. }else{
  448. run_count++;
  449. }
  450. }
  451. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, (int)put_bits_count(&s->pb));
  452. if(run_mode == 0)
  453. put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
  454. }
  455. }
  456. if(run_mode){
  457. while(run_count >= 1<<ff_log2_run[run_index]){
  458. run_count -= 1<<ff_log2_run[run_index];
  459. run_index++;
  460. put_bits(&s->pb, 1, 1);
  461. }
  462. if(run_count)
  463. put_bits(&s->pb, 1, 1);
  464. }
  465. s->run_index= run_index;
  466. return 0;
  467. }
  468. static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  469. int x,y,i;
  470. const int ring_size= s->avctx->context_model ? 3 : 2;
  471. int16_t *sample[3];
  472. s->run_index=0;
  473. memset(s->sample_buffer, 0, ring_size*(w+6)*sizeof(*s->sample_buffer));
  474. for(y=0; y<h; y++){
  475. for(i=0; i<ring_size; i++)
  476. sample[i]= s->sample_buffer + (w+6)*((h+i-y)%ring_size) + 3;
  477. sample[0][-1]= sample[1][0 ];
  478. sample[1][ w]= sample[1][w-1];
  479. //{START_TIMER
  480. if(s->bits_per_raw_sample<=8){
  481. for(x=0; x<w; x++){
  482. sample[0][x]= src[x + stride*y];
  483. }
  484. encode_line(s, w, sample, plane_index, 8);
  485. }else{
  486. if(s->packed_at_lsb){
  487. for(x=0; x<w; x++){
  488. sample[0][x]= ((uint16_t*)(src + stride*y))[x];
  489. }
  490. }else{
  491. for(x=0; x<w; x++){
  492. sample[0][x]= ((uint16_t*)(src + stride*y))[x] >> (16 - s->bits_per_raw_sample);
  493. }
  494. }
  495. encode_line(s, w, sample, plane_index, s->bits_per_raw_sample);
  496. }
  497. //STOP_TIMER("encode line")}
  498. }
  499. }
  500. static void encode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  501. int x, y, p, i;
  502. const int ring_size= s->avctx->context_model ? 3 : 2;
  503. int16_t *sample[4][3];
  504. s->run_index=0;
  505. memset(s->sample_buffer, 0, ring_size*4*(w+6)*sizeof(*s->sample_buffer));
  506. for(y=0; y<h; y++){
  507. for(i=0; i<ring_size; i++)
  508. for(p=0; p<4; p++)
  509. sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
  510. for(x=0; x<w; x++){
  511. unsigned v= src[x + stride*y];
  512. int b= v&0xFF;
  513. int g= (v>>8)&0xFF;
  514. int r= (v>>16)&0xFF;
  515. int a= v>>24;
  516. b -= g;
  517. r -= g;
  518. g += (b + r)>>2;
  519. b += 0x100;
  520. r += 0x100;
  521. // assert(g>=0 && b>=0 && r>=0);
  522. // assert(g<256 && b<512 && r<512);
  523. sample[0][0][x]= g;
  524. sample[1][0][x]= b;
  525. sample[2][0][x]= r;
  526. sample[3][0][x]= a;
  527. }
  528. for(p=0; p<3 + s->transparency; p++){
  529. sample[p][0][-1]= sample[p][1][0 ];
  530. sample[p][1][ w]= sample[p][1][w-1];
  531. encode_line(s, w, sample[p], (p+1)/2, 9);
  532. }
  533. }
  534. }
  535. static void write_quant_table(RangeCoder *c, int16_t *quant_table){
  536. int last=0;
  537. int i;
  538. uint8_t state[CONTEXT_SIZE];
  539. memset(state, 128, sizeof(state));
  540. for(i=1; i<128 ; i++){
  541. if(quant_table[i] != quant_table[i-1]){
  542. put_symbol(c, state, i-last-1, 0);
  543. last= i;
  544. }
  545. }
  546. put_symbol(c, state, i-last-1, 0);
  547. }
  548. static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  549. int i;
  550. for(i=0; i<5; i++)
  551. write_quant_table(c, quant_table[i]);
  552. }
  553. static void write_header(FFV1Context *f){
  554. uint8_t state[CONTEXT_SIZE];
  555. int i, j;
  556. RangeCoder * const c= &f->slice_context[0]->c;
  557. memset(state, 128, sizeof(state));
  558. if(f->version < 2){
  559. put_symbol(c, state, f->version, 0);
  560. put_symbol(c, state, f->ac, 0);
  561. if(f->ac>1){
  562. for(i=1; i<256; i++){
  563. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  564. }
  565. }
  566. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  567. if(f->version>0)
  568. put_symbol(c, state, f->bits_per_raw_sample, 0);
  569. put_rac(c, state, f->chroma_planes);
  570. put_symbol(c, state, f->chroma_h_shift, 0);
  571. put_symbol(c, state, f->chroma_v_shift, 0);
  572. put_rac(c, state, f->transparency);
  573. write_quant_tables(c, f->quant_table);
  574. }else if(f->version < 3){
  575. put_symbol(c, state, f->slice_count, 0);
  576. for(i=0; i<f->slice_count; i++){
  577. FFV1Context *fs= f->slice_context[i];
  578. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  579. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  580. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  581. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  582. for(j=0; j<f->plane_count; j++){
  583. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  584. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  585. }
  586. }
  587. }
  588. }
  589. #endif /* CONFIG_FFV1_ENCODER */
  590. static av_cold int common_init(AVCodecContext *avctx){
  591. FFV1Context *s = avctx->priv_data;
  592. s->avctx= avctx;
  593. s->flags= avctx->flags;
  594. avcodec_get_frame_defaults(&s->picture);
  595. ff_dsputil_init(&s->dsp, avctx);
  596. s->width = avctx->width;
  597. s->height= avctx->height;
  598. assert(s->width && s->height);
  599. //defaults
  600. s->num_h_slices=1;
  601. s->num_v_slices=1;
  602. return 0;
  603. }
  604. static int init_slice_state(FFV1Context *f, FFV1Context *fs){
  605. int j;
  606. fs->plane_count= f->plane_count;
  607. fs->transparency= f->transparency;
  608. for(j=0; j<f->plane_count; j++){
  609. PlaneContext * const p= &fs->plane[j];
  610. if(fs->ac){
  611. if(!p-> state) p-> state= av_malloc(CONTEXT_SIZE*p->context_count*sizeof(uint8_t));
  612. if(!p-> state)
  613. return AVERROR(ENOMEM);
  614. }else{
  615. if(!p->vlc_state) p->vlc_state= av_malloc(p->context_count*sizeof(VlcState));
  616. if(!p->vlc_state)
  617. return AVERROR(ENOMEM);
  618. }
  619. }
  620. if (fs->ac>1){
  621. //FIXME only redo if state_transition changed
  622. for(j=1; j<256; j++){
  623. fs->c.one_state [ j]= fs->state_transition[j];
  624. fs->c.zero_state[256-j]= 256-fs->c.one_state [j];
  625. }
  626. }
  627. return 0;
  628. }
  629. static int init_slices_state(FFV1Context *f){
  630. int i;
  631. for(i=0; i<f->slice_count; i++){
  632. FFV1Context *fs= f->slice_context[i];
  633. if(init_slice_state(f, fs) < 0)
  634. return -1;
  635. }
  636. return 0;
  637. }
  638. static av_cold int init_slice_contexts(FFV1Context *f){
  639. int i;
  640. f->slice_count= f->num_h_slices * f->num_v_slices;
  641. for(i=0; i<f->slice_count; i++){
  642. FFV1Context *fs= av_mallocz(sizeof(*fs));
  643. int sx= i % f->num_h_slices;
  644. int sy= i / f->num_h_slices;
  645. int sxs= f->avctx->width * sx / f->num_h_slices;
  646. int sxe= f->avctx->width *(sx+1) / f->num_h_slices;
  647. int sys= f->avctx->height* sy / f->num_v_slices;
  648. int sye= f->avctx->height*(sy+1) / f->num_v_slices;
  649. f->slice_context[i]= fs;
  650. memcpy(fs, f, sizeof(*fs));
  651. memset(fs->rc_stat2, 0, sizeof(fs->rc_stat2));
  652. fs->slice_width = sxe - sxs;
  653. fs->slice_height= sye - sys;
  654. fs->slice_x = sxs;
  655. fs->slice_y = sys;
  656. fs->sample_buffer = av_malloc(3*4 * (fs->width+6) * sizeof(*fs->sample_buffer));
  657. if (!fs->sample_buffer)
  658. return AVERROR(ENOMEM);
  659. }
  660. return 0;
  661. }
  662. static int allocate_initial_states(FFV1Context *f){
  663. int i;
  664. for(i=0; i<f->quant_table_count; i++){
  665. f->initial_states[i]= av_malloc(f->context_count[i]*sizeof(*f->initial_states[i]));
  666. if(!f->initial_states[i])
  667. return AVERROR(ENOMEM);
  668. memset(f->initial_states[i], 128, f->context_count[i]*sizeof(*f->initial_states[i]));
  669. }
  670. return 0;
  671. }
  672. #if CONFIG_FFV1_ENCODER
  673. static int write_extra_header(FFV1Context *f){
  674. RangeCoder * const c= &f->c;
  675. uint8_t state[CONTEXT_SIZE];
  676. int i, j, k;
  677. uint8_t state2[32][CONTEXT_SIZE];
  678. unsigned v;
  679. memset(state2, 128, sizeof(state2));
  680. memset(state, 128, sizeof(state));
  681. f->avctx->extradata= av_malloc(f->avctx->extradata_size= 10000 + (11*11*5*5*5+11*11*11)*32);
  682. ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
  683. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  684. put_symbol(c, state, f->version, 0);
  685. if(f->version > 2)
  686. put_symbol(c, state, f->minor_version, 0);
  687. put_symbol(c, state, f->ac, 0);
  688. if(f->ac>1){
  689. for(i=1; i<256; i++){
  690. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  691. }
  692. }
  693. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  694. put_symbol(c, state, f->bits_per_raw_sample, 0);
  695. put_rac(c, state, f->chroma_planes);
  696. put_symbol(c, state, f->chroma_h_shift, 0);
  697. put_symbol(c, state, f->chroma_v_shift, 0);
  698. put_rac(c, state, f->transparency);
  699. put_symbol(c, state, f->num_h_slices-1, 0);
  700. put_symbol(c, state, f->num_v_slices-1, 0);
  701. put_symbol(c, state, f->quant_table_count, 0);
  702. for(i=0; i<f->quant_table_count; i++)
  703. write_quant_tables(c, f->quant_tables[i]);
  704. for(i=0; i<f->quant_table_count; i++){
  705. for(j=0; j<f->context_count[i]*CONTEXT_SIZE; j++)
  706. if(f->initial_states[i] && f->initial_states[i][0][j] != 128)
  707. break;
  708. if(j<f->context_count[i]*CONTEXT_SIZE){
  709. put_rac(c, state, 1);
  710. for(j=0; j<f->context_count[i]; j++){
  711. for(k=0; k<CONTEXT_SIZE; k++){
  712. int pred= j ? f->initial_states[i][j-1][k] : 128;
  713. put_symbol(c, state2[k], (int8_t)(f->initial_states[i][j][k]-pred), 1);
  714. }
  715. }
  716. }else{
  717. put_rac(c, state, 0);
  718. }
  719. }
  720. if(f->version > 2){
  721. put_symbol(c, state, f->ec, 0);
  722. }
  723. f->avctx->extradata_size= ff_rac_terminate(c);
  724. v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, f->avctx->extradata, f->avctx->extradata_size);
  725. AV_WL32(f->avctx->extradata + f->avctx->extradata_size, v);
  726. f->avctx->extradata_size += 4;
  727. return 0;
  728. }
  729. static int sort_stt(FFV1Context *s, uint8_t stt[256]){
  730. int i,i2,changed,print=0;
  731. do{
  732. changed=0;
  733. for(i=12; i<244; i++){
  734. for(i2=i+1; i2<245 && i2<i+4; i2++){
  735. #define COST(old, new) \
  736. s->rc_stat[old][0]*-log2((256-(new))/256.0)\
  737. +s->rc_stat[old][1]*-log2( (new) /256.0)
  738. #define COST2(old, new) \
  739. COST(old, new)\
  740. +COST(256-(old), 256-(new))
  741. double size0= COST2(i, i ) + COST2(i2, i2);
  742. double sizeX= COST2(i, i2) + COST2(i2, i );
  743. if(sizeX < size0 && i!=128 && i2!=128){
  744. int j;
  745. FFSWAP(int, stt[ i], stt[ i2]);
  746. FFSWAP(int, s->rc_stat[i ][0],s->rc_stat[ i2][0]);
  747. FFSWAP(int, s->rc_stat[i ][1],s->rc_stat[ i2][1]);
  748. if(i != 256-i2){
  749. FFSWAP(int, stt[256-i], stt[256-i2]);
  750. FFSWAP(int, s->rc_stat[256-i][0],s->rc_stat[256-i2][0]);
  751. FFSWAP(int, s->rc_stat[256-i][1],s->rc_stat[256-i2][1]);
  752. }
  753. for(j=1; j<256; j++){
  754. if (stt[j] == i ) stt[j] = i2;
  755. else if(stt[j] == i2) stt[j] = i ;
  756. if(i != 256-i2){
  757. if (stt[256-j] == 256-i ) stt[256-j] = 256-i2;
  758. else if(stt[256-j] == 256-i2) stt[256-j] = 256-i ;
  759. }
  760. }
  761. print=changed=1;
  762. }
  763. }
  764. }
  765. }while(changed);
  766. return print;
  767. }
  768. static av_cold int encode_init(AVCodecContext *avctx)
  769. {
  770. FFV1Context *s = avctx->priv_data;
  771. int i, j, k, m;
  772. common_init(avctx);
  773. s->version=0;
  774. if((avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) || avctx->slices>1)
  775. s->version = FFMAX(s->version, 2);
  776. if(avctx->level == 3){
  777. s->version = 3;
  778. }
  779. if(s->ec < 0){
  780. s->ec = (s->version >= 3);
  781. }
  782. if(s->version >= 2 && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
  783. av_log(avctx, AV_LOG_ERROR, "Version 2 needed for requested features but version 2 is experimental and not enabled\n");
  784. return -1;
  785. }
  786. s->ac= avctx->coder_type ? 2:0;
  787. if(s->ac>1)
  788. for(i=1; i<256; i++)
  789. s->state_transition[i]=ver2_state[i];
  790. s->plane_count=3;
  791. switch(avctx->pix_fmt){
  792. case PIX_FMT_YUV444P9:
  793. case PIX_FMT_YUV422P9:
  794. case PIX_FMT_YUV420P9:
  795. if (!avctx->bits_per_raw_sample)
  796. s->bits_per_raw_sample = 9;
  797. case PIX_FMT_YUV444P10:
  798. case PIX_FMT_YUV420P10:
  799. case PIX_FMT_YUV422P10:
  800. s->packed_at_lsb = 1;
  801. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  802. s->bits_per_raw_sample = 10;
  803. case PIX_FMT_GRAY16:
  804. case PIX_FMT_YUV444P16:
  805. case PIX_FMT_YUV422P16:
  806. case PIX_FMT_YUV420P16:
  807. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
  808. s->bits_per_raw_sample = 16;
  809. } else if (!s->bits_per_raw_sample){
  810. s->bits_per_raw_sample = avctx->bits_per_raw_sample;
  811. }
  812. if(s->bits_per_raw_sample <=8){
  813. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  814. return -1;
  815. }
  816. if(!s->ac){
  817. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
  818. return -1;
  819. }
  820. s->version= FFMAX(s->version, 1);
  821. case PIX_FMT_GRAY8:
  822. case PIX_FMT_YUV444P:
  823. case PIX_FMT_YUV440P:
  824. case PIX_FMT_YUV422P:
  825. case PIX_FMT_YUV420P:
  826. case PIX_FMT_YUV411P:
  827. case PIX_FMT_YUV410P:
  828. s->chroma_planes= av_pix_fmt_descriptors[avctx->pix_fmt].nb_components < 3 ? 0 : 1;
  829. s->colorspace= 0;
  830. break;
  831. case PIX_FMT_YUVA444P:
  832. case PIX_FMT_YUVA422P:
  833. case PIX_FMT_YUVA420P:
  834. s->chroma_planes= 1;
  835. s->colorspace= 0;
  836. s->transparency= 1;
  837. break;
  838. case PIX_FMT_RGB32:
  839. s->colorspace= 1;
  840. s->transparency= 1;
  841. break;
  842. case PIX_FMT_0RGB32:
  843. s->colorspace= 1;
  844. break;
  845. default:
  846. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  847. return -1;
  848. }
  849. if (s->transparency) {
  850. av_log(avctx, AV_LOG_WARNING, "Storing alpha plane, this will require a recent FFV1 decoder to playback!\n");
  851. }
  852. if (avctx->context_model > 1U) {
  853. av_log(avctx, AV_LOG_ERROR, "Invalid context model %d, valid values are 0 and 1\n", avctx->context_model);
  854. return AVERROR(EINVAL);
  855. }
  856. for(i=0; i<256; i++){
  857. s->quant_table_count=2;
  858. if(s->bits_per_raw_sample <=8){
  859. s->quant_tables[0][0][i]= quant11[i];
  860. s->quant_tables[0][1][i]= 11*quant11[i];
  861. s->quant_tables[0][2][i]= 11*11*quant11[i];
  862. s->quant_tables[1][0][i]= quant11[i];
  863. s->quant_tables[1][1][i]= 11*quant11[i];
  864. s->quant_tables[1][2][i]= 11*11*quant5 [i];
  865. s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
  866. s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
  867. }else{
  868. s->quant_tables[0][0][i]= quant9_10bit[i];
  869. s->quant_tables[0][1][i]= 11*quant9_10bit[i];
  870. s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
  871. s->quant_tables[1][0][i]= quant9_10bit[i];
  872. s->quant_tables[1][1][i]= 11*quant9_10bit[i];
  873. s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
  874. s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
  875. s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
  876. }
  877. }
  878. s->context_count[0]= (11*11*11+1)/2;
  879. s->context_count[1]= (11*11*5*5*5+1)/2;
  880. memcpy(s->quant_table, s->quant_tables[avctx->context_model], sizeof(s->quant_table));
  881. for(i=0; i<s->plane_count; i++){
  882. PlaneContext * const p= &s->plane[i];
  883. memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
  884. p->quant_table_index= avctx->context_model;
  885. p->context_count= s->context_count[p->quant_table_index];
  886. }
  887. if(allocate_initial_states(s) < 0)
  888. return AVERROR(ENOMEM);
  889. avctx->coded_frame= &s->picture;
  890. if(!s->transparency)
  891. s->plane_count= 2;
  892. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
  893. s->picture_number=0;
  894. if(avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  895. for(i=0; i<s->quant_table_count; i++){
  896. s->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*s->rc_stat2[i]));
  897. if(!s->rc_stat2[i])
  898. return AVERROR(ENOMEM);
  899. }
  900. }
  901. if(avctx->stats_in){
  902. char *p= avctx->stats_in;
  903. uint8_t best_state[256][256];
  904. int gob_count=0;
  905. char *next;
  906. av_assert0(s->version>=2);
  907. for(;;){
  908. for(j=0; j<256; j++){
  909. for(i=0; i<2; i++){
  910. s->rc_stat[j][i]= strtol(p, &next, 0);
  911. if(next==p){
  912. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d [%s]\n", j,i,p);
  913. return -1;
  914. }
  915. p=next;
  916. }
  917. }
  918. for(i=0; i<s->quant_table_count; i++){
  919. for(j=0; j<s->context_count[i]; j++){
  920. for(k=0; k<32; k++){
  921. for(m=0; m<2; m++){
  922. s->rc_stat2[i][j][k][m]= strtol(p, &next, 0);
  923. if(next==p){
  924. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d %d %d [%s]\n", i,j,k,m,p);
  925. return -1;
  926. }
  927. p=next;
  928. }
  929. }
  930. }
  931. }
  932. gob_count= strtol(p, &next, 0);
  933. if(next==p || gob_count <0){
  934. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
  935. return -1;
  936. }
  937. p=next;
  938. while(*p=='\n' || *p==' ') p++;
  939. if(p[0]==0) break;
  940. }
  941. sort_stt(s, s->state_transition);
  942. find_best_state(best_state, s->state_transition);
  943. for(i=0; i<s->quant_table_count; i++){
  944. for(j=0; j<s->context_count[i]; j++){
  945. for(k=0; k<32; k++){
  946. double p= 128;
  947. if(s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]){
  948. p=256.0*s->rc_stat2[i][j][k][1] / (s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]);
  949. }
  950. s->initial_states[i][j][k]= best_state[av_clip(round(p), 1, 255)][av_clip((s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1])/gob_count, 0, 255)];
  951. }
  952. }
  953. }
  954. }
  955. if(s->version>1){
  956. for(s->num_v_slices=2; s->num_v_slices<9; s->num_v_slices++){
  957. for(s->num_h_slices=s->num_v_slices; s->num_h_slices<2*s->num_v_slices; s->num_h_slices++){
  958. if(avctx->slices == s->num_h_slices * s->num_v_slices && avctx->slices <= 64)
  959. goto slices_ok;
  960. }
  961. }
  962. av_log(avctx, AV_LOG_ERROR, "Unsupported number %d of slices requested, please specify a supported number with -slices (ex:4,6,9,12,16, ...)\n", avctx->slices);
  963. return -1;
  964. slices_ok:
  965. write_extra_header(s);
  966. }
  967. if(init_slice_contexts(s) < 0)
  968. return -1;
  969. if(init_slices_state(s) < 0)
  970. return -1;
  971. #define STATS_OUT_SIZE 1024*1024*6
  972. if(avctx->flags & CODEC_FLAG_PASS1){
  973. avctx->stats_out= av_mallocz(STATS_OUT_SIZE);
  974. for(i=0; i<s->quant_table_count; i++){
  975. for(j=0; j<s->slice_count; j++){
  976. FFV1Context *sf= s->slice_context[j];
  977. av_assert0(!sf->rc_stat2[i]);
  978. sf->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*sf->rc_stat2[i]));
  979. if(!sf->rc_stat2[i])
  980. return AVERROR(ENOMEM);
  981. }
  982. }
  983. }
  984. return 0;
  985. }
  986. #endif /* CONFIG_FFV1_ENCODER */
  987. static void clear_slice_state(FFV1Context *f, FFV1Context *fs){
  988. int i, j;
  989. for(i=0; i<f->plane_count; i++){
  990. PlaneContext *p= &fs->plane[i];
  991. p->interlace_bit_state[0]= 128;
  992. p->interlace_bit_state[1]= 128;
  993. if(fs->ac){
  994. if(f->initial_states[p->quant_table_index]){
  995. memcpy(p->state, f->initial_states[p->quant_table_index], CONTEXT_SIZE*p->context_count);
  996. }else
  997. memset(p->state, 128, CONTEXT_SIZE*p->context_count);
  998. }else{
  999. for(j=0; j<p->context_count; j++){
  1000. p->vlc_state[j].drift= 0;
  1001. p->vlc_state[j].error_sum= 4; //FFMAX((RANGE + 32)/64, 2);
  1002. p->vlc_state[j].bias= 0;
  1003. p->vlc_state[j].count= 1;
  1004. }
  1005. }
  1006. }
  1007. }
  1008. #if CONFIG_FFV1_ENCODER
  1009. static void encode_slice_header(FFV1Context *f, FFV1Context *fs){
  1010. RangeCoder *c = &fs->c;
  1011. uint8_t state[CONTEXT_SIZE];
  1012. int j;
  1013. memset(state, 128, sizeof(state));
  1014. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  1015. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  1016. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  1017. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  1018. for(j=0; j<f->plane_count; j++){
  1019. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  1020. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  1021. }
  1022. if(!f->picture.interlaced_frame) put_symbol(c, state, 3, 0);
  1023. else put_symbol(c, state, 1 + !f->picture.top_field_first, 0);
  1024. put_symbol(c, state, f->picture.sample_aspect_ratio.num, 0);
  1025. put_symbol(c, state, f->picture.sample_aspect_ratio.den, 0);
  1026. }
  1027. static int encode_slice(AVCodecContext *c, void *arg){
  1028. FFV1Context *fs= *(void**)arg;
  1029. FFV1Context *f= fs->avctx->priv_data;
  1030. int width = fs->slice_width;
  1031. int height= fs->slice_height;
  1032. int x= fs->slice_x;
  1033. int y= fs->slice_y;
  1034. AVFrame * const p= &f->picture;
  1035. const int ps= (f->bits_per_raw_sample>8)+1;
  1036. if(p->key_frame)
  1037. clear_slice_state(f, fs);
  1038. if(f->version > 2){
  1039. encode_slice_header(f, fs);
  1040. }
  1041. if(!fs->ac){
  1042. fs->ac_byte_count = f->version > 2 || (!x&&!y) ? ff_rac_terminate(&fs->c) : 0;
  1043. init_put_bits(&fs->pb, fs->c.bytestream_start + fs->ac_byte_count, fs->c.bytestream_end - fs->c.bytestream_start - fs->ac_byte_count);
  1044. }
  1045. if(f->colorspace==0){
  1046. const int chroma_width = -((-width )>>f->chroma_h_shift);
  1047. const int chroma_height= -((-height)>>f->chroma_v_shift);
  1048. const int cx= x>>f->chroma_h_shift;
  1049. const int cy= y>>f->chroma_v_shift;
  1050. encode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
  1051. if (f->chroma_planes){
  1052. encode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  1053. encode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  1054. }
  1055. if (fs->transparency)
  1056. encode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2);
  1057. }else{
  1058. encode_rgb_frame(fs, (uint32_t*)(p->data[0]) + ps*x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  1059. }
  1060. emms_c();
  1061. return 0;
  1062. }
  1063. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  1064. const AVFrame *pict, int *got_packet)
  1065. {
  1066. FFV1Context *f = avctx->priv_data;
  1067. RangeCoder * const c= &f->slice_context[0]->c;
  1068. AVFrame * const p= &f->picture;
  1069. int used_count= 0;
  1070. uint8_t keystate=128;
  1071. uint8_t *buf_p;
  1072. int i, ret;
  1073. if ((ret = ff_alloc_packet2(avctx, pkt, avctx->width*avctx->height*((8*2+1+1)*4)/8
  1074. + FF_MIN_BUFFER_SIZE)) < 0)
  1075. return ret;
  1076. ff_init_range_encoder(c, pkt->data, pkt->size);
  1077. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1078. *p = *pict;
  1079. p->pict_type= AV_PICTURE_TYPE_I;
  1080. if(avctx->gop_size==0 || f->picture_number % avctx->gop_size == 0){
  1081. put_rac(c, &keystate, 1);
  1082. p->key_frame= 1;
  1083. f->gob_count++;
  1084. write_header(f);
  1085. }else{
  1086. put_rac(c, &keystate, 0);
  1087. p->key_frame= 0;
  1088. }
  1089. if (f->ac>1){
  1090. int i;
  1091. for(i=1; i<256; i++){
  1092. c->one_state[i]= f->state_transition[i];
  1093. c->zero_state[256-i]= 256-c->one_state[i];
  1094. }
  1095. }
  1096. for(i=1; i<f->slice_count; i++){
  1097. FFV1Context *fs= f->slice_context[i];
  1098. uint8_t *start = pkt->data + (pkt->size-used_count)*i/f->slice_count;
  1099. int len = pkt->size/f->slice_count;
  1100. ff_init_range_encoder(&fs->c, start, len);
  1101. }
  1102. avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1103. buf_p = pkt->data;
  1104. for(i=0; i<f->slice_count; i++){
  1105. FFV1Context *fs= f->slice_context[i];
  1106. int bytes;
  1107. if(fs->ac){
  1108. uint8_t state=128;
  1109. put_rac(&fs->c, &state, 0);
  1110. bytes= ff_rac_terminate(&fs->c);
  1111. }else{
  1112. flush_put_bits(&fs->pb); //nicer padding FIXME
  1113. bytes= fs->ac_byte_count + (put_bits_count(&fs->pb)+7)/8;
  1114. }
  1115. if(i>0 || f->version>2){
  1116. av_assert0(bytes < pkt->size/f->slice_count);
  1117. memmove(buf_p, fs->c.bytestream_start, bytes);
  1118. av_assert0(bytes < (1<<24));
  1119. AV_WB24(buf_p+bytes, bytes);
  1120. bytes+=3;
  1121. }
  1122. if(f->ec){
  1123. unsigned v;
  1124. buf_p[bytes++] = 0;
  1125. v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, bytes);
  1126. AV_WL32(buf_p + bytes, v); bytes += 4;
  1127. }
  1128. buf_p += bytes;
  1129. }
  1130. if((avctx->flags&CODEC_FLAG_PASS1) && (f->picture_number&31)==0){
  1131. int j, k, m;
  1132. char *p= avctx->stats_out;
  1133. char *end= p + STATS_OUT_SIZE;
  1134. memset(f->rc_stat, 0, sizeof(f->rc_stat));
  1135. for(i=0; i<f->quant_table_count; i++)
  1136. memset(f->rc_stat2[i], 0, f->context_count[i]*sizeof(*f->rc_stat2[i]));
  1137. for(j=0; j<f->slice_count; j++){
  1138. FFV1Context *fs= f->slice_context[j];
  1139. for(i=0; i<256; i++){
  1140. f->rc_stat[i][0] += fs->rc_stat[i][0];
  1141. f->rc_stat[i][1] += fs->rc_stat[i][1];
  1142. }
  1143. for(i=0; i<f->quant_table_count; i++){
  1144. for(k=0; k<f->context_count[i]; k++){
  1145. for(m=0; m<32; m++){
  1146. f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
  1147. f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
  1148. }
  1149. }
  1150. }
  1151. }
  1152. for(j=0; j<256; j++){
  1153. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat[j][0], f->rc_stat[j][1]);
  1154. p+= strlen(p);
  1155. }
  1156. snprintf(p, end-p, "\n");
  1157. for(i=0; i<f->quant_table_count; i++){
  1158. for(j=0; j<f->context_count[i]; j++){
  1159. for(m=0; m<32; m++){
  1160. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
  1161. p+= strlen(p);
  1162. }
  1163. }
  1164. }
  1165. snprintf(p, end-p, "%d\n", f->gob_count);
  1166. } else if(avctx->flags&CODEC_FLAG_PASS1)
  1167. avctx->stats_out[0] = '\0';
  1168. f->picture_number++;
  1169. pkt->size = buf_p - pkt->data;
  1170. pkt->flags |= AV_PKT_FLAG_KEY*p->key_frame;
  1171. *got_packet = 1;
  1172. return 0;
  1173. }
  1174. #endif /* CONFIG_FFV1_ENCODER */
  1175. static av_cold int common_end(AVCodecContext *avctx){
  1176. FFV1Context *s = avctx->priv_data;
  1177. int i, j;
  1178. if (avctx->codec->decode && s->picture.data[0])
  1179. avctx->release_buffer(avctx, &s->picture);
  1180. for(j=0; j<s->slice_count; j++){
  1181. FFV1Context *fs= s->slice_context[j];
  1182. for(i=0; i<s->plane_count; i++){
  1183. PlaneContext *p= &fs->plane[i];
  1184. av_freep(&p->state);
  1185. av_freep(&p->vlc_state);
  1186. }
  1187. av_freep(&fs->sample_buffer);
  1188. }
  1189. av_freep(&avctx->stats_out);
  1190. for(j=0; j<s->quant_table_count; j++){
  1191. av_freep(&s->initial_states[j]);
  1192. for(i=0; i<s->slice_count; i++){
  1193. FFV1Context *sf= s->slice_context[i];
  1194. av_freep(&sf->rc_stat2[j]);
  1195. }
  1196. av_freep(&s->rc_stat2[j]);
  1197. }
  1198. for(i=0; i<s->slice_count; i++){
  1199. av_freep(&s->slice_context[i]);
  1200. }
  1201. return 0;
  1202. }
  1203. static av_always_inline void decode_line(FFV1Context *s, int w,
  1204. int16_t *sample[2],
  1205. int plane_index, int bits)
  1206. {
  1207. PlaneContext * const p= &s->plane[plane_index];
  1208. RangeCoder * const c= &s->c;
  1209. int x;
  1210. int run_count=0;
  1211. int run_mode=0;
  1212. int run_index= s->run_index;
  1213. for(x=0; x<w; x++){
  1214. int diff, context, sign;
  1215. context= get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
  1216. if(context < 0){
  1217. context= -context;
  1218. sign=1;
  1219. }else
  1220. sign=0;
  1221. av_assert2(context < p->context_count);
  1222. if(s->ac){
  1223. diff= get_symbol_inline(c, p->state[context], 1);
  1224. }else{
  1225. if(context == 0 && run_mode==0) run_mode=1;
  1226. if(run_mode){
  1227. if(run_count==0 && run_mode==1){
  1228. if(get_bits1(&s->gb)){
  1229. run_count = 1<<ff_log2_run[run_index];
  1230. if(x + run_count <= w) run_index++;
  1231. }else{
  1232. if(ff_log2_run[run_index]) run_count = get_bits(&s->gb, ff_log2_run[run_index]);
  1233. else run_count=0;
  1234. if(run_index) run_index--;
  1235. run_mode=2;
  1236. }
  1237. }
  1238. run_count--;
  1239. if(run_count < 0){
  1240. run_mode=0;
  1241. run_count=0;
  1242. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1243. if(diff>=0) diff++;
  1244. }else
  1245. diff=0;
  1246. }else
  1247. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1248. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, get_bits_count(&s->gb));
  1249. }
  1250. if(sign) diff= -diff;
  1251. sample[1][x]= (predict(sample[1] + x, sample[0] + x) + diff) & ((1<<bits)-1);
  1252. }
  1253. s->run_index= run_index;
  1254. }
  1255. static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  1256. int x, y;
  1257. int16_t *sample[2];
  1258. sample[0]=s->sample_buffer +3;
  1259. sample[1]=s->sample_buffer+w+6+3;
  1260. s->run_index=0;
  1261. memset(s->sample_buffer, 0, 2*(w+6)*sizeof(*s->sample_buffer));
  1262. for(y=0; y<h; y++){
  1263. int16_t *temp = sample[0]; //FIXME try a normal buffer
  1264. sample[0]= sample[1];
  1265. sample[1]= temp;
  1266. sample[1][-1]= sample[0][0 ];
  1267. sample[0][ w]= sample[0][w-1];
  1268. //{START_TIMER
  1269. if(s->avctx->bits_per_raw_sample <= 8){
  1270. decode_line(s, w, sample, plane_index, 8);
  1271. for(x=0; x<w; x++){
  1272. src[x + stride*y]= sample[1][x];
  1273. }
  1274. }else{
  1275. decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  1276. if(s->packed_at_lsb){
  1277. for(x=0; x<w; x++){
  1278. ((uint16_t*)(src + stride*y))[x]= sample[1][x];
  1279. }
  1280. }else{
  1281. for(x=0; x<w; x++){
  1282. ((uint16_t*)(src + stride*y))[x]= sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
  1283. }
  1284. }
  1285. }
  1286. //STOP_TIMER("decode-line")}
  1287. }
  1288. }
  1289. static void decode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  1290. int x, y, p;
  1291. int16_t *sample[4][2];
  1292. for(x=0; x<4; x++){
  1293. sample[x][0] = s->sample_buffer + x*2 *(w+6) + 3;
  1294. sample[x][1] = s->sample_buffer + (x*2+1)*(w+6) + 3;
  1295. }
  1296. s->run_index=0;
  1297. memset(s->sample_buffer, 0, 8*(w+6)*sizeof(*s->sample_buffer));
  1298. for(y=0; y<h; y++){
  1299. for(p=0; p<3 + s->transparency; p++){
  1300. int16_t *temp = sample[p][0]; //FIXME try a normal buffer
  1301. sample[p][0]= sample[p][1];
  1302. sample[p][1]= temp;
  1303. sample[p][1][-1]= sample[p][0][0 ];
  1304. sample[p][0][ w]= sample[p][0][w-1];
  1305. decode_line(s, w, sample[p], (p+1)/2, 9);
  1306. }
  1307. for(x=0; x<w; x++){
  1308. int g= sample[0][1][x];
  1309. int b= sample[1][1][x];
  1310. int r= sample[2][1][x];
  1311. int a= sample[3][1][x];
  1312. // assert(g>=0 && b>=0 && r>=0);
  1313. // assert(g<256 && b<512 && r<512);
  1314. b -= 0x100;
  1315. r -= 0x100;
  1316. g -= (b + r)>>2;
  1317. b += g;
  1318. r += g;
  1319. src[x + stride*y]= b + (g<<8) + (r<<16) + (a<<24);
  1320. }
  1321. }
  1322. }
  1323. static int decode_slice_header(FFV1Context *f, FFV1Context *fs){
  1324. RangeCoder *c = &fs->c;
  1325. uint8_t state[CONTEXT_SIZE];
  1326. unsigned ps, i, context_count;
  1327. memset(state, 128, sizeof(state));
  1328. av_assert0(f->version > 2);
  1329. fs->slice_x = get_symbol(c, state, 0) *f->width ;
  1330. fs->slice_y = get_symbol(c, state, 0) *f->height;
  1331. fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x;
  1332. fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y;
  1333. fs->slice_x /= f->num_h_slices;
  1334. fs->slice_y /= f->num_v_slices;
  1335. fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
  1336. fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
  1337. if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
  1338. return -1;
  1339. if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
  1340. || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
  1341. return -1;
  1342. for(i=0; i<f->plane_count; i++){
  1343. PlaneContext * const p= &fs->plane[i];
  1344. int idx=get_symbol(c, state, 0);
  1345. if(idx > (unsigned)f->quant_table_count){
  1346. av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
  1347. return -1;
  1348. }
  1349. p->quant_table_index= idx;
  1350. memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
  1351. context_count= f->context_count[idx];
  1352. if(p->context_count < context_count){
  1353. av_freep(&p->state);
  1354. av_freep(&p->vlc_state);
  1355. }
  1356. p->context_count= context_count;
  1357. }
  1358. ps = get_symbol(c, state, 0);
  1359. if(ps==1){
  1360. f->picture.interlaced_frame = 1;
  1361. f->picture.top_field_first = 1;
  1362. } else if(ps==2){
  1363. f->picture.interlaced_frame = 1;
  1364. f->picture.top_field_first = 0;
  1365. } else if(ps==3){
  1366. f->picture.interlaced_frame = 0;
  1367. }
  1368. f->picture.sample_aspect_ratio.num = get_symbol(c, state, 0);
  1369. f->picture.sample_aspect_ratio.den = get_symbol(c, state, 0);
  1370. return 0;
  1371. }
  1372. static int decode_slice(AVCodecContext *c, void *arg){
  1373. FFV1Context *fs= *(void**)arg;
  1374. FFV1Context *f= fs->avctx->priv_data;
  1375. int width, height, x, y;
  1376. const int ps= (c->bits_per_raw_sample>8)+1;
  1377. AVFrame * const p= &f->picture;
  1378. if(f->version > 2){
  1379. if(init_slice_state(f, fs) < 0)
  1380. return AVERROR(ENOMEM);
  1381. if(decode_slice_header(f, fs) < 0)
  1382. return AVERROR_INVALIDDATA;
  1383. }
  1384. if(init_slice_state(f, fs) < 0)
  1385. return AVERROR(ENOMEM);
  1386. if(f->picture.key_frame)
  1387. clear_slice_state(f, fs);
  1388. width = fs->slice_width;
  1389. height= fs->slice_height;
  1390. x= fs->slice_x;
  1391. y= fs->slice_y;
  1392. if(!fs->ac){
  1393. fs->ac_byte_count = f->version > 2 || (!x&&!y) ? fs->c.bytestream - fs->c.bytestream_start - 1 : 0;
  1394. init_get_bits(&fs->gb,
  1395. fs->c.bytestream_start + fs->ac_byte_count,
  1396. (fs->c.bytestream_end - fs->c.bytestream_start - fs->ac_byte_count) * 8);
  1397. }
  1398. av_assert1(width && height);
  1399. if(f->colorspace==0){
  1400. const int chroma_width = -((-width )>>f->chroma_h_shift);
  1401. const int chroma_height= -((-height)>>f->chroma_v_shift);
  1402. const int cx= x>>f->chroma_h_shift;
  1403. const int cy= y>>f->chroma_v_shift;
  1404. decode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
  1405. if (f->chroma_planes){
  1406. decode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  1407. decode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  1408. }
  1409. if (fs->transparency)
  1410. decode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2);
  1411. }else{
  1412. decode_rgb_frame(fs, (uint32_t*)p->data[0] + ps*x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  1413. }
  1414. emms_c();
  1415. return 0;
  1416. }
  1417. static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale){
  1418. int v;
  1419. int i=0;
  1420. uint8_t state[CONTEXT_SIZE];
  1421. memset(state, 128, sizeof(state));
  1422. for(v=0; i<128 ; v++){
  1423. int len= get_symbol(c, state, 0) + 1;
  1424. if(len + i > 128) return -1;
  1425. while(len--){
  1426. quant_table[i] = scale*v;
  1427. i++;
  1428. //printf("%2d ",v);
  1429. //if(i%16==0) printf("\n");
  1430. }
  1431. }
  1432. for(i=1; i<128; i++){
  1433. quant_table[256-i]= -quant_table[i];
  1434. }
  1435. quant_table[128]= -quant_table[127];
  1436. return 2*v - 1;
  1437. }
  1438. static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  1439. int i;
  1440. int context_count=1;
  1441. for(i=0; i<5; i++){
  1442. context_count*= read_quant_table(c, quant_table[i], context_count);
  1443. if(context_count > 32768U){
  1444. return -1;
  1445. }
  1446. }
  1447. return (context_count+1)/2;
  1448. }
  1449. static int read_extra_header(FFV1Context *f){
  1450. RangeCoder * const c= &f->c;
  1451. uint8_t state[CONTEXT_SIZE];
  1452. int i, j, k;
  1453. uint8_t state2[32][CONTEXT_SIZE];
  1454. memset(state2, 128, sizeof(state2));
  1455. memset(state, 128, sizeof(state));
  1456. ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
  1457. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1458. f->version= get_symbol(c, state, 0);
  1459. if(f->version > 2)
  1460. f->minor_version= get_symbol(c, state, 0);
  1461. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1462. if(f->ac>1){
  1463. for(i=1; i<256; i++){
  1464. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1465. }
  1466. }
  1467. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1468. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1469. f->chroma_planes= get_rac(c, state);
  1470. f->chroma_h_shift= get_symbol(c, state, 0);
  1471. f->chroma_v_shift= get_symbol(c, state, 0);
  1472. f->transparency= get_rac(c, state);
  1473. f->plane_count= 2 + f->transparency;
  1474. f->num_h_slices= 1 + get_symbol(c, state, 0);
  1475. f->num_v_slices= 1 + get_symbol(c, state, 0);
  1476. if(f->num_h_slices > (unsigned)f->width || f->num_v_slices > (unsigned)f->height){
  1477. av_log(f->avctx, AV_LOG_ERROR, "too many slices\n");
  1478. return -1;
  1479. }
  1480. f->quant_table_count= get_symbol(c, state, 0);
  1481. if(f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
  1482. return -1;
  1483. for(i=0; i<f->quant_table_count; i++){
  1484. if((f->context_count[i]= read_quant_tables(c, f->quant_tables[i])) < 0){
  1485. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1486. return -1;
  1487. }
  1488. }
  1489. if(allocate_initial_states(f) < 0)
  1490. return AVERROR(ENOMEM);
  1491. for(i=0; i<f->quant_table_count; i++){
  1492. if(get_rac(c, state)){
  1493. for(j=0; j<f->context_count[i]; j++){
  1494. for(k=0; k<CONTEXT_SIZE; k++){
  1495. int pred= j ? f->initial_states[i][j-1][k] : 128;
  1496. f->initial_states[i][j][k]= (pred+get_symbol(c, state2[k], 1))&0xFF;
  1497. }
  1498. }
  1499. }
  1500. }
  1501. if(f->version > 2){
  1502. f->ec = get_symbol(c, state, 0);
  1503. }
  1504. if(f->version > 2){
  1505. unsigned v;
  1506. v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, f->avctx->extradata, f->avctx->extradata_size);
  1507. if(v){
  1508. av_log(f->avctx, AV_LOG_ERROR, "CRC mismatch %X!\n", v);
  1509. return AVERROR_INVALIDDATA;
  1510. }
  1511. }
  1512. return 0;
  1513. }
  1514. static int read_header(FFV1Context *f){
  1515. uint8_t state[CONTEXT_SIZE];
  1516. int i, j, context_count;
  1517. RangeCoder * const c= &f->slice_context[0]->c;
  1518. memset(state, 128, sizeof(state));
  1519. if(f->version < 2){
  1520. f->version= get_symbol(c, state, 0);
  1521. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1522. if(f->ac>1){
  1523. for(i=1; i<256; i++){
  1524. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1525. }
  1526. }
  1527. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1528. if(f->version>0)
  1529. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1530. f->chroma_planes= get_rac(c, state);
  1531. f->chroma_h_shift= get_symbol(c, state, 0);
  1532. f->chroma_v_shift= get_symbol(c, state, 0);
  1533. f->transparency= get_rac(c, state);
  1534. f->plane_count= 2 + f->transparency;
  1535. }
  1536. if(f->colorspace==0){
  1537. if(!f->transparency && !f->chroma_planes){
  1538. if (f->avctx->bits_per_raw_sample<=8)
  1539. f->avctx->pix_fmt= PIX_FMT_GRAY8;
  1540. else
  1541. f->avctx->pix_fmt= PIX_FMT_GRAY16;
  1542. }else if(f->avctx->bits_per_raw_sample<=8 && !f->transparency){
  1543. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1544. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P; break;
  1545. case 0x01: f->avctx->pix_fmt= PIX_FMT_YUV440P; break;
  1546. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P; break;
  1547. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P; break;
  1548. case 0x20: f->avctx->pix_fmt= PIX_FMT_YUV411P; break;
  1549. case 0x22: f->avctx->pix_fmt= PIX_FMT_YUV410P; break;
  1550. default:
  1551. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1552. return -1;
  1553. }
  1554. }else if(f->avctx->bits_per_raw_sample<=8 && f->transparency){
  1555. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1556. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUVA444P; break;
  1557. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUVA422P; break;
  1558. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUVA420P; break;
  1559. default:
  1560. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1561. return -1;
  1562. }
  1563. }else if(f->avctx->bits_per_raw_sample==9) {
  1564. f->packed_at_lsb=1;
  1565. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1566. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P9; break;
  1567. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P9; break;
  1568. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P9; break;
  1569. default:
  1570. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1571. return -1;
  1572. }
  1573. }else if(f->avctx->bits_per_raw_sample==10) {
  1574. f->packed_at_lsb=1;
  1575. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1576. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P10; break;
  1577. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P10; break;
  1578. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P10; break;
  1579. default:
  1580. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1581. return -1;
  1582. }
  1583. }else {
  1584. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1585. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1586. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
  1587. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P16; break;
  1588. default:
  1589. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1590. return -1;
  1591. }
  1592. }
  1593. }else if(f->colorspace==1){
  1594. if(f->chroma_h_shift || f->chroma_v_shift){
  1595. av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n");
  1596. return -1;
  1597. }
  1598. if(f->transparency) f->avctx->pix_fmt= PIX_FMT_RGB32;
  1599. else f->avctx->pix_fmt= PIX_FMT_0RGB32;
  1600. }else{
  1601. av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
  1602. return -1;
  1603. }
  1604. //printf("%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift,f->avctx->pix_fmt);
  1605. if(f->version < 2){
  1606. context_count= read_quant_tables(c, f->quant_table);
  1607. if(context_count < 0){
  1608. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1609. return -1;
  1610. }
  1611. }else if(f->version < 3){
  1612. f->slice_count= get_symbol(c, state, 0);
  1613. }else{
  1614. const uint8_t *p= c->bytestream_end;
  1615. for(f->slice_count = 0; f->slice_count < MAX_SLICES && 3 < p - c->bytestream_start; f->slice_count++){
  1616. int trailer = 3 + 5*!!f->ec;
  1617. int size = AV_RB24(p-trailer);
  1618. if(size + trailer > p - c->bytestream_start)
  1619. break;
  1620. p -= size + trailer;
  1621. }
  1622. }
  1623. if(f->slice_count > (unsigned)MAX_SLICES || f->slice_count <= 0){
  1624. av_log(f->avctx, AV_LOG_ERROR, "slice count %d is invalid\n", f->slice_count);
  1625. return -1;
  1626. }
  1627. for(j=0; j<f->slice_count; j++){
  1628. FFV1Context *fs= f->slice_context[j];
  1629. fs->ac= f->ac;
  1630. fs->packed_at_lsb= f->packed_at_lsb;
  1631. if(f->version == 2){
  1632. fs->slice_x = get_symbol(c, state, 0) *f->width ;
  1633. fs->slice_y = get_symbol(c, state, 0) *f->height;
  1634. fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x;
  1635. fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y;
  1636. fs->slice_x /= f->num_h_slices;
  1637. fs->slice_y /= f->num_v_slices;
  1638. fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
  1639. fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
  1640. if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
  1641. return -1;
  1642. if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
  1643. || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
  1644. return -1;
  1645. }
  1646. for(i=0; i<f->plane_count; i++){
  1647. PlaneContext * const p= &fs->plane[i];
  1648. if(f->version == 2){
  1649. int idx=get_symbol(c, state, 0);
  1650. if(idx > (unsigned)f->quant_table_count){
  1651. av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
  1652. return -1;
  1653. }
  1654. p->quant_table_index= idx;
  1655. memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
  1656. context_count= f->context_count[idx];
  1657. }else{
  1658. memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
  1659. }
  1660. if(f->version <= 2){
  1661. if(p->context_count < context_count){
  1662. av_freep(&p->state);
  1663. av_freep(&p->vlc_state);
  1664. }
  1665. p->context_count= context_count;
  1666. }
  1667. }
  1668. }
  1669. return 0;
  1670. }
  1671. static av_cold int decode_init(AVCodecContext *avctx)
  1672. {
  1673. FFV1Context *f = avctx->priv_data;
  1674. common_init(avctx);
  1675. if(avctx->extradata && read_extra_header(f) < 0)
  1676. return -1;
  1677. if(init_slice_contexts(f) < 0)
  1678. return -1;
  1679. return 0;
  1680. }
  1681. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  1682. const uint8_t *buf = avpkt->data;
  1683. int buf_size = avpkt->size;
  1684. FFV1Context *f = avctx->priv_data;
  1685. RangeCoder * const c= &f->slice_context[0]->c;
  1686. AVFrame * const p= &f->picture;
  1687. int i;
  1688. uint8_t keystate= 128;
  1689. const uint8_t *buf_p;
  1690. AVFrame *picture = data;
  1691. /* release previously stored data */
  1692. if (p->data[0])
  1693. avctx->release_buffer(avctx, p);
  1694. ff_init_range_decoder(c, buf, buf_size);
  1695. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1696. p->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
  1697. if(get_rac(c, &keystate)){
  1698. p->key_frame= 1;
  1699. f->key_frame_ok = 0;
  1700. if(read_header(f) < 0)
  1701. return -1;
  1702. f->key_frame_ok = 1;
  1703. }else{
  1704. if (!f->key_frame_ok) {
  1705. av_log(avctx, AV_LOG_ERROR, "Cant decode non keyframe without valid keyframe\n");
  1706. return AVERROR_INVALIDDATA;
  1707. }
  1708. p->key_frame= 0;
  1709. }
  1710. p->reference= 0;
  1711. if(avctx->get_buffer(avctx, p) < 0){
  1712. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1713. return -1;
  1714. }
  1715. if(avctx->debug&FF_DEBUG_PICT_INFO)
  1716. av_log(avctx, AV_LOG_ERROR, "keyframe:%d coder:%d\n", p->key_frame, f->ac);
  1717. buf_p= buf + buf_size;
  1718. for(i=f->slice_count-1; i>=0; i--){
  1719. FFV1Context *fs= f->slice_context[i];
  1720. int trailer = 3 + 5*!!f->ec;
  1721. int v;
  1722. if(i || f->version>2) v = AV_RB24(buf_p-trailer)+trailer;
  1723. else v = buf_p - c->bytestream_start;
  1724. if(buf_p - c->bytestream_start < v){
  1725. av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
  1726. return -1;
  1727. }
  1728. buf_p -= v;
  1729. if(f->ec){
  1730. unsigned crc = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, v);
  1731. if(crc){
  1732. av_log(f->avctx, AV_LOG_ERROR, "CRC mismatch %X!\n", crc);
  1733. }
  1734. }
  1735. if(i){
  1736. ff_init_range_decoder(&fs->c, buf_p, v);
  1737. }
  1738. }
  1739. avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1740. f->picture_number++;
  1741. *picture= *p;
  1742. *data_size = sizeof(AVFrame);
  1743. return buf_size;
  1744. }
  1745. AVCodec ff_ffv1_decoder = {
  1746. .name = "ffv1",
  1747. .type = AVMEDIA_TYPE_VIDEO,
  1748. .id = CODEC_ID_FFV1,
  1749. .priv_data_size = sizeof(FFV1Context),
  1750. .init = decode_init,
  1751. .close = common_end,
  1752. .decode = decode_frame,
  1753. .capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/ |
  1754. CODEC_CAP_SLICE_THREADS,
  1755. .long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1756. };
  1757. #if CONFIG_FFV1_ENCODER
  1758. #define OFFSET(x) offsetof(FFV1Context, x)
  1759. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  1760. static const AVOption options[] = {
  1761. { "slicecrc", "Protect slices with CRCs", OFFSET(ec), AV_OPT_TYPE_INT, {-1}, -1, 1, VE},
  1762. {NULL}
  1763. };
  1764. static const AVClass class = {
  1765. .class_name = "ffv1 encoder",
  1766. .item_name = av_default_item_name,
  1767. .option = options,
  1768. .version = LIBAVUTIL_VERSION_INT,
  1769. };
  1770. AVCodec ff_ffv1_encoder = {
  1771. .name = "ffv1",
  1772. .type = AVMEDIA_TYPE_VIDEO,
  1773. .id = CODEC_ID_FFV1,
  1774. .priv_data_size = sizeof(FFV1Context),
  1775. .init = encode_init,
  1776. .encode2 = encode_frame,
  1777. .close = common_end,
  1778. .capabilities = CODEC_CAP_SLICE_THREADS,
  1779. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUVA420P, PIX_FMT_YUV444P, PIX_FMT_YUVA444P, PIX_FMT_YUV440P, PIX_FMT_YUV422P, PIX_FMT_YUV411P, PIX_FMT_YUV410P, PIX_FMT_0RGB32, PIX_FMT_RGB32, PIX_FMT_YUV420P16, PIX_FMT_YUV422P16, PIX_FMT_YUV444P16, PIX_FMT_YUV444P9, PIX_FMT_YUV422P9, PIX_FMT_YUV420P9, PIX_FMT_YUV420P10, PIX_FMT_YUV422P10, PIX_FMT_YUV444P10, PIX_FMT_GRAY16, PIX_FMT_GRAY8, PIX_FMT_NONE},
  1780. .long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1781. .priv_class = &class,
  1782. };
  1783. #endif