You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1018 lines
35KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. //#define DEBUG
  26. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  27. #include "libavutil/opt.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #include "internal.h"
  31. #include "mpegvideo.h"
  32. #include "mpegvideo_common.h"
  33. #include "dnxhdenc.h"
  34. #include "internal.h"
  35. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  36. #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
  37. static const AVOption options[]={
  38. {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.dbl = 0}, 0, 1, VE},
  39. {NULL}
  40. };
  41. static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT };
  42. #define LAMBDA_FRAC_BITS 10
  43. static void dnxhd_8bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  44. {
  45. int i;
  46. for (i = 0; i < 4; i++) {
  47. block[0] = pixels[0]; block[1] = pixels[1];
  48. block[2] = pixels[2]; block[3] = pixels[3];
  49. block[4] = pixels[4]; block[5] = pixels[5];
  50. block[6] = pixels[6]; block[7] = pixels[7];
  51. pixels += line_size;
  52. block += 8;
  53. }
  54. memcpy(block, block - 8, sizeof(*block) * 8);
  55. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  56. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  57. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  58. }
  59. static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  60. {
  61. int i;
  62. block += 32;
  63. for (i = 0; i < 4; i++) {
  64. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  65. memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  66. }
  67. }
  68. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, DCTELEM *block,
  69. int n, int qscale, int *overflow)
  70. {
  71. const uint8_t *scantable= ctx->intra_scantable.scantable;
  72. const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  73. int last_non_zero = 0;
  74. int i;
  75. ctx->dsp.fdct(block);
  76. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  77. block[0] = (block[0] + 2) >> 2;
  78. for (i = 1; i < 64; ++i) {
  79. int j = scantable[i];
  80. int sign = block[j] >> 31;
  81. int level = (block[j] ^ sign) - sign;
  82. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  83. block[j] = (level ^ sign) - sign;
  84. if (level)
  85. last_non_zero = i;
  86. }
  87. return last_non_zero;
  88. }
  89. static int dnxhd_init_vlc(DNXHDEncContext *ctx)
  90. {
  91. int i, j, level, run;
  92. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  93. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
  94. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
  95. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
  96. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
  97. ctx->vlc_codes += max_level*2;
  98. ctx->vlc_bits += max_level*2;
  99. for (level = -max_level; level < max_level; level++) {
  100. for (run = 0; run < 2; run++) {
  101. int index = (level<<1)|run;
  102. int sign, offset = 0, alevel = level;
  103. MASK_ABS(sign, alevel);
  104. if (alevel > 64) {
  105. offset = (alevel-1)>>6;
  106. alevel -= offset<<6;
  107. }
  108. for (j = 0; j < 257; j++) {
  109. if (ctx->cid_table->ac_level[j] >> 1 == alevel &&
  110. (!offset || (ctx->cid_table->ac_flags[j] & 1) && offset) &&
  111. (!run || (ctx->cid_table->ac_flags[j] & 2) && run)) {
  112. assert(!ctx->vlc_codes[index]);
  113. if (alevel) {
  114. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  115. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  116. } else {
  117. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  118. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  119. }
  120. break;
  121. }
  122. }
  123. assert(!alevel || j < 257);
  124. if (offset) {
  125. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  126. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  127. }
  128. }
  129. }
  130. for (i = 0; i < 62; i++) {
  131. int run = ctx->cid_table->run[i];
  132. assert(run < 63);
  133. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  134. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  135. }
  136. return 0;
  137. fail:
  138. return -1;
  139. }
  140. static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  141. {
  142. // init first elem to 1 to avoid div by 0 in convert_matrix
  143. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  144. int qscale, i;
  145. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  146. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  147. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  148. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  149. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  150. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  151. if (ctx->cid_table->bit_depth == 8) {
  152. for (i = 1; i < 64; i++) {
  153. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  154. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  155. }
  156. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  157. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  158. for (i = 1; i < 64; i++) {
  159. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  160. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  161. }
  162. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  163. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  164. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  165. for (i = 0; i < 64; i++) {
  166. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  167. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  168. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  169. }
  170. }
  171. } else {
  172. // 10-bit
  173. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  174. for (i = 1; i < 64; i++) {
  175. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  176. // The quantization formula from the VC-3 standard is:
  177. // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
  178. // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  179. // The s factor compensates scaling of DCT coefficients done by the DCT routines,
  180. // and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones.
  181. // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  182. // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
  183. // For 10-bit samples, p / s == 2
  184. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
  185. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
  186. }
  187. }
  188. }
  189. ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
  190. ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
  191. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  192. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  193. return 0;
  194. fail:
  195. return -1;
  196. }
  197. static int dnxhd_init_rc(DNXHDEncContext *ctx)
  198. {
  199. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
  200. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  201. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
  202. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
  203. ctx->qscale = 1;
  204. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  205. return 0;
  206. fail:
  207. return -1;
  208. }
  209. static int dnxhd_encode_init(AVCodecContext *avctx)
  210. {
  211. DNXHDEncContext *ctx = avctx->priv_data;
  212. int i, index, bit_depth;
  213. switch (avctx->pix_fmt) {
  214. case PIX_FMT_YUV422P:
  215. bit_depth = 8;
  216. break;
  217. case PIX_FMT_YUV422P10:
  218. bit_depth = 10;
  219. break;
  220. default:
  221. av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
  222. return -1;
  223. }
  224. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  225. if (!ctx->cid) {
  226. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  227. return -1;
  228. }
  229. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  230. index = ff_dnxhd_get_cid_table(ctx->cid);
  231. ctx->cid_table = &ff_dnxhd_cid_table[index];
  232. ctx->m.avctx = avctx;
  233. ctx->m.mb_intra = 1;
  234. ctx->m.h263_aic = 1;
  235. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  236. ff_dsputil_init(&ctx->m.dsp, avctx);
  237. ff_dct_common_init(&ctx->m);
  238. if (!ctx->m.dct_quantize)
  239. ctx->m.dct_quantize = ff_dct_quantize_c;
  240. if (ctx->cid_table->bit_depth == 10) {
  241. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  242. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  243. ctx->block_width_l2 = 4;
  244. } else {
  245. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  246. ctx->block_width_l2 = 3;
  247. }
  248. #if HAVE_MMX
  249. ff_dnxhd_init_mmx(ctx);
  250. #endif
  251. ctx->m.mb_height = (avctx->height + 15) / 16;
  252. ctx->m.mb_width = (avctx->width + 15) / 16;
  253. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  254. ctx->interlaced = 1;
  255. ctx->m.mb_height /= 2;
  256. }
  257. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  258. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  259. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  260. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  261. return -1;
  262. // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
  263. if (ctx->nitris_compat)
  264. ctx->min_padding = 1600;
  265. if (dnxhd_init_vlc(ctx) < 0)
  266. return -1;
  267. if (dnxhd_init_rc(ctx) < 0)
  268. return -1;
  269. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
  270. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
  271. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
  272. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail);
  273. ctx->frame.key_frame = 1;
  274. ctx->frame.pict_type = AV_PICTURE_TYPE_I;
  275. ctx->m.avctx->coded_frame = &ctx->frame;
  276. if (avctx->thread_count > MAX_THREADS) {
  277. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  278. return -1;
  279. }
  280. ctx->thread[0] = ctx;
  281. for (i = 1; i < avctx->thread_count; i++) {
  282. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  283. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  284. }
  285. return 0;
  286. fail: //for FF_ALLOCZ_OR_GOTO
  287. return -1;
  288. }
  289. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  290. {
  291. DNXHDEncContext *ctx = avctx->priv_data;
  292. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  293. memset(buf, 0, 640);
  294. memcpy(buf, header_prefix, 5);
  295. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  296. buf[6] = 0x80; // crc flag off
  297. buf[7] = 0xa0; // reserved
  298. AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
  299. AV_WB16(buf + 0x1a, avctx->width); // SPL
  300. AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
  301. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  302. buf[0x22] = 0x88 + (ctx->interlaced<<2);
  303. AV_WB32(buf + 0x28, ctx->cid); // CID
  304. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  305. buf[0x5f] = 0x01; // UDL
  306. buf[0x167] = 0x02; // reserved
  307. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  308. buf[0x16d] = ctx->m.mb_height; // Ns
  309. buf[0x16f] = 0x10; // reserved
  310. ctx->msip = buf + 0x170;
  311. return 0;
  312. }
  313. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  314. {
  315. int nbits;
  316. if (diff < 0) {
  317. nbits = av_log2_16bit(-2*diff);
  318. diff--;
  319. } else {
  320. nbits = av_log2_16bit(2*diff);
  321. }
  322. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  323. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  324. }
  325. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
  326. {
  327. int last_non_zero = 0;
  328. int slevel, i, j;
  329. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  330. ctx->m.last_dc[n] = block[0];
  331. for (i = 1; i <= last_index; i++) {
  332. j = ctx->m.intra_scantable.permutated[i];
  333. slevel = block[j];
  334. if (slevel) {
  335. int run_level = i - last_non_zero - 1;
  336. int rlevel = (slevel<<1)|!!run_level;
  337. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  338. if (run_level)
  339. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  340. last_non_zero = i;
  341. }
  342. }
  343. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  344. }
  345. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
  346. {
  347. const uint8_t *weight_matrix;
  348. int level;
  349. int i;
  350. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  351. for (i = 1; i <= last_index; i++) {
  352. int j = ctx->m.intra_scantable.permutated[i];
  353. level = block[j];
  354. if (level) {
  355. if (level < 0) {
  356. level = (1-2*level) * qscale * weight_matrix[i];
  357. if (ctx->cid_table->bit_depth == 10) {
  358. if (weight_matrix[i] != 8)
  359. level += 8;
  360. level >>= 4;
  361. } else {
  362. if (weight_matrix[i] != 32)
  363. level += 32;
  364. level >>= 6;
  365. }
  366. level = -level;
  367. } else {
  368. level = (2*level+1) * qscale * weight_matrix[i];
  369. if (ctx->cid_table->bit_depth == 10) {
  370. if (weight_matrix[i] != 8)
  371. level += 8;
  372. level >>= 4;
  373. } else {
  374. if (weight_matrix[i] != 32)
  375. level += 32;
  376. level >>= 6;
  377. }
  378. }
  379. block[j] = level;
  380. }
  381. }
  382. }
  383. static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
  384. {
  385. int score = 0;
  386. int i;
  387. for (i = 0; i < 64; i++)
  388. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  389. return score;
  390. }
  391. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
  392. {
  393. int last_non_zero = 0;
  394. int bits = 0;
  395. int i, j, level;
  396. for (i = 1; i <= last_index; i++) {
  397. j = ctx->m.intra_scantable.permutated[i];
  398. level = block[j];
  399. if (level) {
  400. int run_level = i - last_non_zero - 1;
  401. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  402. last_non_zero = i;
  403. }
  404. }
  405. return bits;
  406. }
  407. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  408. {
  409. const int bs = ctx->block_width_l2;
  410. const int bw = 1 << bs;
  411. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1);
  412. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  413. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  414. DSPContext *dsp = &ctx->m.dsp;
  415. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  416. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  417. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  418. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  419. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  420. if (ctx->interlaced) {
  421. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  422. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  423. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  424. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  425. } else {
  426. dsp->clear_block(ctx->blocks[4]);
  427. dsp->clear_block(ctx->blocks[5]);
  428. dsp->clear_block(ctx->blocks[6]);
  429. dsp->clear_block(ctx->blocks[7]);
  430. }
  431. } else {
  432. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  433. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  434. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  435. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  436. }
  437. }
  438. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  439. {
  440. const static uint8_t component[8]={0,0,1,2,0,0,1,2};
  441. return component[i];
  442. }
  443. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  444. {
  445. DNXHDEncContext *ctx = avctx->priv_data;
  446. int mb_y = jobnr, mb_x;
  447. int qscale = ctx->qscale;
  448. LOCAL_ALIGNED_16(DCTELEM, block, [64]);
  449. ctx = ctx->thread[threadnr];
  450. ctx->m.last_dc[0] =
  451. ctx->m.last_dc[1] =
  452. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  453. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  454. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  455. int ssd = 0;
  456. int ac_bits = 0;
  457. int dc_bits = 0;
  458. int i;
  459. dnxhd_get_blocks(ctx, mb_x, mb_y);
  460. for (i = 0; i < 8; i++) {
  461. DCTELEM *src_block = ctx->blocks[i];
  462. int overflow, nbits, diff, last_index;
  463. int n = dnxhd_switch_matrix(ctx, i);
  464. memcpy(block, src_block, 64*sizeof(*block));
  465. last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
  466. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  467. diff = block[0] - ctx->m.last_dc[n];
  468. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  469. else nbits = av_log2_16bit( 2*diff);
  470. assert(nbits < ctx->cid_table->bit_depth + 4);
  471. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  472. ctx->m.last_dc[n] = block[0];
  473. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  474. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  475. ctx->m.dsp.idct(block);
  476. ssd += dnxhd_ssd_block(block, src_block);
  477. }
  478. }
  479. ctx->mb_rc[qscale][mb].ssd = ssd;
  480. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  481. }
  482. return 0;
  483. }
  484. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  485. {
  486. DNXHDEncContext *ctx = avctx->priv_data;
  487. int mb_y = jobnr, mb_x;
  488. ctx = ctx->thread[threadnr];
  489. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
  490. ctx->m.last_dc[0] =
  491. ctx->m.last_dc[1] =
  492. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  493. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  494. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  495. int qscale = ctx->mb_qscale[mb];
  496. int i;
  497. put_bits(&ctx->m.pb, 12, qscale<<1);
  498. dnxhd_get_blocks(ctx, mb_x, mb_y);
  499. for (i = 0; i < 8; i++) {
  500. DCTELEM *block = ctx->blocks[i];
  501. int overflow, n = dnxhd_switch_matrix(ctx, i);
  502. int last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
  503. //START_TIMER;
  504. dnxhd_encode_block(ctx, block, last_index, n);
  505. //STOP_TIMER("encode_block");
  506. }
  507. }
  508. if (put_bits_count(&ctx->m.pb)&31)
  509. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  510. flush_put_bits(&ctx->m.pb);
  511. return 0;
  512. }
  513. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  514. {
  515. int mb_y, mb_x;
  516. int offset = 0;
  517. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  518. int thread_size;
  519. ctx->slice_offs[mb_y] = offset;
  520. ctx->slice_size[mb_y] = 0;
  521. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  522. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  523. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  524. }
  525. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  526. ctx->slice_size[mb_y] >>= 3;
  527. thread_size = ctx->slice_size[mb_y];
  528. offset += thread_size;
  529. }
  530. }
  531. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  532. {
  533. DNXHDEncContext *ctx = avctx->priv_data;
  534. int mb_y = jobnr, mb_x;
  535. ctx = ctx->thread[threadnr];
  536. if (ctx->cid_table->bit_depth == 8) {
  537. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
  538. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  539. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  540. int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  541. int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)sum*sum)>>8)+128)>>8;
  542. ctx->mb_cmp[mb].value = varc;
  543. ctx->mb_cmp[mb].mb = mb;
  544. }
  545. } else { // 10-bit
  546. int const linesize = ctx->m.linesize >> 1;
  547. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  548. uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
  549. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  550. int sum = 0;
  551. int sqsum = 0;
  552. int mean, sqmean;
  553. int i, j;
  554. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  555. for (i = 0; i < 16; ++i) {
  556. for (j = 0; j < 16; ++j) {
  557. // Turn 16-bit pixels into 10-bit ones.
  558. int const sample = (unsigned)pix[j] >> 6;
  559. sum += sample;
  560. sqsum += sample * sample;
  561. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  562. }
  563. pix += linesize;
  564. }
  565. mean = sum >> 8; // 16*16 == 2^8
  566. sqmean = sqsum >> 8;
  567. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  568. ctx->mb_cmp[mb].mb = mb;
  569. }
  570. }
  571. return 0;
  572. }
  573. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  574. {
  575. int lambda, up_step, down_step;
  576. int last_lower = INT_MAX, last_higher = 0;
  577. int x, y, q;
  578. for (q = 1; q < avctx->qmax; q++) {
  579. ctx->qscale = q;
  580. avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  581. }
  582. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  583. lambda = ctx->lambda;
  584. for (;;) {
  585. int bits = 0;
  586. int end = 0;
  587. if (lambda == last_higher) {
  588. lambda++;
  589. end = 1; // need to set final qscales/bits
  590. }
  591. for (y = 0; y < ctx->m.mb_height; y++) {
  592. for (x = 0; x < ctx->m.mb_width; x++) {
  593. unsigned min = UINT_MAX;
  594. int qscale = 1;
  595. int mb = y*ctx->m.mb_width+x;
  596. for (q = 1; q < avctx->qmax; q++) {
  597. unsigned score = ctx->mb_rc[q][mb].bits*lambda+
  598. ((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  599. if (score < min) {
  600. min = score;
  601. qscale = q;
  602. }
  603. }
  604. bits += ctx->mb_rc[qscale][mb].bits;
  605. ctx->mb_qscale[mb] = qscale;
  606. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  607. }
  608. bits = (bits+31)&~31; // padding
  609. if (bits > ctx->frame_bits)
  610. break;
  611. }
  612. //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  613. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  614. if (end) {
  615. if (bits > ctx->frame_bits)
  616. return -1;
  617. break;
  618. }
  619. if (bits < ctx->frame_bits) {
  620. last_lower = FFMIN(lambda, last_lower);
  621. if (last_higher != 0)
  622. lambda = (lambda+last_higher)>>1;
  623. else
  624. lambda -= down_step;
  625. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  626. up_step = 1<<LAMBDA_FRAC_BITS;
  627. lambda = FFMAX(1, lambda);
  628. if (lambda == last_lower)
  629. break;
  630. } else {
  631. last_higher = FFMAX(lambda, last_higher);
  632. if (last_lower != INT_MAX)
  633. lambda = (lambda+last_lower)>>1;
  634. else if ((int64_t)lambda + up_step > INT_MAX)
  635. return -1;
  636. else
  637. lambda += up_step;
  638. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  639. down_step = 1<<LAMBDA_FRAC_BITS;
  640. }
  641. }
  642. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  643. ctx->lambda = lambda;
  644. return 0;
  645. }
  646. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  647. {
  648. int bits = 0;
  649. int up_step = 1;
  650. int down_step = 1;
  651. int last_higher = 0;
  652. int last_lower = INT_MAX;
  653. int qscale;
  654. int x, y;
  655. qscale = ctx->qscale;
  656. for (;;) {
  657. bits = 0;
  658. ctx->qscale = qscale;
  659. // XXX avoid recalculating bits
  660. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  661. for (y = 0; y < ctx->m.mb_height; y++) {
  662. for (x = 0; x < ctx->m.mb_width; x++)
  663. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  664. bits = (bits+31)&~31; // padding
  665. if (bits > ctx->frame_bits)
  666. break;
  667. }
  668. //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  669. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  670. if (bits < ctx->frame_bits) {
  671. if (qscale == 1)
  672. return 1;
  673. if (last_higher == qscale - 1) {
  674. qscale = last_higher;
  675. break;
  676. }
  677. last_lower = FFMIN(qscale, last_lower);
  678. if (last_higher != 0)
  679. qscale = (qscale+last_higher)>>1;
  680. else
  681. qscale -= down_step++;
  682. if (qscale < 1)
  683. qscale = 1;
  684. up_step = 1;
  685. } else {
  686. if (last_lower == qscale + 1)
  687. break;
  688. last_higher = FFMAX(qscale, last_higher);
  689. if (last_lower != INT_MAX)
  690. qscale = (qscale+last_lower)>>1;
  691. else
  692. qscale += up_step++;
  693. down_step = 1;
  694. if (qscale >= ctx->m.avctx->qmax)
  695. return -1;
  696. }
  697. }
  698. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  699. ctx->qscale = qscale;
  700. return 0;
  701. }
  702. #define BUCKET_BITS 8
  703. #define RADIX_PASSES 4
  704. #define NBUCKETS (1 << BUCKET_BITS)
  705. static inline int get_bucket(int value, int shift)
  706. {
  707. value >>= shift;
  708. value &= NBUCKETS - 1;
  709. return NBUCKETS - 1 - value;
  710. }
  711. static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
  712. {
  713. int i, j;
  714. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  715. for (i = 0; i < size; i++) {
  716. int v = data[i].value;
  717. for (j = 0; j < RADIX_PASSES; j++) {
  718. buckets[j][get_bucket(v, 0)]++;
  719. v >>= BUCKET_BITS;
  720. }
  721. assert(!v);
  722. }
  723. for (j = 0; j < RADIX_PASSES; j++) {
  724. int offset = size;
  725. for (i = NBUCKETS - 1; i >= 0; i--)
  726. buckets[j][i] = offset -= buckets[j][i];
  727. assert(!buckets[j][0]);
  728. }
  729. }
  730. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
  731. {
  732. int shift = pass * BUCKET_BITS;
  733. int i;
  734. for (i = 0; i < size; i++) {
  735. int v = get_bucket(data[i].value, shift);
  736. int pos = buckets[v]++;
  737. dst[pos] = data[i];
  738. }
  739. }
  740. static void radix_sort(RCCMPEntry *data, int size)
  741. {
  742. int buckets[RADIX_PASSES][NBUCKETS];
  743. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  744. radix_count(data, size, buckets);
  745. radix_sort_pass(tmp, data, size, buckets[0], 0);
  746. radix_sort_pass(data, tmp, size, buckets[1], 1);
  747. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  748. radix_sort_pass(tmp, data, size, buckets[2], 2);
  749. radix_sort_pass(data, tmp, size, buckets[3], 3);
  750. }
  751. av_free(tmp);
  752. }
  753. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  754. {
  755. int max_bits = 0;
  756. int ret, x, y;
  757. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  758. return -1;
  759. for (y = 0; y < ctx->m.mb_height; y++) {
  760. for (x = 0; x < ctx->m.mb_width; x++) {
  761. int mb = y*ctx->m.mb_width+x;
  762. int delta_bits;
  763. ctx->mb_qscale[mb] = ctx->qscale;
  764. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  765. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  766. if (!RC_VARIANCE) {
  767. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  768. ctx->mb_cmp[mb].mb = mb;
  769. ctx->mb_cmp[mb].value = delta_bits ?
  770. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  771. : INT_MIN; //avoid increasing qscale
  772. }
  773. }
  774. max_bits += 31; //worst padding
  775. }
  776. if (!ret) {
  777. if (RC_VARIANCE)
  778. avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
  779. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  780. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  781. int mb = ctx->mb_cmp[x].mb;
  782. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  783. ctx->mb_qscale[mb] = ctx->qscale+1;
  784. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  785. }
  786. }
  787. return 0;
  788. }
  789. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  790. {
  791. int i;
  792. for (i = 0; i < 3; i++) {
  793. ctx->frame.data[i] = frame->data[i];
  794. ctx->frame.linesize[i] = frame->linesize[i];
  795. }
  796. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  797. ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
  798. ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
  799. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  800. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  801. }
  802. ctx->frame.interlaced_frame = frame->interlaced_frame;
  803. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  804. }
  805. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  806. const AVFrame *frame, int *got_packet)
  807. {
  808. DNXHDEncContext *ctx = avctx->priv_data;
  809. int first_field = 1;
  810. int offset, i, ret;
  811. uint8_t *buf;
  812. if ((ret = ff_alloc_packet2(avctx, pkt, ctx->cid_table->frame_size)) < 0)
  813. return ret;
  814. buf = pkt->data;
  815. dnxhd_load_picture(ctx, frame);
  816. encode_coding_unit:
  817. for (i = 0; i < 3; i++) {
  818. ctx->src[i] = ctx->frame.data[i];
  819. if (ctx->interlaced && ctx->cur_field)
  820. ctx->src[i] += ctx->frame.linesize[i];
  821. }
  822. dnxhd_write_header(avctx, buf);
  823. if (avctx->mb_decision == FF_MB_DECISION_RD)
  824. ret = dnxhd_encode_rdo(avctx, ctx);
  825. else
  826. ret = dnxhd_encode_fast(avctx, ctx);
  827. if (ret < 0) {
  828. av_log(avctx, AV_LOG_ERROR,
  829. "picture could not fit ratecontrol constraints, increase qmax\n");
  830. return -1;
  831. }
  832. dnxhd_setup_threads_slices(ctx);
  833. offset = 0;
  834. for (i = 0; i < ctx->m.mb_height; i++) {
  835. AV_WB32(ctx->msip + i * 4, offset);
  836. offset += ctx->slice_size[i];
  837. assert(!(ctx->slice_size[i] & 3));
  838. }
  839. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  840. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  841. memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
  842. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  843. if (ctx->interlaced && first_field) {
  844. first_field = 0;
  845. ctx->cur_field ^= 1;
  846. buf += ctx->cid_table->coding_unit_size;
  847. goto encode_coding_unit;
  848. }
  849. ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
  850. pkt->flags |= AV_PKT_FLAG_KEY;
  851. *got_packet = 1;
  852. return 0;
  853. }
  854. static int dnxhd_encode_end(AVCodecContext *avctx)
  855. {
  856. DNXHDEncContext *ctx = avctx->priv_data;
  857. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  858. int i;
  859. av_free(ctx->vlc_codes-max_level*2);
  860. av_free(ctx->vlc_bits -max_level*2);
  861. av_freep(&ctx->run_codes);
  862. av_freep(&ctx->run_bits);
  863. av_freep(&ctx->mb_bits);
  864. av_freep(&ctx->mb_qscale);
  865. av_freep(&ctx->mb_rc);
  866. av_freep(&ctx->mb_cmp);
  867. av_freep(&ctx->slice_size);
  868. av_freep(&ctx->slice_offs);
  869. av_freep(&ctx->qmatrix_c);
  870. av_freep(&ctx->qmatrix_l);
  871. av_freep(&ctx->qmatrix_c16);
  872. av_freep(&ctx->qmatrix_l16);
  873. for (i = 1; i < avctx->thread_count; i++)
  874. av_freep(&ctx->thread[i]);
  875. return 0;
  876. }
  877. static const AVCodecDefault dnxhd_defaults[] = {
  878. { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
  879. { NULL },
  880. };
  881. AVCodec ff_dnxhd_encoder = {
  882. .name = "dnxhd",
  883. .type = AVMEDIA_TYPE_VIDEO,
  884. .id = CODEC_ID_DNXHD,
  885. .priv_data_size = sizeof(DNXHDEncContext),
  886. .init = dnxhd_encode_init,
  887. .encode2 = dnxhd_encode_picture,
  888. .close = dnxhd_encode_end,
  889. .capabilities = CODEC_CAP_SLICE_THREADS,
  890. .pix_fmts = (const enum PixelFormat[]){ PIX_FMT_YUV422P,
  891. PIX_FMT_YUV422P10,
  892. PIX_FMT_NONE },
  893. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  894. .priv_class = &class,
  895. .defaults = dnxhd_defaults,
  896. };