You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1125 lines
40KB

  1. /*
  2. * MPEG-4 Parametric Stereo decoding functions
  3. * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <stdint.h>
  22. #include "libavutil/mathematics.h"
  23. #include "avcodec.h"
  24. #include "get_bits.h"
  25. #include "ps.h"
  26. #include "ps_tablegen.h"
  27. #include "psdata.c"
  28. #define PS_BASELINE 0
  29. #define numQMFSlots 32 //numTimeSlots * RATE
  30. static const int8_t num_env_tab[2][4] = {
  31. { 0, 1, 2, 4, },
  32. { 1, 2, 3, 4, },
  33. };
  34. static const int8_t nr_iidicc_par_tab[] = {
  35. 10, 20, 34, 10, 20, 34,
  36. };
  37. static const int8_t nr_iidopd_par_tab[] = {
  38. 5, 11, 17, 5, 11, 17,
  39. };
  40. enum {
  41. huff_iid_df1,
  42. huff_iid_dt1,
  43. huff_iid_df0,
  44. huff_iid_dt0,
  45. huff_icc_df,
  46. huff_icc_dt,
  47. huff_ipd_df,
  48. huff_ipd_dt,
  49. huff_opd_df,
  50. huff_opd_dt,
  51. };
  52. static const int huff_iid[] = {
  53. huff_iid_df0,
  54. huff_iid_df1,
  55. huff_iid_dt0,
  56. huff_iid_dt1,
  57. };
  58. static VLC vlc_ps[10];
  59. /**
  60. * Read Inter-channel Intensity Difference parameters from the bitstream.
  61. *
  62. * @param avctx contains the current codec context
  63. * @param gb pointer to the input bitstream
  64. * @param ps pointer to the Parametric Stereo context
  65. * @param e envelope to decode
  66. * @param dt 1: time delta-coded, 0: frequency delta-coded
  67. */
  68. static int iid_data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, int e, int dt)
  69. {
  70. int b;
  71. int table_idx = huff_iid[2*dt+ps->iid_quant];
  72. VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table;
  73. if (dt) {
  74. int e_prev = e ? e - 1 : ps->num_env_old - 1;
  75. e_prev = FFMAX(e_prev, 0);
  76. for (b = 0; b < ps->nr_iid_par; b++) {
  77. ps->iid_par[e][b] = ps->iid_par[e_prev][b] +
  78. get_vlc2(gb, vlc_table, 9, 3) -
  79. huff_offset[table_idx];
  80. if (FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
  81. goto err;
  82. }
  83. } else {
  84. int prev = 0;
  85. for (b = 0; b < ps->nr_iid_par; b++) {
  86. prev += get_vlc2(gb, vlc_table, 9, 3) -
  87. huff_offset[table_idx];
  88. ps->iid_par[e][b] = prev;
  89. if (FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
  90. goto err;
  91. }
  92. }
  93. return 0;
  94. err:
  95. av_log(avctx, AV_LOG_ERROR, "illegal iid\n");
  96. return -1;
  97. }
  98. /**
  99. * Read Inter-Channel Coherence parameters from the bitstream.
  100. *
  101. * @param avctx contains the current codec context
  102. * @param gb pointer to the input bitstream
  103. * @param ps pointer to the Parametric Stereo context
  104. * @param e envelope to decode
  105. * @param dt 1: time delta-coded, 0: frequency delta-coded
  106. */
  107. static int icc_data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, int e, int dt)
  108. {
  109. int b;
  110. int table_idx = dt ? huff_icc_dt : huff_icc_df;
  111. VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table;
  112. if (dt) {
  113. int e_prev = e ? e - 1 : ps->num_env_old - 1;
  114. e_prev = FFMAX(e_prev, 0);
  115. for (b = 0; b < ps->nr_icc_par; b++) {
  116. ps->icc_par[e][b] = ps->icc_par[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - huff_offset[table_idx];
  117. if (ps->icc_par[e][b] > 7U)
  118. goto err;
  119. }
  120. } else {
  121. int prev = 0;
  122. for (b = 0; b < ps->nr_icc_par; b++) {
  123. prev += get_vlc2(gb, vlc_table, 9, 3) - huff_offset[table_idx];
  124. ps->icc_par[e][b] = prev;
  125. if (ps->icc_par[e][b] > 7U)
  126. goto err;
  127. }
  128. }
  129. return 0;
  130. err:
  131. av_log(avctx, AV_LOG_ERROR, "illegal icc\n");
  132. return -1;
  133. }
  134. /**
  135. * Read Inter-channel Phase Difference parameters from the bitstream.
  136. *
  137. * @param gb pointer to the input bitstream
  138. * @param ps pointer to the Parametric Stereo context
  139. * @param e envelope to decode
  140. * @param dt 1: time delta-coded, 0: frequency delta-coded
  141. */
  142. static void ipd_data(GetBitContext *gb, PSContext *ps, int e, int dt)
  143. {
  144. int b;
  145. int table_idx = dt ? huff_ipd_dt : huff_ipd_df;
  146. VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table;
  147. if (dt) {
  148. int e_prev = e ? e - 1 : ps->num_env_old - 1;
  149. e_prev = FFMAX(e_prev, 0);
  150. for (b = 0; b < ps->nr_ipdopd_par; b++) {
  151. ps->ipd_par[e][b] = (ps->ipd_par[e_prev][b] + get_vlc2(gb, vlc_table, 9, 1)) & 0x07;
  152. }
  153. } else {
  154. int prev = 0;
  155. for (b = 0; b < ps->nr_ipdopd_par; b++) {
  156. prev += get_vlc2(gb, vlc_table, 9, 3);
  157. prev &= 0x07;
  158. ps->ipd_par[e][b] = prev;
  159. }
  160. }
  161. }
  162. /**
  163. * Read Overall Phase Difference parameters from the bitstream.
  164. *
  165. * @param gb pointer to the input bitstream
  166. * @param ps pointer to the Parametric Stereo context
  167. * @param e envelope to decode
  168. * @param dt 1: time delta-coded, 0: frequency delta-coded
  169. */
  170. static void opd_data(GetBitContext *gb, PSContext *ps, int e, int dt)
  171. {
  172. int b;
  173. int table_idx = dt ? huff_opd_dt : huff_opd_df;
  174. VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table;
  175. if (dt) {
  176. int e_prev = e ? e - 1 : ps->num_env_old - 1;
  177. e_prev = FFMAX(e_prev, 0);
  178. for (b = 0; b < ps->nr_ipdopd_par; b++) {
  179. ps->opd_par[e][b] = (ps->opd_par[e_prev][b] + get_vlc2(gb, vlc_table, 9, 1)) & 0x07;
  180. }
  181. } else {
  182. int prev = 0;
  183. for (b = 0; b < ps->nr_ipdopd_par; b++) {
  184. prev += get_vlc2(gb, vlc_table, 9, 3);
  185. prev &= 0x07;
  186. ps->opd_par[e][b] = prev;
  187. }
  188. }
  189. }
  190. static int ps_extension(GetBitContext *gb, PSContext *ps, int ps_extension_id)
  191. {
  192. int e;
  193. int count = get_bits_count(gb);
  194. if (ps_extension_id)
  195. return 0;
  196. ps->enable_ipdopd = get_bits1(gb);
  197. if (ps->enable_ipdopd) {
  198. for (e = 0; e < ps->num_env; e++) {
  199. int dt = get_bits1(gb);
  200. ipd_data(gb, ps, e, dt);
  201. dt = get_bits1(gb);
  202. opd_data(gb, ps, e, dt);
  203. }
  204. }
  205. skip_bits1(gb); //reserved_ps
  206. return get_bits_count(gb) - count;
  207. }
  208. static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist)
  209. {
  210. int i;
  211. for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
  212. opd_hist[i] = 0;
  213. ipd_hist[i] = 0;
  214. }
  215. }
  216. int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
  217. {
  218. int e;
  219. int bit_count_start = get_bits_count(gb_host);
  220. int header;
  221. int bits_consumed;
  222. GetBitContext gbc = *gb_host, *gb = &gbc;
  223. header = get_bits1(gb);
  224. if (header) { //enable_ps_header
  225. ps->enable_iid = get_bits1(gb);
  226. if (ps->enable_iid) {
  227. ps->iid_mode = get_bits(gb, 3);
  228. if (ps->iid_mode > 5) {
  229. av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
  230. ps->iid_mode);
  231. goto err;
  232. }
  233. ps->nr_iid_par = nr_iidicc_par_tab[ps->iid_mode];
  234. ps->iid_quant = ps->iid_mode > 2;
  235. ps->nr_ipdopd_par = nr_iidopd_par_tab[ps->iid_mode];
  236. }
  237. ps->enable_icc = get_bits1(gb);
  238. if (ps->enable_icc) {
  239. ps->icc_mode = get_bits(gb, 3);
  240. if (ps->icc_mode > 5) {
  241. av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
  242. ps->icc_mode);
  243. goto err;
  244. }
  245. ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
  246. }
  247. ps->enable_ext = get_bits1(gb);
  248. }
  249. ps->frame_class = get_bits1(gb);
  250. ps->num_env_old = ps->num_env;
  251. ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)];
  252. ps->border_position[0] = -1;
  253. if (ps->frame_class) {
  254. for (e = 1; e <= ps->num_env; e++)
  255. ps->border_position[e] = get_bits(gb, 5);
  256. } else
  257. for (e = 1; e <= ps->num_env; e++)
  258. ps->border_position[e] = e * numQMFSlots / ps->num_env - 1;
  259. if (ps->enable_iid) {
  260. for (e = 0; e < ps->num_env; e++) {
  261. int dt = get_bits1(gb);
  262. if (iid_data(avctx, gb, ps, e, dt))
  263. goto err;
  264. }
  265. } else
  266. memset(ps->iid_par, 0, sizeof(ps->iid_par));
  267. if (ps->enable_icc)
  268. for (e = 0; e < ps->num_env; e++) {
  269. int dt = get_bits1(gb);
  270. if (icc_data(avctx, gb, ps, e, dt))
  271. goto err;
  272. }
  273. else
  274. memset(ps->icc_par, 0, sizeof(ps->icc_par));
  275. if (ps->enable_ext) {
  276. int cnt = get_bits(gb, 4);
  277. if (cnt == 15) {
  278. cnt += get_bits(gb, 8);
  279. }
  280. cnt *= 8;
  281. while (cnt > 7) {
  282. int ps_extension_id = get_bits(gb, 2);
  283. cnt -= 2 + ps_extension(gb, ps, ps_extension_id);
  284. }
  285. if (cnt < 0) {
  286. av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d", cnt);
  287. goto err;
  288. }
  289. skip_bits(gb, cnt);
  290. }
  291. ps->enable_ipdopd &= !PS_BASELINE;
  292. //Fix up envelopes
  293. if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
  294. //Create a fake envelope
  295. int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
  296. if (source >= 0 && source != ps->num_env) {
  297. if (ps->enable_iid && ps->num_env_old > 1) {
  298. memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
  299. }
  300. if (ps->enable_icc && ps->num_env_old > 1) {
  301. memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
  302. }
  303. if (ps->enable_ipdopd && ps->num_env_old > 1) {
  304. memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
  305. memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
  306. }
  307. }
  308. ps->num_env++;
  309. ps->border_position[ps->num_env] = numQMFSlots - 1;
  310. }
  311. ps->is34bands_old = ps->is34bands;
  312. if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
  313. ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
  314. (ps->enable_icc && ps->nr_icc_par == 34);
  315. //Baseline
  316. if (!ps->enable_ipdopd) {
  317. memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  318. memset(ps->opd_par, 0, sizeof(ps->opd_par));
  319. }
  320. if (header)
  321. ps->start = 1;
  322. bits_consumed = get_bits_count(gb) - bit_count_start;
  323. if (bits_consumed <= bits_left) {
  324. skip_bits_long(gb_host, bits_consumed);
  325. return bits_consumed;
  326. }
  327. av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
  328. err:
  329. ps->start = 0;
  330. skip_bits_long(gb_host, bits_left);
  331. return bits_left;
  332. }
  333. /** Split one subband into 2 subsubbands with a symmetric real filter.
  334. * The filter must have its non-center even coefficients equal to zero. */
  335. static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[7], int len, int reverse)
  336. {
  337. int i, j;
  338. for (i = 0; i < len; i++) {
  339. float re_in = filter[6] * in[6+i][0]; //real inphase
  340. float re_op = 0.0f; //real out of phase
  341. float im_in = filter[6] * in[6+i][1]; //imag inphase
  342. float im_op = 0.0f; //imag out of phase
  343. for (j = 0; j < 6; j += 2) {
  344. re_op += filter[j+1] * (in[i+j+1][0] + in[12-j-1+i][0]);
  345. im_op += filter[j+1] * (in[i+j+1][1] + in[12-j-1+i][1]);
  346. }
  347. out[ reverse][i][0] = re_in + re_op;
  348. out[ reverse][i][1] = im_in + im_op;
  349. out[!reverse][i][0] = re_in - re_op;
  350. out[!reverse][i][1] = im_in - im_op;
  351. }
  352. }
  353. /** Split one subband into 6 subsubbands with a complex filter */
  354. static void hybrid6_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int len)
  355. {
  356. int i, j, ssb;
  357. int N = 8;
  358. float temp[8][2];
  359. for (i = 0; i < len; i++) {
  360. for (ssb = 0; ssb < N; ssb++) {
  361. float sum_re = filter[ssb][6][0] * in[i+6][0], sum_im = filter[ssb][6][0] * in[i+6][1];
  362. for (j = 0; j < 6; j++) {
  363. float in0_re = in[i+j][0];
  364. float in0_im = in[i+j][1];
  365. float in1_re = in[i+12-j][0];
  366. float in1_im = in[i+12-j][1];
  367. sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
  368. sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
  369. }
  370. temp[ssb][0] = sum_re;
  371. temp[ssb][1] = sum_im;
  372. }
  373. out[0][i][0] = temp[6][0];
  374. out[0][i][1] = temp[6][1];
  375. out[1][i][0] = temp[7][0];
  376. out[1][i][1] = temp[7][1];
  377. out[2][i][0] = temp[0][0];
  378. out[2][i][1] = temp[0][1];
  379. out[3][i][0] = temp[1][0];
  380. out[3][i][1] = temp[1][1];
  381. out[4][i][0] = temp[2][0] + temp[5][0];
  382. out[4][i][1] = temp[2][1] + temp[5][1];
  383. out[5][i][0] = temp[3][0] + temp[4][0];
  384. out[5][i][1] = temp[3][1] + temp[4][1];
  385. }
  386. }
  387. static void hybrid4_8_12_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int N, int len)
  388. {
  389. int i, j, ssb;
  390. for (i = 0; i < len; i++) {
  391. for (ssb = 0; ssb < N; ssb++) {
  392. float sum_re = filter[ssb][6][0] * in[i+6][0], sum_im = filter[ssb][6][0] * in[i+6][1];
  393. for (j = 0; j < 6; j++) {
  394. float in0_re = in[i+j][0];
  395. float in0_im = in[i+j][1];
  396. float in1_re = in[i+12-j][0];
  397. float in1_im = in[i+12-j][1];
  398. sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
  399. sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
  400. }
  401. out[ssb][i][0] = sum_re;
  402. out[ssb][i][1] = sum_im;
  403. }
  404. }
  405. }
  406. static void hybrid_analysis(float out[91][32][2], float in[5][44][2], float L[2][38][64], int is34, int len)
  407. {
  408. int i, j;
  409. for (i = 0; i < 5; i++) {
  410. for (j = 0; j < 38; j++) {
  411. in[i][j+6][0] = L[0][j][i];
  412. in[i][j+6][1] = L[1][j][i];
  413. }
  414. }
  415. if(is34) {
  416. hybrid4_8_12_cx(in[0], out, f34_0_12, 12, len);
  417. hybrid4_8_12_cx(in[1], out+12, f34_1_8, 8, len);
  418. hybrid4_8_12_cx(in[2], out+20, f34_2_4, 4, len);
  419. hybrid4_8_12_cx(in[3], out+24, f34_2_4, 4, len);
  420. hybrid4_8_12_cx(in[4], out+28, f34_2_4, 4, len);
  421. for (i = 0; i < 59; i++) {
  422. for (j = 0; j < len; j++) {
  423. out[i+32][j][0] = L[0][j][i+5];
  424. out[i+32][j][1] = L[1][j][i+5];
  425. }
  426. }
  427. } else {
  428. hybrid6_cx(in[0], out, f20_0_8, len);
  429. hybrid2_re(in[1], out+6, g1_Q2, len, 1);
  430. hybrid2_re(in[2], out+8, g1_Q2, len, 0);
  431. for (i = 0; i < 61; i++) {
  432. for (j = 0; j < len; j++) {
  433. out[i+10][j][0] = L[0][j][i+3];
  434. out[i+10][j][1] = L[1][j][i+3];
  435. }
  436. }
  437. }
  438. //update in_buf
  439. for (i = 0; i < 5; i++) {
  440. memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
  441. }
  442. }
  443. static void hybrid_synthesis(float out[2][38][64], float in[91][32][2], int is34, int len)
  444. {
  445. int i, n;
  446. if(is34) {
  447. for (n = 0; n < len; n++) {
  448. memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
  449. memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
  450. for(i = 0; i < 12; i++) {
  451. out[0][n][0] += in[ i][n][0];
  452. out[1][n][0] += in[ i][n][1];
  453. }
  454. for(i = 0; i < 8; i++) {
  455. out[0][n][1] += in[12+i][n][0];
  456. out[1][n][1] += in[12+i][n][1];
  457. }
  458. for(i = 0; i < 4; i++) {
  459. out[0][n][2] += in[20+i][n][0];
  460. out[1][n][2] += in[20+i][n][1];
  461. out[0][n][3] += in[24+i][n][0];
  462. out[1][n][3] += in[24+i][n][1];
  463. out[0][n][4] += in[28+i][n][0];
  464. out[1][n][4] += in[28+i][n][1];
  465. }
  466. }
  467. for (i = 0; i < 59; i++) {
  468. for (n = 0; n < len; n++) {
  469. out[0][n][i+5] = in[i+32][n][0];
  470. out[1][n][i+5] = in[i+32][n][1];
  471. }
  472. }
  473. } else {
  474. for (n = 0; n < len; n++) {
  475. out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
  476. in[3][n][0] + in[4][n][0] + in[5][n][0];
  477. out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
  478. in[3][n][1] + in[4][n][1] + in[5][n][1];
  479. out[0][n][1] = in[6][n][0] + in[7][n][0];
  480. out[1][n][1] = in[6][n][1] + in[7][n][1];
  481. out[0][n][2] = in[8][n][0] + in[9][n][0];
  482. out[1][n][2] = in[8][n][1] + in[9][n][1];
  483. }
  484. for (i = 0; i < 61; i++) {
  485. for (n = 0; n < len; n++) {
  486. out[0][n][i+3] = in[i+10][n][0];
  487. out[1][n][i+3] = in[i+10][n][1];
  488. }
  489. }
  490. }
  491. }
  492. /// All-pass filter decay slope
  493. #define DECAY_SLOPE 0.05f
  494. /// Number of frequency bands that can be addressed by the parameter index, b(k)
  495. static const int NR_PAR_BANDS[] = { 20, 34 };
  496. /// Number of frequency bands that can be addressed by the sub subband index, k
  497. static const int NR_BANDS[] = { 71, 91 };
  498. /// Start frequency band for the all-pass filter decay slope
  499. static const int DECAY_CUTOFF[] = { 10, 32 };
  500. /// Number of all-pass filer bands
  501. static const int NR_ALLPASS_BANDS[] = { 30, 50 };
  502. /// First stereo band using the short one sample delay
  503. static const int SHORT_DELAY_BAND[] = { 42, 62 };
  504. /** Table 8.46 */
  505. static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
  506. {
  507. int b;
  508. if (full)
  509. b = 9;
  510. else {
  511. b = 4;
  512. par_mapped[10] = 0;
  513. }
  514. for (; b >= 0; b--) {
  515. par_mapped[2*b+1] = par_mapped[2*b] = par[b];
  516. }
  517. }
  518. static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
  519. {
  520. par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
  521. par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
  522. par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
  523. par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
  524. par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
  525. par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
  526. par_mapped[ 6] = par[10];
  527. par_mapped[ 7] = par[11];
  528. par_mapped[ 8] = ( par[12] + par[13]) / 2;
  529. par_mapped[ 9] = ( par[14] + par[15]) / 2;
  530. par_mapped[10] = par[16];
  531. if (full) {
  532. par_mapped[11] = par[17];
  533. par_mapped[12] = par[18];
  534. par_mapped[13] = par[19];
  535. par_mapped[14] = ( par[20] + par[21]) / 2;
  536. par_mapped[15] = ( par[22] + par[23]) / 2;
  537. par_mapped[16] = ( par[24] + par[25]) / 2;
  538. par_mapped[17] = ( par[26] + par[27]) / 2;
  539. par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
  540. par_mapped[19] = ( par[32] + par[33]) / 2;
  541. }
  542. }
  543. static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
  544. {
  545. par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
  546. par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
  547. par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
  548. par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
  549. par[ 4] = ( par[ 6] + par[ 7]) * 0.5f;
  550. par[ 5] = ( par[ 8] + par[ 9]) * 0.5f;
  551. par[ 6] = par[10];
  552. par[ 7] = par[11];
  553. par[ 8] = ( par[12] + par[13]) * 0.5f;
  554. par[ 9] = ( par[14] + par[15]) * 0.5f;
  555. par[10] = par[16];
  556. par[11] = par[17];
  557. par[12] = par[18];
  558. par[13] = par[19];
  559. par[14] = ( par[20] + par[21]) * 0.5f;
  560. par[15] = ( par[22] + par[23]) * 0.5f;
  561. par[16] = ( par[24] + par[25]) * 0.5f;
  562. par[17] = ( par[26] + par[27]) * 0.5f;
  563. par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
  564. par[19] = ( par[32] + par[33]) * 0.5f;
  565. }
  566. static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
  567. {
  568. if (full) {
  569. par_mapped[33] = par[9];
  570. par_mapped[32] = par[9];
  571. par_mapped[31] = par[9];
  572. par_mapped[30] = par[9];
  573. par_mapped[29] = par[9];
  574. par_mapped[28] = par[9];
  575. par_mapped[27] = par[8];
  576. par_mapped[26] = par[8];
  577. par_mapped[25] = par[8];
  578. par_mapped[24] = par[8];
  579. par_mapped[23] = par[7];
  580. par_mapped[22] = par[7];
  581. par_mapped[21] = par[7];
  582. par_mapped[20] = par[7];
  583. par_mapped[19] = par[6];
  584. par_mapped[18] = par[6];
  585. par_mapped[17] = par[5];
  586. par_mapped[16] = par[5];
  587. } else {
  588. par_mapped[16] = 0;
  589. }
  590. par_mapped[15] = par[4];
  591. par_mapped[14] = par[4];
  592. par_mapped[13] = par[4];
  593. par_mapped[12] = par[4];
  594. par_mapped[11] = par[3];
  595. par_mapped[10] = par[3];
  596. par_mapped[ 9] = par[2];
  597. par_mapped[ 8] = par[2];
  598. par_mapped[ 7] = par[2];
  599. par_mapped[ 6] = par[2];
  600. par_mapped[ 5] = par[1];
  601. par_mapped[ 4] = par[1];
  602. par_mapped[ 3] = par[1];
  603. par_mapped[ 2] = par[0];
  604. par_mapped[ 1] = par[0];
  605. par_mapped[ 0] = par[0];
  606. }
  607. static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
  608. {
  609. if (full) {
  610. par_mapped[33] = par[19];
  611. par_mapped[32] = par[19];
  612. par_mapped[31] = par[18];
  613. par_mapped[30] = par[18];
  614. par_mapped[29] = par[18];
  615. par_mapped[28] = par[18];
  616. par_mapped[27] = par[17];
  617. par_mapped[26] = par[17];
  618. par_mapped[25] = par[16];
  619. par_mapped[24] = par[16];
  620. par_mapped[23] = par[15];
  621. par_mapped[22] = par[15];
  622. par_mapped[21] = par[14];
  623. par_mapped[20] = par[14];
  624. par_mapped[19] = par[13];
  625. par_mapped[18] = par[12];
  626. par_mapped[17] = par[11];
  627. }
  628. par_mapped[16] = par[10];
  629. par_mapped[15] = par[ 9];
  630. par_mapped[14] = par[ 9];
  631. par_mapped[13] = par[ 8];
  632. par_mapped[12] = par[ 8];
  633. par_mapped[11] = par[ 7];
  634. par_mapped[10] = par[ 6];
  635. par_mapped[ 9] = par[ 5];
  636. par_mapped[ 8] = par[ 5];
  637. par_mapped[ 7] = par[ 4];
  638. par_mapped[ 6] = par[ 4];
  639. par_mapped[ 5] = par[ 3];
  640. par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
  641. par_mapped[ 3] = par[ 2];
  642. par_mapped[ 2] = par[ 1];
  643. par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
  644. par_mapped[ 0] = par[ 0];
  645. }
  646. static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
  647. {
  648. par[33] = par[19];
  649. par[32] = par[19];
  650. par[31] = par[18];
  651. par[30] = par[18];
  652. par[29] = par[18];
  653. par[28] = par[18];
  654. par[27] = par[17];
  655. par[26] = par[17];
  656. par[25] = par[16];
  657. par[24] = par[16];
  658. par[23] = par[15];
  659. par[22] = par[15];
  660. par[21] = par[14];
  661. par[20] = par[14];
  662. par[19] = par[13];
  663. par[18] = par[12];
  664. par[17] = par[11];
  665. par[16] = par[10];
  666. par[15] = par[ 9];
  667. par[14] = par[ 9];
  668. par[13] = par[ 8];
  669. par[12] = par[ 8];
  670. par[11] = par[ 7];
  671. par[10] = par[ 6];
  672. par[ 9] = par[ 5];
  673. par[ 8] = par[ 5];
  674. par[ 7] = par[ 4];
  675. par[ 6] = par[ 4];
  676. par[ 5] = par[ 3];
  677. par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
  678. par[ 3] = par[ 2];
  679. par[ 2] = par[ 1];
  680. par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
  681. par[ 0] = par[ 0];
  682. }
  683. static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
  684. {
  685. float power[34][PS_QMF_TIME_SLOTS] = {{0}};
  686. float transient_gain[34][PS_QMF_TIME_SLOTS];
  687. float *peak_decay_nrg = ps->peak_decay_nrg;
  688. float *power_smooth = ps->power_smooth;
  689. float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
  690. float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
  691. float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
  692. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  693. const float peak_decay_factor = 0.76592833836465f;
  694. const float transient_impact = 1.5f;
  695. const float a_smooth = 0.25f; //< Smoothing coefficient
  696. int i, k, m, n;
  697. int n0 = 0, nL = 32;
  698. static const int link_delay[] = { 3, 4, 5 };
  699. static const float a[] = { 0.65143905753106f,
  700. 0.56471812200776f,
  701. 0.48954165955695f };
  702. if (is34 != ps->is34bands_old) {
  703. memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
  704. memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
  705. memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
  706. memset(ps->delay, 0, sizeof(ps->delay));
  707. memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
  708. }
  709. for (n = n0; n < nL; n++) {
  710. for (k = 0; k < NR_BANDS[is34]; k++) {
  711. int i = k_to_i[k];
  712. power[i][n] += s[k][n][0] * s[k][n][0] + s[k][n][1] * s[k][n][1];
  713. }
  714. }
  715. //Transient detection
  716. for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
  717. for (n = n0; n < nL; n++) {
  718. float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
  719. float denom;
  720. peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
  721. power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
  722. peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
  723. denom = transient_impact * peak_decay_diff_smooth[i];
  724. transient_gain[i][n] = (denom > power_smooth[i]) ?
  725. power_smooth[i] / denom : 1.0f;
  726. }
  727. }
  728. //Decorrelation and transient reduction
  729. // PS_AP_LINKS - 1
  730. // -----
  731. // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
  732. //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
  733. // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
  734. // m = 0
  735. //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
  736. for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
  737. int b = k_to_i[k];
  738. float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
  739. float ag[PS_AP_LINKS];
  740. g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
  741. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  742. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  743. for (m = 0; m < PS_AP_LINKS; m++) {
  744. memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
  745. ag[m] = a[m] * g_decay_slope;
  746. }
  747. for (n = n0; n < nL; n++) {
  748. float in_re = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][0] -
  749. delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][1];
  750. float in_im = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][1] +
  751. delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][0];
  752. for (m = 0; m < PS_AP_LINKS; m++) {
  753. float a_re = ag[m] * in_re;
  754. float a_im = ag[m] * in_im;
  755. float link_delay_re = ap_delay[k][m][n+5-link_delay[m]][0];
  756. float link_delay_im = ap_delay[k][m][n+5-link_delay[m]][1];
  757. float fractional_delay_re = Q_fract_allpass[is34][k][m][0];
  758. float fractional_delay_im = Q_fract_allpass[is34][k][m][1];
  759. ap_delay[k][m][n+5][0] = in_re;
  760. ap_delay[k][m][n+5][1] = in_im;
  761. in_re = link_delay_re * fractional_delay_re - link_delay_im * fractional_delay_im - a_re;
  762. in_im = link_delay_re * fractional_delay_im + link_delay_im * fractional_delay_re - a_im;
  763. ap_delay[k][m][n+5][0] += ag[m] * in_re;
  764. ap_delay[k][m][n+5][1] += ag[m] * in_im;
  765. }
  766. out[k][n][0] = transient_gain[b][n] * in_re;
  767. out[k][n][1] = transient_gain[b][n] * in_im;
  768. }
  769. }
  770. for (; k < SHORT_DELAY_BAND[is34]; k++) {
  771. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  772. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  773. for (n = n0; n < nL; n++) {
  774. //H = delay 14
  775. out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][0];
  776. out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][1];
  777. }
  778. }
  779. for (; k < NR_BANDS[is34]; k++) {
  780. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  781. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  782. for (n = n0; n < nL; n++) {
  783. //H = delay 1
  784. out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][0];
  785. out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][1];
  786. }
  787. }
  788. }
  789. static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  790. int8_t (*par)[PS_MAX_NR_IIDICC],
  791. int num_par, int num_env, int full)
  792. {
  793. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  794. int e;
  795. if (num_par == 20 || num_par == 11) {
  796. for (e = 0; e < num_env; e++) {
  797. map_idx_20_to_34(par_mapped[e], par[e], full);
  798. }
  799. } else if (num_par == 10 || num_par == 5) {
  800. for (e = 0; e < num_env; e++) {
  801. map_idx_10_to_34(par_mapped[e], par[e], full);
  802. }
  803. } else {
  804. *p_par_mapped = par;
  805. }
  806. }
  807. static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  808. int8_t (*par)[PS_MAX_NR_IIDICC],
  809. int num_par, int num_env, int full)
  810. {
  811. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  812. int e;
  813. if (num_par == 34 || num_par == 17) {
  814. for (e = 0; e < num_env; e++) {
  815. map_idx_34_to_20(par_mapped[e], par[e], full);
  816. }
  817. } else if (num_par == 10 || num_par == 5) {
  818. for (e = 0; e < num_env; e++) {
  819. map_idx_10_to_20(par_mapped[e], par[e], full);
  820. }
  821. } else {
  822. *p_par_mapped = par;
  823. }
  824. }
  825. static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
  826. {
  827. int e, b, k, n;
  828. float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
  829. float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
  830. float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
  831. float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
  832. int8_t *opd_hist = ps->opd_hist;
  833. int8_t *ipd_hist = ps->ipd_hist;
  834. int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  835. int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  836. int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  837. int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  838. int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
  839. int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
  840. int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
  841. int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
  842. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  843. const float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
  844. //Remapping
  845. for (b = 0; b < PS_MAX_NR_IIDICC; b++) {
  846. H11[0][0][b] = H11[0][ps->num_env_old][b];
  847. H12[0][0][b] = H12[0][ps->num_env_old][b];
  848. H21[0][0][b] = H21[0][ps->num_env_old][b];
  849. H22[0][0][b] = H22[0][ps->num_env_old][b];
  850. H11[1][0][b] = H11[1][ps->num_env_old][b];
  851. H12[1][0][b] = H12[1][ps->num_env_old][b];
  852. H21[1][0][b] = H21[1][ps->num_env_old][b];
  853. H22[1][0][b] = H22[1][ps->num_env_old][b];
  854. }
  855. if (is34) {
  856. remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  857. remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  858. if (ps->enable_ipdopd) {
  859. remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  860. remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  861. }
  862. if (!ps->is34bands_old) {
  863. map_val_20_to_34(H11[0][0]);
  864. map_val_20_to_34(H11[1][0]);
  865. map_val_20_to_34(H12[0][0]);
  866. map_val_20_to_34(H12[1][0]);
  867. map_val_20_to_34(H21[0][0]);
  868. map_val_20_to_34(H21[1][0]);
  869. map_val_20_to_34(H22[0][0]);
  870. map_val_20_to_34(H22[1][0]);
  871. ipdopd_reset(ipd_hist, opd_hist);
  872. }
  873. } else {
  874. remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  875. remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  876. if (ps->enable_ipdopd) {
  877. remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  878. remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  879. }
  880. if (ps->is34bands_old) {
  881. map_val_34_to_20(H11[0][0]);
  882. map_val_34_to_20(H11[1][0]);
  883. map_val_34_to_20(H12[0][0]);
  884. map_val_34_to_20(H12[1][0]);
  885. map_val_34_to_20(H21[0][0]);
  886. map_val_34_to_20(H21[1][0]);
  887. map_val_34_to_20(H22[0][0]);
  888. map_val_34_to_20(H22[1][0]);
  889. ipdopd_reset(ipd_hist, opd_hist);
  890. }
  891. }
  892. //Mixing
  893. for (e = 0; e < ps->num_env; e++) {
  894. for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
  895. float h11, h12, h21, h22;
  896. h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
  897. h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
  898. h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
  899. h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
  900. if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) {
  901. //The spec say says to only run this smoother when enable_ipdopd
  902. //is set but the reference decoder appears to run it constantly
  903. float h11i, h12i, h21i, h22i;
  904. float ipd_adj_re, ipd_adj_im;
  905. int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
  906. int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
  907. float opd_re = pd_re_smooth[opd_idx];
  908. float opd_im = pd_im_smooth[opd_idx];
  909. float ipd_re = pd_re_smooth[ipd_idx];
  910. float ipd_im = pd_im_smooth[ipd_idx];
  911. opd_hist[b] = opd_idx & 0x3F;
  912. ipd_hist[b] = ipd_idx & 0x3F;
  913. ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
  914. ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
  915. h11i = h11 * opd_im;
  916. h11 = h11 * opd_re;
  917. h12i = h12 * ipd_adj_im;
  918. h12 = h12 * ipd_adj_re;
  919. h21i = h21 * opd_im;
  920. h21 = h21 * opd_re;
  921. h22i = h22 * ipd_adj_im;
  922. h22 = h22 * ipd_adj_re;
  923. H11[1][e+1][b] = h11i;
  924. H12[1][e+1][b] = h12i;
  925. H21[1][e+1][b] = h21i;
  926. H22[1][e+1][b] = h22i;
  927. }
  928. H11[0][e+1][b] = h11;
  929. H12[0][e+1][b] = h12;
  930. H21[0][e+1][b] = h21;
  931. H22[0][e+1][b] = h22;
  932. }
  933. for (k = 0; k < NR_BANDS[is34]; k++) {
  934. float h11r, h12r, h21r, h22r;
  935. float h11i, h12i, h21i, h22i;
  936. float h11r_step, h12r_step, h21r_step, h22r_step;
  937. float h11i_step, h12i_step, h21i_step, h22i_step;
  938. int start = ps->border_position[e];
  939. int stop = ps->border_position[e+1];
  940. float width = 1.f / (stop - start);
  941. b = k_to_i[k];
  942. h11r = H11[0][e][b];
  943. h12r = H12[0][e][b];
  944. h21r = H21[0][e][b];
  945. h22r = H22[0][e][b];
  946. if (!PS_BASELINE && ps->enable_ipdopd) {
  947. //Is this necessary? ps_04_new seems unchanged
  948. if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
  949. h11i = -H11[1][e][b];
  950. h12i = -H12[1][e][b];
  951. h21i = -H21[1][e][b];
  952. h22i = -H22[1][e][b];
  953. } else {
  954. h11i = H11[1][e][b];
  955. h12i = H12[1][e][b];
  956. h21i = H21[1][e][b];
  957. h22i = H22[1][e][b];
  958. }
  959. }
  960. //Interpolation
  961. h11r_step = (H11[0][e+1][b] - h11r) * width;
  962. h12r_step = (H12[0][e+1][b] - h12r) * width;
  963. h21r_step = (H21[0][e+1][b] - h21r) * width;
  964. h22r_step = (H22[0][e+1][b] - h22r) * width;
  965. if (!PS_BASELINE && ps->enable_ipdopd) {
  966. h11i_step = (H11[1][e+1][b] - h11i) * width;
  967. h12i_step = (H12[1][e+1][b] - h12i) * width;
  968. h21i_step = (H21[1][e+1][b] - h21i) * width;
  969. h22i_step = (H22[1][e+1][b] - h22i) * width;
  970. }
  971. for (n = start + 1; n <= stop; n++) {
  972. //l is s, r is d
  973. float l_re = l[k][n][0];
  974. float l_im = l[k][n][1];
  975. float r_re = r[k][n][0];
  976. float r_im = r[k][n][1];
  977. h11r += h11r_step;
  978. h12r += h12r_step;
  979. h21r += h21r_step;
  980. h22r += h22r_step;
  981. if (!PS_BASELINE && ps->enable_ipdopd) {
  982. h11i += h11i_step;
  983. h12i += h12i_step;
  984. h21i += h21i_step;
  985. h22i += h22i_step;
  986. l[k][n][0] = h11r*l_re + h21r*r_re - h11i*l_im - h21i*r_im;
  987. l[k][n][1] = h11r*l_im + h21r*r_im + h11i*l_re + h21i*r_re;
  988. r[k][n][0] = h12r*l_re + h22r*r_re - h12i*l_im - h22i*r_im;
  989. r[k][n][1] = h12r*l_im + h22r*r_im + h12i*l_re + h22i*r_re;
  990. } else {
  991. l[k][n][0] = h11r*l_re + h21r*r_re;
  992. l[k][n][1] = h11r*l_im + h21r*r_im;
  993. r[k][n][0] = h12r*l_re + h22r*r_re;
  994. r[k][n][1] = h12r*l_im + h22r*r_im;
  995. }
  996. }
  997. }
  998. }
  999. }
  1000. int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
  1001. {
  1002. float Lbuf[91][32][2];
  1003. float Rbuf[91][32][2];
  1004. const int len = 32;
  1005. int is34 = ps->is34bands;
  1006. top += NR_BANDS[is34] - 64;
  1007. memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
  1008. if (top < NR_ALLPASS_BANDS[is34])
  1009. memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
  1010. hybrid_analysis(Lbuf, ps->in_buf, L, is34, len);
  1011. decorrelation(ps, Rbuf, Lbuf, is34);
  1012. stereo_processing(ps, Lbuf, Rbuf, is34);
  1013. hybrid_synthesis(L, Lbuf, is34, len);
  1014. hybrid_synthesis(R, Rbuf, is34, len);
  1015. return 0;
  1016. }
  1017. #define PS_INIT_VLC_STATIC(num, size) \
  1018. INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \
  1019. ps_tmp[num].ps_bits, 1, 1, \
  1020. ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
  1021. size);
  1022. #define PS_VLC_ROW(name) \
  1023. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  1024. av_cold void ff_ps_init(void) {
  1025. // Syntax initialization
  1026. static const struct {
  1027. const void *ps_codes, *ps_bits;
  1028. const unsigned int table_size, elem_size;
  1029. } ps_tmp[] = {
  1030. PS_VLC_ROW(huff_iid_df1),
  1031. PS_VLC_ROW(huff_iid_dt1),
  1032. PS_VLC_ROW(huff_iid_df0),
  1033. PS_VLC_ROW(huff_iid_dt0),
  1034. PS_VLC_ROW(huff_icc_df),
  1035. PS_VLC_ROW(huff_icc_dt),
  1036. PS_VLC_ROW(huff_ipd_df),
  1037. PS_VLC_ROW(huff_ipd_dt),
  1038. PS_VLC_ROW(huff_opd_df),
  1039. PS_VLC_ROW(huff_opd_dt),
  1040. };
  1041. PS_INIT_VLC_STATIC(0, 1544);
  1042. PS_INIT_VLC_STATIC(1, 832);
  1043. PS_INIT_VLC_STATIC(2, 1024);
  1044. PS_INIT_VLC_STATIC(3, 1036);
  1045. PS_INIT_VLC_STATIC(4, 544);
  1046. PS_INIT_VLC_STATIC(5, 544);
  1047. PS_INIT_VLC_STATIC(6, 512);
  1048. PS_INIT_VLC_STATIC(7, 512);
  1049. PS_INIT_VLC_STATIC(8, 512);
  1050. PS_INIT_VLC_STATIC(9, 512);
  1051. ps_tableinit();
  1052. }
  1053. av_cold void ff_ps_ctx_init(PSContext *ps)
  1054. {
  1055. ipdopd_reset(ps->ipd_hist, ps->opd_hist);
  1056. }