You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4368 lines
147KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. /**
  24. * @file vc1.c
  25. * VC-1 and WMV3 decoder
  26. *
  27. */
  28. #include "common.h"
  29. #include "dsputil.h"
  30. #include "avcodec.h"
  31. #include "mpegvideo.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  37. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  38. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  39. #define MB_INTRA_VLC_BITS 9
  40. extern VLC ff_msmp4_mb_i_vlc;
  41. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. /** Available Profiles */
  46. //@{
  47. enum Profile {
  48. PROFILE_SIMPLE,
  49. PROFILE_MAIN,
  50. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  51. PROFILE_ADVANCED
  52. };
  53. //@}
  54. /** Sequence quantizer mode */
  55. //@{
  56. enum QuantMode {
  57. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  58. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  59. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  60. QUANT_UNIFORM ///< Uniform quant used for all frames
  61. };
  62. //@}
  63. /** Where quant can be changed */
  64. //@{
  65. enum DQProfile {
  66. DQPROFILE_FOUR_EDGES,
  67. DQPROFILE_DOUBLE_EDGES,
  68. DQPROFILE_SINGLE_EDGE,
  69. DQPROFILE_ALL_MBS
  70. };
  71. //@}
  72. /** @name Where quant can be changed
  73. */
  74. //@{
  75. enum DQSingleEdge {
  76. DQSINGLE_BEDGE_LEFT,
  77. DQSINGLE_BEDGE_TOP,
  78. DQSINGLE_BEDGE_RIGHT,
  79. DQSINGLE_BEDGE_BOTTOM
  80. };
  81. //@}
  82. /** Which pair of edges is quantized with ALTPQUANT */
  83. //@{
  84. enum DQDoubleEdge {
  85. DQDOUBLE_BEDGE_TOPLEFT,
  86. DQDOUBLE_BEDGE_TOPRIGHT,
  87. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  88. DQDOUBLE_BEDGE_BOTTOMLEFT
  89. };
  90. //@}
  91. /** MV modes for P frames */
  92. //@{
  93. enum MVModes {
  94. MV_PMODE_1MV_HPEL_BILIN,
  95. MV_PMODE_1MV,
  96. MV_PMODE_1MV_HPEL,
  97. MV_PMODE_MIXED_MV,
  98. MV_PMODE_INTENSITY_COMP
  99. };
  100. //@}
  101. /** @name MV types for B frames */
  102. //@{
  103. enum BMVTypes {
  104. BMV_TYPE_BACKWARD,
  105. BMV_TYPE_FORWARD,
  106. BMV_TYPE_INTERPOLATED
  107. };
  108. //@}
  109. /** @name Block types for P/B frames */
  110. //@{
  111. enum TransformTypes {
  112. TT_8X8,
  113. TT_8X4_BOTTOM,
  114. TT_8X4_TOP,
  115. TT_8X4, //Both halves
  116. TT_4X8_RIGHT,
  117. TT_4X8_LEFT,
  118. TT_4X8, //Both halves
  119. TT_4X4
  120. };
  121. //@}
  122. /** Table for conversion between TTBLK and TTMB */
  123. static const int ttblk_to_tt[3][8] = {
  124. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  125. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  126. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  127. };
  128. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  129. /** MV P mode - the 5th element is only used for mode 1 */
  130. static const uint8_t mv_pmode_table[2][5] = {
  131. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  132. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  133. };
  134. static const uint8_t mv_pmode_table2[2][4] = {
  135. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  136. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  137. };
  138. /** One more frame type */
  139. #define BI_TYPE 7
  140. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  141. fps_dr[2] = { 1000, 1001 };
  142. static const uint8_t pquant_table[3][32] = {
  143. { /* Implicit quantizer */
  144. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  145. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  146. },
  147. { /* Explicit quantizer, pquantizer uniform */
  148. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  149. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  150. },
  151. { /* Explicit quantizer, pquantizer non-uniform */
  152. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  153. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  154. }
  155. };
  156. /** @name VC-1 VLC tables and defines
  157. * @todo TODO move this into the context
  158. */
  159. //@{
  160. #define VC1_BFRACTION_VLC_BITS 7
  161. static VLC vc1_bfraction_vlc;
  162. #define VC1_IMODE_VLC_BITS 4
  163. static VLC vc1_imode_vlc;
  164. #define VC1_NORM2_VLC_BITS 3
  165. static VLC vc1_norm2_vlc;
  166. #define VC1_NORM6_VLC_BITS 9
  167. static VLC vc1_norm6_vlc;
  168. /* Could be optimized, one table only needs 8 bits */
  169. #define VC1_TTMB_VLC_BITS 9 //12
  170. static VLC vc1_ttmb_vlc[3];
  171. #define VC1_MV_DIFF_VLC_BITS 9 //15
  172. static VLC vc1_mv_diff_vlc[4];
  173. #define VC1_CBPCY_P_VLC_BITS 9 //14
  174. static VLC vc1_cbpcy_p_vlc[4];
  175. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  176. static VLC vc1_4mv_block_pattern_vlc[4];
  177. #define VC1_TTBLK_VLC_BITS 5
  178. static VLC vc1_ttblk_vlc[3];
  179. #define VC1_SUBBLKPAT_VLC_BITS 6
  180. static VLC vc1_subblkpat_vlc[3];
  181. static VLC vc1_ac_coeff_table[8];
  182. //@}
  183. enum CodingSet {
  184. CS_HIGH_MOT_INTRA = 0,
  185. CS_HIGH_MOT_INTER,
  186. CS_LOW_MOT_INTRA,
  187. CS_LOW_MOT_INTER,
  188. CS_MID_RATE_INTRA,
  189. CS_MID_RATE_INTER,
  190. CS_HIGH_RATE_INTRA,
  191. CS_HIGH_RATE_INTER
  192. };
  193. /** @name Overlap conditions for Advanced Profile */
  194. //@{
  195. enum COTypes {
  196. CONDOVER_NONE = 0,
  197. CONDOVER_ALL,
  198. CONDOVER_SELECT
  199. };
  200. //@}
  201. /** The VC1 Context
  202. * @fixme Change size wherever another size is more efficient
  203. * Many members are only used for Advanced Profile
  204. */
  205. typedef struct VC1Context{
  206. MpegEncContext s;
  207. int bits;
  208. /** Simple/Main Profile sequence header */
  209. //@{
  210. int res_sm; ///< reserved, 2b
  211. int res_x8; ///< reserved
  212. int multires; ///< frame-level RESPIC syntax element present
  213. int res_fasttx; ///< reserved, always 1
  214. int res_transtab; ///< reserved, always 0
  215. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  216. ///< at frame level
  217. int res_rtm_flag; ///< reserved, set to 1
  218. int reserved; ///< reserved
  219. //@}
  220. /** Advanced Profile */
  221. //@{
  222. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  223. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  224. int postprocflag; ///< Per-frame processing suggestion flag present
  225. int broadcast; ///< TFF/RFF present
  226. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  227. int tfcntrflag; ///< TFCNTR present
  228. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  229. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  230. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  231. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  232. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  233. int hrd_param_flag; ///< Presence of Hypothetical Reference
  234. ///< Decoder parameters
  235. int psf; ///< Progressive Segmented Frame
  236. //@}
  237. /** Sequence header data for all Profiles
  238. * TODO: choose between ints, uint8_ts and monobit flags
  239. */
  240. //@{
  241. int profile; ///< 2bits, Profile
  242. int frmrtq_postproc; ///< 3bits,
  243. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  244. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  245. int extended_mv; ///< Ext MV in P/B (not in Simple)
  246. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  247. int vstransform; ///< variable-size [48]x[48] transform type + info
  248. int overlap; ///< overlapped transforms in use
  249. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  250. int finterpflag; ///< INTERPFRM present
  251. //@}
  252. /** Frame decoding info for all profiles */
  253. //@{
  254. uint8_t mv_mode; ///< MV coding monde
  255. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  256. int k_x; ///< Number of bits for MVs (depends on MV range)
  257. int k_y; ///< Number of bits for MVs (depends on MV range)
  258. int range_x, range_y; ///< MV range
  259. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  260. /** pquant parameters */
  261. //@{
  262. uint8_t dquantfrm;
  263. uint8_t dqprofile;
  264. uint8_t dqsbedge;
  265. uint8_t dqbilevel;
  266. //@}
  267. /** AC coding set indexes
  268. * @see 8.1.1.10, p(1)10
  269. */
  270. //@{
  271. int c_ac_table_index; ///< Chroma index from ACFRM element
  272. int y_ac_table_index; ///< Luma index from AC2FRM element
  273. //@}
  274. int ttfrm; ///< Transform type info present at frame level
  275. uint8_t ttmbf; ///< Transform type flag
  276. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  277. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  278. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  279. int pqindex; ///< raw pqindex used in coding set selection
  280. int a_avail, c_avail;
  281. uint8_t *mb_type_base, *mb_type[3];
  282. /** Luma compensation parameters */
  283. //@{
  284. uint8_t lumscale;
  285. uint8_t lumshift;
  286. //@}
  287. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  288. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  289. uint8_t respic; ///< Frame-level flag for resized images
  290. int buffer_fullness; ///< HRD info
  291. /** Ranges:
  292. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  293. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  294. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  295. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  296. */
  297. uint8_t mvrange;
  298. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  299. VLC *cbpcy_vlc; ///< CBPCY VLC table
  300. int tt_index; ///< Index for Transform Type tables
  301. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  302. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  303. int mv_type_is_raw; ///< mv type mb plane is not coded
  304. int dmb_is_raw; ///< direct mb plane is raw
  305. int skip_is_raw; ///< skip mb plane is not coded
  306. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  307. int use_ic; ///< use intensity compensation in B-frames
  308. int rnd; ///< rounding control
  309. /** Frame decoding info for S/M profiles only */
  310. //@{
  311. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  312. uint8_t interpfrm;
  313. //@}
  314. /** Frame decoding info for Advanced profile */
  315. //@{
  316. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  317. uint8_t numpanscanwin;
  318. uint8_t tfcntr;
  319. uint8_t rptfrm, tff, rff;
  320. uint16_t topleftx;
  321. uint16_t toplefty;
  322. uint16_t bottomrightx;
  323. uint16_t bottomrighty;
  324. uint8_t uvsamp;
  325. uint8_t postproc;
  326. int hrd_num_leaky_buckets;
  327. uint8_t bit_rate_exponent;
  328. uint8_t buffer_size_exponent;
  329. uint8_t* acpred_plane; ///< AC prediction flags bitplane
  330. int acpred_is_raw;
  331. uint8_t* over_flags_plane; ///< Overflags bitplane
  332. int overflg_is_raw;
  333. uint8_t condover;
  334. uint16_t *hrd_rate, *hrd_buffer;
  335. uint8_t *hrd_fullness;
  336. uint8_t range_mapy_flag;
  337. uint8_t range_mapuv_flag;
  338. uint8_t range_mapy;
  339. uint8_t range_mapuv;
  340. //@}
  341. int p_frame_skipped;
  342. int bi_type;
  343. } VC1Context;
  344. /**
  345. * Get unary code of limited length
  346. * @fixme FIXME Slow and ugly
  347. * @param gb GetBitContext
  348. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  349. * @param[in] len Maximum length
  350. * @return Unary length/index
  351. */
  352. static int get_prefix(GetBitContext *gb, int stop, int len)
  353. {
  354. #if 1
  355. int i;
  356. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  357. return i;
  358. /* int i = 0, tmp = !stop;
  359. while (i != len && tmp != stop)
  360. {
  361. tmp = get_bits(gb, 1);
  362. i++;
  363. }
  364. if (i == len && tmp != stop) return len+1;
  365. return i;*/
  366. #else
  367. unsigned int buf;
  368. int log;
  369. OPEN_READER(re, gb);
  370. UPDATE_CACHE(re, gb);
  371. buf=GET_CACHE(re, gb); //Still not sure
  372. if (stop) buf = ~buf;
  373. log= av_log2(-buf); //FIXME: -?
  374. if (log < limit){
  375. LAST_SKIP_BITS(re, gb, log+1);
  376. CLOSE_READER(re, gb);
  377. return log;
  378. }
  379. LAST_SKIP_BITS(re, gb, limit);
  380. CLOSE_READER(re, gb);
  381. return limit;
  382. #endif
  383. }
  384. static inline int decode210(GetBitContext *gb){
  385. int n;
  386. n = get_bits1(gb);
  387. if (n == 1)
  388. return 0;
  389. else
  390. return 2 - get_bits1(gb);
  391. }
  392. /**
  393. * Init VC-1 specific tables and VC1Context members
  394. * @param v The VC1Context to initialize
  395. * @return Status
  396. */
  397. static int vc1_init_common(VC1Context *v)
  398. {
  399. static int done = 0;
  400. int i = 0;
  401. v->hrd_rate = v->hrd_buffer = NULL;
  402. /* VLC tables */
  403. if(!done)
  404. {
  405. done = 1;
  406. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  407. vc1_bfraction_bits, 1, 1,
  408. vc1_bfraction_codes, 1, 1, 1);
  409. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  410. vc1_norm2_bits, 1, 1,
  411. vc1_norm2_codes, 1, 1, 1);
  412. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  413. vc1_norm6_bits, 1, 1,
  414. vc1_norm6_codes, 2, 2, 1);
  415. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  416. vc1_imode_bits, 1, 1,
  417. vc1_imode_codes, 1, 1, 1);
  418. for (i=0; i<3; i++)
  419. {
  420. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  421. vc1_ttmb_bits[i], 1, 1,
  422. vc1_ttmb_codes[i], 2, 2, 1);
  423. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  424. vc1_ttblk_bits[i], 1, 1,
  425. vc1_ttblk_codes[i], 1, 1, 1);
  426. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  427. vc1_subblkpat_bits[i], 1, 1,
  428. vc1_subblkpat_codes[i], 1, 1, 1);
  429. }
  430. for(i=0; i<4; i++)
  431. {
  432. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  433. vc1_4mv_block_pattern_bits[i], 1, 1,
  434. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  435. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  436. vc1_cbpcy_p_bits[i], 1, 1,
  437. vc1_cbpcy_p_codes[i], 2, 2, 1);
  438. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  439. vc1_mv_diff_bits[i], 1, 1,
  440. vc1_mv_diff_codes[i], 2, 2, 1);
  441. }
  442. for(i=0; i<8; i++)
  443. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  444. &vc1_ac_tables[i][0][1], 8, 4,
  445. &vc1_ac_tables[i][0][0], 8, 4, 1);
  446. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  447. &ff_msmp4_mb_i_table[0][1], 4, 2,
  448. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  449. }
  450. /* Other defaults */
  451. v->pq = -1;
  452. v->mvrange = 0; /* 7.1.1.18, p80 */
  453. return 0;
  454. }
  455. /***********************************************************************/
  456. /**
  457. * @defgroup bitplane VC9 Bitplane decoding
  458. * @see 8.7, p56
  459. * @{
  460. */
  461. /** @addtogroup bitplane
  462. * Imode types
  463. * @{
  464. */
  465. enum Imode {
  466. IMODE_RAW,
  467. IMODE_NORM2,
  468. IMODE_DIFF2,
  469. IMODE_NORM6,
  470. IMODE_DIFF6,
  471. IMODE_ROWSKIP,
  472. IMODE_COLSKIP
  473. };
  474. /** @} */ //imode defines
  475. /** Decode rows by checking if they are skipped
  476. * @param plane Buffer to store decoded bits
  477. * @param[in] width Width of this buffer
  478. * @param[in] height Height of this buffer
  479. * @param[in] stride of this buffer
  480. */
  481. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  482. int x, y;
  483. for (y=0; y<height; y++){
  484. if (!get_bits(gb, 1)) //rowskip
  485. memset(plane, 0, width);
  486. else
  487. for (x=0; x<width; x++)
  488. plane[x] = get_bits(gb, 1);
  489. plane += stride;
  490. }
  491. }
  492. /** Decode columns by checking if they are skipped
  493. * @param plane Buffer to store decoded bits
  494. * @param[in] width Width of this buffer
  495. * @param[in] height Height of this buffer
  496. * @param[in] stride of this buffer
  497. * @fixme FIXME: Optimize
  498. */
  499. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  500. int x, y;
  501. for (x=0; x<width; x++){
  502. if (!get_bits(gb, 1)) //colskip
  503. for (y=0; y<height; y++)
  504. plane[y*stride] = 0;
  505. else
  506. for (y=0; y<height; y++)
  507. plane[y*stride] = get_bits(gb, 1);
  508. plane ++;
  509. }
  510. }
  511. /** Decode a bitplane's bits
  512. * @param bp Bitplane where to store the decode bits
  513. * @param v VC-1 context for bit reading and logging
  514. * @return Status
  515. * @fixme FIXME: Optimize
  516. */
  517. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  518. {
  519. GetBitContext *gb = &v->s.gb;
  520. int imode, x, y, code, offset;
  521. uint8_t invert, *planep = data;
  522. int width, height, stride;
  523. width = v->s.mb_width;
  524. height = v->s.mb_height;
  525. stride = v->s.mb_stride;
  526. invert = get_bits(gb, 1);
  527. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  528. *raw_flag = 0;
  529. switch (imode)
  530. {
  531. case IMODE_RAW:
  532. //Data is actually read in the MB layer (same for all tests == "raw")
  533. *raw_flag = 1; //invert ignored
  534. return invert;
  535. case IMODE_DIFF2:
  536. case IMODE_NORM2:
  537. if ((height * width) & 1)
  538. {
  539. *planep++ = get_bits(gb, 1);
  540. offset = 1;
  541. }
  542. else offset = 0;
  543. // decode bitplane as one long line
  544. for (y = offset; y < height * width; y += 2) {
  545. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  546. *planep++ = code & 1;
  547. offset++;
  548. if(offset == width) {
  549. offset = 0;
  550. planep += stride - width;
  551. }
  552. *planep++ = code >> 1;
  553. offset++;
  554. if(offset == width) {
  555. offset = 0;
  556. planep += stride - width;
  557. }
  558. }
  559. break;
  560. case IMODE_DIFF6:
  561. case IMODE_NORM6:
  562. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  563. for(y = 0; y < height; y+= 3) {
  564. for(x = width & 1; x < width; x += 2) {
  565. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  566. if(code < 0){
  567. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  568. return -1;
  569. }
  570. planep[x + 0] = (code >> 0) & 1;
  571. planep[x + 1] = (code >> 1) & 1;
  572. planep[x + 0 + stride] = (code >> 2) & 1;
  573. planep[x + 1 + stride] = (code >> 3) & 1;
  574. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  575. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  576. }
  577. planep += stride * 3;
  578. }
  579. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  580. } else { // 3x2
  581. planep += (height & 1) * stride;
  582. for(y = height & 1; y < height; y += 2) {
  583. for(x = width % 3; x < width; x += 3) {
  584. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  585. if(code < 0){
  586. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  587. return -1;
  588. }
  589. planep[x + 0] = (code >> 0) & 1;
  590. planep[x + 1] = (code >> 1) & 1;
  591. planep[x + 2] = (code >> 2) & 1;
  592. planep[x + 0 + stride] = (code >> 3) & 1;
  593. planep[x + 1 + stride] = (code >> 4) & 1;
  594. planep[x + 2 + stride] = (code >> 5) & 1;
  595. }
  596. planep += stride * 2;
  597. }
  598. x = width % 3;
  599. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  600. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  601. }
  602. break;
  603. case IMODE_ROWSKIP:
  604. decode_rowskip(data, width, height, stride, &v->s.gb);
  605. break;
  606. case IMODE_COLSKIP:
  607. decode_colskip(data, width, height, stride, &v->s.gb);
  608. break;
  609. default: break;
  610. }
  611. /* Applying diff operator */
  612. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  613. {
  614. planep = data;
  615. planep[0] ^= invert;
  616. for (x=1; x<width; x++)
  617. planep[x] ^= planep[x-1];
  618. for (y=1; y<height; y++)
  619. {
  620. planep += stride;
  621. planep[0] ^= planep[-stride];
  622. for (x=1; x<width; x++)
  623. {
  624. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  625. else planep[x] ^= planep[x-1];
  626. }
  627. }
  628. }
  629. else if (invert)
  630. {
  631. planep = data;
  632. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  633. }
  634. return (imode<<1) + invert;
  635. }
  636. /** @} */ //Bitplane group
  637. /***********************************************************************/
  638. /** VOP Dquant decoding
  639. * @param v VC-1 Context
  640. */
  641. static int vop_dquant_decoding(VC1Context *v)
  642. {
  643. GetBitContext *gb = &v->s.gb;
  644. int pqdiff;
  645. //variable size
  646. if (v->dquant == 2)
  647. {
  648. pqdiff = get_bits(gb, 3);
  649. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  650. else v->altpq = v->pq + pqdiff + 1;
  651. }
  652. else
  653. {
  654. v->dquantfrm = get_bits(gb, 1);
  655. if ( v->dquantfrm )
  656. {
  657. v->dqprofile = get_bits(gb, 2);
  658. switch (v->dqprofile)
  659. {
  660. case DQPROFILE_SINGLE_EDGE:
  661. case DQPROFILE_DOUBLE_EDGES:
  662. v->dqsbedge = get_bits(gb, 2);
  663. break;
  664. case DQPROFILE_ALL_MBS:
  665. v->dqbilevel = get_bits(gb, 1);
  666. default: break; //Forbidden ?
  667. }
  668. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  669. {
  670. pqdiff = get_bits(gb, 3);
  671. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  672. else v->altpq = v->pq + pqdiff + 1;
  673. }
  674. }
  675. }
  676. return 0;
  677. }
  678. /** Put block onto picture
  679. */
  680. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  681. {
  682. uint8_t *Y;
  683. int ys, us, vs;
  684. DSPContext *dsp = &v->s.dsp;
  685. if(v->rangeredfrm) {
  686. int i, j, k;
  687. for(k = 0; k < 6; k++)
  688. for(j = 0; j < 8; j++)
  689. for(i = 0; i < 8; i++)
  690. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  691. }
  692. ys = v->s.current_picture.linesize[0];
  693. us = v->s.current_picture.linesize[1];
  694. vs = v->s.current_picture.linesize[2];
  695. Y = v->s.dest[0];
  696. dsp->put_pixels_clamped(block[0], Y, ys);
  697. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  698. Y += ys * 8;
  699. dsp->put_pixels_clamped(block[2], Y, ys);
  700. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  701. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  702. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  703. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  704. }
  705. }
  706. /** Do motion compensation over 1 macroblock
  707. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  708. */
  709. static void vc1_mc_1mv(VC1Context *v, int dir)
  710. {
  711. MpegEncContext *s = &v->s;
  712. DSPContext *dsp = &v->s.dsp;
  713. uint8_t *srcY, *srcU, *srcV;
  714. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  715. if(!v->s.last_picture.data[0])return;
  716. mx = s->mv[dir][0][0];
  717. my = s->mv[dir][0][1];
  718. // store motion vectors for further use in B frames
  719. if(s->pict_type == P_TYPE) {
  720. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  721. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  722. }
  723. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  724. uvmy = (my + ((my & 3) == 3)) >> 1;
  725. if(v->fastuvmc) {
  726. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  727. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  728. }
  729. if(!dir) {
  730. srcY = s->last_picture.data[0];
  731. srcU = s->last_picture.data[1];
  732. srcV = s->last_picture.data[2];
  733. } else {
  734. srcY = s->next_picture.data[0];
  735. srcU = s->next_picture.data[1];
  736. srcV = s->next_picture.data[2];
  737. }
  738. src_x = s->mb_x * 16 + (mx >> 2);
  739. src_y = s->mb_y * 16 + (my >> 2);
  740. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  741. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  742. src_x = clip( src_x, -16, s->mb_width * 16);
  743. src_y = clip( src_y, -16, s->mb_height * 16);
  744. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  745. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  746. srcY += src_y * s->linesize + src_x;
  747. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  748. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  749. /* for grayscale we should not try to read from unknown area */
  750. if(s->flags & CODEC_FLAG_GRAY) {
  751. srcU = s->edge_emu_buffer + 18 * s->linesize;
  752. srcV = s->edge_emu_buffer + 18 * s->linesize;
  753. }
  754. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  755. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  756. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  757. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  758. srcY -= s->mspel * (1 + s->linesize);
  759. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  760. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  761. srcY = s->edge_emu_buffer;
  762. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  763. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  764. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  765. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  766. srcU = uvbuf;
  767. srcV = uvbuf + 16;
  768. /* if we deal with range reduction we need to scale source blocks */
  769. if(v->rangeredfrm) {
  770. int i, j;
  771. uint8_t *src, *src2;
  772. src = srcY;
  773. for(j = 0; j < 17 + s->mspel*2; j++) {
  774. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  775. src += s->linesize;
  776. }
  777. src = srcU; src2 = srcV;
  778. for(j = 0; j < 9; j++) {
  779. for(i = 0; i < 9; i++) {
  780. src[i] = ((src[i] - 128) >> 1) + 128;
  781. src2[i] = ((src2[i] - 128) >> 1) + 128;
  782. }
  783. src += s->uvlinesize;
  784. src2 += s->uvlinesize;
  785. }
  786. }
  787. /* if we deal with intensity compensation we need to scale source blocks */
  788. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  789. int i, j;
  790. uint8_t *src, *src2;
  791. src = srcY;
  792. for(j = 0; j < 17 + s->mspel*2; j++) {
  793. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  794. src += s->linesize;
  795. }
  796. src = srcU; src2 = srcV;
  797. for(j = 0; j < 9; j++) {
  798. for(i = 0; i < 9; i++) {
  799. src[i] = v->lutuv[src[i]];
  800. src2[i] = v->lutuv[src2[i]];
  801. }
  802. src += s->uvlinesize;
  803. src2 += s->uvlinesize;
  804. }
  805. }
  806. srcY += s->mspel * (1 + s->linesize);
  807. }
  808. if(s->mspel) {
  809. dxy = ((my & 3) << 2) | (mx & 3);
  810. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  811. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  812. srcY += s->linesize * 8;
  813. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  814. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  815. } else { // hpel mc - always used for luma
  816. dxy = (my & 2) | ((mx & 2) >> 1);
  817. if(!v->rnd)
  818. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  819. else
  820. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  821. }
  822. if(s->flags & CODEC_FLAG_GRAY) return;
  823. /* Chroma MC always uses qpel bilinear */
  824. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  825. uvmx = (uvmx&3)<<1;
  826. uvmy = (uvmy&3)<<1;
  827. if(!v->rnd){
  828. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  829. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  830. }else{
  831. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  832. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  833. }
  834. }
  835. /** Do motion compensation for 4-MV macroblock - luminance block
  836. */
  837. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  838. {
  839. MpegEncContext *s = &v->s;
  840. DSPContext *dsp = &v->s.dsp;
  841. uint8_t *srcY;
  842. int dxy, mx, my, src_x, src_y;
  843. int off;
  844. if(!v->s.last_picture.data[0])return;
  845. mx = s->mv[0][n][0];
  846. my = s->mv[0][n][1];
  847. srcY = s->last_picture.data[0];
  848. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  849. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  850. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  851. src_x = clip( src_x, -16, s->mb_width * 16);
  852. src_y = clip( src_y, -16, s->mb_height * 16);
  853. srcY += src_y * s->linesize + src_x;
  854. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  855. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  856. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  857. srcY -= s->mspel * (1 + s->linesize);
  858. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  859. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  860. srcY = s->edge_emu_buffer;
  861. /* if we deal with range reduction we need to scale source blocks */
  862. if(v->rangeredfrm) {
  863. int i, j;
  864. uint8_t *src;
  865. src = srcY;
  866. for(j = 0; j < 9 + s->mspel*2; j++) {
  867. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  868. src += s->linesize;
  869. }
  870. }
  871. /* if we deal with intensity compensation we need to scale source blocks */
  872. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  873. int i, j;
  874. uint8_t *src;
  875. src = srcY;
  876. for(j = 0; j < 9 + s->mspel*2; j++) {
  877. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  878. src += s->linesize;
  879. }
  880. }
  881. srcY += s->mspel * (1 + s->linesize);
  882. }
  883. if(s->mspel) {
  884. dxy = ((my & 3) << 2) | (mx & 3);
  885. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  886. } else { // hpel mc - always used for luma
  887. dxy = (my & 2) | ((mx & 2) >> 1);
  888. if(!v->rnd)
  889. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  890. else
  891. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  892. }
  893. }
  894. static inline int median4(int a, int b, int c, int d)
  895. {
  896. if(a < b) {
  897. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  898. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  899. } else {
  900. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  901. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  902. }
  903. }
  904. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  905. */
  906. static void vc1_mc_4mv_chroma(VC1Context *v)
  907. {
  908. MpegEncContext *s = &v->s;
  909. DSPContext *dsp = &v->s.dsp;
  910. uint8_t *srcU, *srcV;
  911. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  912. int i, idx, tx = 0, ty = 0;
  913. int mvx[4], mvy[4], intra[4];
  914. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  915. if(!v->s.last_picture.data[0])return;
  916. if(s->flags & CODEC_FLAG_GRAY) return;
  917. for(i = 0; i < 4; i++) {
  918. mvx[i] = s->mv[0][i][0];
  919. mvy[i] = s->mv[0][i][1];
  920. intra[i] = v->mb_type[0][s->block_index[i]];
  921. }
  922. /* calculate chroma MV vector from four luma MVs */
  923. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  924. if(!idx) { // all blocks are inter
  925. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  926. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  927. } else if(count[idx] == 1) { // 3 inter blocks
  928. switch(idx) {
  929. case 0x1:
  930. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  931. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  932. break;
  933. case 0x2:
  934. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  935. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  936. break;
  937. case 0x4:
  938. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  939. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  940. break;
  941. case 0x8:
  942. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  943. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  944. break;
  945. }
  946. } else if(count[idx] == 2) {
  947. int t1 = 0, t2 = 0;
  948. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  949. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  950. tx = (mvx[t1] + mvx[t2]) / 2;
  951. ty = (mvy[t1] + mvy[t2]) / 2;
  952. } else
  953. return; //no need to do MC for inter blocks
  954. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  955. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  956. uvmx = (tx + ((tx&3) == 3)) >> 1;
  957. uvmy = (ty + ((ty&3) == 3)) >> 1;
  958. if(v->fastuvmc) {
  959. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  960. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  961. }
  962. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  963. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  964. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  965. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  966. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  967. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  968. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  969. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  970. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  971. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  972. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  973. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  974. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  975. srcU = s->edge_emu_buffer;
  976. srcV = s->edge_emu_buffer + 16;
  977. /* if we deal with range reduction we need to scale source blocks */
  978. if(v->rangeredfrm) {
  979. int i, j;
  980. uint8_t *src, *src2;
  981. src = srcU; src2 = srcV;
  982. for(j = 0; j < 9; j++) {
  983. for(i = 0; i < 9; i++) {
  984. src[i] = ((src[i] - 128) >> 1) + 128;
  985. src2[i] = ((src2[i] - 128) >> 1) + 128;
  986. }
  987. src += s->uvlinesize;
  988. src2 += s->uvlinesize;
  989. }
  990. }
  991. /* if we deal with intensity compensation we need to scale source blocks */
  992. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  993. int i, j;
  994. uint8_t *src, *src2;
  995. src = srcU; src2 = srcV;
  996. for(j = 0; j < 9; j++) {
  997. for(i = 0; i < 9; i++) {
  998. src[i] = v->lutuv[src[i]];
  999. src2[i] = v->lutuv[src2[i]];
  1000. }
  1001. src += s->uvlinesize;
  1002. src2 += s->uvlinesize;
  1003. }
  1004. }
  1005. }
  1006. /* Chroma MC always uses qpel bilinear */
  1007. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1008. uvmx = (uvmx&3)<<1;
  1009. uvmy = (uvmy&3)<<1;
  1010. if(!v->rnd){
  1011. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1012. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1013. }else{
  1014. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1015. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1016. }
  1017. }
  1018. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  1019. /**
  1020. * Decode Simple/Main Profiles sequence header
  1021. * @see Figure 7-8, p16-17
  1022. * @param avctx Codec context
  1023. * @param gb GetBit context initialized from Codec context extra_data
  1024. * @return Status
  1025. */
  1026. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1027. {
  1028. VC1Context *v = avctx->priv_data;
  1029. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  1030. v->profile = get_bits(gb, 2);
  1031. if (v->profile == 2)
  1032. {
  1033. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  1034. return -1;
  1035. }
  1036. if (v->profile == PROFILE_ADVANCED)
  1037. {
  1038. return decode_sequence_header_adv(v, gb);
  1039. }
  1040. else
  1041. {
  1042. v->res_sm = get_bits(gb, 2); //reserved
  1043. if (v->res_sm)
  1044. {
  1045. av_log(avctx, AV_LOG_ERROR,
  1046. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1047. return -1;
  1048. }
  1049. }
  1050. // (fps-2)/4 (->30)
  1051. v->frmrtq_postproc = get_bits(gb, 3); //common
  1052. // (bitrate-32kbps)/64kbps
  1053. v->bitrtq_postproc = get_bits(gb, 5); //common
  1054. v->s.loop_filter = get_bits(gb, 1); //common
  1055. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1056. {
  1057. av_log(avctx, AV_LOG_ERROR,
  1058. "LOOPFILTER shell not be enabled in simple profile\n");
  1059. }
  1060. v->res_x8 = get_bits(gb, 1); //reserved
  1061. if (v->res_x8)
  1062. {
  1063. av_log(avctx, AV_LOG_ERROR,
  1064. "1 for reserved RES_X8 is forbidden\n");
  1065. //return -1;
  1066. }
  1067. v->multires = get_bits(gb, 1);
  1068. v->res_fasttx = get_bits(gb, 1);
  1069. if (!v->res_fasttx)
  1070. {
  1071. av_log(avctx, AV_LOG_ERROR,
  1072. "0 for reserved RES_FASTTX is forbidden\n");
  1073. //return -1;
  1074. }
  1075. v->fastuvmc = get_bits(gb, 1); //common
  1076. if (!v->profile && !v->fastuvmc)
  1077. {
  1078. av_log(avctx, AV_LOG_ERROR,
  1079. "FASTUVMC unavailable in Simple Profile\n");
  1080. return -1;
  1081. }
  1082. v->extended_mv = get_bits(gb, 1); //common
  1083. if (!v->profile && v->extended_mv)
  1084. {
  1085. av_log(avctx, AV_LOG_ERROR,
  1086. "Extended MVs unavailable in Simple Profile\n");
  1087. return -1;
  1088. }
  1089. v->dquant = get_bits(gb, 2); //common
  1090. v->vstransform = get_bits(gb, 1); //common
  1091. v->res_transtab = get_bits(gb, 1);
  1092. if (v->res_transtab)
  1093. {
  1094. av_log(avctx, AV_LOG_ERROR,
  1095. "1 for reserved RES_TRANSTAB is forbidden\n");
  1096. return -1;
  1097. }
  1098. v->overlap = get_bits(gb, 1); //common
  1099. v->s.resync_marker = get_bits(gb, 1);
  1100. v->rangered = get_bits(gb, 1);
  1101. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1102. {
  1103. av_log(avctx, AV_LOG_INFO,
  1104. "RANGERED should be set to 0 in simple profile\n");
  1105. }
  1106. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1107. v->quantizer_mode = get_bits(gb, 2); //common
  1108. v->finterpflag = get_bits(gb, 1); //common
  1109. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1110. if (!v->res_rtm_flag)
  1111. {
  1112. // av_log(avctx, AV_LOG_ERROR,
  1113. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  1114. av_log(avctx, AV_LOG_ERROR,
  1115. "Old WMV3 version detected, only I-frames will be decoded\n");
  1116. //return -1;
  1117. }
  1118. av_log(avctx, AV_LOG_DEBUG,
  1119. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1120. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1121. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1122. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1123. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1124. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1125. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1126. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1127. );
  1128. return 0;
  1129. }
  1130. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  1131. {
  1132. v->res_rtm_flag = 1;
  1133. v->level = get_bits(gb, 3);
  1134. if(v->level >= 5)
  1135. {
  1136. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1137. }
  1138. v->chromaformat = get_bits(gb, 2);
  1139. if (v->chromaformat != 1)
  1140. {
  1141. av_log(v->s.avctx, AV_LOG_ERROR,
  1142. "Only 4:2:0 chroma format supported\n");
  1143. return -1;
  1144. }
  1145. // (fps-2)/4 (->30)
  1146. v->frmrtq_postproc = get_bits(gb, 3); //common
  1147. // (bitrate-32kbps)/64kbps
  1148. v->bitrtq_postproc = get_bits(gb, 5); //common
  1149. v->postprocflag = get_bits(gb, 1); //common
  1150. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  1151. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  1152. v->broadcast = get_bits1(gb);
  1153. v->interlace = get_bits1(gb);
  1154. v->tfcntrflag = get_bits1(gb);
  1155. v->finterpflag = get_bits1(gb);
  1156. get_bits1(gb); // reserved
  1157. v->psf = get_bits1(gb);
  1158. if(v->psf) { //PsF, 6.1.13
  1159. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  1160. return -1;
  1161. }
  1162. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  1163. int w, h, ar = 0;
  1164. av_log(v->s.avctx, AV_LOG_INFO, "Display extended info:\n");
  1165. w = get_bits(gb, 14);
  1166. h = get_bits(gb, 14);
  1167. av_log(v->s.avctx, AV_LOG_INFO, "Display dimensions: %ix%i\n", w, h);
  1168. //TODO: store aspect ratio in AVCodecContext
  1169. if(get_bits1(gb))
  1170. ar = get_bits(gb, 4);
  1171. if(ar == 15) {
  1172. w = get_bits(gb, 8);
  1173. h = get_bits(gb, 8);
  1174. }
  1175. if(get_bits1(gb)){ //framerate stuff
  1176. if(get_bits1(gb)) {
  1177. get_bits(gb, 16);
  1178. } else {
  1179. get_bits(gb, 8);
  1180. get_bits(gb, 4);
  1181. }
  1182. }
  1183. if(get_bits1(gb)){
  1184. v->color_prim = get_bits(gb, 8);
  1185. v->transfer_char = get_bits(gb, 8);
  1186. v->matrix_coef = get_bits(gb, 8);
  1187. }
  1188. }
  1189. v->hrd_param_flag = get_bits1(gb);
  1190. if(v->hrd_param_flag) {
  1191. int i;
  1192. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  1193. get_bits(gb, 4); //bitrate exponent
  1194. get_bits(gb, 4); //buffer size exponent
  1195. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1196. get_bits(gb, 16); //hrd_rate[n]
  1197. get_bits(gb, 16); //hrd_buffer[n]
  1198. }
  1199. }
  1200. return 0;
  1201. }
  1202. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  1203. {
  1204. VC1Context *v = avctx->priv_data;
  1205. int i;
  1206. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  1207. get_bits1(gb); // broken link
  1208. avctx->max_b_frames = 1 - get_bits1(gb); // 'closed entry' also signalize possible B-frames
  1209. v->panscanflag = get_bits1(gb);
  1210. get_bits1(gb); // refdist flag
  1211. v->s.loop_filter = get_bits1(gb);
  1212. v->fastuvmc = get_bits1(gb);
  1213. v->extended_mv = get_bits1(gb);
  1214. v->dquant = get_bits(gb, 2);
  1215. v->vstransform = get_bits1(gb);
  1216. v->overlap = get_bits1(gb);
  1217. v->quantizer_mode = get_bits(gb, 2);
  1218. if(v->hrd_param_flag){
  1219. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1220. get_bits(gb, 8); //hrd_full[n]
  1221. }
  1222. }
  1223. if(get_bits1(gb)){
  1224. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  1225. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1226. }
  1227. if(v->extended_mv)
  1228. v->extended_dmv = get_bits1(gb);
  1229. if(get_bits1(gb)) {
  1230. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1231. skip_bits(gb, 3); // Y range, ignored for now
  1232. }
  1233. if(get_bits1(gb)) {
  1234. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1235. skip_bits(gb, 3); // UV range, ignored for now
  1236. }
  1237. return 0;
  1238. }
  1239. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1240. {
  1241. int pqindex, lowquant, status;
  1242. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1243. skip_bits(gb, 2); //framecnt unused
  1244. v->rangeredfrm = 0;
  1245. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1246. v->s.pict_type = get_bits(gb, 1);
  1247. if (v->s.avctx->max_b_frames) {
  1248. if (!v->s.pict_type) {
  1249. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1250. else v->s.pict_type = B_TYPE;
  1251. } else v->s.pict_type = P_TYPE;
  1252. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1253. v->bi_type = 0;
  1254. if(v->s.pict_type == B_TYPE) {
  1255. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1256. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1257. if(v->bfraction == 0) {
  1258. v->s.pict_type = BI_TYPE;
  1259. }
  1260. }
  1261. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1262. get_bits(gb, 7); // skip buffer fullness
  1263. /* calculate RND */
  1264. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1265. v->rnd = 1;
  1266. if(v->s.pict_type == P_TYPE)
  1267. v->rnd ^= 1;
  1268. /* Quantizer stuff */
  1269. pqindex = get_bits(gb, 5);
  1270. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1271. v->pq = pquant_table[0][pqindex];
  1272. else
  1273. v->pq = pquant_table[1][pqindex];
  1274. v->pquantizer = 1;
  1275. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1276. v->pquantizer = pqindex < 9;
  1277. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1278. v->pquantizer = 0;
  1279. v->pqindex = pqindex;
  1280. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1281. else v->halfpq = 0;
  1282. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1283. v->pquantizer = get_bits(gb, 1);
  1284. v->dquantfrm = 0;
  1285. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1286. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1287. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1288. v->range_x = 1 << (v->k_x - 1);
  1289. v->range_y = 1 << (v->k_y - 1);
  1290. if (v->profile == PROFILE_ADVANCED)
  1291. {
  1292. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1293. }
  1294. else
  1295. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1296. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1297. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1298. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1299. switch(v->s.pict_type) {
  1300. case P_TYPE:
  1301. if (v->pq < 5) v->tt_index = 0;
  1302. else if(v->pq < 13) v->tt_index = 1;
  1303. else v->tt_index = 2;
  1304. lowquant = (v->pq > 12) ? 0 : 1;
  1305. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1306. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1307. {
  1308. int scale, shift, i;
  1309. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1310. v->lumscale = get_bits(gb, 6);
  1311. v->lumshift = get_bits(gb, 6);
  1312. v->use_ic = 1;
  1313. /* fill lookup tables for intensity compensation */
  1314. if(!v->lumscale) {
  1315. scale = -64;
  1316. shift = (255 - v->lumshift * 2) << 6;
  1317. if(v->lumshift > 31)
  1318. shift += 128 << 6;
  1319. } else {
  1320. scale = v->lumscale + 32;
  1321. if(v->lumshift > 31)
  1322. shift = (v->lumshift - 64) << 6;
  1323. else
  1324. shift = v->lumshift << 6;
  1325. }
  1326. for(i = 0; i < 256; i++) {
  1327. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1328. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1329. }
  1330. }
  1331. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1332. v->s.quarter_sample = 0;
  1333. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1334. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1335. v->s.quarter_sample = 0;
  1336. else
  1337. v->s.quarter_sample = 1;
  1338. } else
  1339. v->s.quarter_sample = 1;
  1340. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1341. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1342. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1343. || v->mv_mode == MV_PMODE_MIXED_MV)
  1344. {
  1345. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1346. if (status < 0) return -1;
  1347. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1348. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1349. } else {
  1350. v->mv_type_is_raw = 0;
  1351. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1352. }
  1353. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1354. if (status < 0) return -1;
  1355. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1356. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1357. /* Hopefully this is correct for P frames */
  1358. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1359. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1360. if (v->dquant)
  1361. {
  1362. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1363. vop_dquant_decoding(v);
  1364. }
  1365. v->ttfrm = 0; //FIXME Is that so ?
  1366. if (v->vstransform)
  1367. {
  1368. v->ttmbf = get_bits(gb, 1);
  1369. if (v->ttmbf)
  1370. {
  1371. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1372. }
  1373. } else {
  1374. v->ttmbf = 1;
  1375. v->ttfrm = TT_8X8;
  1376. }
  1377. break;
  1378. case B_TYPE:
  1379. if (v->pq < 5) v->tt_index = 0;
  1380. else if(v->pq < 13) v->tt_index = 1;
  1381. else v->tt_index = 2;
  1382. lowquant = (v->pq > 12) ? 0 : 1;
  1383. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1384. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1385. v->s.mspel = v->s.quarter_sample;
  1386. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1387. if (status < 0) return -1;
  1388. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1389. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1390. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1391. if (status < 0) return -1;
  1392. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1393. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1394. v->s.mv_table_index = get_bits(gb, 2);
  1395. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1396. if (v->dquant)
  1397. {
  1398. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1399. vop_dquant_decoding(v);
  1400. }
  1401. v->ttfrm = 0;
  1402. if (v->vstransform)
  1403. {
  1404. v->ttmbf = get_bits(gb, 1);
  1405. if (v->ttmbf)
  1406. {
  1407. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1408. }
  1409. } else {
  1410. v->ttmbf = 1;
  1411. v->ttfrm = TT_8X8;
  1412. }
  1413. break;
  1414. }
  1415. /* AC Syntax */
  1416. v->c_ac_table_index = decode012(gb);
  1417. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1418. {
  1419. v->y_ac_table_index = decode012(gb);
  1420. }
  1421. /* DC Syntax */
  1422. v->s.dc_table_index = get_bits(gb, 1);
  1423. if(v->s.pict_type == BI_TYPE) {
  1424. v->s.pict_type = B_TYPE;
  1425. v->bi_type = 1;
  1426. }
  1427. return 0;
  1428. }
  1429. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1430. {
  1431. int fcm;
  1432. int pqindex, lowquant;
  1433. int status;
  1434. v->p_frame_skipped = 0;
  1435. if(v->interlace)
  1436. fcm = decode012(gb);
  1437. switch(get_prefix(gb, 0, 4)) {
  1438. case 0:
  1439. v->s.pict_type = P_TYPE;
  1440. break;
  1441. case 1:
  1442. v->s.pict_type = B_TYPE;
  1443. break;
  1444. case 2:
  1445. v->s.pict_type = I_TYPE;
  1446. break;
  1447. case 3:
  1448. v->s.pict_type = BI_TYPE;
  1449. break;
  1450. case 4:
  1451. v->s.pict_type = P_TYPE; // skipped pic
  1452. v->p_frame_skipped = 1;
  1453. return 0;
  1454. }
  1455. if(v->tfcntrflag)
  1456. get_bits(gb, 8);
  1457. if(v->broadcast) {
  1458. if(!v->interlace || v->panscanflag) {
  1459. get_bits(gb, 2);
  1460. } else {
  1461. get_bits1(gb);
  1462. get_bits1(gb);
  1463. }
  1464. }
  1465. if(v->panscanflag) {
  1466. //...
  1467. }
  1468. v->rnd = get_bits1(gb);
  1469. if(v->interlace)
  1470. v->uvsamp = get_bits1(gb);
  1471. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1472. if(v->s.pict_type == B_TYPE) {
  1473. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1474. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1475. if(v->bfraction == 0) {
  1476. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1477. }
  1478. }
  1479. pqindex = get_bits(gb, 5);
  1480. v->pqindex = pqindex;
  1481. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1482. v->pq = pquant_table[0][pqindex];
  1483. else
  1484. v->pq = pquant_table[1][pqindex];
  1485. v->pquantizer = 1;
  1486. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1487. v->pquantizer = pqindex < 9;
  1488. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1489. v->pquantizer = 0;
  1490. v->pqindex = pqindex;
  1491. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1492. else v->halfpq = 0;
  1493. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1494. v->pquantizer = get_bits(gb, 1);
  1495. switch(v->s.pict_type) {
  1496. case I_TYPE:
  1497. case BI_TYPE:
  1498. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1499. if (status < 0) return -1;
  1500. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1501. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1502. v->condover = CONDOVER_NONE;
  1503. if(v->overlap && v->pq <= 8) {
  1504. v->condover = decode012(gb);
  1505. if(v->condover == CONDOVER_SELECT) {
  1506. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1507. if (status < 0) return -1;
  1508. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1509. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1510. }
  1511. }
  1512. break;
  1513. case P_TYPE:
  1514. if(v->postprocflag)
  1515. v->postproc = get_bits1(gb);
  1516. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1517. else v->mvrange = 0;
  1518. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1519. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1520. v->range_x = 1 << (v->k_x - 1);
  1521. v->range_y = 1 << (v->k_y - 1);
  1522. if (v->pq < 5) v->tt_index = 0;
  1523. else if(v->pq < 13) v->tt_index = 1;
  1524. else v->tt_index = 2;
  1525. lowquant = (v->pq > 12) ? 0 : 1;
  1526. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1527. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1528. {
  1529. int scale, shift, i;
  1530. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1531. v->lumscale = get_bits(gb, 6);
  1532. v->lumshift = get_bits(gb, 6);
  1533. /* fill lookup tables for intensity compensation */
  1534. if(!v->lumscale) {
  1535. scale = -64;
  1536. shift = (255 - v->lumshift * 2) << 6;
  1537. if(v->lumshift > 31)
  1538. shift += 128 << 6;
  1539. } else {
  1540. scale = v->lumscale + 32;
  1541. if(v->lumshift > 31)
  1542. shift = (v->lumshift - 64) << 6;
  1543. else
  1544. shift = v->lumshift << 6;
  1545. }
  1546. for(i = 0; i < 256; i++) {
  1547. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1548. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1549. }
  1550. }
  1551. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1552. v->s.quarter_sample = 0;
  1553. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1554. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1555. v->s.quarter_sample = 0;
  1556. else
  1557. v->s.quarter_sample = 1;
  1558. } else
  1559. v->s.quarter_sample = 1;
  1560. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1561. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1562. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1563. || v->mv_mode == MV_PMODE_MIXED_MV)
  1564. {
  1565. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1566. if (status < 0) return -1;
  1567. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1568. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1569. } else {
  1570. v->mv_type_is_raw = 0;
  1571. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1572. }
  1573. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1574. if (status < 0) return -1;
  1575. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1576. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1577. /* Hopefully this is correct for P frames */
  1578. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1579. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1580. if (v->dquant)
  1581. {
  1582. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1583. vop_dquant_decoding(v);
  1584. }
  1585. v->ttfrm = 0; //FIXME Is that so ?
  1586. if (v->vstransform)
  1587. {
  1588. v->ttmbf = get_bits(gb, 1);
  1589. if (v->ttmbf)
  1590. {
  1591. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1592. }
  1593. } else {
  1594. v->ttmbf = 1;
  1595. v->ttfrm = TT_8X8;
  1596. }
  1597. break;
  1598. case B_TYPE:
  1599. if(v->postprocflag)
  1600. v->postproc = get_bits1(gb);
  1601. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1602. else v->mvrange = 0;
  1603. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1604. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1605. v->range_x = 1 << (v->k_x - 1);
  1606. v->range_y = 1 << (v->k_y - 1);
  1607. if (v->pq < 5) v->tt_index = 0;
  1608. else if(v->pq < 13) v->tt_index = 1;
  1609. else v->tt_index = 2;
  1610. lowquant = (v->pq > 12) ? 0 : 1;
  1611. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1612. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1613. v->s.mspel = v->s.quarter_sample;
  1614. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1615. if (status < 0) return -1;
  1616. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1617. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1618. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1619. if (status < 0) return -1;
  1620. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1621. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1622. v->s.mv_table_index = get_bits(gb, 2);
  1623. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1624. if (v->dquant)
  1625. {
  1626. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1627. vop_dquant_decoding(v);
  1628. }
  1629. v->ttfrm = 0;
  1630. if (v->vstransform)
  1631. {
  1632. v->ttmbf = get_bits(gb, 1);
  1633. if (v->ttmbf)
  1634. {
  1635. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1636. }
  1637. } else {
  1638. v->ttmbf = 1;
  1639. v->ttfrm = TT_8X8;
  1640. }
  1641. break;
  1642. }
  1643. /* AC Syntax */
  1644. v->c_ac_table_index = decode012(gb);
  1645. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1646. {
  1647. v->y_ac_table_index = decode012(gb);
  1648. }
  1649. /* DC Syntax */
  1650. v->s.dc_table_index = get_bits(gb, 1);
  1651. if (v->s.pict_type == I_TYPE && v->dquant) {
  1652. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1653. vop_dquant_decoding(v);
  1654. }
  1655. v->bi_type = 0;
  1656. if(v->s.pict_type == BI_TYPE) {
  1657. v->s.pict_type = B_TYPE;
  1658. v->bi_type = 1;
  1659. }
  1660. return 0;
  1661. }
  1662. /***********************************************************************/
  1663. /**
  1664. * @defgroup block VC-1 Block-level functions
  1665. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1666. * @{
  1667. */
  1668. /**
  1669. * @def GET_MQUANT
  1670. * @brief Get macroblock-level quantizer scale
  1671. */
  1672. #define GET_MQUANT() \
  1673. if (v->dquantfrm) \
  1674. { \
  1675. int edges = 0; \
  1676. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1677. { \
  1678. if (v->dqbilevel) \
  1679. { \
  1680. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1681. } \
  1682. else \
  1683. { \
  1684. mqdiff = get_bits(gb, 3); \
  1685. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1686. else mquant = get_bits(gb, 5); \
  1687. } \
  1688. } \
  1689. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1690. edges = 1 << v->dqsbedge; \
  1691. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1692. edges = (3 << v->dqsbedge) % 15; \
  1693. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1694. edges = 15; \
  1695. if((edges&1) && !s->mb_x) \
  1696. mquant = v->altpq; \
  1697. if((edges&2) && s->first_slice_line) \
  1698. mquant = v->altpq; \
  1699. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1700. mquant = v->altpq; \
  1701. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1702. mquant = v->altpq; \
  1703. }
  1704. /**
  1705. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1706. * @brief Get MV differentials
  1707. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1708. * @param _dmv_x Horizontal differential for decoded MV
  1709. * @param _dmv_y Vertical differential for decoded MV
  1710. */
  1711. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1712. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1713. VC1_MV_DIFF_VLC_BITS, 2); \
  1714. if (index > 36) \
  1715. { \
  1716. mb_has_coeffs = 1; \
  1717. index -= 37; \
  1718. } \
  1719. else mb_has_coeffs = 0; \
  1720. s->mb_intra = 0; \
  1721. if (!index) { _dmv_x = _dmv_y = 0; } \
  1722. else if (index == 35) \
  1723. { \
  1724. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1725. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1726. } \
  1727. else if (index == 36) \
  1728. { \
  1729. _dmv_x = 0; \
  1730. _dmv_y = 0; \
  1731. s->mb_intra = 1; \
  1732. } \
  1733. else \
  1734. { \
  1735. index1 = index%6; \
  1736. if (!s->quarter_sample && index1 == 5) val = 1; \
  1737. else val = 0; \
  1738. if(size_table[index1] - val > 0) \
  1739. val = get_bits(gb, size_table[index1] - val); \
  1740. else val = 0; \
  1741. sign = 0 - (val&1); \
  1742. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1743. \
  1744. index1 = index/6; \
  1745. if (!s->quarter_sample && index1 == 5) val = 1; \
  1746. else val = 0; \
  1747. if(size_table[index1] - val > 0) \
  1748. val = get_bits(gb, size_table[index1] - val); \
  1749. else val = 0; \
  1750. sign = 0 - (val&1); \
  1751. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1752. }
  1753. /** Predict and set motion vector
  1754. */
  1755. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1756. {
  1757. int xy, wrap, off = 0;
  1758. int16_t *A, *B, *C;
  1759. int px, py;
  1760. int sum;
  1761. /* scale MV difference to be quad-pel */
  1762. dmv_x <<= 1 - s->quarter_sample;
  1763. dmv_y <<= 1 - s->quarter_sample;
  1764. wrap = s->b8_stride;
  1765. xy = s->block_index[n];
  1766. if(s->mb_intra){
  1767. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1768. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1769. if(mv1) { /* duplicate motion data for 1-MV block */
  1770. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1771. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1772. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1773. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1774. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1775. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1776. }
  1777. return;
  1778. }
  1779. C = s->current_picture.motion_val[0][xy - 1];
  1780. A = s->current_picture.motion_val[0][xy - wrap];
  1781. if(mv1)
  1782. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1783. else {
  1784. //in 4-MV mode different blocks have different B predictor position
  1785. switch(n){
  1786. case 0:
  1787. off = (s->mb_x > 0) ? -1 : 1;
  1788. break;
  1789. case 1:
  1790. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1791. break;
  1792. case 2:
  1793. off = 1;
  1794. break;
  1795. case 3:
  1796. off = -1;
  1797. }
  1798. }
  1799. B = s->current_picture.motion_val[0][xy - wrap + off];
  1800. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1801. if(s->mb_width == 1) {
  1802. px = A[0];
  1803. py = A[1];
  1804. } else {
  1805. px = mid_pred(A[0], B[0], C[0]);
  1806. py = mid_pred(A[1], B[1], C[1]);
  1807. }
  1808. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1809. px = C[0];
  1810. py = C[1];
  1811. } else {
  1812. px = py = 0;
  1813. }
  1814. /* Pullback MV as specified in 8.3.5.3.4 */
  1815. {
  1816. int qx, qy, X, Y;
  1817. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1818. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1819. X = (s->mb_width << 6) - 4;
  1820. Y = (s->mb_height << 6) - 4;
  1821. if(mv1) {
  1822. if(qx + px < -60) px = -60 - qx;
  1823. if(qy + py < -60) py = -60 - qy;
  1824. } else {
  1825. if(qx + px < -28) px = -28 - qx;
  1826. if(qy + py < -28) py = -28 - qy;
  1827. }
  1828. if(qx + px > X) px = X - qx;
  1829. if(qy + py > Y) py = Y - qy;
  1830. }
  1831. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1832. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1833. if(is_intra[xy - wrap])
  1834. sum = FFABS(px) + FFABS(py);
  1835. else
  1836. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1837. if(sum > 32) {
  1838. if(get_bits1(&s->gb)) {
  1839. px = A[0];
  1840. py = A[1];
  1841. } else {
  1842. px = C[0];
  1843. py = C[1];
  1844. }
  1845. } else {
  1846. if(is_intra[xy - 1])
  1847. sum = FFABS(px) + FFABS(py);
  1848. else
  1849. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1850. if(sum > 32) {
  1851. if(get_bits1(&s->gb)) {
  1852. px = A[0];
  1853. py = A[1];
  1854. } else {
  1855. px = C[0];
  1856. py = C[1];
  1857. }
  1858. }
  1859. }
  1860. }
  1861. /* store MV using signed modulus of MV range defined in 4.11 */
  1862. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1863. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1864. if(mv1) { /* duplicate motion data for 1-MV block */
  1865. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1866. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1867. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1868. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1869. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1870. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1871. }
  1872. }
  1873. /** Motion compensation for direct or interpolated blocks in B-frames
  1874. */
  1875. static void vc1_interp_mc(VC1Context *v)
  1876. {
  1877. MpegEncContext *s = &v->s;
  1878. DSPContext *dsp = &v->s.dsp;
  1879. uint8_t *srcY, *srcU, *srcV;
  1880. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1881. if(!v->s.next_picture.data[0])return;
  1882. mx = s->mv[1][0][0];
  1883. my = s->mv[1][0][1];
  1884. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1885. uvmy = (my + ((my & 3) == 3)) >> 1;
  1886. if(v->fastuvmc) {
  1887. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1888. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1889. }
  1890. srcY = s->next_picture.data[0];
  1891. srcU = s->next_picture.data[1];
  1892. srcV = s->next_picture.data[2];
  1893. src_x = s->mb_x * 16 + (mx >> 2);
  1894. src_y = s->mb_y * 16 + (my >> 2);
  1895. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1896. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1897. src_x = clip( src_x, -16, s->mb_width * 16);
  1898. src_y = clip( src_y, -16, s->mb_height * 16);
  1899. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  1900. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  1901. srcY += src_y * s->linesize + src_x;
  1902. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1903. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1904. /* for grayscale we should not try to read from unknown area */
  1905. if(s->flags & CODEC_FLAG_GRAY) {
  1906. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1907. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1908. }
  1909. if(v->rangeredfrm
  1910. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1911. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1912. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1913. srcY -= s->mspel * (1 + s->linesize);
  1914. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1915. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1916. srcY = s->edge_emu_buffer;
  1917. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1918. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1919. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1920. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1921. srcU = uvbuf;
  1922. srcV = uvbuf + 16;
  1923. /* if we deal with range reduction we need to scale source blocks */
  1924. if(v->rangeredfrm) {
  1925. int i, j;
  1926. uint8_t *src, *src2;
  1927. src = srcY;
  1928. for(j = 0; j < 17 + s->mspel*2; j++) {
  1929. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1930. src += s->linesize;
  1931. }
  1932. src = srcU; src2 = srcV;
  1933. for(j = 0; j < 9; j++) {
  1934. for(i = 0; i < 9; i++) {
  1935. src[i] = ((src[i] - 128) >> 1) + 128;
  1936. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1937. }
  1938. src += s->uvlinesize;
  1939. src2 += s->uvlinesize;
  1940. }
  1941. }
  1942. srcY += s->mspel * (1 + s->linesize);
  1943. }
  1944. mx >>= 1;
  1945. my >>= 1;
  1946. dxy = ((my & 1) << 1) | (mx & 1);
  1947. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1948. if(s->flags & CODEC_FLAG_GRAY) return;
  1949. /* Chroma MC always uses qpel blilinear */
  1950. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1951. uvmx = (uvmx&3)<<1;
  1952. uvmy = (uvmy&3)<<1;
  1953. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1954. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1955. }
  1956. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1957. {
  1958. int n = bfrac;
  1959. #if B_FRACTION_DEN==256
  1960. if(inv)
  1961. n -= 256;
  1962. if(!qs)
  1963. return 2 * ((value * n + 255) >> 9);
  1964. return (value * n + 128) >> 8;
  1965. #else
  1966. if(inv)
  1967. n -= B_FRACTION_DEN;
  1968. if(!qs)
  1969. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1970. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1971. #endif
  1972. }
  1973. /** Reconstruct motion vector for B-frame and do motion compensation
  1974. */
  1975. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1976. {
  1977. if(v->use_ic) {
  1978. v->mv_mode2 = v->mv_mode;
  1979. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1980. }
  1981. if(direct) {
  1982. vc1_mc_1mv(v, 0);
  1983. vc1_interp_mc(v);
  1984. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1985. return;
  1986. }
  1987. if(mode == BMV_TYPE_INTERPOLATED) {
  1988. vc1_mc_1mv(v, 0);
  1989. vc1_interp_mc(v);
  1990. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1991. return;
  1992. }
  1993. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1994. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1995. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1996. }
  1997. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1998. {
  1999. MpegEncContext *s = &v->s;
  2000. int xy, wrap, off = 0;
  2001. int16_t *A, *B, *C;
  2002. int px, py;
  2003. int sum;
  2004. int r_x, r_y;
  2005. const uint8_t *is_intra = v->mb_type[0];
  2006. r_x = v->range_x;
  2007. r_y = v->range_y;
  2008. /* scale MV difference to be quad-pel */
  2009. dmv_x[0] <<= 1 - s->quarter_sample;
  2010. dmv_y[0] <<= 1 - s->quarter_sample;
  2011. dmv_x[1] <<= 1 - s->quarter_sample;
  2012. dmv_y[1] <<= 1 - s->quarter_sample;
  2013. wrap = s->b8_stride;
  2014. xy = s->block_index[0];
  2015. if(s->mb_intra) {
  2016. s->current_picture.motion_val[0][xy][0] =
  2017. s->current_picture.motion_val[0][xy][1] =
  2018. s->current_picture.motion_val[1][xy][0] =
  2019. s->current_picture.motion_val[1][xy][1] = 0;
  2020. return;
  2021. }
  2022. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  2023. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  2024. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  2025. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  2026. if(direct) {
  2027. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2028. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2029. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2030. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2031. return;
  2032. }
  2033. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2034. C = s->current_picture.motion_val[0][xy - 2];
  2035. A = s->current_picture.motion_val[0][xy - wrap*2];
  2036. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2037. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  2038. if(!s->first_slice_line) { // predictor A is not out of bounds
  2039. if(s->mb_width == 1) {
  2040. px = A[0];
  2041. py = A[1];
  2042. } else {
  2043. px = mid_pred(A[0], B[0], C[0]);
  2044. py = mid_pred(A[1], B[1], C[1]);
  2045. }
  2046. } else if(s->mb_x) { // predictor C is not out of bounds
  2047. px = C[0];
  2048. py = C[1];
  2049. } else {
  2050. px = py = 0;
  2051. }
  2052. /* Pullback MV as specified in 8.3.5.3.4 */
  2053. {
  2054. int qx, qy, X, Y;
  2055. if(v->profile < PROFILE_ADVANCED) {
  2056. qx = (s->mb_x << 5);
  2057. qy = (s->mb_y << 5);
  2058. X = (s->mb_width << 5) - 4;
  2059. Y = (s->mb_height << 5) - 4;
  2060. if(qx + px < -28) px = -28 - qx;
  2061. if(qy + py < -28) py = -28 - qy;
  2062. if(qx + px > X) px = X - qx;
  2063. if(qy + py > Y) py = Y - qy;
  2064. } else {
  2065. qx = (s->mb_x << 6);
  2066. qy = (s->mb_y << 6);
  2067. X = (s->mb_width << 6) - 4;
  2068. Y = (s->mb_height << 6) - 4;
  2069. if(qx + px < -60) px = -60 - qx;
  2070. if(qy + py < -60) py = -60 - qy;
  2071. if(qx + px > X) px = X - qx;
  2072. if(qy + py > Y) py = Y - qy;
  2073. }
  2074. }
  2075. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2076. if(0 && !s->first_slice_line && s->mb_x) {
  2077. if(is_intra[xy - wrap])
  2078. sum = FFABS(px) + FFABS(py);
  2079. else
  2080. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2081. if(sum > 32) {
  2082. if(get_bits1(&s->gb)) {
  2083. px = A[0];
  2084. py = A[1];
  2085. } else {
  2086. px = C[0];
  2087. py = C[1];
  2088. }
  2089. } else {
  2090. if(is_intra[xy - 2])
  2091. sum = FFABS(px) + FFABS(py);
  2092. else
  2093. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2094. if(sum > 32) {
  2095. if(get_bits1(&s->gb)) {
  2096. px = A[0];
  2097. py = A[1];
  2098. } else {
  2099. px = C[0];
  2100. py = C[1];
  2101. }
  2102. }
  2103. }
  2104. }
  2105. /* store MV using signed modulus of MV range defined in 4.11 */
  2106. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2107. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2108. }
  2109. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2110. C = s->current_picture.motion_val[1][xy - 2];
  2111. A = s->current_picture.motion_val[1][xy - wrap*2];
  2112. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2113. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  2114. if(!s->first_slice_line) { // predictor A is not out of bounds
  2115. if(s->mb_width == 1) {
  2116. px = A[0];
  2117. py = A[1];
  2118. } else {
  2119. px = mid_pred(A[0], B[0], C[0]);
  2120. py = mid_pred(A[1], B[1], C[1]);
  2121. }
  2122. } else if(s->mb_x) { // predictor C is not out of bounds
  2123. px = C[0];
  2124. py = C[1];
  2125. } else {
  2126. px = py = 0;
  2127. }
  2128. /* Pullback MV as specified in 8.3.5.3.4 */
  2129. {
  2130. int qx, qy, X, Y;
  2131. if(v->profile < PROFILE_ADVANCED) {
  2132. qx = (s->mb_x << 5);
  2133. qy = (s->mb_y << 5);
  2134. X = (s->mb_width << 5) - 4;
  2135. Y = (s->mb_height << 5) - 4;
  2136. if(qx + px < -28) px = -28 - qx;
  2137. if(qy + py < -28) py = -28 - qy;
  2138. if(qx + px > X) px = X - qx;
  2139. if(qy + py > Y) py = Y - qy;
  2140. } else {
  2141. qx = (s->mb_x << 6);
  2142. qy = (s->mb_y << 6);
  2143. X = (s->mb_width << 6) - 4;
  2144. Y = (s->mb_height << 6) - 4;
  2145. if(qx + px < -60) px = -60 - qx;
  2146. if(qy + py < -60) py = -60 - qy;
  2147. if(qx + px > X) px = X - qx;
  2148. if(qy + py > Y) py = Y - qy;
  2149. }
  2150. }
  2151. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2152. if(0 && !s->first_slice_line && s->mb_x) {
  2153. if(is_intra[xy - wrap])
  2154. sum = FFABS(px) + FFABS(py);
  2155. else
  2156. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2157. if(sum > 32) {
  2158. if(get_bits1(&s->gb)) {
  2159. px = A[0];
  2160. py = A[1];
  2161. } else {
  2162. px = C[0];
  2163. py = C[1];
  2164. }
  2165. } else {
  2166. if(is_intra[xy - 2])
  2167. sum = FFABS(px) + FFABS(py);
  2168. else
  2169. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2170. if(sum > 32) {
  2171. if(get_bits1(&s->gb)) {
  2172. px = A[0];
  2173. py = A[1];
  2174. } else {
  2175. px = C[0];
  2176. py = C[1];
  2177. }
  2178. }
  2179. }
  2180. }
  2181. /* store MV using signed modulus of MV range defined in 4.11 */
  2182. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2183. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2184. }
  2185. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2186. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2187. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2188. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2189. }
  2190. /** Get predicted DC value for I-frames only
  2191. * prediction dir: left=0, top=1
  2192. * @param s MpegEncContext
  2193. * @param[in] n block index in the current MB
  2194. * @param dc_val_ptr Pointer to DC predictor
  2195. * @param dir_ptr Prediction direction for use in AC prediction
  2196. */
  2197. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2198. int16_t **dc_val_ptr, int *dir_ptr)
  2199. {
  2200. int a, b, c, wrap, pred, scale;
  2201. int16_t *dc_val;
  2202. static const uint16_t dcpred[32] = {
  2203. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2204. 114, 102, 93, 85, 79, 73, 68, 64,
  2205. 60, 57, 54, 51, 49, 47, 45, 43,
  2206. 41, 39, 38, 37, 35, 34, 33
  2207. };
  2208. /* find prediction - wmv3_dc_scale always used here in fact */
  2209. if (n < 4) scale = s->y_dc_scale;
  2210. else scale = s->c_dc_scale;
  2211. wrap = s->block_wrap[n];
  2212. dc_val= s->dc_val[0] + s->block_index[n];
  2213. /* B A
  2214. * C X
  2215. */
  2216. c = dc_val[ - 1];
  2217. b = dc_val[ - 1 - wrap];
  2218. a = dc_val[ - wrap];
  2219. if (pq < 9 || !overlap)
  2220. {
  2221. /* Set outer values */
  2222. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2223. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2224. }
  2225. else
  2226. {
  2227. /* Set outer values */
  2228. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2229. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2230. }
  2231. if (abs(a - b) <= abs(b - c)) {
  2232. pred = c;
  2233. *dir_ptr = 1;//left
  2234. } else {
  2235. pred = a;
  2236. *dir_ptr = 0;//top
  2237. }
  2238. /* update predictor */
  2239. *dc_val_ptr = &dc_val[0];
  2240. return pred;
  2241. }
  2242. /** Get predicted DC value
  2243. * prediction dir: left=0, top=1
  2244. * @param s MpegEncContext
  2245. * @param[in] n block index in the current MB
  2246. * @param dc_val_ptr Pointer to DC predictor
  2247. * @param dir_ptr Prediction direction for use in AC prediction
  2248. */
  2249. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2250. int a_avail, int c_avail,
  2251. int16_t **dc_val_ptr, int *dir_ptr)
  2252. {
  2253. int a, b, c, wrap, pred, scale;
  2254. int16_t *dc_val;
  2255. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2256. int q1, q2 = 0;
  2257. /* find prediction - wmv3_dc_scale always used here in fact */
  2258. if (n < 4) scale = s->y_dc_scale;
  2259. else scale = s->c_dc_scale;
  2260. wrap = s->block_wrap[n];
  2261. dc_val= s->dc_val[0] + s->block_index[n];
  2262. /* B A
  2263. * C X
  2264. */
  2265. c = dc_val[ - 1];
  2266. b = dc_val[ - 1 - wrap];
  2267. a = dc_val[ - wrap];
  2268. /* scale predictors if needed */
  2269. q1 = s->current_picture.qscale_table[mb_pos];
  2270. if(c_avail && (n!= 1 && n!=3)) {
  2271. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2272. if(q2 && q2 != q1)
  2273. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2274. }
  2275. if(a_avail && (n!= 2 && n!=3)) {
  2276. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2277. if(q2 && q2 != q1)
  2278. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2279. }
  2280. if(a_avail && c_avail && (n!=3)) {
  2281. int off = mb_pos;
  2282. if(n != 1) off--;
  2283. if(n != 2) off -= s->mb_stride;
  2284. q2 = s->current_picture.qscale_table[off];
  2285. if(q2 && q2 != q1)
  2286. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2287. }
  2288. if(a_avail && c_avail) {
  2289. if(abs(a - b) <= abs(b - c)) {
  2290. pred = c;
  2291. *dir_ptr = 1;//left
  2292. } else {
  2293. pred = a;
  2294. *dir_ptr = 0;//top
  2295. }
  2296. } else if(a_avail) {
  2297. pred = a;
  2298. *dir_ptr = 0;//top
  2299. } else if(c_avail) {
  2300. pred = c;
  2301. *dir_ptr = 1;//left
  2302. } else {
  2303. pred = 0;
  2304. *dir_ptr = 1;//left
  2305. }
  2306. /* update predictor */
  2307. *dc_val_ptr = &dc_val[0];
  2308. return pred;
  2309. }
  2310. /**
  2311. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2312. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2313. * @{
  2314. */
  2315. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2316. {
  2317. int xy, wrap, pred, a, b, c;
  2318. xy = s->block_index[n];
  2319. wrap = s->b8_stride;
  2320. /* B C
  2321. * A X
  2322. */
  2323. a = s->coded_block[xy - 1 ];
  2324. b = s->coded_block[xy - 1 - wrap];
  2325. c = s->coded_block[xy - wrap];
  2326. if (b == c) {
  2327. pred = a;
  2328. } else {
  2329. pred = c;
  2330. }
  2331. /* store value */
  2332. *coded_block_ptr = &s->coded_block[xy];
  2333. return pred;
  2334. }
  2335. /**
  2336. * Decode one AC coefficient
  2337. * @param v The VC1 context
  2338. * @param last Last coefficient
  2339. * @param skip How much zero coefficients to skip
  2340. * @param value Decoded AC coefficient value
  2341. * @see 8.1.3.4
  2342. */
  2343. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2344. {
  2345. GetBitContext *gb = &v->s.gb;
  2346. int index, escape, run = 0, level = 0, lst = 0;
  2347. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2348. if (index != vc1_ac_sizes[codingset] - 1) {
  2349. run = vc1_index_decode_table[codingset][index][0];
  2350. level = vc1_index_decode_table[codingset][index][1];
  2351. lst = index >= vc1_last_decode_table[codingset];
  2352. if(get_bits(gb, 1))
  2353. level = -level;
  2354. } else {
  2355. escape = decode210(gb);
  2356. if (escape != 2) {
  2357. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2358. run = vc1_index_decode_table[codingset][index][0];
  2359. level = vc1_index_decode_table[codingset][index][1];
  2360. lst = index >= vc1_last_decode_table[codingset];
  2361. if(escape == 0) {
  2362. if(lst)
  2363. level += vc1_last_delta_level_table[codingset][run];
  2364. else
  2365. level += vc1_delta_level_table[codingset][run];
  2366. } else {
  2367. if(lst)
  2368. run += vc1_last_delta_run_table[codingset][level] + 1;
  2369. else
  2370. run += vc1_delta_run_table[codingset][level] + 1;
  2371. }
  2372. if(get_bits(gb, 1))
  2373. level = -level;
  2374. } else {
  2375. int sign;
  2376. lst = get_bits(gb, 1);
  2377. if(v->s.esc3_level_length == 0) {
  2378. if(v->pq < 8 || v->dquantfrm) { // table 59
  2379. v->s.esc3_level_length = get_bits(gb, 3);
  2380. if(!v->s.esc3_level_length)
  2381. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2382. } else { //table 60
  2383. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2384. }
  2385. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2386. }
  2387. run = get_bits(gb, v->s.esc3_run_length);
  2388. sign = get_bits(gb, 1);
  2389. level = get_bits(gb, v->s.esc3_level_length);
  2390. if(sign)
  2391. level = -level;
  2392. }
  2393. }
  2394. *last = lst;
  2395. *skip = run;
  2396. *value = level;
  2397. }
  2398. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2399. * @param v VC1Context
  2400. * @param block block to decode
  2401. * @param coded are AC coeffs present or not
  2402. * @param codingset set of VLC to decode data
  2403. */
  2404. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2405. {
  2406. GetBitContext *gb = &v->s.gb;
  2407. MpegEncContext *s = &v->s;
  2408. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2409. int run_diff, i;
  2410. int16_t *dc_val;
  2411. int16_t *ac_val, *ac_val2;
  2412. int dcdiff;
  2413. /* Get DC differential */
  2414. if (n < 4) {
  2415. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2416. } else {
  2417. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2418. }
  2419. if (dcdiff < 0){
  2420. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2421. return -1;
  2422. }
  2423. if (dcdiff)
  2424. {
  2425. if (dcdiff == 119 /* ESC index value */)
  2426. {
  2427. /* TODO: Optimize */
  2428. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2429. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2430. else dcdiff = get_bits(gb, 8);
  2431. }
  2432. else
  2433. {
  2434. if (v->pq == 1)
  2435. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2436. else if (v->pq == 2)
  2437. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2438. }
  2439. if (get_bits(gb, 1))
  2440. dcdiff = -dcdiff;
  2441. }
  2442. /* Prediction */
  2443. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2444. *dc_val = dcdiff;
  2445. /* Store the quantized DC coeff, used for prediction */
  2446. if (n < 4) {
  2447. block[0] = dcdiff * s->y_dc_scale;
  2448. } else {
  2449. block[0] = dcdiff * s->c_dc_scale;
  2450. }
  2451. /* Skip ? */
  2452. run_diff = 0;
  2453. i = 0;
  2454. if (!coded) {
  2455. goto not_coded;
  2456. }
  2457. //AC Decoding
  2458. i = 1;
  2459. {
  2460. int last = 0, skip, value;
  2461. const int8_t *zz_table;
  2462. int scale;
  2463. int k;
  2464. scale = v->pq * 2 + v->halfpq;
  2465. if(v->s.ac_pred) {
  2466. if(!dc_pred_dir)
  2467. zz_table = vc1_horizontal_zz;
  2468. else
  2469. zz_table = vc1_vertical_zz;
  2470. } else
  2471. zz_table = vc1_normal_zz;
  2472. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2473. ac_val2 = ac_val;
  2474. if(dc_pred_dir) //left
  2475. ac_val -= 16;
  2476. else //top
  2477. ac_val -= 16 * s->block_wrap[n];
  2478. while (!last) {
  2479. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2480. i += skip;
  2481. if(i > 63)
  2482. break;
  2483. block[zz_table[i++]] = value;
  2484. }
  2485. /* apply AC prediction if needed */
  2486. if(s->ac_pred) {
  2487. if(dc_pred_dir) { //left
  2488. for(k = 1; k < 8; k++)
  2489. block[k << 3] += ac_val[k];
  2490. } else { //top
  2491. for(k = 1; k < 8; k++)
  2492. block[k] += ac_val[k + 8];
  2493. }
  2494. }
  2495. /* save AC coeffs for further prediction */
  2496. for(k = 1; k < 8; k++) {
  2497. ac_val2[k] = block[k << 3];
  2498. ac_val2[k + 8] = block[k];
  2499. }
  2500. /* scale AC coeffs */
  2501. for(k = 1; k < 64; k++)
  2502. if(block[k]) {
  2503. block[k] *= scale;
  2504. if(!v->pquantizer)
  2505. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2506. }
  2507. if(s->ac_pred) i = 63;
  2508. }
  2509. not_coded:
  2510. if(!coded) {
  2511. int k, scale;
  2512. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2513. ac_val2 = ac_val;
  2514. scale = v->pq * 2 + v->halfpq;
  2515. memset(ac_val2, 0, 16 * 2);
  2516. if(dc_pred_dir) {//left
  2517. ac_val -= 16;
  2518. if(s->ac_pred)
  2519. memcpy(ac_val2, ac_val, 8 * 2);
  2520. } else {//top
  2521. ac_val -= 16 * s->block_wrap[n];
  2522. if(s->ac_pred)
  2523. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2524. }
  2525. /* apply AC prediction if needed */
  2526. if(s->ac_pred) {
  2527. if(dc_pred_dir) { //left
  2528. for(k = 1; k < 8; k++) {
  2529. block[k << 3] = ac_val[k] * scale;
  2530. if(!v->pquantizer && block[k << 3])
  2531. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2532. }
  2533. } else { //top
  2534. for(k = 1; k < 8; k++) {
  2535. block[k] = ac_val[k + 8] * scale;
  2536. if(!v->pquantizer && block[k])
  2537. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2538. }
  2539. }
  2540. i = 63;
  2541. }
  2542. }
  2543. s->block_last_index[n] = i;
  2544. return 0;
  2545. }
  2546. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2547. * @param v VC1Context
  2548. * @param block block to decode
  2549. * @param coded are AC coeffs present or not
  2550. * @param codingset set of VLC to decode data
  2551. */
  2552. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2553. {
  2554. GetBitContext *gb = &v->s.gb;
  2555. MpegEncContext *s = &v->s;
  2556. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2557. int run_diff, i;
  2558. int16_t *dc_val;
  2559. int16_t *ac_val, *ac_val2;
  2560. int dcdiff;
  2561. int a_avail = v->a_avail, c_avail = v->c_avail;
  2562. int use_pred = s->ac_pred;
  2563. int scale;
  2564. int q1, q2 = 0;
  2565. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2566. /* Get DC differential */
  2567. if (n < 4) {
  2568. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2569. } else {
  2570. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2571. }
  2572. if (dcdiff < 0){
  2573. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2574. return -1;
  2575. }
  2576. if (dcdiff)
  2577. {
  2578. if (dcdiff == 119 /* ESC index value */)
  2579. {
  2580. /* TODO: Optimize */
  2581. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2582. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2583. else dcdiff = get_bits(gb, 8);
  2584. }
  2585. else
  2586. {
  2587. if (mquant == 1)
  2588. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2589. else if (mquant == 2)
  2590. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2591. }
  2592. if (get_bits(gb, 1))
  2593. dcdiff = -dcdiff;
  2594. }
  2595. /* Prediction */
  2596. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2597. *dc_val = dcdiff;
  2598. /* Store the quantized DC coeff, used for prediction */
  2599. if (n < 4) {
  2600. block[0] = dcdiff * s->y_dc_scale;
  2601. } else {
  2602. block[0] = dcdiff * s->c_dc_scale;
  2603. }
  2604. /* Skip ? */
  2605. run_diff = 0;
  2606. i = 0;
  2607. //AC Decoding
  2608. i = 1;
  2609. /* check if AC is needed at all and adjust direction if needed */
  2610. if(!a_avail) dc_pred_dir = 1;
  2611. if(!c_avail) dc_pred_dir = 0;
  2612. if(!a_avail && !c_avail) use_pred = 0;
  2613. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2614. ac_val2 = ac_val;
  2615. scale = mquant * 2 + v->halfpq;
  2616. if(dc_pred_dir) //left
  2617. ac_val -= 16;
  2618. else //top
  2619. ac_val -= 16 * s->block_wrap[n];
  2620. q1 = s->current_picture.qscale_table[mb_pos];
  2621. if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2622. if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2623. if(n && n<4) q2 = q1;
  2624. if(coded) {
  2625. int last = 0, skip, value;
  2626. const int8_t *zz_table;
  2627. int k;
  2628. if(v->s.ac_pred) {
  2629. if(!dc_pred_dir)
  2630. zz_table = vc1_horizontal_zz;
  2631. else
  2632. zz_table = vc1_vertical_zz;
  2633. } else
  2634. zz_table = vc1_normal_zz;
  2635. while (!last) {
  2636. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2637. i += skip;
  2638. if(i > 63)
  2639. break;
  2640. block[zz_table[i++]] = value;
  2641. }
  2642. /* apply AC prediction if needed */
  2643. if(use_pred) {
  2644. /* scale predictors if needed*/
  2645. if(q2 && q1!=q2) {
  2646. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2647. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2648. if(dc_pred_dir) { //left
  2649. for(k = 1; k < 8; k++)
  2650. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2651. } else { //top
  2652. for(k = 1; k < 8; k++)
  2653. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2654. }
  2655. } else {
  2656. if(dc_pred_dir) { //left
  2657. for(k = 1; k < 8; k++)
  2658. block[k << 3] += ac_val[k];
  2659. } else { //top
  2660. for(k = 1; k < 8; k++)
  2661. block[k] += ac_val[k + 8];
  2662. }
  2663. }
  2664. }
  2665. /* save AC coeffs for further prediction */
  2666. for(k = 1; k < 8; k++) {
  2667. ac_val2[k] = block[k << 3];
  2668. ac_val2[k + 8] = block[k];
  2669. }
  2670. /* scale AC coeffs */
  2671. for(k = 1; k < 64; k++)
  2672. if(block[k]) {
  2673. block[k] *= scale;
  2674. if(!v->pquantizer)
  2675. block[k] += (block[k] < 0) ? -mquant : mquant;
  2676. }
  2677. if(use_pred) i = 63;
  2678. } else { // no AC coeffs
  2679. int k;
  2680. memset(ac_val2, 0, 16 * 2);
  2681. if(dc_pred_dir) {//left
  2682. if(use_pred) {
  2683. memcpy(ac_val2, ac_val, 8 * 2);
  2684. if(q2 && q1!=q2) {
  2685. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2686. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2687. for(k = 1; k < 8; k++)
  2688. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2689. }
  2690. }
  2691. } else {//top
  2692. if(use_pred) {
  2693. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2694. if(q2 && q1!=q2) {
  2695. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2696. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2697. for(k = 1; k < 8; k++)
  2698. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2699. }
  2700. }
  2701. }
  2702. /* apply AC prediction if needed */
  2703. if(use_pred) {
  2704. if(dc_pred_dir) { //left
  2705. for(k = 1; k < 8; k++) {
  2706. block[k << 3] = ac_val2[k] * scale;
  2707. if(!v->pquantizer && block[k << 3])
  2708. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2709. }
  2710. } else { //top
  2711. for(k = 1; k < 8; k++) {
  2712. block[k] = ac_val2[k + 8] * scale;
  2713. if(!v->pquantizer && block[k])
  2714. block[k] += (block[k] < 0) ? -mquant : mquant;
  2715. }
  2716. }
  2717. i = 63;
  2718. }
  2719. }
  2720. s->block_last_index[n] = i;
  2721. return 0;
  2722. }
  2723. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2724. * @param v VC1Context
  2725. * @param block block to decode
  2726. * @param coded are AC coeffs present or not
  2727. * @param mquant block quantizer
  2728. * @param codingset set of VLC to decode data
  2729. */
  2730. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2731. {
  2732. GetBitContext *gb = &v->s.gb;
  2733. MpegEncContext *s = &v->s;
  2734. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2735. int run_diff, i;
  2736. int16_t *dc_val;
  2737. int16_t *ac_val, *ac_val2;
  2738. int dcdiff;
  2739. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2740. int a_avail = v->a_avail, c_avail = v->c_avail;
  2741. int use_pred = s->ac_pred;
  2742. int scale;
  2743. int q1, q2 = 0;
  2744. /* XXX: Guard against dumb values of mquant */
  2745. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2746. /* Set DC scale - y and c use the same */
  2747. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2748. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2749. /* Get DC differential */
  2750. if (n < 4) {
  2751. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2752. } else {
  2753. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2754. }
  2755. if (dcdiff < 0){
  2756. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2757. return -1;
  2758. }
  2759. if (dcdiff)
  2760. {
  2761. if (dcdiff == 119 /* ESC index value */)
  2762. {
  2763. /* TODO: Optimize */
  2764. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2765. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2766. else dcdiff = get_bits(gb, 8);
  2767. }
  2768. else
  2769. {
  2770. if (mquant == 1)
  2771. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2772. else if (mquant == 2)
  2773. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2774. }
  2775. if (get_bits(gb, 1))
  2776. dcdiff = -dcdiff;
  2777. }
  2778. /* Prediction */
  2779. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2780. *dc_val = dcdiff;
  2781. /* Store the quantized DC coeff, used for prediction */
  2782. if (n < 4) {
  2783. block[0] = dcdiff * s->y_dc_scale;
  2784. } else {
  2785. block[0] = dcdiff * s->c_dc_scale;
  2786. }
  2787. /* Skip ? */
  2788. run_diff = 0;
  2789. i = 0;
  2790. //AC Decoding
  2791. i = 1;
  2792. /* check if AC is needed at all and adjust direction if needed */
  2793. if(!a_avail) dc_pred_dir = 1;
  2794. if(!c_avail) dc_pred_dir = 0;
  2795. if(!a_avail && !c_avail) use_pred = 0;
  2796. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2797. ac_val2 = ac_val;
  2798. scale = mquant * 2 + v->halfpq;
  2799. if(dc_pred_dir) //left
  2800. ac_val -= 16;
  2801. else //top
  2802. ac_val -= 16 * s->block_wrap[n];
  2803. q1 = s->current_picture.qscale_table[mb_pos];
  2804. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2805. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2806. if(n && n<4) q2 = q1;
  2807. if(coded) {
  2808. int last = 0, skip, value;
  2809. const int8_t *zz_table;
  2810. int k;
  2811. zz_table = vc1_simple_progressive_8x8_zz;
  2812. while (!last) {
  2813. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2814. i += skip;
  2815. if(i > 63)
  2816. break;
  2817. block[zz_table[i++]] = value;
  2818. }
  2819. /* apply AC prediction if needed */
  2820. if(use_pred) {
  2821. /* scale predictors if needed*/
  2822. if(q2 && q1!=q2) {
  2823. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2824. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2825. if(dc_pred_dir) { //left
  2826. for(k = 1; k < 8; k++)
  2827. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2828. } else { //top
  2829. for(k = 1; k < 8; k++)
  2830. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2831. }
  2832. } else {
  2833. if(dc_pred_dir) { //left
  2834. for(k = 1; k < 8; k++)
  2835. block[k << 3] += ac_val[k];
  2836. } else { //top
  2837. for(k = 1; k < 8; k++)
  2838. block[k] += ac_val[k + 8];
  2839. }
  2840. }
  2841. }
  2842. /* save AC coeffs for further prediction */
  2843. for(k = 1; k < 8; k++) {
  2844. ac_val2[k] = block[k << 3];
  2845. ac_val2[k + 8] = block[k];
  2846. }
  2847. /* scale AC coeffs */
  2848. for(k = 1; k < 64; k++)
  2849. if(block[k]) {
  2850. block[k] *= scale;
  2851. if(!v->pquantizer)
  2852. block[k] += (block[k] < 0) ? -mquant : mquant;
  2853. }
  2854. if(use_pred) i = 63;
  2855. } else { // no AC coeffs
  2856. int k;
  2857. memset(ac_val2, 0, 16 * 2);
  2858. if(dc_pred_dir) {//left
  2859. if(use_pred) {
  2860. memcpy(ac_val2, ac_val, 8 * 2);
  2861. if(q2 && q1!=q2) {
  2862. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2863. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2864. for(k = 1; k < 8; k++)
  2865. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2866. }
  2867. }
  2868. } else {//top
  2869. if(use_pred) {
  2870. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2871. if(q2 && q1!=q2) {
  2872. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2873. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2874. for(k = 1; k < 8; k++)
  2875. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2876. }
  2877. }
  2878. }
  2879. /* apply AC prediction if needed */
  2880. if(use_pred) {
  2881. if(dc_pred_dir) { //left
  2882. for(k = 1; k < 8; k++) {
  2883. block[k << 3] = ac_val2[k] * scale;
  2884. if(!v->pquantizer && block[k << 3])
  2885. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2886. }
  2887. } else { //top
  2888. for(k = 1; k < 8; k++) {
  2889. block[k] = ac_val2[k + 8] * scale;
  2890. if(!v->pquantizer && block[k])
  2891. block[k] += (block[k] < 0) ? -mquant : mquant;
  2892. }
  2893. }
  2894. i = 63;
  2895. }
  2896. }
  2897. s->block_last_index[n] = i;
  2898. return 0;
  2899. }
  2900. /** Decode P block
  2901. */
  2902. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2903. {
  2904. MpegEncContext *s = &v->s;
  2905. GetBitContext *gb = &s->gb;
  2906. int i, j;
  2907. int subblkpat = 0;
  2908. int scale, off, idx, last, skip, value;
  2909. int ttblk = ttmb & 7;
  2910. if(ttmb == -1) {
  2911. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2912. }
  2913. if(ttblk == TT_4X4) {
  2914. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2915. }
  2916. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2917. subblkpat = decode012(gb);
  2918. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2919. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2920. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2921. }
  2922. scale = 2 * mquant + v->halfpq;
  2923. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2924. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2925. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2926. ttblk = TT_8X4;
  2927. }
  2928. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2929. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2930. ttblk = TT_4X8;
  2931. }
  2932. switch(ttblk) {
  2933. case TT_8X8:
  2934. i = 0;
  2935. last = 0;
  2936. while (!last) {
  2937. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2938. i += skip;
  2939. if(i > 63)
  2940. break;
  2941. idx = vc1_simple_progressive_8x8_zz[i++];
  2942. block[idx] = value * scale;
  2943. if(!v->pquantizer)
  2944. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2945. }
  2946. s->dsp.vc1_inv_trans_8x8(block);
  2947. break;
  2948. case TT_4X4:
  2949. for(j = 0; j < 4; j++) {
  2950. last = subblkpat & (1 << (3 - j));
  2951. i = 0;
  2952. off = (j & 1) * 4 + (j & 2) * 16;
  2953. while (!last) {
  2954. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2955. i += skip;
  2956. if(i > 15)
  2957. break;
  2958. idx = vc1_simple_progressive_4x4_zz[i++];
  2959. block[idx + off] = value * scale;
  2960. if(!v->pquantizer)
  2961. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2962. }
  2963. if(!(subblkpat & (1 << (3 - j))))
  2964. s->dsp.vc1_inv_trans_4x4(block, j);
  2965. }
  2966. break;
  2967. case TT_8X4:
  2968. for(j = 0; j < 2; j++) {
  2969. last = subblkpat & (1 << (1 - j));
  2970. i = 0;
  2971. off = j * 32;
  2972. while (!last) {
  2973. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2974. i += skip;
  2975. if(i > 31)
  2976. break;
  2977. if(v->profile < PROFILE_ADVANCED)
  2978. idx = vc1_simple_progressive_8x4_zz[i++];
  2979. else
  2980. idx = vc1_adv_progressive_8x4_zz[i++];
  2981. block[idx + off] = value * scale;
  2982. if(!v->pquantizer)
  2983. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2984. }
  2985. if(!(subblkpat & (1 << (1 - j))))
  2986. s->dsp.vc1_inv_trans_8x4(block, j);
  2987. }
  2988. break;
  2989. case TT_4X8:
  2990. for(j = 0; j < 2; j++) {
  2991. last = subblkpat & (1 << (1 - j));
  2992. i = 0;
  2993. off = j * 4;
  2994. while (!last) {
  2995. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2996. i += skip;
  2997. if(i > 31)
  2998. break;
  2999. if(v->profile < PROFILE_ADVANCED)
  3000. idx = vc1_simple_progressive_4x8_zz[i++];
  3001. else
  3002. idx = vc1_adv_progressive_4x8_zz[i++];
  3003. block[idx + off] = value * scale;
  3004. if(!v->pquantizer)
  3005. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3006. }
  3007. if(!(subblkpat & (1 << (1 - j))))
  3008. s->dsp.vc1_inv_trans_4x8(block, j);
  3009. }
  3010. break;
  3011. }
  3012. return 0;
  3013. }
  3014. /** Decode one P-frame MB (in Simple/Main profile)
  3015. */
  3016. static int vc1_decode_p_mb(VC1Context *v)
  3017. {
  3018. MpegEncContext *s = &v->s;
  3019. GetBitContext *gb = &s->gb;
  3020. int i, j;
  3021. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3022. int cbp; /* cbp decoding stuff */
  3023. int mqdiff, mquant; /* MB quantization */
  3024. int ttmb = v->ttfrm; /* MB Transform type */
  3025. int status;
  3026. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3027. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3028. int mb_has_coeffs = 1; /* last_flag */
  3029. int dmv_x, dmv_y; /* Differential MV components */
  3030. int index, index1; /* LUT indices */
  3031. int val, sign; /* temp values */
  3032. int first_block = 1;
  3033. int dst_idx, off;
  3034. int skipped, fourmv;
  3035. mquant = v->pq; /* Loosy initialization */
  3036. if (v->mv_type_is_raw)
  3037. fourmv = get_bits1(gb);
  3038. else
  3039. fourmv = v->mv_type_mb_plane[mb_pos];
  3040. if (v->skip_is_raw)
  3041. skipped = get_bits1(gb);
  3042. else
  3043. skipped = v->s.mbskip_table[mb_pos];
  3044. s->dsp.clear_blocks(s->block[0]);
  3045. if (!fourmv) /* 1MV mode */
  3046. {
  3047. if (!skipped)
  3048. {
  3049. GET_MVDATA(dmv_x, dmv_y);
  3050. if (s->mb_intra) {
  3051. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3052. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3053. }
  3054. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3055. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3056. /* FIXME Set DC val for inter block ? */
  3057. if (s->mb_intra && !mb_has_coeffs)
  3058. {
  3059. GET_MQUANT();
  3060. s->ac_pred = get_bits(gb, 1);
  3061. cbp = 0;
  3062. }
  3063. else if (mb_has_coeffs)
  3064. {
  3065. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  3066. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3067. GET_MQUANT();
  3068. }
  3069. else
  3070. {
  3071. mquant = v->pq;
  3072. cbp = 0;
  3073. }
  3074. s->current_picture.qscale_table[mb_pos] = mquant;
  3075. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3076. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  3077. VC1_TTMB_VLC_BITS, 2);
  3078. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  3079. dst_idx = 0;
  3080. for (i=0; i<6; i++)
  3081. {
  3082. s->dc_val[0][s->block_index[i]] = 0;
  3083. dst_idx += i >> 2;
  3084. val = ((cbp >> (5 - i)) & 1);
  3085. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3086. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3087. if(s->mb_intra) {
  3088. /* check if prediction blocks A and C are available */
  3089. v->a_avail = v->c_avail = 0;
  3090. if(i == 2 || i == 3 || !s->first_slice_line)
  3091. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3092. if(i == 1 || i == 3 || s->mb_x)
  3093. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3094. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3095. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3096. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3097. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3098. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3099. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3100. if(v->pq >= 9 && v->overlap) {
  3101. if(v->c_avail)
  3102. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3103. if(v->a_avail)
  3104. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3105. }
  3106. } else if(val) {
  3107. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3108. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3109. first_block = 0;
  3110. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3111. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3112. }
  3113. }
  3114. }
  3115. else //Skipped
  3116. {
  3117. s->mb_intra = 0;
  3118. for(i = 0; i < 6; i++) {
  3119. v->mb_type[0][s->block_index[i]] = 0;
  3120. s->dc_val[0][s->block_index[i]] = 0;
  3121. }
  3122. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3123. s->current_picture.qscale_table[mb_pos] = 0;
  3124. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3125. vc1_mc_1mv(v, 0);
  3126. return 0;
  3127. }
  3128. } //1MV mode
  3129. else //4MV mode
  3130. {
  3131. if (!skipped /* unskipped MB */)
  3132. {
  3133. int intra_count = 0, coded_inter = 0;
  3134. int is_intra[6], is_coded[6];
  3135. /* Get CBPCY */
  3136. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3137. for (i=0; i<6; i++)
  3138. {
  3139. val = ((cbp >> (5 - i)) & 1);
  3140. s->dc_val[0][s->block_index[i]] = 0;
  3141. s->mb_intra = 0;
  3142. if(i < 4) {
  3143. dmv_x = dmv_y = 0;
  3144. s->mb_intra = 0;
  3145. mb_has_coeffs = 0;
  3146. if(val) {
  3147. GET_MVDATA(dmv_x, dmv_y);
  3148. }
  3149. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3150. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3151. intra_count += s->mb_intra;
  3152. is_intra[i] = s->mb_intra;
  3153. is_coded[i] = mb_has_coeffs;
  3154. }
  3155. if(i&4){
  3156. is_intra[i] = (intra_count >= 3);
  3157. is_coded[i] = val;
  3158. }
  3159. if(i == 4) vc1_mc_4mv_chroma(v);
  3160. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3161. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3162. }
  3163. // if there are no coded blocks then don't do anything more
  3164. if(!intra_count && !coded_inter) return 0;
  3165. dst_idx = 0;
  3166. GET_MQUANT();
  3167. s->current_picture.qscale_table[mb_pos] = mquant;
  3168. /* test if block is intra and has pred */
  3169. {
  3170. int intrapred = 0;
  3171. for(i=0; i<6; i++)
  3172. if(is_intra[i]) {
  3173. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3174. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3175. intrapred = 1;
  3176. break;
  3177. }
  3178. }
  3179. if(intrapred)s->ac_pred = get_bits(gb, 1);
  3180. else s->ac_pred = 0;
  3181. }
  3182. if (!v->ttmbf && coded_inter)
  3183. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3184. for (i=0; i<6; i++)
  3185. {
  3186. dst_idx += i >> 2;
  3187. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3188. s->mb_intra = is_intra[i];
  3189. if (is_intra[i]) {
  3190. /* check if prediction blocks A and C are available */
  3191. v->a_avail = v->c_avail = 0;
  3192. if(i == 2 || i == 3 || !s->first_slice_line)
  3193. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3194. if(i == 1 || i == 3 || s->mb_x)
  3195. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3196. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3197. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3198. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3199. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3200. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3201. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3202. if(v->pq >= 9 && v->overlap) {
  3203. if(v->c_avail)
  3204. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3205. if(v->a_avail)
  3206. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3207. }
  3208. } else if(is_coded[i]) {
  3209. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3210. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3211. first_block = 0;
  3212. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3213. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3214. }
  3215. }
  3216. return status;
  3217. }
  3218. else //Skipped MB
  3219. {
  3220. s->mb_intra = 0;
  3221. s->current_picture.qscale_table[mb_pos] = 0;
  3222. for (i=0; i<6; i++) {
  3223. v->mb_type[0][s->block_index[i]] = 0;
  3224. s->dc_val[0][s->block_index[i]] = 0;
  3225. }
  3226. for (i=0; i<4; i++)
  3227. {
  3228. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3229. vc1_mc_4mv_luma(v, i);
  3230. }
  3231. vc1_mc_4mv_chroma(v);
  3232. s->current_picture.qscale_table[mb_pos] = 0;
  3233. return 0;
  3234. }
  3235. }
  3236. /* Should never happen */
  3237. return -1;
  3238. }
  3239. /** Decode one B-frame MB (in Main profile)
  3240. */
  3241. static void vc1_decode_b_mb(VC1Context *v)
  3242. {
  3243. MpegEncContext *s = &v->s;
  3244. GetBitContext *gb = &s->gb;
  3245. int i, j;
  3246. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3247. int cbp = 0; /* cbp decoding stuff */
  3248. int mqdiff, mquant; /* MB quantization */
  3249. int ttmb = v->ttfrm; /* MB Transform type */
  3250. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3251. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3252. int mb_has_coeffs = 0; /* last_flag */
  3253. int index, index1; /* LUT indices */
  3254. int val, sign; /* temp values */
  3255. int first_block = 1;
  3256. int dst_idx, off;
  3257. int skipped, direct;
  3258. int dmv_x[2], dmv_y[2];
  3259. int bmvtype = BMV_TYPE_BACKWARD;
  3260. mquant = v->pq; /* Loosy initialization */
  3261. s->mb_intra = 0;
  3262. if (v->dmb_is_raw)
  3263. direct = get_bits1(gb);
  3264. else
  3265. direct = v->direct_mb_plane[mb_pos];
  3266. if (v->skip_is_raw)
  3267. skipped = get_bits1(gb);
  3268. else
  3269. skipped = v->s.mbskip_table[mb_pos];
  3270. s->dsp.clear_blocks(s->block[0]);
  3271. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3272. for(i = 0; i < 6; i++) {
  3273. v->mb_type[0][s->block_index[i]] = 0;
  3274. s->dc_val[0][s->block_index[i]] = 0;
  3275. }
  3276. s->current_picture.qscale_table[mb_pos] = 0;
  3277. if (!direct) {
  3278. if (!skipped) {
  3279. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3280. dmv_x[1] = dmv_x[0];
  3281. dmv_y[1] = dmv_y[0];
  3282. }
  3283. if(skipped || !s->mb_intra) {
  3284. bmvtype = decode012(gb);
  3285. switch(bmvtype) {
  3286. case 0:
  3287. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3288. break;
  3289. case 1:
  3290. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3291. break;
  3292. case 2:
  3293. bmvtype = BMV_TYPE_INTERPOLATED;
  3294. dmv_x[0] = dmv_y[0] = 0;
  3295. }
  3296. }
  3297. }
  3298. for(i = 0; i < 6; i++)
  3299. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3300. if (skipped) {
  3301. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3302. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3303. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3304. return;
  3305. }
  3306. if (direct) {
  3307. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3308. GET_MQUANT();
  3309. s->mb_intra = 0;
  3310. mb_has_coeffs = 0;
  3311. s->current_picture.qscale_table[mb_pos] = mquant;
  3312. if(!v->ttmbf)
  3313. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3314. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3315. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3316. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3317. } else {
  3318. if(!mb_has_coeffs && !s->mb_intra) {
  3319. /* no coded blocks - effectively skipped */
  3320. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3321. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3322. return;
  3323. }
  3324. if(s->mb_intra && !mb_has_coeffs) {
  3325. GET_MQUANT();
  3326. s->current_picture.qscale_table[mb_pos] = mquant;
  3327. s->ac_pred = get_bits1(gb);
  3328. cbp = 0;
  3329. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3330. } else {
  3331. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3332. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3333. if(!mb_has_coeffs) {
  3334. /* interpolated skipped block */
  3335. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3336. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3337. return;
  3338. }
  3339. }
  3340. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3341. if(!s->mb_intra) {
  3342. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3343. }
  3344. if(s->mb_intra)
  3345. s->ac_pred = get_bits1(gb);
  3346. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3347. GET_MQUANT();
  3348. s->current_picture.qscale_table[mb_pos] = mquant;
  3349. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3350. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3351. }
  3352. }
  3353. dst_idx = 0;
  3354. for (i=0; i<6; i++)
  3355. {
  3356. s->dc_val[0][s->block_index[i]] = 0;
  3357. dst_idx += i >> 2;
  3358. val = ((cbp >> (5 - i)) & 1);
  3359. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3360. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3361. if(s->mb_intra) {
  3362. /* check if prediction blocks A and C are available */
  3363. v->a_avail = v->c_avail = 0;
  3364. if(i == 2 || i == 3 || !s->first_slice_line)
  3365. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3366. if(i == 1 || i == 3 || s->mb_x)
  3367. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3368. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3369. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3370. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3371. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3372. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3373. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3374. } else if(val) {
  3375. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3376. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3377. first_block = 0;
  3378. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3379. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3380. }
  3381. }
  3382. }
  3383. /** Decode blocks of I-frame
  3384. */
  3385. static void vc1_decode_i_blocks(VC1Context *v)
  3386. {
  3387. int k, j;
  3388. MpegEncContext *s = &v->s;
  3389. int cbp, val;
  3390. uint8_t *coded_val;
  3391. int mb_pos;
  3392. /* select codingmode used for VLC tables selection */
  3393. switch(v->y_ac_table_index){
  3394. case 0:
  3395. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3396. break;
  3397. case 1:
  3398. v->codingset = CS_HIGH_MOT_INTRA;
  3399. break;
  3400. case 2:
  3401. v->codingset = CS_MID_RATE_INTRA;
  3402. break;
  3403. }
  3404. switch(v->c_ac_table_index){
  3405. case 0:
  3406. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3407. break;
  3408. case 1:
  3409. v->codingset2 = CS_HIGH_MOT_INTER;
  3410. break;
  3411. case 2:
  3412. v->codingset2 = CS_MID_RATE_INTER;
  3413. break;
  3414. }
  3415. /* Set DC scale - y and c use the same */
  3416. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3417. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3418. //do frame decode
  3419. s->mb_x = s->mb_y = 0;
  3420. s->mb_intra = 1;
  3421. s->first_slice_line = 1;
  3422. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3423. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3424. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3425. ff_init_block_index(s);
  3426. ff_update_block_index(s);
  3427. s->dsp.clear_blocks(s->block[0]);
  3428. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3429. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3430. s->current_picture.qscale_table[mb_pos] = v->pq;
  3431. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3432. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3433. // do actual MB decoding and displaying
  3434. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3435. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3436. for(k = 0; k < 6; k++) {
  3437. val = ((cbp >> (5 - k)) & 1);
  3438. if (k < 4) {
  3439. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3440. val = val ^ pred;
  3441. *coded_val = val;
  3442. }
  3443. cbp |= val << (5 - k);
  3444. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3445. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3446. if(v->pq >= 9 && v->overlap) {
  3447. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3448. }
  3449. }
  3450. vc1_put_block(v, s->block);
  3451. if(v->pq >= 9 && v->overlap) {
  3452. if(s->mb_x) {
  3453. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3454. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3455. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3456. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3457. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3458. }
  3459. }
  3460. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3461. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3462. if(!s->first_slice_line) {
  3463. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3464. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3465. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3466. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3467. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3468. }
  3469. }
  3470. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3471. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3472. }
  3473. if(get_bits_count(&s->gb) > v->bits) {
  3474. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3475. return;
  3476. }
  3477. }
  3478. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3479. s->first_slice_line = 0;
  3480. }
  3481. }
  3482. /** Decode blocks of I-frame for advanced profile
  3483. */
  3484. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3485. {
  3486. int k, j;
  3487. MpegEncContext *s = &v->s;
  3488. int cbp, val;
  3489. uint8_t *coded_val;
  3490. int mb_pos;
  3491. int mquant = v->pq;
  3492. int mqdiff;
  3493. int overlap;
  3494. GetBitContext *gb = &s->gb;
  3495. /* select codingmode used for VLC tables selection */
  3496. switch(v->y_ac_table_index){
  3497. case 0:
  3498. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3499. break;
  3500. case 1:
  3501. v->codingset = CS_HIGH_MOT_INTRA;
  3502. break;
  3503. case 2:
  3504. v->codingset = CS_MID_RATE_INTRA;
  3505. break;
  3506. }
  3507. switch(v->c_ac_table_index){
  3508. case 0:
  3509. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3510. break;
  3511. case 1:
  3512. v->codingset2 = CS_HIGH_MOT_INTER;
  3513. break;
  3514. case 2:
  3515. v->codingset2 = CS_MID_RATE_INTER;
  3516. break;
  3517. }
  3518. //do frame decode
  3519. s->mb_x = s->mb_y = 0;
  3520. s->mb_intra = 1;
  3521. s->first_slice_line = 1;
  3522. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3523. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3524. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3525. ff_init_block_index(s);
  3526. ff_update_block_index(s);
  3527. s->dsp.clear_blocks(s->block[0]);
  3528. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3529. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3530. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3531. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3532. // do actual MB decoding and displaying
  3533. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3534. if(v->acpred_is_raw)
  3535. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3536. else
  3537. v->s.ac_pred = v->acpred_plane[mb_pos];
  3538. if(v->condover == CONDOVER_SELECT) {
  3539. if(v->overflg_is_raw)
  3540. overlap = get_bits(&v->s.gb, 1);
  3541. else
  3542. overlap = v->over_flags_plane[mb_pos];
  3543. } else
  3544. overlap = (v->condover == CONDOVER_ALL);
  3545. GET_MQUANT();
  3546. s->current_picture.qscale_table[mb_pos] = mquant;
  3547. /* Set DC scale - y and c use the same */
  3548. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3549. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3550. for(k = 0; k < 6; k++) {
  3551. val = ((cbp >> (5 - k)) & 1);
  3552. if (k < 4) {
  3553. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3554. val = val ^ pred;
  3555. *coded_val = val;
  3556. }
  3557. cbp |= val << (5 - k);
  3558. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3559. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3560. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3561. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3562. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3563. }
  3564. vc1_put_block(v, s->block);
  3565. if(overlap) {
  3566. if(s->mb_x) {
  3567. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3568. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3569. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3570. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3571. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3572. }
  3573. }
  3574. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3575. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3576. if(!s->first_slice_line) {
  3577. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3578. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3579. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3580. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3581. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3582. }
  3583. }
  3584. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3585. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3586. }
  3587. if(get_bits_count(&s->gb) > v->bits) {
  3588. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3589. return;
  3590. }
  3591. }
  3592. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3593. s->first_slice_line = 0;
  3594. }
  3595. }
  3596. static void vc1_decode_p_blocks(VC1Context *v)
  3597. {
  3598. MpegEncContext *s = &v->s;
  3599. /* select codingmode used for VLC tables selection */
  3600. switch(v->c_ac_table_index){
  3601. case 0:
  3602. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3603. break;
  3604. case 1:
  3605. v->codingset = CS_HIGH_MOT_INTRA;
  3606. break;
  3607. case 2:
  3608. v->codingset = CS_MID_RATE_INTRA;
  3609. break;
  3610. }
  3611. switch(v->c_ac_table_index){
  3612. case 0:
  3613. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3614. break;
  3615. case 1:
  3616. v->codingset2 = CS_HIGH_MOT_INTER;
  3617. break;
  3618. case 2:
  3619. v->codingset2 = CS_MID_RATE_INTER;
  3620. break;
  3621. }
  3622. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3623. s->first_slice_line = 1;
  3624. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3625. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3626. ff_init_block_index(s);
  3627. ff_update_block_index(s);
  3628. s->dsp.clear_blocks(s->block[0]);
  3629. vc1_decode_p_mb(v);
  3630. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3631. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3632. return;
  3633. }
  3634. }
  3635. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3636. s->first_slice_line = 0;
  3637. }
  3638. }
  3639. static void vc1_decode_b_blocks(VC1Context *v)
  3640. {
  3641. MpegEncContext *s = &v->s;
  3642. /* select codingmode used for VLC tables selection */
  3643. switch(v->c_ac_table_index){
  3644. case 0:
  3645. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3646. break;
  3647. case 1:
  3648. v->codingset = CS_HIGH_MOT_INTRA;
  3649. break;
  3650. case 2:
  3651. v->codingset = CS_MID_RATE_INTRA;
  3652. break;
  3653. }
  3654. switch(v->c_ac_table_index){
  3655. case 0:
  3656. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3657. break;
  3658. case 1:
  3659. v->codingset2 = CS_HIGH_MOT_INTER;
  3660. break;
  3661. case 2:
  3662. v->codingset2 = CS_MID_RATE_INTER;
  3663. break;
  3664. }
  3665. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3666. s->first_slice_line = 1;
  3667. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3668. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3669. ff_init_block_index(s);
  3670. ff_update_block_index(s);
  3671. s->dsp.clear_blocks(s->block[0]);
  3672. vc1_decode_b_mb(v);
  3673. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3674. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3675. return;
  3676. }
  3677. }
  3678. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3679. s->first_slice_line = 0;
  3680. }
  3681. }
  3682. static void vc1_decode_skip_blocks(VC1Context *v)
  3683. {
  3684. MpegEncContext *s = &v->s;
  3685. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3686. s->first_slice_line = 1;
  3687. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3688. s->mb_x = 0;
  3689. ff_init_block_index(s);
  3690. ff_update_block_index(s);
  3691. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3692. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3693. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3694. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3695. s->first_slice_line = 0;
  3696. }
  3697. s->pict_type = P_TYPE;
  3698. }
  3699. static void vc1_decode_blocks(VC1Context *v)
  3700. {
  3701. v->s.esc3_level_length = 0;
  3702. switch(v->s.pict_type) {
  3703. case I_TYPE:
  3704. if(v->profile == PROFILE_ADVANCED)
  3705. vc1_decode_i_blocks_adv(v);
  3706. else
  3707. vc1_decode_i_blocks(v);
  3708. break;
  3709. case P_TYPE:
  3710. if(v->p_frame_skipped)
  3711. vc1_decode_skip_blocks(v);
  3712. else
  3713. vc1_decode_p_blocks(v);
  3714. break;
  3715. case B_TYPE:
  3716. if(v->bi_type)
  3717. vc1_decode_i_blocks(v);
  3718. else
  3719. vc1_decode_b_blocks(v);
  3720. break;
  3721. }
  3722. }
  3723. /** Initialize a VC1/WMV3 decoder
  3724. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3725. * @todo TODO: Decypher remaining bits in extra_data
  3726. */
  3727. static int vc1_decode_init(AVCodecContext *avctx)
  3728. {
  3729. VC1Context *v = avctx->priv_data;
  3730. MpegEncContext *s = &v->s;
  3731. GetBitContext gb;
  3732. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3733. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3734. avctx->pix_fmt = PIX_FMT_YUV420P;
  3735. else
  3736. avctx->pix_fmt = PIX_FMT_GRAY8;
  3737. v->s.avctx = avctx;
  3738. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3739. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3740. if(ff_h263_decode_init(avctx) < 0)
  3741. return -1;
  3742. if (vc1_init_common(v) < 0) return -1;
  3743. avctx->coded_width = avctx->width;
  3744. avctx->coded_height = avctx->height;
  3745. if (avctx->codec_id == CODEC_ID_WMV3)
  3746. {
  3747. int count = 0;
  3748. // looks like WMV3 has a sequence header stored in the extradata
  3749. // advanced sequence header may be before the first frame
  3750. // the last byte of the extradata is a version number, 1 for the
  3751. // samples we can decode
  3752. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3753. if (decode_sequence_header(avctx, &gb) < 0)
  3754. return -1;
  3755. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3756. if (count>0)
  3757. {
  3758. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3759. count, get_bits(&gb, count));
  3760. }
  3761. else if (count < 0)
  3762. {
  3763. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3764. }
  3765. } else { // VC1/WVC1
  3766. int edata_size = avctx->extradata_size;
  3767. uint8_t *edata = avctx->extradata;
  3768. if(avctx->extradata_size < 16) {
  3769. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", edata_size);
  3770. return -1;
  3771. }
  3772. while(edata_size > 8) {
  3773. // test if we've found header
  3774. if(BE_32(edata) == 0x0000010F) {
  3775. edata += 4;
  3776. edata_size -= 4;
  3777. break;
  3778. }
  3779. edata_size--;
  3780. edata++;
  3781. }
  3782. init_get_bits(&gb, edata, edata_size*8);
  3783. if (decode_sequence_header(avctx, &gb) < 0)
  3784. return -1;
  3785. while(edata_size > 8) {
  3786. // test if we've found entry point
  3787. if(BE_32(edata) == 0x0000010E) {
  3788. edata += 4;
  3789. edata_size -= 4;
  3790. break;
  3791. }
  3792. edata_size--;
  3793. edata++;
  3794. }
  3795. init_get_bits(&gb, edata, edata_size*8);
  3796. if (decode_entry_point(avctx, &gb) < 0)
  3797. return -1;
  3798. }
  3799. avctx->has_b_frames= !!(avctx->max_b_frames);
  3800. s->low_delay = !avctx->has_b_frames;
  3801. s->mb_width = (avctx->coded_width+15)>>4;
  3802. s->mb_height = (avctx->coded_height+15)>>4;
  3803. /* Allocate mb bitplanes */
  3804. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3805. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3806. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3807. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3808. /* allocate block type info in that way so it could be used with s->block_index[] */
  3809. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3810. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3811. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3812. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3813. /* Init coded blocks info */
  3814. if (v->profile == PROFILE_ADVANCED)
  3815. {
  3816. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3817. // return -1;
  3818. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3819. // return -1;
  3820. }
  3821. return 0;
  3822. }
  3823. /** Decode a VC1/WMV3 frame
  3824. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3825. */
  3826. static int vc1_decode_frame(AVCodecContext *avctx,
  3827. void *data, int *data_size,
  3828. uint8_t *buf, int buf_size)
  3829. {
  3830. VC1Context *v = avctx->priv_data;
  3831. MpegEncContext *s = &v->s;
  3832. AVFrame *pict = data;
  3833. uint8_t *buf2 = NULL;
  3834. /* no supplementary picture */
  3835. if (buf_size == 0) {
  3836. /* special case for last picture */
  3837. if (s->low_delay==0 && s->next_picture_ptr) {
  3838. *pict= *(AVFrame*)s->next_picture_ptr;
  3839. s->next_picture_ptr= NULL;
  3840. *data_size = sizeof(AVFrame);
  3841. }
  3842. return 0;
  3843. }
  3844. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  3845. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3846. int i= ff_find_unused_picture(s, 0);
  3847. s->current_picture_ptr= &s->picture[i];
  3848. }
  3849. //for advanced profile we need to unescape buffer
  3850. if (avctx->codec_id == CODEC_ID_VC1) {
  3851. int i, buf_size2;
  3852. buf2 = av_malloc(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3853. buf_size2 = 0;
  3854. for(i = 0; i < buf_size; i++) {
  3855. if(buf[i] == 3 && i >= 2 && !buf[i-1] && !buf[i-2] && i < buf_size-1 && buf[i+1] < 4) {
  3856. buf2[buf_size2++] = buf[i+1];
  3857. i++;
  3858. } else
  3859. buf2[buf_size2++] = buf[i];
  3860. }
  3861. init_get_bits(&s->gb, buf2, buf_size2*8);
  3862. } else
  3863. init_get_bits(&s->gb, buf, buf_size*8);
  3864. // do parse frame header
  3865. if(v->profile < PROFILE_ADVANCED) {
  3866. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3867. av_free(buf2);
  3868. return -1;
  3869. }
  3870. } else {
  3871. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3872. av_free(buf2);
  3873. return -1;
  3874. }
  3875. }
  3876. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3877. av_free(buf2);
  3878. return -1;
  3879. }
  3880. // for hurry_up==5
  3881. s->current_picture.pict_type= s->pict_type;
  3882. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3883. /* skip B-frames if we don't have reference frames */
  3884. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3885. av_free(buf2);
  3886. return -1;//buf_size;
  3887. }
  3888. /* skip b frames if we are in a hurry */
  3889. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3890. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3891. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3892. || avctx->skip_frame >= AVDISCARD_ALL) {
  3893. av_free(buf2);
  3894. return buf_size;
  3895. }
  3896. /* skip everything if we are in a hurry>=5 */
  3897. if(avctx->hurry_up>=5) {
  3898. av_free(buf2);
  3899. return -1;//buf_size;
  3900. }
  3901. if(s->next_p_frame_damaged){
  3902. if(s->pict_type==B_TYPE)
  3903. return buf_size;
  3904. else
  3905. s->next_p_frame_damaged=0;
  3906. }
  3907. if(MPV_frame_start(s, avctx) < 0) {
  3908. av_free(buf2);
  3909. return -1;
  3910. }
  3911. ff_er_frame_start(s);
  3912. v->bits = buf_size * 8;
  3913. vc1_decode_blocks(v);
  3914. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3915. // if(get_bits_count(&s->gb) > buf_size * 8)
  3916. // return -1;
  3917. ff_er_frame_end(s);
  3918. MPV_frame_end(s);
  3919. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3920. assert(s->current_picture.pict_type == s->pict_type);
  3921. if (s->pict_type == B_TYPE || s->low_delay) {
  3922. *pict= *(AVFrame*)s->current_picture_ptr;
  3923. } else if (s->last_picture_ptr != NULL) {
  3924. *pict= *(AVFrame*)s->last_picture_ptr;
  3925. }
  3926. if(s->last_picture_ptr || s->low_delay){
  3927. *data_size = sizeof(AVFrame);
  3928. ff_print_debug_info(s, pict);
  3929. }
  3930. /* Return the Picture timestamp as the frame number */
  3931. /* we substract 1 because it is added on utils.c */
  3932. avctx->frame_number = s->picture_number - 1;
  3933. av_free(buf2);
  3934. return buf_size;
  3935. }
  3936. /** Close a VC1/WMV3 decoder
  3937. * @warning Initial try at using MpegEncContext stuff
  3938. */
  3939. static int vc1_decode_end(AVCodecContext *avctx)
  3940. {
  3941. VC1Context *v = avctx->priv_data;
  3942. av_freep(&v->hrd_rate);
  3943. av_freep(&v->hrd_buffer);
  3944. MPV_common_end(&v->s);
  3945. av_freep(&v->mv_type_mb_plane);
  3946. av_freep(&v->direct_mb_plane);
  3947. av_freep(&v->acpred_plane);
  3948. av_freep(&v->over_flags_plane);
  3949. av_freep(&v->mb_type_base);
  3950. return 0;
  3951. }
  3952. AVCodec vc1_decoder = {
  3953. "vc1",
  3954. CODEC_TYPE_VIDEO,
  3955. CODEC_ID_VC1,
  3956. sizeof(VC1Context),
  3957. vc1_decode_init,
  3958. NULL,
  3959. vc1_decode_end,
  3960. vc1_decode_frame,
  3961. CODEC_CAP_DELAY,
  3962. NULL
  3963. };
  3964. AVCodec wmv3_decoder = {
  3965. "wmv3",
  3966. CODEC_TYPE_VIDEO,
  3967. CODEC_ID_WMV3,
  3968. sizeof(VC1Context),
  3969. vc1_decode_init,
  3970. NULL,
  3971. vc1_decode_end,
  3972. vc1_decode_frame,
  3973. CODEC_CAP_DELAY,
  3974. NULL
  3975. };