You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

299 lines
10KB

  1. /*
  2. * DV decoder
  3. * Copyright (c) 2002 Fabrice Bellard
  4. * Copyright (c) 2004 Roman Shaposhnik
  5. *
  6. * DV encoder
  7. * Copyright (c) 2003 Roman Shaposhnik
  8. *
  9. * 50 Mbps (DVCPRO50) support
  10. * Copyright (c) 2006 Daniel Maas <dmaas@maasdigital.com>
  11. *
  12. * 100 Mbps (DVCPRO HD) support
  13. * Initial code by Daniel Maas <dmaas@maasdigital.com> (funded by BBC R&D)
  14. * Final code by Roman Shaposhnik
  15. *
  16. * Many thanks to Dan Dennedy <dan@dennedy.org> for providing wealth
  17. * of DV technical info.
  18. *
  19. * This file is part of Libav.
  20. *
  21. * Libav is free software; you can redistribute it and/or
  22. * modify it under the terms of the GNU Lesser General Public
  23. * License as published by the Free Software Foundation; either
  24. * version 2.1 of the License, or (at your option) any later version.
  25. *
  26. * Libav is distributed in the hope that it will be useful,
  27. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  28. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  29. * Lesser General Public License for more details.
  30. *
  31. * You should have received a copy of the GNU Lesser General Public
  32. * License along with Libav; if not, write to the Free Software
  33. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  34. */
  35. /**
  36. * @file
  37. * DV codec.
  38. */
  39. #include "libavutil/internal.h"
  40. #include "libavutil/pixdesc.h"
  41. #include "avcodec.h"
  42. #include "get_bits.h"
  43. #include "internal.h"
  44. #include "put_bits.h"
  45. #include "simple_idct.h"
  46. #include "dvdata.h"
  47. #include "dv.h"
  48. /* XXX: also include quantization */
  49. RL_VLC_ELEM ff_dv_rl_vlc[1184];
  50. static inline void dv_calc_mb_coordinates(const AVDVProfile *d, int chan, int seq, int slot,
  51. uint16_t *tbl)
  52. {
  53. static const uint8_t off[] = { 2, 6, 8, 0, 4 };
  54. static const uint8_t shuf1[] = { 36, 18, 54, 0, 72 };
  55. static const uint8_t shuf2[] = { 24, 12, 36, 0, 48 };
  56. static const uint8_t shuf3[] = { 18, 9, 27, 0, 36 };
  57. static const uint8_t l_start[] = {0, 4, 9, 13, 18, 22, 27, 31, 36, 40};
  58. static const uint8_t l_start_shuffled[] = { 9, 4, 13, 0, 18 };
  59. static const uint8_t serpent1[] = {0, 1, 2, 2, 1, 0,
  60. 0, 1, 2, 2, 1, 0,
  61. 0, 1, 2, 2, 1, 0,
  62. 0, 1, 2, 2, 1, 0,
  63. 0, 1, 2};
  64. static const uint8_t serpent2[] = {0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0,
  65. 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0,
  66. 0, 1, 2, 3, 4, 5};
  67. static const uint8_t remap[][2] = {{ 0, 0}, { 0, 0}, { 0, 0}, { 0, 0}, /* dummy */
  68. { 0, 0}, { 0, 1}, { 0, 2}, { 0, 3}, {10, 0},
  69. {10, 1}, {10, 2}, {10, 3}, {20, 0}, {20, 1},
  70. {20, 2}, {20, 3}, {30, 0}, {30, 1}, {30, 2},
  71. {30, 3}, {40, 0}, {40, 1}, {40, 2}, {40, 3},
  72. {50, 0}, {50, 1}, {50, 2}, {50, 3}, {60, 0},
  73. {60, 1}, {60, 2}, {60, 3}, {70, 0}, {70, 1},
  74. {70, 2}, {70, 3}, { 0,64}, { 0,65}, { 0,66},
  75. {10,64}, {10,65}, {10,66}, {20,64}, {20,65},
  76. {20,66}, {30,64}, {30,65}, {30,66}, {40,64},
  77. {40,65}, {40,66}, {50,64}, {50,65}, {50,66},
  78. {60,64}, {60,65}, {60,66}, {70,64}, {70,65},
  79. {70,66}, { 0,67}, {20,67}, {40,67}, {60,67}};
  80. int i, k, m;
  81. int x, y, blk;
  82. for (m=0; m<5; m++) {
  83. switch (d->width) {
  84. case 1440:
  85. blk = (chan*11+seq)*27+slot;
  86. if (chan == 0 && seq == 11) {
  87. x = m*27+slot;
  88. if (x<90) {
  89. y = 0;
  90. } else {
  91. x = (x - 90)*2;
  92. y = 67;
  93. }
  94. } else {
  95. i = (4*chan + blk + off[m])%11;
  96. k = (blk/11)%27;
  97. x = shuf1[m] + (chan&1)*9 + k%9;
  98. y = (i*3+k/9)*2 + (chan>>1) + 1;
  99. }
  100. tbl[m] = (x<<1)|(y<<9);
  101. break;
  102. case 1280:
  103. blk = (chan*10+seq)*27+slot;
  104. i = (4*chan + (seq/5) + 2*blk + off[m])%10;
  105. k = (blk/5)%27;
  106. x = shuf1[m]+(chan&1)*9 + k%9;
  107. y = (i*3+k/9)*2 + (chan>>1) + 4;
  108. if (x >= 80) {
  109. x = remap[y][0]+((x-80)<<(y>59));
  110. y = remap[y][1];
  111. }
  112. tbl[m] = (x<<1)|(y<<9);
  113. break;
  114. case 960:
  115. blk = (chan*10+seq)*27+slot;
  116. i = (4*chan + (seq/5) + 2*blk + off[m])%10;
  117. k = (blk/5)%27 + (i&1)*3;
  118. x = shuf2[m] + k%6 + 6*(chan&1);
  119. y = l_start[i] + k/6 + 45*(chan>>1);
  120. tbl[m] = (x<<1)|(y<<9);
  121. break;
  122. case 720:
  123. switch (d->pix_fmt) {
  124. case AV_PIX_FMT_YUV422P:
  125. x = shuf3[m] + slot/3;
  126. y = serpent1[slot] +
  127. ((((seq + off[m]) % d->difseg_size)<<1) + chan)*3;
  128. tbl[m] = (x<<1)|(y<<8);
  129. break;
  130. case AV_PIX_FMT_YUV420P:
  131. x = shuf3[m] + slot/3;
  132. y = serpent1[slot] +
  133. ((seq + off[m]) % d->difseg_size)*3;
  134. tbl[m] = (x<<1)|(y<<9);
  135. break;
  136. case AV_PIX_FMT_YUV411P:
  137. i = (seq + off[m]) % d->difseg_size;
  138. k = slot + ((m==1||m==2)?3:0);
  139. x = l_start_shuffled[m] + k/6;
  140. y = serpent2[k] + i*6;
  141. if (x>21)
  142. y = y*2 - i*6;
  143. tbl[m] = (x<<2)|(y<<8);
  144. break;
  145. }
  146. default:
  147. break;
  148. }
  149. }
  150. }
  151. /* quantization quanta by QNO for DV100 */
  152. static const uint8_t dv100_qstep[16] = {
  153. 1, /* QNO = 0 and 1 both have no quantization */
  154. 1,
  155. 2, 3, 4, 5, 6, 7, 8, 16, 18, 20, 22, 24, 28, 52
  156. };
  157. static const uint8_t dv_quant_areas[4] = { 6, 21, 43, 64 };
  158. int ff_dv_init_dynamic_tables(DVVideoContext *ctx, const AVDVProfile *d)
  159. {
  160. int j,i,c,s,p;
  161. uint32_t *factor1, *factor2;
  162. const int *iweight1, *iweight2;
  163. p = i = 0;
  164. for (c = 0; c < d->n_difchan; c++) {
  165. for (s = 0; s < d->difseg_size; s++) {
  166. p += 6;
  167. for (j = 0; j < 27; j++) {
  168. p += !(j % 3);
  169. if (!(DV_PROFILE_IS_1080i50(d) && c != 0 && s == 11) &&
  170. !(DV_PROFILE_IS_720p50(d) && s > 9)) {
  171. dv_calc_mb_coordinates(d, c, s, j, &ctx->work_chunks[i].mb_coordinates[0]);
  172. ctx->work_chunks[i++].buf_offset = p;
  173. }
  174. p += 5;
  175. }
  176. }
  177. }
  178. factor1 = &ctx->idct_factor[0];
  179. factor2 = &ctx->idct_factor[DV_PROFILE_IS_HD(d) ? 4096 : 2816];
  180. if (d->height == 720) {
  181. iweight1 = &ff_dv_iweight_720_y[0];
  182. iweight2 = &ff_dv_iweight_720_c[0];
  183. } else {
  184. iweight1 = &ff_dv_iweight_1080_y[0];
  185. iweight2 = &ff_dv_iweight_1080_c[0];
  186. }
  187. if (DV_PROFILE_IS_HD(d)) {
  188. for (c = 0; c < 4; c++) {
  189. for (s = 0; s < 16; s++) {
  190. for (i = 0; i < 64; i++) {
  191. *factor1++ = (dv100_qstep[s] << (c + 9)) * iweight1[i];
  192. *factor2++ = (dv100_qstep[s] << (c + 9)) * iweight2[i];
  193. }
  194. }
  195. }
  196. } else {
  197. iweight1 = &ff_dv_iweight_88[0];
  198. for (j = 0; j < 2; j++, iweight1 = &ff_dv_iweight_248[0]) {
  199. for (s = 0; s < 22; s++) {
  200. for (i = c = 0; c < 4; c++) {
  201. for (; i < dv_quant_areas[c]; i++) {
  202. *factor1 = iweight1[i] << (ff_dv_quant_shifts[s][c] + 1);
  203. *factor2++ = (*factor1++) << 1;
  204. }
  205. }
  206. }
  207. }
  208. }
  209. return 0;
  210. }
  211. av_cold int ff_dvvideo_init(AVCodecContext *avctx)
  212. {
  213. DVVideoContext *s = avctx->priv_data;
  214. static int done = 0;
  215. int i, j;
  216. if (!done) {
  217. VLC dv_vlc;
  218. uint16_t new_dv_vlc_bits[NB_DV_VLC*2];
  219. uint8_t new_dv_vlc_len[NB_DV_VLC*2];
  220. uint8_t new_dv_vlc_run[NB_DV_VLC*2];
  221. int16_t new_dv_vlc_level[NB_DV_VLC*2];
  222. done = 1;
  223. /* it's faster to include sign bit in a generic VLC parsing scheme */
  224. for (i = 0, j = 0; i < NB_DV_VLC; i++, j++) {
  225. new_dv_vlc_bits[j] = ff_dv_vlc_bits[i];
  226. new_dv_vlc_len[j] = ff_dv_vlc_len[i];
  227. new_dv_vlc_run[j] = ff_dv_vlc_run[i];
  228. new_dv_vlc_level[j] = ff_dv_vlc_level[i];
  229. if (ff_dv_vlc_level[i]) {
  230. new_dv_vlc_bits[j] <<= 1;
  231. new_dv_vlc_len[j]++;
  232. j++;
  233. new_dv_vlc_bits[j] = (ff_dv_vlc_bits[i] << 1) | 1;
  234. new_dv_vlc_len[j] = ff_dv_vlc_len[i] + 1;
  235. new_dv_vlc_run[j] = ff_dv_vlc_run[i];
  236. new_dv_vlc_level[j] = -ff_dv_vlc_level[i];
  237. }
  238. }
  239. /* NOTE: as a trick, we use the fact the no codes are unused
  240. to accelerate the parsing of partial codes */
  241. init_vlc(&dv_vlc, TEX_VLC_BITS, j,
  242. new_dv_vlc_len, 1, 1, new_dv_vlc_bits, 2, 2, 0);
  243. assert(dv_vlc.table_size == 1184);
  244. for (i = 0; i < dv_vlc.table_size; i++){
  245. int code = dv_vlc.table[i][0];
  246. int len = dv_vlc.table[i][1];
  247. int level, run;
  248. if (len < 0){ //more bits needed
  249. run = 0;
  250. level = code;
  251. } else {
  252. run = new_dv_vlc_run [code] + 1;
  253. level = new_dv_vlc_level[code];
  254. }
  255. ff_dv_rl_vlc[i].len = len;
  256. ff_dv_rl_vlc[i].level = level;
  257. ff_dv_rl_vlc[i].run = run;
  258. }
  259. ff_free_vlc(&dv_vlc);
  260. }
  261. s->avctx = avctx;
  262. avctx->chroma_sample_location = AVCHROMA_LOC_TOPLEFT;
  263. return 0;
  264. }