You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

913 lines
41KB

  1. /*
  2. * Copyright (C) 2011-2013 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/channel_layout.h"
  25. #include <float.h>
  26. #define C30DB M_SQRT2
  27. #define C15DB 1.189207115
  28. #define C__0DB 1.0
  29. #define C_15DB 0.840896415
  30. #define C_30DB M_SQRT1_2
  31. #define C_45DB 0.594603558
  32. #define C_60DB 0.5
  33. #define ALIGN 32
  34. //TODO split options array out?
  35. #define OFFSET(x) offsetof(SwrContext,x)
  36. #define PARAM AV_OPT_FLAG_AUDIO_PARAM
  37. static const AVOption options[]={
  38. {"ich" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  39. {"in_channel_count" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  40. {"och" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  41. {"out_channel_count" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  42. {"uch" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  43. {"used_channel_count" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  44. {"isr" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  45. {"in_sample_rate" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  46. {"osr" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  47. {"out_sample_rate" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  48. {"isf" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  49. {"in_sample_fmt" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  50. {"osf" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  51. {"out_sample_fmt" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  52. {"tsf" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  53. {"internal_sample_fmt" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  54. {"icl" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  55. {"in_channel_layout" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  56. {"ocl" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  57. {"out_channel_layout" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  58. {"clev" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  59. {"center_mix_level" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  60. {"slev" , "set surround mix level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  61. {"surround_mix_level" , "set surround mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  62. {"lfe_mix_level" , "set LFE mix level" , OFFSET(lfe_mix_level ), AV_OPT_TYPE_FLOAT, {.dbl=0 }, -32 , 32 , PARAM},
  63. {"rmvol" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  64. {"rematrix_volume" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  65. {"flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  66. {"swr_flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  67. {"res" , "force resampling" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_FLAG_RESAMPLE }, INT_MIN, INT_MAX , PARAM, "flags"},
  68. {"dither_scale" , "set dither scale" , OFFSET(dither.scale ), AV_OPT_TYPE_FLOAT, {.dbl=1 }, 0 , INT_MAX , PARAM},
  69. {"dither_method" , "set dither method" , OFFSET(dither.method ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_DITHER_NB-1, PARAM, "dither_method"},
  70. {"rectangular" , "select rectangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX , PARAM, "dither_method"},
  71. {"triangular" , "select triangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX , PARAM, "dither_method"},
  72. {"triangular_hp" , "select triangular dither with high pass" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  73. {"lipshitz" , "select lipshitz noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LIPSHITZ}, INT_MIN, INT_MAX, PARAM, "dither_method"},
  74. {"shibata" , "select shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  75. {"low_shibata" , "select low shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LOW_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  76. {"high_shibata" , "select high shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_HIGH_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  77. {"f_weighted" , "select f-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_F_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  78. {"modified_e_weighted" , "select modified-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_MODIFIED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  79. {"improved_e_weighted" , "select improved-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_IMPROVED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  80. {"filter_size" , "set swr resampling filter size", OFFSET(filter_size) , AV_OPT_TYPE_INT , {.i64=32 }, 0 , INT_MAX , PARAM },
  81. {"phase_shift" , "set swr resampling phase shift", OFFSET(phase_shift) , AV_OPT_TYPE_INT , {.i64=10 }, 0 , 24 , PARAM },
  82. {"linear_interp" , "enable linear interpolation" , OFFSET(linear_interp) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  83. {"cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0. }, 0 , 1 , PARAM },
  84. {"resampler" , "set resampling Engine" , OFFSET(engine) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_ENGINE_NB-1, PARAM, "resampler"},
  85. {"swr" , "select SW Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SWR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  86. {"soxr" , "select SoX Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SOXR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  87. {"precision" , "set soxr resampling precision (in bits)"
  88. , OFFSET(precision) , AV_OPT_TYPE_DOUBLE,{.dbl=20.0 }, 15.0 , 33.0 , PARAM },
  89. {"cheby" , "enable soxr Chebyshev passband & higher-precision irrational ratio approximation"
  90. , OFFSET(cheby) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  91. {"min_comp" , "set minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied"
  92. , OFFSET(min_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=FLT_MAX }, 0 , FLT_MAX , PARAM },
  93. {"min_hard_comp" , "set minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data."
  94. , OFFSET(min_hard_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0.1 }, 0 , INT_MAX , PARAM },
  95. {"comp_duration" , "set duration (in seconds) over which data is stretched/squeezed to make it match the timestamps."
  96. , OFFSET(soft_compensation_duration),AV_OPT_TYPE_FLOAT ,{.dbl=1 }, 0 , INT_MAX , PARAM },
  97. {"max_soft_comp" , "set maximum factor by which data is stretched/squeezed to make it match the timestamps."
  98. , OFFSET(max_soft_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  99. {"async" , "simplified 1 parameter audio timestamp matching, 0(disabled), 1(filling and trimming), >1(maximum stretch/squeeze in samples per second)"
  100. , OFFSET(async) , AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  101. {"first_pts" , "Assume the first pts should be this value (in samples)."
  102. , OFFSET(firstpts_in_samples), AV_OPT_TYPE_INT64 ,{.i64=AV_NOPTS_VALUE }, INT64_MIN,INT64_MAX, PARAM },
  103. { "matrix_encoding" , "set matrixed stereo encoding" , OFFSET(matrix_encoding), AV_OPT_TYPE_INT ,{.i64 = AV_MATRIX_ENCODING_NONE}, AV_MATRIX_ENCODING_NONE, AV_MATRIX_ENCODING_NB-1, PARAM, "matrix_encoding" },
  104. { "none", "select none", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_NONE }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  105. { "dolby", "select Dolby", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DOLBY }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  106. { "dplii", "select Dolby Pro Logic II", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DPLII }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  107. { "filter_type" , "select swr filter type" , OFFSET(filter_type) , AV_OPT_TYPE_INT , { .i64 = SWR_FILTER_TYPE_KAISER }, SWR_FILTER_TYPE_CUBIC, SWR_FILTER_TYPE_KAISER, PARAM, "filter_type" },
  108. { "cubic" , "select cubic" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_CUBIC }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  109. { "blackman_nuttall", "select Blackman Nuttall Windowed Sinc", 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_BLACKMAN_NUTTALL }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  110. { "kaiser" , "select Kaiser Windowed Sinc" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_KAISER }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  111. { "kaiser_beta" , "set swr Kaiser Window Beta" , OFFSET(kaiser_beta) , AV_OPT_TYPE_INT , {.i64=9 }, 2 , 16 , PARAM },
  112. {0}
  113. };
  114. static const char* context_to_name(void* ptr) {
  115. return "SWR";
  116. }
  117. static const AVClass av_class = {
  118. .class_name = "SWResampler",
  119. .item_name = context_to_name,
  120. .option = options,
  121. .version = LIBAVUTIL_VERSION_INT,
  122. .log_level_offset_offset = OFFSET(log_level_offset),
  123. .parent_log_context_offset = OFFSET(log_ctx),
  124. .category = AV_CLASS_CATEGORY_SWRESAMPLER,
  125. };
  126. unsigned swresample_version(void)
  127. {
  128. av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
  129. return LIBSWRESAMPLE_VERSION_INT;
  130. }
  131. const char *swresample_configuration(void)
  132. {
  133. return FFMPEG_CONFIGURATION;
  134. }
  135. const char *swresample_license(void)
  136. {
  137. #define LICENSE_PREFIX "libswresample license: "
  138. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  139. }
  140. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  141. if(!s || s->in_convert) // s needs to be allocated but not initialized
  142. return AVERROR(EINVAL);
  143. s->channel_map = channel_map;
  144. return 0;
  145. }
  146. const AVClass *swr_get_class(void)
  147. {
  148. return &av_class;
  149. }
  150. av_cold struct SwrContext *swr_alloc(void){
  151. SwrContext *s= av_mallocz(sizeof(SwrContext));
  152. if(s){
  153. s->av_class= &av_class;
  154. av_opt_set_defaults(s);
  155. }
  156. return s;
  157. }
  158. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  159. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  160. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  161. int log_offset, void *log_ctx){
  162. if(!s) s= swr_alloc();
  163. if(!s) return NULL;
  164. s->log_level_offset= log_offset;
  165. s->log_ctx= log_ctx;
  166. av_opt_set_int(s, "ocl", out_ch_layout, 0);
  167. av_opt_set_int(s, "osf", out_sample_fmt, 0);
  168. av_opt_set_int(s, "osr", out_sample_rate, 0);
  169. av_opt_set_int(s, "icl", in_ch_layout, 0);
  170. av_opt_set_int(s, "isf", in_sample_fmt, 0);
  171. av_opt_set_int(s, "isr", in_sample_rate, 0);
  172. av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0);
  173. av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
  174. av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
  175. av_opt_set_int(s, "uch", 0, 0);
  176. return s;
  177. }
  178. static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
  179. a->fmt = fmt;
  180. a->bps = av_get_bytes_per_sample(fmt);
  181. a->planar= av_sample_fmt_is_planar(fmt);
  182. }
  183. static void free_temp(AudioData *a){
  184. av_free(a->data);
  185. memset(a, 0, sizeof(*a));
  186. }
  187. av_cold void swr_free(SwrContext **ss){
  188. SwrContext *s= *ss;
  189. if(s){
  190. free_temp(&s->postin);
  191. free_temp(&s->midbuf);
  192. free_temp(&s->preout);
  193. free_temp(&s->in_buffer);
  194. free_temp(&s->silence);
  195. free_temp(&s->drop_temp);
  196. free_temp(&s->dither.noise);
  197. free_temp(&s->dither.temp);
  198. swri_audio_convert_free(&s-> in_convert);
  199. swri_audio_convert_free(&s->out_convert);
  200. swri_audio_convert_free(&s->full_convert);
  201. if (s->resampler)
  202. s->resampler->free(&s->resample);
  203. swri_rematrix_free(s);
  204. }
  205. av_freep(ss);
  206. }
  207. av_cold int swr_init(struct SwrContext *s){
  208. int ret;
  209. s->in_buffer_index= 0;
  210. s->in_buffer_count= 0;
  211. s->resample_in_constraint= 0;
  212. free_temp(&s->postin);
  213. free_temp(&s->midbuf);
  214. free_temp(&s->preout);
  215. free_temp(&s->in_buffer);
  216. free_temp(&s->silence);
  217. free_temp(&s->drop_temp);
  218. free_temp(&s->dither.noise);
  219. free_temp(&s->dither.temp);
  220. memset(s->in.ch, 0, sizeof(s->in.ch));
  221. memset(s->out.ch, 0, sizeof(s->out.ch));
  222. swri_audio_convert_free(&s-> in_convert);
  223. swri_audio_convert_free(&s->out_convert);
  224. swri_audio_convert_free(&s->full_convert);
  225. swri_rematrix_free(s);
  226. s->flushed = 0;
  227. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  228. av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
  229. return AVERROR(EINVAL);
  230. }
  231. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  232. av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
  233. return AVERROR(EINVAL);
  234. }
  235. switch(s->engine){
  236. #if CONFIG_LIBSOXR
  237. extern struct Resampler const soxr_resampler;
  238. case SWR_ENGINE_SOXR: s->resampler = &soxr_resampler; break;
  239. #endif
  240. case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
  241. default:
  242. av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
  243. return AVERROR(EINVAL);
  244. }
  245. if(!s->used_ch_count)
  246. s->used_ch_count= s->in.ch_count;
  247. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  248. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  249. s-> in_ch_layout= 0;
  250. }
  251. if(!s-> in_ch_layout)
  252. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  253. if(!s->out_ch_layout)
  254. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  255. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
  256. s->rematrix_custom;
  257. if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
  258. if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
  259. s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
  260. }else if( av_get_planar_sample_fmt(s-> in_sample_fmt) == AV_SAMPLE_FMT_S32P
  261. && av_get_planar_sample_fmt(s->out_sample_fmt) == AV_SAMPLE_FMT_S32P
  262. && !s->rematrix
  263. && s->engine != SWR_ENGINE_SOXR){
  264. s->int_sample_fmt= AV_SAMPLE_FMT_S32P;
  265. }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
  266. s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
  267. }else{
  268. av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
  269. s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
  270. }
  271. }
  272. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  273. &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  274. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  275. &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
  276. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  277. return AVERROR(EINVAL);
  278. }
  279. set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
  280. set_audiodata_fmt(&s->out, s->out_sample_fmt);
  281. if (s->firstpts_in_samples != AV_NOPTS_VALUE) {
  282. if (!s->async && s->min_compensation >= FLT_MAX/2)
  283. s->async = 1;
  284. s->firstpts =
  285. s->outpts = s->firstpts_in_samples * s->out_sample_rate;
  286. }
  287. if (s->async) {
  288. if (s->min_compensation >= FLT_MAX/2)
  289. s->min_compensation = 0.001;
  290. if (s->async > 1.0001) {
  291. s->max_soft_compensation = s->async / (double) s->in_sample_rate;
  292. }
  293. }
  294. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  295. s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
  296. }else
  297. s->resampler->free(&s->resample);
  298. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  299. && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  300. && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  301. && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
  302. && s->resample){
  303. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
  304. return -1;
  305. }
  306. #define RSC 1 //FIXME finetune
  307. if(!s-> in.ch_count)
  308. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  309. if(!s->used_ch_count)
  310. s->used_ch_count= s->in.ch_count;
  311. if(!s->out.ch_count)
  312. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  313. if(!s-> in.ch_count){
  314. av_assert0(!s->in_ch_layout);
  315. av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
  316. return -1;
  317. }
  318. if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
  319. char l1[1024], l2[1024];
  320. av_get_channel_layout_string(l1, sizeof(l1), s-> in.ch_count, s-> in_ch_layout);
  321. av_get_channel_layout_string(l2, sizeof(l2), s->out.ch_count, s->out_ch_layout);
  322. av_log(s, AV_LOG_ERROR, "Rematrix is needed between %s and %s "
  323. "but there is not enough information to do it\n", l1, l2);
  324. return -1;
  325. }
  326. av_assert0(s->used_ch_count);
  327. av_assert0(s->out.ch_count);
  328. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  329. s->in_buffer= s->in;
  330. s->silence = s->in;
  331. s->drop_temp= s->out;
  332. if(!s->resample && !s->rematrix && !s->channel_map && !s->dither.method){
  333. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  334. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  335. return 0;
  336. }
  337. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  338. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  339. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  340. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  341. if (!s->in_convert || !s->out_convert)
  342. return AVERROR(ENOMEM);
  343. s->postin= s->in;
  344. s->preout= s->out;
  345. s->midbuf= s->in;
  346. if(s->channel_map){
  347. s->postin.ch_count=
  348. s->midbuf.ch_count= s->used_ch_count;
  349. if(s->resample)
  350. s->in_buffer.ch_count= s->used_ch_count;
  351. }
  352. if(!s->resample_first){
  353. s->midbuf.ch_count= s->out.ch_count;
  354. if(s->resample)
  355. s->in_buffer.ch_count = s->out.ch_count;
  356. }
  357. set_audiodata_fmt(&s->postin, s->int_sample_fmt);
  358. set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
  359. set_audiodata_fmt(&s->preout, s->int_sample_fmt);
  360. if(s->resample){
  361. set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
  362. }
  363. if ((ret = swri_dither_init(s, s->out_sample_fmt, s->int_sample_fmt)) < 0)
  364. return ret;
  365. if(s->rematrix || s->dither.method)
  366. return swri_rematrix_init(s);
  367. return 0;
  368. }
  369. int swri_realloc_audio(AudioData *a, int count){
  370. int i, countb;
  371. AudioData old;
  372. if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
  373. return AVERROR(EINVAL);
  374. if(a->count >= count)
  375. return 0;
  376. count*=2;
  377. countb= FFALIGN(count*a->bps, ALIGN);
  378. old= *a;
  379. av_assert0(a->bps);
  380. av_assert0(a->ch_count);
  381. a->data= av_mallocz(countb*a->ch_count);
  382. if(!a->data)
  383. return AVERROR(ENOMEM);
  384. for(i=0; i<a->ch_count; i++){
  385. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  386. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  387. }
  388. if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
  389. av_free(old.data);
  390. a->count= count;
  391. return 1;
  392. }
  393. static void copy(AudioData *out, AudioData *in,
  394. int count){
  395. av_assert0(out->planar == in->planar);
  396. av_assert0(out->bps == in->bps);
  397. av_assert0(out->ch_count == in->ch_count);
  398. if(out->planar){
  399. int ch;
  400. for(ch=0; ch<out->ch_count; ch++)
  401. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  402. }else
  403. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  404. }
  405. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  406. int i;
  407. if(!in_arg){
  408. memset(out->ch, 0, sizeof(out->ch));
  409. }else if(out->planar){
  410. for(i=0; i<out->ch_count; i++)
  411. out->ch[i]= in_arg[i];
  412. }else{
  413. for(i=0; i<out->ch_count; i++)
  414. out->ch[i]= in_arg[0] + i*out->bps;
  415. }
  416. }
  417. static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  418. int i;
  419. if(out->planar){
  420. for(i=0; i<out->ch_count; i++)
  421. in_arg[i]= out->ch[i];
  422. }else{
  423. in_arg[0]= out->ch[0];
  424. }
  425. }
  426. /**
  427. *
  428. * out may be equal in.
  429. */
  430. static void buf_set(AudioData *out, AudioData *in, int count){
  431. int ch;
  432. if(in->planar){
  433. for(ch=0; ch<out->ch_count; ch++)
  434. out->ch[ch]= in->ch[ch] + count*out->bps;
  435. }else{
  436. for(ch=out->ch_count-1; ch>=0; ch--)
  437. out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
  438. }
  439. }
  440. /**
  441. *
  442. * @return number of samples output per channel
  443. */
  444. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  445. const AudioData * in_param, int in_count){
  446. AudioData in, out, tmp;
  447. int ret_sum=0;
  448. int border=0;
  449. av_assert1(s->in_buffer.ch_count == in_param->ch_count);
  450. av_assert1(s->in_buffer.planar == in_param->planar);
  451. av_assert1(s->in_buffer.fmt == in_param->fmt);
  452. tmp=out=*out_param;
  453. in = *in_param;
  454. do{
  455. int ret, size, consumed;
  456. if(!s->resample_in_constraint && s->in_buffer_count){
  457. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  458. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  459. out_count -= ret;
  460. ret_sum += ret;
  461. buf_set(&out, &out, ret);
  462. s->in_buffer_count -= consumed;
  463. s->in_buffer_index += consumed;
  464. if(!in_count)
  465. break;
  466. if(s->in_buffer_count <= border){
  467. buf_set(&in, &in, -s->in_buffer_count);
  468. in_count += s->in_buffer_count;
  469. s->in_buffer_count=0;
  470. s->in_buffer_index=0;
  471. border = 0;
  472. }
  473. }
  474. if((s->flushed || in_count) && !s->in_buffer_count){
  475. s->in_buffer_index=0;
  476. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
  477. out_count -= ret;
  478. ret_sum += ret;
  479. buf_set(&out, &out, ret);
  480. in_count -= consumed;
  481. buf_set(&in, &in, consumed);
  482. }
  483. //TODO is this check sane considering the advanced copy avoidance below
  484. size= s->in_buffer_index + s->in_buffer_count + in_count;
  485. if( size > s->in_buffer.count
  486. && s->in_buffer_count + in_count <= s->in_buffer_index){
  487. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  488. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  489. s->in_buffer_index=0;
  490. }else
  491. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  492. return ret;
  493. if(in_count){
  494. int count= in_count;
  495. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  496. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  497. copy(&tmp, &in, /*in_*/count);
  498. s->in_buffer_count += count;
  499. in_count -= count;
  500. border += count;
  501. buf_set(&in, &in, count);
  502. s->resample_in_constraint= 0;
  503. if(s->in_buffer_count != count || in_count)
  504. continue;
  505. }
  506. break;
  507. }while(1);
  508. s->resample_in_constraint= !!out_count;
  509. return ret_sum;
  510. }
  511. static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
  512. AudioData *in , int in_count){
  513. AudioData *postin, *midbuf, *preout;
  514. int ret/*, in_max*/;
  515. AudioData preout_tmp, midbuf_tmp;
  516. if(s->full_convert){
  517. av_assert0(!s->resample);
  518. swri_audio_convert(s->full_convert, out, in, in_count);
  519. return out_count;
  520. }
  521. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  522. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  523. if((ret=swri_realloc_audio(&s->postin, in_count))<0)
  524. return ret;
  525. if(s->resample_first){
  526. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  527. if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
  528. return ret;
  529. }else{
  530. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  531. if((ret=swri_realloc_audio(&s->midbuf, in_count))<0)
  532. return ret;
  533. }
  534. if((ret=swri_realloc_audio(&s->preout, out_count))<0)
  535. return ret;
  536. postin= &s->postin;
  537. midbuf_tmp= s->midbuf;
  538. midbuf= &midbuf_tmp;
  539. preout_tmp= s->preout;
  540. preout= &preout_tmp;
  541. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
  542. postin= in;
  543. if(s->resample_first ? !s->resample : !s->rematrix)
  544. midbuf= postin;
  545. if(s->resample_first ? !s->rematrix : !s->resample)
  546. preout= midbuf;
  547. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
  548. if(preout==in){
  549. out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
  550. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  551. copy(out, in, out_count);
  552. return out_count;
  553. }
  554. else if(preout==postin) preout= midbuf= postin= out;
  555. else if(preout==midbuf) preout= midbuf= out;
  556. else preout= out;
  557. }
  558. if(in != postin){
  559. swri_audio_convert(s->in_convert, postin, in, in_count);
  560. }
  561. if(s->resample_first){
  562. if(postin != midbuf)
  563. out_count= resample(s, midbuf, out_count, postin, in_count);
  564. if(midbuf != preout)
  565. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  566. }else{
  567. if(postin != midbuf)
  568. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  569. if(midbuf != preout)
  570. out_count= resample(s, preout, out_count, midbuf, in_count);
  571. }
  572. if(preout != out && out_count){
  573. AudioData *conv_src = preout;
  574. if(s->dither.method){
  575. int ch;
  576. int dither_count= FFMAX(out_count, 1<<16);
  577. if (preout == in) {
  578. conv_src = &s->dither.temp;
  579. if((ret=swri_realloc_audio(&s->dither.temp, dither_count))<0)
  580. return ret;
  581. }
  582. if((ret=swri_realloc_audio(&s->dither.noise, dither_count))<0)
  583. return ret;
  584. if(ret)
  585. for(ch=0; ch<s->dither.noise.ch_count; ch++)
  586. swri_get_dither(s, s->dither.noise.ch[ch], s->dither.noise.count, 12345678913579<<ch, s->dither.noise.fmt);
  587. av_assert0(s->dither.noise.ch_count == preout->ch_count);
  588. if(s->dither.noise_pos + out_count > s->dither.noise.count)
  589. s->dither.noise_pos = 0;
  590. if (s->dither.method < SWR_DITHER_NS){
  591. if (s->mix_2_1_simd) {
  592. int len1= out_count&~15;
  593. int off = len1 * preout->bps;
  594. if(len1)
  595. for(ch=0; ch<preout->ch_count; ch++)
  596. s->mix_2_1_simd(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, len1);
  597. if(out_count != len1)
  598. for(ch=0; ch<preout->ch_count; ch++)
  599. s->mix_2_1_f(conv_src->ch[ch] + off, preout->ch[ch] + off, s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos + off + len1, s->native_one, 0, 0, out_count - len1);
  600. } else {
  601. for(ch=0; ch<preout->ch_count; ch++)
  602. s->mix_2_1_f(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, out_count);
  603. }
  604. } else {
  605. switch(s->int_sample_fmt) {
  606. case AV_SAMPLE_FMT_S16P :swri_noise_shaping_int16(s, conv_src, preout, &s->dither.noise, out_count); break;
  607. case AV_SAMPLE_FMT_S32P :swri_noise_shaping_int32(s, conv_src, preout, &s->dither.noise, out_count); break;
  608. case AV_SAMPLE_FMT_FLTP :swri_noise_shaping_float(s, conv_src, preout, &s->dither.noise, out_count); break;
  609. case AV_SAMPLE_FMT_DBLP :swri_noise_shaping_double(s,conv_src, preout, &s->dither.noise, out_count); break;
  610. }
  611. }
  612. s->dither.noise_pos += out_count;
  613. }
  614. //FIXME packed doesnt need more than 1 chan here!
  615. swri_audio_convert(s->out_convert, out, conv_src, out_count);
  616. }
  617. return out_count;
  618. }
  619. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  620. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  621. AudioData * in= &s->in;
  622. AudioData *out= &s->out;
  623. while(s->drop_output > 0){
  624. int ret;
  625. uint8_t *tmp_arg[SWR_CH_MAX];
  626. #define MAX_DROP_STEP 16384
  627. if((ret=swri_realloc_audio(&s->drop_temp, FFMIN(s->drop_output, MAX_DROP_STEP)))<0)
  628. return ret;
  629. reversefill_audiodata(&s->drop_temp, tmp_arg);
  630. s->drop_output *= -1; //FIXME find a less hackish solution
  631. ret = swr_convert(s, tmp_arg, FFMIN(-s->drop_output, MAX_DROP_STEP), in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesnt matter
  632. s->drop_output *= -1;
  633. in_count = 0;
  634. if(ret>0) {
  635. s->drop_output -= ret;
  636. continue;
  637. }
  638. if(s->drop_output || !out_arg)
  639. return 0;
  640. }
  641. if(!in_arg){
  642. if(s->resample){
  643. if (!s->flushed)
  644. s->resampler->flush(s);
  645. s->resample_in_constraint = 0;
  646. s->flushed = 1;
  647. }else if(!s->in_buffer_count){
  648. return 0;
  649. }
  650. }else
  651. fill_audiodata(in , (void*)in_arg);
  652. fill_audiodata(out, out_arg);
  653. if(s->resample){
  654. int ret = swr_convert_internal(s, out, out_count, in, in_count);
  655. if(ret>0 && !s->drop_output)
  656. s->outpts += ret * (int64_t)s->in_sample_rate;
  657. return ret;
  658. }else{
  659. AudioData tmp= *in;
  660. int ret2=0;
  661. int ret, size;
  662. size = FFMIN(out_count, s->in_buffer_count);
  663. if(size){
  664. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  665. ret= swr_convert_internal(s, out, size, &tmp, size);
  666. if(ret<0)
  667. return ret;
  668. ret2= ret;
  669. s->in_buffer_count -= ret;
  670. s->in_buffer_index += ret;
  671. buf_set(out, out, ret);
  672. out_count -= ret;
  673. if(!s->in_buffer_count)
  674. s->in_buffer_index = 0;
  675. }
  676. if(in_count){
  677. size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
  678. if(in_count > out_count) { //FIXME move after swr_convert_internal
  679. if( size > s->in_buffer.count
  680. && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
  681. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  682. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  683. s->in_buffer_index=0;
  684. }else
  685. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  686. return ret;
  687. }
  688. if(out_count){
  689. size = FFMIN(in_count, out_count);
  690. ret= swr_convert_internal(s, out, size, in, size);
  691. if(ret<0)
  692. return ret;
  693. buf_set(in, in, ret);
  694. in_count -= ret;
  695. ret2 += ret;
  696. }
  697. if(in_count){
  698. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  699. copy(&tmp, in, in_count);
  700. s->in_buffer_count += in_count;
  701. }
  702. }
  703. if(ret2>0 && !s->drop_output)
  704. s->outpts += ret2 * (int64_t)s->in_sample_rate;
  705. return ret2;
  706. }
  707. }
  708. int swr_drop_output(struct SwrContext *s, int count){
  709. s->drop_output += count;
  710. if(s->drop_output <= 0)
  711. return 0;
  712. av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
  713. return swr_convert(s, NULL, s->drop_output, NULL, 0);
  714. }
  715. int swr_inject_silence(struct SwrContext *s, int count){
  716. int ret, i;
  717. uint8_t *tmp_arg[SWR_CH_MAX];
  718. if(count <= 0)
  719. return 0;
  720. #define MAX_SILENCE_STEP 16384
  721. while (count > MAX_SILENCE_STEP) {
  722. if ((ret = swr_inject_silence(s, MAX_SILENCE_STEP)) < 0)
  723. return ret;
  724. count -= MAX_SILENCE_STEP;
  725. }
  726. if((ret=swri_realloc_audio(&s->silence, count))<0)
  727. return ret;
  728. if(s->silence.planar) for(i=0; i<s->silence.ch_count; i++) {
  729. memset(s->silence.ch[i], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps);
  730. } else
  731. memset(s->silence.ch[0], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps*s->silence.ch_count);
  732. reversefill_audiodata(&s->silence, tmp_arg);
  733. av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
  734. ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
  735. return ret;
  736. }
  737. int64_t swr_get_delay(struct SwrContext *s, int64_t base){
  738. if (s->resampler && s->resample){
  739. return s->resampler->get_delay(s, base);
  740. }else{
  741. return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
  742. }
  743. }
  744. int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
  745. int ret;
  746. if (!s || compensation_distance < 0)
  747. return AVERROR(EINVAL);
  748. if (!compensation_distance && sample_delta)
  749. return AVERROR(EINVAL);
  750. if (!s->resample) {
  751. s->flags |= SWR_FLAG_RESAMPLE;
  752. ret = swr_init(s);
  753. if (ret < 0)
  754. return ret;
  755. }
  756. if (!s->resampler->set_compensation){
  757. return AVERROR(EINVAL);
  758. }else{
  759. return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
  760. }
  761. }
  762. int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
  763. if(pts == INT64_MIN)
  764. return s->outpts;
  765. if(s->min_compensation >= FLT_MAX) {
  766. return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
  767. } else {
  768. int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts + s->drop_output*(int64_t)s->in_sample_rate;
  769. double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
  770. if(fabs(fdelta) > s->min_compensation) {
  771. if(s->outpts == s->firstpts || fabs(fdelta) > s->min_hard_compensation){
  772. int ret;
  773. if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
  774. else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
  775. if(ret<0){
  776. av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
  777. }
  778. } else if(s->soft_compensation_duration && s->max_soft_compensation) {
  779. int duration = s->out_sample_rate * s->soft_compensation_duration;
  780. double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
  781. int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
  782. av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
  783. swr_set_compensation(s, comp, duration);
  784. }
  785. }
  786. return s->outpts;
  787. }
  788. }