You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2083 lines
68KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG Audio decoder
  24. */
  25. #include "libavutil/avassert.h"
  26. #include "libavutil/channel_layout.h"
  27. #include "libavutil/float_dsp.h"
  28. #include "libavutil/libm.h"
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "internal.h"
  32. #include "mathops.h"
  33. #include "mpegaudiodsp.h"
  34. #include "dsputil.h"
  35. /*
  36. * TODO:
  37. * - test lsf / mpeg25 extensively.
  38. */
  39. #include "mpegaudio.h"
  40. #include "mpegaudiodecheader.h"
  41. #define BACKSTEP_SIZE 512
  42. #define EXTRABYTES 24
  43. #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
  44. /* layer 3 "granule" */
  45. typedef struct GranuleDef {
  46. uint8_t scfsi;
  47. int part2_3_length;
  48. int big_values;
  49. int global_gain;
  50. int scalefac_compress;
  51. uint8_t block_type;
  52. uint8_t switch_point;
  53. int table_select[3];
  54. int subblock_gain[3];
  55. uint8_t scalefac_scale;
  56. uint8_t count1table_select;
  57. int region_size[3]; /* number of huffman codes in each region */
  58. int preflag;
  59. int short_start, long_end; /* long/short band indexes */
  60. uint8_t scale_factors[40];
  61. DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
  62. } GranuleDef;
  63. typedef struct MPADecodeContext {
  64. MPA_DECODE_HEADER
  65. uint8_t last_buf[LAST_BUF_SIZE];
  66. int last_buf_size;
  67. /* next header (used in free format parsing) */
  68. uint32_t free_format_next_header;
  69. GetBitContext gb;
  70. GetBitContext in_gb;
  71. DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
  72. int synth_buf_offset[MPA_MAX_CHANNELS];
  73. DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
  74. INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  75. GranuleDef granules[2][2]; /* Used in Layer 3 */
  76. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  77. int dither_state;
  78. int err_recognition;
  79. AVCodecContext* avctx;
  80. MPADSPContext mpadsp;
  81. AVFloatDSPContext fdsp;
  82. AVFrame frame;
  83. } MPADecodeContext;
  84. #if CONFIG_FLOAT
  85. # define SHR(a,b) ((a)*(1.0f/(1<<(b))))
  86. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  87. # define FIXR(x) ((float)(x))
  88. # define FIXHR(x) ((float)(x))
  89. # define MULH3(x, y, s) ((s)*(y)*(x))
  90. # define MULLx(x, y, s) ((y)*(x))
  91. # define RENAME(a) a ## _float
  92. # define OUT_FMT AV_SAMPLE_FMT_FLT
  93. # define OUT_FMT_P AV_SAMPLE_FMT_FLTP
  94. #else
  95. # define SHR(a,b) ((a)>>(b))
  96. /* WARNING: only correct for positive numbers */
  97. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  98. # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  99. # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  100. # define MULH3(x, y, s) MULH((s)*(x), y)
  101. # define MULLx(x, y, s) MULL(x,y,s)
  102. # define RENAME(a) a ## _fixed
  103. # define OUT_FMT AV_SAMPLE_FMT_S16
  104. # define OUT_FMT_P AV_SAMPLE_FMT_S16P
  105. #endif
  106. /****************/
  107. #define HEADER_SIZE 4
  108. #include "mpegaudiodata.h"
  109. #include "mpegaudiodectab.h"
  110. /* vlc structure for decoding layer 3 huffman tables */
  111. static VLC huff_vlc[16];
  112. static VLC_TYPE huff_vlc_tables[
  113. 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
  114. 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
  115. ][2];
  116. static const int huff_vlc_tables_sizes[16] = {
  117. 0, 128, 128, 128, 130, 128, 154, 166,
  118. 142, 204, 190, 170, 542, 460, 662, 414
  119. };
  120. static VLC huff_quad_vlc[2];
  121. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  122. static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
  123. /* computed from band_size_long */
  124. static uint16_t band_index_long[9][23];
  125. #include "mpegaudio_tablegen.h"
  126. /* intensity stereo coef table */
  127. static INTFLOAT is_table[2][16];
  128. static INTFLOAT is_table_lsf[2][2][16];
  129. static INTFLOAT csa_table[8][4];
  130. static int16_t division_tab3[1<<6 ];
  131. static int16_t division_tab5[1<<8 ];
  132. static int16_t division_tab9[1<<11];
  133. static int16_t * const division_tabs[4] = {
  134. division_tab3, division_tab5, NULL, division_tab9
  135. };
  136. /* lower 2 bits: modulo 3, higher bits: shift */
  137. static uint16_t scale_factor_modshift[64];
  138. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  139. static int32_t scale_factor_mult[15][3];
  140. /* mult table for layer 2 group quantization */
  141. #define SCALE_GEN(v) \
  142. { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
  143. static const int32_t scale_factor_mult2[3][3] = {
  144. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  145. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  146. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  147. };
  148. /**
  149. * Convert region offsets to region sizes and truncate
  150. * size to big_values.
  151. */
  152. static void ff_region_offset2size(GranuleDef *g)
  153. {
  154. int i, k, j = 0;
  155. g->region_size[2] = 576 / 2;
  156. for (i = 0; i < 3; i++) {
  157. k = FFMIN(g->region_size[i], g->big_values);
  158. g->region_size[i] = k - j;
  159. j = k;
  160. }
  161. }
  162. static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g)
  163. {
  164. if (g->block_type == 2) {
  165. if (s->sample_rate_index != 8)
  166. g->region_size[0] = (36 / 2);
  167. else
  168. g->region_size[0] = (72 / 2);
  169. } else {
  170. if (s->sample_rate_index <= 2)
  171. g->region_size[0] = (36 / 2);
  172. else if (s->sample_rate_index != 8)
  173. g->region_size[0] = (54 / 2);
  174. else
  175. g->region_size[0] = (108 / 2);
  176. }
  177. g->region_size[1] = (576 / 2);
  178. }
  179. static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2)
  180. {
  181. int l;
  182. g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  183. /* should not overflow */
  184. l = FFMIN(ra1 + ra2 + 2, 22);
  185. g->region_size[1] = band_index_long[s->sample_rate_index][ l] >> 1;
  186. }
  187. static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
  188. {
  189. if (g->block_type == 2) {
  190. if (g->switch_point) {
  191. if(s->sample_rate_index == 8)
  192. av_log_ask_for_sample(s->avctx, "switch point in 8khz\n");
  193. /* if switched mode, we handle the 36 first samples as
  194. long blocks. For 8000Hz, we handle the 72 first
  195. exponents as long blocks */
  196. if (s->sample_rate_index <= 2)
  197. g->long_end = 8;
  198. else
  199. g->long_end = 6;
  200. g->short_start = 3;
  201. } else {
  202. g->long_end = 0;
  203. g->short_start = 0;
  204. }
  205. } else {
  206. g->short_start = 13;
  207. g->long_end = 22;
  208. }
  209. }
  210. /* layer 1 unscaling */
  211. /* n = number of bits of the mantissa minus 1 */
  212. static inline int l1_unscale(int n, int mant, int scale_factor)
  213. {
  214. int shift, mod;
  215. int64_t val;
  216. shift = scale_factor_modshift[scale_factor];
  217. mod = shift & 3;
  218. shift >>= 2;
  219. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  220. shift += n;
  221. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  222. return (int)((val + (1LL << (shift - 1))) >> shift);
  223. }
  224. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  225. {
  226. int shift, mod, val;
  227. shift = scale_factor_modshift[scale_factor];
  228. mod = shift & 3;
  229. shift >>= 2;
  230. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  231. /* NOTE: at this point, 0 <= shift <= 21 */
  232. if (shift > 0)
  233. val = (val + (1 << (shift - 1))) >> shift;
  234. return val;
  235. }
  236. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  237. static inline int l3_unscale(int value, int exponent)
  238. {
  239. unsigned int m;
  240. int e;
  241. e = table_4_3_exp [4 * value + (exponent & 3)];
  242. m = table_4_3_value[4 * value + (exponent & 3)];
  243. e -= exponent >> 2;
  244. #ifdef DEBUG
  245. if(e < 1)
  246. av_log(NULL, AV_LOG_WARNING, "l3_unscale: e is %d\n", e);
  247. #endif
  248. if (e > 31)
  249. return 0;
  250. m = (m + (1 << (e - 1))) >> e;
  251. return m;
  252. }
  253. static av_cold void decode_init_static(void)
  254. {
  255. int i, j, k;
  256. int offset;
  257. /* scale factors table for layer 1/2 */
  258. for (i = 0; i < 64; i++) {
  259. int shift, mod;
  260. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  261. shift = i / 3;
  262. mod = i % 3;
  263. scale_factor_modshift[i] = mod | (shift << 2);
  264. }
  265. /* scale factor multiply for layer 1 */
  266. for (i = 0; i < 15; i++) {
  267. int n, norm;
  268. n = i + 2;
  269. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  270. scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
  271. scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
  272. scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
  273. av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
  274. scale_factor_mult[i][0],
  275. scale_factor_mult[i][1],
  276. scale_factor_mult[i][2]);
  277. }
  278. RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
  279. /* huffman decode tables */
  280. offset = 0;
  281. for (i = 1; i < 16; i++) {
  282. const HuffTable *h = &mpa_huff_tables[i];
  283. int xsize, x, y;
  284. uint8_t tmp_bits [512] = { 0 };
  285. uint16_t tmp_codes[512] = { 0 };
  286. xsize = h->xsize;
  287. j = 0;
  288. for (x = 0; x < xsize; x++) {
  289. for (y = 0; y < xsize; y++) {
  290. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  291. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  292. }
  293. }
  294. /* XXX: fail test */
  295. huff_vlc[i].table = huff_vlc_tables+offset;
  296. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  297. init_vlc(&huff_vlc[i], 7, 512,
  298. tmp_bits, 1, 1, tmp_codes, 2, 2,
  299. INIT_VLC_USE_NEW_STATIC);
  300. offset += huff_vlc_tables_sizes[i];
  301. }
  302. av_assert0(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  303. offset = 0;
  304. for (i = 0; i < 2; i++) {
  305. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  306. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  307. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  308. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  309. INIT_VLC_USE_NEW_STATIC);
  310. offset += huff_quad_vlc_tables_sizes[i];
  311. }
  312. av_assert0(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  313. for (i = 0; i < 9; i++) {
  314. k = 0;
  315. for (j = 0; j < 22; j++) {
  316. band_index_long[i][j] = k;
  317. k += band_size_long[i][j];
  318. }
  319. band_index_long[i][22] = k;
  320. }
  321. /* compute n ^ (4/3) and store it in mantissa/exp format */
  322. mpegaudio_tableinit();
  323. for (i = 0; i < 4; i++) {
  324. if (ff_mpa_quant_bits[i] < 0) {
  325. for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
  326. int val1, val2, val3, steps;
  327. int val = j;
  328. steps = ff_mpa_quant_steps[i];
  329. val1 = val % steps;
  330. val /= steps;
  331. val2 = val % steps;
  332. val3 = val / steps;
  333. division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
  334. }
  335. }
  336. }
  337. for (i = 0; i < 7; i++) {
  338. float f;
  339. INTFLOAT v;
  340. if (i != 6) {
  341. f = tan((double)i * M_PI / 12.0);
  342. v = FIXR(f / (1.0 + f));
  343. } else {
  344. v = FIXR(1.0);
  345. }
  346. is_table[0][ i] = v;
  347. is_table[1][6 - i] = v;
  348. }
  349. /* invalid values */
  350. for (i = 7; i < 16; i++)
  351. is_table[0][i] = is_table[1][i] = 0.0;
  352. for (i = 0; i < 16; i++) {
  353. double f;
  354. int e, k;
  355. for (j = 0; j < 2; j++) {
  356. e = -(j + 1) * ((i + 1) >> 1);
  357. f = exp2(e / 4.0);
  358. k = i & 1;
  359. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  360. is_table_lsf[j][k ][i] = FIXR(1.0);
  361. av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
  362. i, j, (float) is_table_lsf[j][0][i],
  363. (float) is_table_lsf[j][1][i]);
  364. }
  365. }
  366. for (i = 0; i < 8; i++) {
  367. float ci, cs, ca;
  368. ci = ci_table[i];
  369. cs = 1.0 / sqrt(1.0 + ci * ci);
  370. ca = cs * ci;
  371. #if !CONFIG_FLOAT
  372. csa_table[i][0] = FIXHR(cs/4);
  373. csa_table[i][1] = FIXHR(ca/4);
  374. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  375. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  376. #else
  377. csa_table[i][0] = cs;
  378. csa_table[i][1] = ca;
  379. csa_table[i][2] = ca + cs;
  380. csa_table[i][3] = ca - cs;
  381. #endif
  382. }
  383. }
  384. static av_cold int decode_init(AVCodecContext * avctx)
  385. {
  386. static int initialized_tables = 0;
  387. MPADecodeContext *s = avctx->priv_data;
  388. if (!initialized_tables) {
  389. decode_init_static();
  390. initialized_tables = 1;
  391. }
  392. s->avctx = avctx;
  393. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  394. ff_mpadsp_init(&s->mpadsp);
  395. if (avctx->request_sample_fmt == OUT_FMT &&
  396. avctx->codec_id != AV_CODEC_ID_MP3ON4)
  397. avctx->sample_fmt = OUT_FMT;
  398. else
  399. avctx->sample_fmt = OUT_FMT_P;
  400. s->err_recognition = avctx->err_recognition;
  401. if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
  402. s->adu_mode = 1;
  403. avcodec_get_frame_defaults(&s->frame);
  404. avctx->coded_frame = &s->frame;
  405. return 0;
  406. }
  407. #define C3 FIXHR(0.86602540378443864676/2)
  408. #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
  409. #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
  410. #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
  411. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  412. cases. */
  413. static void imdct12(INTFLOAT *out, INTFLOAT *in)
  414. {
  415. INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
  416. in0 = in[0*3];
  417. in1 = in[1*3] + in[0*3];
  418. in2 = in[2*3] + in[1*3];
  419. in3 = in[3*3] + in[2*3];
  420. in4 = in[4*3] + in[3*3];
  421. in5 = in[5*3] + in[4*3];
  422. in5 += in3;
  423. in3 += in1;
  424. in2 = MULH3(in2, C3, 2);
  425. in3 = MULH3(in3, C3, 4);
  426. t1 = in0 - in4;
  427. t2 = MULH3(in1 - in5, C4, 2);
  428. out[ 7] =
  429. out[10] = t1 + t2;
  430. out[ 1] =
  431. out[ 4] = t1 - t2;
  432. in0 += SHR(in4, 1);
  433. in4 = in0 + in2;
  434. in5 += 2*in1;
  435. in1 = MULH3(in5 + in3, C5, 1);
  436. out[ 8] =
  437. out[ 9] = in4 + in1;
  438. out[ 2] =
  439. out[ 3] = in4 - in1;
  440. in0 -= in2;
  441. in5 = MULH3(in5 - in3, C6, 2);
  442. out[ 0] =
  443. out[ 5] = in0 - in5;
  444. out[ 6] =
  445. out[11] = in0 + in5;
  446. }
  447. /* return the number of decoded frames */
  448. static int mp_decode_layer1(MPADecodeContext *s)
  449. {
  450. int bound, i, v, n, ch, j, mant;
  451. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  452. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  453. if (s->mode == MPA_JSTEREO)
  454. bound = (s->mode_ext + 1) * 4;
  455. else
  456. bound = SBLIMIT;
  457. /* allocation bits */
  458. for (i = 0; i < bound; i++) {
  459. for (ch = 0; ch < s->nb_channels; ch++) {
  460. allocation[ch][i] = get_bits(&s->gb, 4);
  461. }
  462. }
  463. for (i = bound; i < SBLIMIT; i++)
  464. allocation[0][i] = get_bits(&s->gb, 4);
  465. /* scale factors */
  466. for (i = 0; i < bound; i++) {
  467. for (ch = 0; ch < s->nb_channels; ch++) {
  468. if (allocation[ch][i])
  469. scale_factors[ch][i] = get_bits(&s->gb, 6);
  470. }
  471. }
  472. for (i = bound; i < SBLIMIT; i++) {
  473. if (allocation[0][i]) {
  474. scale_factors[0][i] = get_bits(&s->gb, 6);
  475. scale_factors[1][i] = get_bits(&s->gb, 6);
  476. }
  477. }
  478. /* compute samples */
  479. for (j = 0; j < 12; j++) {
  480. for (i = 0; i < bound; i++) {
  481. for (ch = 0; ch < s->nb_channels; ch++) {
  482. n = allocation[ch][i];
  483. if (n) {
  484. mant = get_bits(&s->gb, n + 1);
  485. v = l1_unscale(n, mant, scale_factors[ch][i]);
  486. } else {
  487. v = 0;
  488. }
  489. s->sb_samples[ch][j][i] = v;
  490. }
  491. }
  492. for (i = bound; i < SBLIMIT; i++) {
  493. n = allocation[0][i];
  494. if (n) {
  495. mant = get_bits(&s->gb, n + 1);
  496. v = l1_unscale(n, mant, scale_factors[0][i]);
  497. s->sb_samples[0][j][i] = v;
  498. v = l1_unscale(n, mant, scale_factors[1][i]);
  499. s->sb_samples[1][j][i] = v;
  500. } else {
  501. s->sb_samples[0][j][i] = 0;
  502. s->sb_samples[1][j][i] = 0;
  503. }
  504. }
  505. }
  506. return 12;
  507. }
  508. static int mp_decode_layer2(MPADecodeContext *s)
  509. {
  510. int sblimit; /* number of used subbands */
  511. const unsigned char *alloc_table;
  512. int table, bit_alloc_bits, i, j, ch, bound, v;
  513. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  514. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  515. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  516. int scale, qindex, bits, steps, k, l, m, b;
  517. /* select decoding table */
  518. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  519. s->sample_rate, s->lsf);
  520. sblimit = ff_mpa_sblimit_table[table];
  521. alloc_table = ff_mpa_alloc_tables[table];
  522. if (s->mode == MPA_JSTEREO)
  523. bound = (s->mode_ext + 1) * 4;
  524. else
  525. bound = sblimit;
  526. av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  527. /* sanity check */
  528. if (bound > sblimit)
  529. bound = sblimit;
  530. /* parse bit allocation */
  531. j = 0;
  532. for (i = 0; i < bound; i++) {
  533. bit_alloc_bits = alloc_table[j];
  534. for (ch = 0; ch < s->nb_channels; ch++)
  535. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  536. j += 1 << bit_alloc_bits;
  537. }
  538. for (i = bound; i < sblimit; i++) {
  539. bit_alloc_bits = alloc_table[j];
  540. v = get_bits(&s->gb, bit_alloc_bits);
  541. bit_alloc[0][i] = v;
  542. bit_alloc[1][i] = v;
  543. j += 1 << bit_alloc_bits;
  544. }
  545. /* scale codes */
  546. for (i = 0; i < sblimit; i++) {
  547. for (ch = 0; ch < s->nb_channels; ch++) {
  548. if (bit_alloc[ch][i])
  549. scale_code[ch][i] = get_bits(&s->gb, 2);
  550. }
  551. }
  552. /* scale factors */
  553. for (i = 0; i < sblimit; i++) {
  554. for (ch = 0; ch < s->nb_channels; ch++) {
  555. if (bit_alloc[ch][i]) {
  556. sf = scale_factors[ch][i];
  557. switch (scale_code[ch][i]) {
  558. default:
  559. case 0:
  560. sf[0] = get_bits(&s->gb, 6);
  561. sf[1] = get_bits(&s->gb, 6);
  562. sf[2] = get_bits(&s->gb, 6);
  563. break;
  564. case 2:
  565. sf[0] = get_bits(&s->gb, 6);
  566. sf[1] = sf[0];
  567. sf[2] = sf[0];
  568. break;
  569. case 1:
  570. sf[0] = get_bits(&s->gb, 6);
  571. sf[2] = get_bits(&s->gb, 6);
  572. sf[1] = sf[0];
  573. break;
  574. case 3:
  575. sf[0] = get_bits(&s->gb, 6);
  576. sf[2] = get_bits(&s->gb, 6);
  577. sf[1] = sf[2];
  578. break;
  579. }
  580. }
  581. }
  582. }
  583. /* samples */
  584. for (k = 0; k < 3; k++) {
  585. for (l = 0; l < 12; l += 3) {
  586. j = 0;
  587. for (i = 0; i < bound; i++) {
  588. bit_alloc_bits = alloc_table[j];
  589. for (ch = 0; ch < s->nb_channels; ch++) {
  590. b = bit_alloc[ch][i];
  591. if (b) {
  592. scale = scale_factors[ch][i][k];
  593. qindex = alloc_table[j+b];
  594. bits = ff_mpa_quant_bits[qindex];
  595. if (bits < 0) {
  596. int v2;
  597. /* 3 values at the same time */
  598. v = get_bits(&s->gb, -bits);
  599. v2 = division_tabs[qindex][v];
  600. steps = ff_mpa_quant_steps[qindex];
  601. s->sb_samples[ch][k * 12 + l + 0][i] =
  602. l2_unscale_group(steps, v2 & 15, scale);
  603. s->sb_samples[ch][k * 12 + l + 1][i] =
  604. l2_unscale_group(steps, (v2 >> 4) & 15, scale);
  605. s->sb_samples[ch][k * 12 + l + 2][i] =
  606. l2_unscale_group(steps, v2 >> 8 , scale);
  607. } else {
  608. for (m = 0; m < 3; m++) {
  609. v = get_bits(&s->gb, bits);
  610. v = l1_unscale(bits - 1, v, scale);
  611. s->sb_samples[ch][k * 12 + l + m][i] = v;
  612. }
  613. }
  614. } else {
  615. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  616. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  617. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  618. }
  619. }
  620. /* next subband in alloc table */
  621. j += 1 << bit_alloc_bits;
  622. }
  623. /* XXX: find a way to avoid this duplication of code */
  624. for (i = bound; i < sblimit; i++) {
  625. bit_alloc_bits = alloc_table[j];
  626. b = bit_alloc[0][i];
  627. if (b) {
  628. int mant, scale0, scale1;
  629. scale0 = scale_factors[0][i][k];
  630. scale1 = scale_factors[1][i][k];
  631. qindex = alloc_table[j+b];
  632. bits = ff_mpa_quant_bits[qindex];
  633. if (bits < 0) {
  634. /* 3 values at the same time */
  635. v = get_bits(&s->gb, -bits);
  636. steps = ff_mpa_quant_steps[qindex];
  637. mant = v % steps;
  638. v = v / steps;
  639. s->sb_samples[0][k * 12 + l + 0][i] =
  640. l2_unscale_group(steps, mant, scale0);
  641. s->sb_samples[1][k * 12 + l + 0][i] =
  642. l2_unscale_group(steps, mant, scale1);
  643. mant = v % steps;
  644. v = v / steps;
  645. s->sb_samples[0][k * 12 + l + 1][i] =
  646. l2_unscale_group(steps, mant, scale0);
  647. s->sb_samples[1][k * 12 + l + 1][i] =
  648. l2_unscale_group(steps, mant, scale1);
  649. s->sb_samples[0][k * 12 + l + 2][i] =
  650. l2_unscale_group(steps, v, scale0);
  651. s->sb_samples[1][k * 12 + l + 2][i] =
  652. l2_unscale_group(steps, v, scale1);
  653. } else {
  654. for (m = 0; m < 3; m++) {
  655. mant = get_bits(&s->gb, bits);
  656. s->sb_samples[0][k * 12 + l + m][i] =
  657. l1_unscale(bits - 1, mant, scale0);
  658. s->sb_samples[1][k * 12 + l + m][i] =
  659. l1_unscale(bits - 1, mant, scale1);
  660. }
  661. }
  662. } else {
  663. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  664. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  665. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  666. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  667. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  668. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  669. }
  670. /* next subband in alloc table */
  671. j += 1 << bit_alloc_bits;
  672. }
  673. /* fill remaining samples to zero */
  674. for (i = sblimit; i < SBLIMIT; i++) {
  675. for (ch = 0; ch < s->nb_channels; ch++) {
  676. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  677. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  678. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  679. }
  680. }
  681. }
  682. }
  683. return 3 * 12;
  684. }
  685. #define SPLIT(dst,sf,n) \
  686. if (n == 3) { \
  687. int m = (sf * 171) >> 9; \
  688. dst = sf - 3 * m; \
  689. sf = m; \
  690. } else if (n == 4) { \
  691. dst = sf & 3; \
  692. sf >>= 2; \
  693. } else if (n == 5) { \
  694. int m = (sf * 205) >> 10; \
  695. dst = sf - 5 * m; \
  696. sf = m; \
  697. } else if (n == 6) { \
  698. int m = (sf * 171) >> 10; \
  699. dst = sf - 6 * m; \
  700. sf = m; \
  701. } else { \
  702. dst = 0; \
  703. }
  704. static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
  705. int n3)
  706. {
  707. SPLIT(slen[3], sf, n3)
  708. SPLIT(slen[2], sf, n2)
  709. SPLIT(slen[1], sf, n1)
  710. slen[0] = sf;
  711. }
  712. static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
  713. int16_t *exponents)
  714. {
  715. const uint8_t *bstab, *pretab;
  716. int len, i, j, k, l, v0, shift, gain, gains[3];
  717. int16_t *exp_ptr;
  718. exp_ptr = exponents;
  719. gain = g->global_gain - 210;
  720. shift = g->scalefac_scale + 1;
  721. bstab = band_size_long[s->sample_rate_index];
  722. pretab = mpa_pretab[g->preflag];
  723. for (i = 0; i < g->long_end; i++) {
  724. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  725. len = bstab[i];
  726. for (j = len; j > 0; j--)
  727. *exp_ptr++ = v0;
  728. }
  729. if (g->short_start < 13) {
  730. bstab = band_size_short[s->sample_rate_index];
  731. gains[0] = gain - (g->subblock_gain[0] << 3);
  732. gains[1] = gain - (g->subblock_gain[1] << 3);
  733. gains[2] = gain - (g->subblock_gain[2] << 3);
  734. k = g->long_end;
  735. for (i = g->short_start; i < 13; i++) {
  736. len = bstab[i];
  737. for (l = 0; l < 3; l++) {
  738. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  739. for (j = len; j > 0; j--)
  740. *exp_ptr++ = v0;
  741. }
  742. }
  743. }
  744. }
  745. /* handle n = 0 too */
  746. static inline int get_bitsz(GetBitContext *s, int n)
  747. {
  748. return n ? get_bits(s, n) : 0;
  749. }
  750. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
  751. int *end_pos2)
  752. {
  753. if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
  754. s->gb = s->in_gb;
  755. s->in_gb.buffer = NULL;
  756. av_assert2((get_bits_count(&s->gb) & 7) == 0);
  757. skip_bits_long(&s->gb, *pos - *end_pos);
  758. *end_pos2 =
  759. *end_pos = *end_pos2 + get_bits_count(&s->gb) - *pos;
  760. *pos = get_bits_count(&s->gb);
  761. }
  762. }
  763. /* Following is a optimized code for
  764. INTFLOAT v = *src
  765. if(get_bits1(&s->gb))
  766. v = -v;
  767. *dst = v;
  768. */
  769. #if CONFIG_FLOAT
  770. #define READ_FLIP_SIGN(dst,src) \
  771. v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
  772. AV_WN32A(dst, v);
  773. #else
  774. #define READ_FLIP_SIGN(dst,src) \
  775. v = -get_bits1(&s->gb); \
  776. *(dst) = (*(src) ^ v) - v;
  777. #endif
  778. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  779. int16_t *exponents, int end_pos2)
  780. {
  781. int s_index;
  782. int i;
  783. int last_pos, bits_left;
  784. VLC *vlc;
  785. int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
  786. /* low frequencies (called big values) */
  787. s_index = 0;
  788. for (i = 0; i < 3; i++) {
  789. int j, k, l, linbits;
  790. j = g->region_size[i];
  791. if (j == 0)
  792. continue;
  793. /* select vlc table */
  794. k = g->table_select[i];
  795. l = mpa_huff_data[k][0];
  796. linbits = mpa_huff_data[k][1];
  797. vlc = &huff_vlc[l];
  798. if (!l) {
  799. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
  800. s_index += 2 * j;
  801. continue;
  802. }
  803. /* read huffcode and compute each couple */
  804. for (; j > 0; j--) {
  805. int exponent, x, y;
  806. int v;
  807. int pos = get_bits_count(&s->gb);
  808. if (pos >= end_pos){
  809. switch_buffer(s, &pos, &end_pos, &end_pos2);
  810. if (pos >= end_pos)
  811. break;
  812. }
  813. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  814. if (!y) {
  815. g->sb_hybrid[s_index ] =
  816. g->sb_hybrid[s_index+1] = 0;
  817. s_index += 2;
  818. continue;
  819. }
  820. exponent= exponents[s_index];
  821. av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  822. i, g->region_size[i] - j, x, y, exponent);
  823. if (y & 16) {
  824. x = y >> 5;
  825. y = y & 0x0f;
  826. if (x < 15) {
  827. READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
  828. } else {
  829. x += get_bitsz(&s->gb, linbits);
  830. v = l3_unscale(x, exponent);
  831. if (get_bits1(&s->gb))
  832. v = -v;
  833. g->sb_hybrid[s_index] = v;
  834. }
  835. if (y < 15) {
  836. READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
  837. } else {
  838. y += get_bitsz(&s->gb, linbits);
  839. v = l3_unscale(y, exponent);
  840. if (get_bits1(&s->gb))
  841. v = -v;
  842. g->sb_hybrid[s_index+1] = v;
  843. }
  844. } else {
  845. x = y >> 5;
  846. y = y & 0x0f;
  847. x += y;
  848. if (x < 15) {
  849. READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
  850. } else {
  851. x += get_bitsz(&s->gb, linbits);
  852. v = l3_unscale(x, exponent);
  853. if (get_bits1(&s->gb))
  854. v = -v;
  855. g->sb_hybrid[s_index+!!y] = v;
  856. }
  857. g->sb_hybrid[s_index + !y] = 0;
  858. }
  859. s_index += 2;
  860. }
  861. }
  862. /* high frequencies */
  863. vlc = &huff_quad_vlc[g->count1table_select];
  864. last_pos = 0;
  865. while (s_index <= 572) {
  866. int pos, code;
  867. pos = get_bits_count(&s->gb);
  868. if (pos >= end_pos) {
  869. if (pos > end_pos2 && last_pos) {
  870. /* some encoders generate an incorrect size for this
  871. part. We must go back into the data */
  872. s_index -= 4;
  873. skip_bits_long(&s->gb, last_pos - pos);
  874. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  875. if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
  876. s_index=0;
  877. break;
  878. }
  879. switch_buffer(s, &pos, &end_pos, &end_pos2);
  880. if (pos >= end_pos)
  881. break;
  882. }
  883. last_pos = pos;
  884. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  885. av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  886. g->sb_hybrid[s_index+0] =
  887. g->sb_hybrid[s_index+1] =
  888. g->sb_hybrid[s_index+2] =
  889. g->sb_hybrid[s_index+3] = 0;
  890. while (code) {
  891. static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
  892. int v;
  893. int pos = s_index + idxtab[code];
  894. code ^= 8 >> idxtab[code];
  895. READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
  896. }
  897. s_index += 4;
  898. }
  899. /* skip extension bits */
  900. bits_left = end_pos2 - get_bits_count(&s->gb);
  901. if (bits_left < 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_COMPLIANT))) {
  902. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  903. s_index=0;
  904. } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_AGGRESSIVE))) {
  905. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  906. s_index = 0;
  907. }
  908. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
  909. skip_bits_long(&s->gb, bits_left);
  910. i = get_bits_count(&s->gb);
  911. switch_buffer(s, &i, &end_pos, &end_pos2);
  912. return 0;
  913. }
  914. /* Reorder short blocks from bitstream order to interleaved order. It
  915. would be faster to do it in parsing, but the code would be far more
  916. complicated */
  917. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  918. {
  919. int i, j, len;
  920. INTFLOAT *ptr, *dst, *ptr1;
  921. INTFLOAT tmp[576];
  922. if (g->block_type != 2)
  923. return;
  924. if (g->switch_point) {
  925. if (s->sample_rate_index != 8)
  926. ptr = g->sb_hybrid + 36;
  927. else
  928. ptr = g->sb_hybrid + 72;
  929. } else {
  930. ptr = g->sb_hybrid;
  931. }
  932. for (i = g->short_start; i < 13; i++) {
  933. len = band_size_short[s->sample_rate_index][i];
  934. ptr1 = ptr;
  935. dst = tmp;
  936. for (j = len; j > 0; j--) {
  937. *dst++ = ptr[0*len];
  938. *dst++ = ptr[1*len];
  939. *dst++ = ptr[2*len];
  940. ptr++;
  941. }
  942. ptr += 2 * len;
  943. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  944. }
  945. }
  946. #define ISQRT2 FIXR(0.70710678118654752440)
  947. static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
  948. {
  949. int i, j, k, l;
  950. int sf_max, sf, len, non_zero_found;
  951. INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
  952. int non_zero_found_short[3];
  953. /* intensity stereo */
  954. if (s->mode_ext & MODE_EXT_I_STEREO) {
  955. if (!s->lsf) {
  956. is_tab = is_table;
  957. sf_max = 7;
  958. } else {
  959. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  960. sf_max = 16;
  961. }
  962. tab0 = g0->sb_hybrid + 576;
  963. tab1 = g1->sb_hybrid + 576;
  964. non_zero_found_short[0] = 0;
  965. non_zero_found_short[1] = 0;
  966. non_zero_found_short[2] = 0;
  967. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  968. for (i = 12; i >= g1->short_start; i--) {
  969. /* for last band, use previous scale factor */
  970. if (i != 11)
  971. k -= 3;
  972. len = band_size_short[s->sample_rate_index][i];
  973. for (l = 2; l >= 0; l--) {
  974. tab0 -= len;
  975. tab1 -= len;
  976. if (!non_zero_found_short[l]) {
  977. /* test if non zero band. if so, stop doing i-stereo */
  978. for (j = 0; j < len; j++) {
  979. if (tab1[j] != 0) {
  980. non_zero_found_short[l] = 1;
  981. goto found1;
  982. }
  983. }
  984. sf = g1->scale_factors[k + l];
  985. if (sf >= sf_max)
  986. goto found1;
  987. v1 = is_tab[0][sf];
  988. v2 = is_tab[1][sf];
  989. for (j = 0; j < len; j++) {
  990. tmp0 = tab0[j];
  991. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  992. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  993. }
  994. } else {
  995. found1:
  996. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  997. /* lower part of the spectrum : do ms stereo
  998. if enabled */
  999. for (j = 0; j < len; j++) {
  1000. tmp0 = tab0[j];
  1001. tmp1 = tab1[j];
  1002. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1003. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1004. }
  1005. }
  1006. }
  1007. }
  1008. }
  1009. non_zero_found = non_zero_found_short[0] |
  1010. non_zero_found_short[1] |
  1011. non_zero_found_short[2];
  1012. for (i = g1->long_end - 1;i >= 0;i--) {
  1013. len = band_size_long[s->sample_rate_index][i];
  1014. tab0 -= len;
  1015. tab1 -= len;
  1016. /* test if non zero band. if so, stop doing i-stereo */
  1017. if (!non_zero_found) {
  1018. for (j = 0; j < len; j++) {
  1019. if (tab1[j] != 0) {
  1020. non_zero_found = 1;
  1021. goto found2;
  1022. }
  1023. }
  1024. /* for last band, use previous scale factor */
  1025. k = (i == 21) ? 20 : i;
  1026. sf = g1->scale_factors[k];
  1027. if (sf >= sf_max)
  1028. goto found2;
  1029. v1 = is_tab[0][sf];
  1030. v2 = is_tab[1][sf];
  1031. for (j = 0; j < len; j++) {
  1032. tmp0 = tab0[j];
  1033. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  1034. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  1035. }
  1036. } else {
  1037. found2:
  1038. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1039. /* lower part of the spectrum : do ms stereo
  1040. if enabled */
  1041. for (j = 0; j < len; j++) {
  1042. tmp0 = tab0[j];
  1043. tmp1 = tab1[j];
  1044. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1045. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1046. }
  1047. }
  1048. }
  1049. }
  1050. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1051. /* ms stereo ONLY */
  1052. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1053. global gain */
  1054. #if CONFIG_FLOAT
  1055. s->fdsp.butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
  1056. #else
  1057. tab0 = g0->sb_hybrid;
  1058. tab1 = g1->sb_hybrid;
  1059. for (i = 0; i < 576; i++) {
  1060. tmp0 = tab0[i];
  1061. tmp1 = tab1[i];
  1062. tab0[i] = tmp0 + tmp1;
  1063. tab1[i] = tmp0 - tmp1;
  1064. }
  1065. #endif
  1066. }
  1067. }
  1068. #if CONFIG_FLOAT
  1069. #if HAVE_MIPSFPU
  1070. # include "mips/compute_antialias_float.h"
  1071. #endif /* HAVE_MIPSFPU */
  1072. #else
  1073. #if HAVE_MIPSDSPR1
  1074. # include "mips/compute_antialias_fixed.h"
  1075. #endif /* HAVE_MIPSDSPR1 */
  1076. #endif /* CONFIG_FLOAT */
  1077. #ifndef compute_antialias
  1078. #if CONFIG_FLOAT
  1079. #define AA(j) do { \
  1080. float tmp0 = ptr[-1-j]; \
  1081. float tmp1 = ptr[ j]; \
  1082. ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
  1083. ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
  1084. } while (0)
  1085. #else
  1086. #define AA(j) do { \
  1087. int tmp0 = ptr[-1-j]; \
  1088. int tmp1 = ptr[ j]; \
  1089. int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
  1090. ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
  1091. ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
  1092. } while (0)
  1093. #endif
  1094. static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
  1095. {
  1096. INTFLOAT *ptr;
  1097. int n, i;
  1098. /* we antialias only "long" bands */
  1099. if (g->block_type == 2) {
  1100. if (!g->switch_point)
  1101. return;
  1102. /* XXX: check this for 8000Hz case */
  1103. n = 1;
  1104. } else {
  1105. n = SBLIMIT - 1;
  1106. }
  1107. ptr = g->sb_hybrid + 18;
  1108. for (i = n; i > 0; i--) {
  1109. AA(0);
  1110. AA(1);
  1111. AA(2);
  1112. AA(3);
  1113. AA(4);
  1114. AA(5);
  1115. AA(6);
  1116. AA(7);
  1117. ptr += 18;
  1118. }
  1119. }
  1120. #endif /* compute_antialias */
  1121. static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
  1122. INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
  1123. {
  1124. INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
  1125. INTFLOAT out2[12];
  1126. int i, j, mdct_long_end, sblimit;
  1127. /* find last non zero block */
  1128. ptr = g->sb_hybrid + 576;
  1129. ptr1 = g->sb_hybrid + 2 * 18;
  1130. while (ptr >= ptr1) {
  1131. int32_t *p;
  1132. ptr -= 6;
  1133. p = (int32_t*)ptr;
  1134. if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
  1135. break;
  1136. }
  1137. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1138. if (g->block_type == 2) {
  1139. /* XXX: check for 8000 Hz */
  1140. if (g->switch_point)
  1141. mdct_long_end = 2;
  1142. else
  1143. mdct_long_end = 0;
  1144. } else {
  1145. mdct_long_end = sblimit;
  1146. }
  1147. s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
  1148. mdct_long_end, g->switch_point,
  1149. g->block_type);
  1150. buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
  1151. ptr = g->sb_hybrid + 18 * mdct_long_end;
  1152. for (j = mdct_long_end; j < sblimit; j++) {
  1153. /* select frequency inversion */
  1154. win = RENAME(ff_mdct_win)[2 + (4 & -(j & 1))];
  1155. out_ptr = sb_samples + j;
  1156. for (i = 0; i < 6; i++) {
  1157. *out_ptr = buf[4*i];
  1158. out_ptr += SBLIMIT;
  1159. }
  1160. imdct12(out2, ptr + 0);
  1161. for (i = 0; i < 6; i++) {
  1162. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)];
  1163. buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
  1164. out_ptr += SBLIMIT;
  1165. }
  1166. imdct12(out2, ptr + 1);
  1167. for (i = 0; i < 6; i++) {
  1168. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)];
  1169. buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
  1170. out_ptr += SBLIMIT;
  1171. }
  1172. imdct12(out2, ptr + 2);
  1173. for (i = 0; i < 6; i++) {
  1174. buf[4*(i + 6*0)] = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)];
  1175. buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
  1176. buf[4*(i + 6*2)] = 0;
  1177. }
  1178. ptr += 18;
  1179. buf += (j&3) != 3 ? 1 : (4*18-3);
  1180. }
  1181. /* zero bands */
  1182. for (j = sblimit; j < SBLIMIT; j++) {
  1183. /* overlap */
  1184. out_ptr = sb_samples + j;
  1185. for (i = 0; i < 18; i++) {
  1186. *out_ptr = buf[4*i];
  1187. buf[4*i] = 0;
  1188. out_ptr += SBLIMIT;
  1189. }
  1190. buf += (j&3) != 3 ? 1 : (4*18-3);
  1191. }
  1192. }
  1193. /* main layer3 decoding function */
  1194. static int mp_decode_layer3(MPADecodeContext *s)
  1195. {
  1196. int nb_granules, main_data_begin;
  1197. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1198. GranuleDef *g;
  1199. int16_t exponents[576]; //FIXME try INTFLOAT
  1200. /* read side info */
  1201. if (s->lsf) {
  1202. main_data_begin = get_bits(&s->gb, 8);
  1203. skip_bits(&s->gb, s->nb_channels);
  1204. nb_granules = 1;
  1205. } else {
  1206. main_data_begin = get_bits(&s->gb, 9);
  1207. if (s->nb_channels == 2)
  1208. skip_bits(&s->gb, 3);
  1209. else
  1210. skip_bits(&s->gb, 5);
  1211. nb_granules = 2;
  1212. for (ch = 0; ch < s->nb_channels; ch++) {
  1213. s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
  1214. s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1215. }
  1216. }
  1217. for (gr = 0; gr < nb_granules; gr++) {
  1218. for (ch = 0; ch < s->nb_channels; ch++) {
  1219. av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1220. g = &s->granules[ch][gr];
  1221. g->part2_3_length = get_bits(&s->gb, 12);
  1222. g->big_values = get_bits(&s->gb, 9);
  1223. if (g->big_values > 288) {
  1224. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1225. return AVERROR_INVALIDDATA;
  1226. }
  1227. g->global_gain = get_bits(&s->gb, 8);
  1228. /* if MS stereo only is selected, we precompute the
  1229. 1/sqrt(2) renormalization factor */
  1230. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1231. MODE_EXT_MS_STEREO)
  1232. g->global_gain -= 2;
  1233. if (s->lsf)
  1234. g->scalefac_compress = get_bits(&s->gb, 9);
  1235. else
  1236. g->scalefac_compress = get_bits(&s->gb, 4);
  1237. blocksplit_flag = get_bits1(&s->gb);
  1238. if (blocksplit_flag) {
  1239. g->block_type = get_bits(&s->gb, 2);
  1240. if (g->block_type == 0) {
  1241. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1242. return AVERROR_INVALIDDATA;
  1243. }
  1244. g->switch_point = get_bits1(&s->gb);
  1245. for (i = 0; i < 2; i++)
  1246. g->table_select[i] = get_bits(&s->gb, 5);
  1247. for (i = 0; i < 3; i++)
  1248. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1249. ff_init_short_region(s, g);
  1250. } else {
  1251. int region_address1, region_address2;
  1252. g->block_type = 0;
  1253. g->switch_point = 0;
  1254. for (i = 0; i < 3; i++)
  1255. g->table_select[i] = get_bits(&s->gb, 5);
  1256. /* compute huffman coded region sizes */
  1257. region_address1 = get_bits(&s->gb, 4);
  1258. region_address2 = get_bits(&s->gb, 3);
  1259. av_dlog(s->avctx, "region1=%d region2=%d\n",
  1260. region_address1, region_address2);
  1261. ff_init_long_region(s, g, region_address1, region_address2);
  1262. }
  1263. ff_region_offset2size(g);
  1264. ff_compute_band_indexes(s, g);
  1265. g->preflag = 0;
  1266. if (!s->lsf)
  1267. g->preflag = get_bits1(&s->gb);
  1268. g->scalefac_scale = get_bits1(&s->gb);
  1269. g->count1table_select = get_bits1(&s->gb);
  1270. av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
  1271. g->block_type, g->switch_point);
  1272. }
  1273. }
  1274. if (!s->adu_mode) {
  1275. int skip;
  1276. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1277. int extrasize = av_clip(get_bits_left(&s->gb) >> 3, 0, EXTRABYTES);
  1278. av_assert1((get_bits_count(&s->gb) & 7) == 0);
  1279. /* now we get bits from the main_data_begin offset */
  1280. av_dlog(s->avctx, "seekback:%d, lastbuf:%d\n",
  1281. main_data_begin, s->last_buf_size);
  1282. memcpy(s->last_buf + s->last_buf_size, ptr, extrasize);
  1283. s->in_gb = s->gb;
  1284. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1285. #if !UNCHECKED_BITSTREAM_READER
  1286. s->gb.size_in_bits_plus8 += FFMAX(extrasize, LAST_BUF_SIZE - s->last_buf_size) * 8;
  1287. #endif
  1288. s->last_buf_size <<= 3;
  1289. for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
  1290. for (ch = 0; ch < s->nb_channels; ch++) {
  1291. g = &s->granules[ch][gr];
  1292. s->last_buf_size += g->part2_3_length;
  1293. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1294. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1295. }
  1296. }
  1297. skip = s->last_buf_size - 8 * main_data_begin;
  1298. if (skip >= s->gb.size_in_bits && s->in_gb.buffer) {
  1299. skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits);
  1300. s->gb = s->in_gb;
  1301. s->in_gb.buffer = NULL;
  1302. } else {
  1303. skip_bits_long(&s->gb, skip);
  1304. }
  1305. } else {
  1306. gr = 0;
  1307. }
  1308. for (; gr < nb_granules; gr++) {
  1309. for (ch = 0; ch < s->nb_channels; ch++) {
  1310. g = &s->granules[ch][gr];
  1311. bits_pos = get_bits_count(&s->gb);
  1312. if (!s->lsf) {
  1313. uint8_t *sc;
  1314. int slen, slen1, slen2;
  1315. /* MPEG1 scale factors */
  1316. slen1 = slen_table[0][g->scalefac_compress];
  1317. slen2 = slen_table[1][g->scalefac_compress];
  1318. av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1319. if (g->block_type == 2) {
  1320. n = g->switch_point ? 17 : 18;
  1321. j = 0;
  1322. if (slen1) {
  1323. for (i = 0; i < n; i++)
  1324. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1325. } else {
  1326. for (i = 0; i < n; i++)
  1327. g->scale_factors[j++] = 0;
  1328. }
  1329. if (slen2) {
  1330. for (i = 0; i < 18; i++)
  1331. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1332. for (i = 0; i < 3; i++)
  1333. g->scale_factors[j++] = 0;
  1334. } else {
  1335. for (i = 0; i < 21; i++)
  1336. g->scale_factors[j++] = 0;
  1337. }
  1338. } else {
  1339. sc = s->granules[ch][0].scale_factors;
  1340. j = 0;
  1341. for (k = 0; k < 4; k++) {
  1342. n = k == 0 ? 6 : 5;
  1343. if ((g->scfsi & (0x8 >> k)) == 0) {
  1344. slen = (k < 2) ? slen1 : slen2;
  1345. if (slen) {
  1346. for (i = 0; i < n; i++)
  1347. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1348. } else {
  1349. for (i = 0; i < n; i++)
  1350. g->scale_factors[j++] = 0;
  1351. }
  1352. } else {
  1353. /* simply copy from last granule */
  1354. for (i = 0; i < n; i++) {
  1355. g->scale_factors[j] = sc[j];
  1356. j++;
  1357. }
  1358. }
  1359. }
  1360. g->scale_factors[j++] = 0;
  1361. }
  1362. } else {
  1363. int tindex, tindex2, slen[4], sl, sf;
  1364. /* LSF scale factors */
  1365. if (g->block_type == 2)
  1366. tindex = g->switch_point ? 2 : 1;
  1367. else
  1368. tindex = 0;
  1369. sf = g->scalefac_compress;
  1370. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1371. /* intensity stereo case */
  1372. sf >>= 1;
  1373. if (sf < 180) {
  1374. lsf_sf_expand(slen, sf, 6, 6, 0);
  1375. tindex2 = 3;
  1376. } else if (sf < 244) {
  1377. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1378. tindex2 = 4;
  1379. } else {
  1380. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1381. tindex2 = 5;
  1382. }
  1383. } else {
  1384. /* normal case */
  1385. if (sf < 400) {
  1386. lsf_sf_expand(slen, sf, 5, 4, 4);
  1387. tindex2 = 0;
  1388. } else if (sf < 500) {
  1389. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1390. tindex2 = 1;
  1391. } else {
  1392. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1393. tindex2 = 2;
  1394. g->preflag = 1;
  1395. }
  1396. }
  1397. j = 0;
  1398. for (k = 0; k < 4; k++) {
  1399. n = lsf_nsf_table[tindex2][tindex][k];
  1400. sl = slen[k];
  1401. if (sl) {
  1402. for (i = 0; i < n; i++)
  1403. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1404. } else {
  1405. for (i = 0; i < n; i++)
  1406. g->scale_factors[j++] = 0;
  1407. }
  1408. }
  1409. /* XXX: should compute exact size */
  1410. for (; j < 40; j++)
  1411. g->scale_factors[j] = 0;
  1412. }
  1413. exponents_from_scale_factors(s, g, exponents);
  1414. /* read Huffman coded residue */
  1415. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1416. } /* ch */
  1417. if (s->mode == MPA_JSTEREO)
  1418. compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
  1419. for (ch = 0; ch < s->nb_channels; ch++) {
  1420. g = &s->granules[ch][gr];
  1421. reorder_block(s, g);
  1422. compute_antialias(s, g);
  1423. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1424. }
  1425. } /* gr */
  1426. if (get_bits_count(&s->gb) < 0)
  1427. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1428. return nb_granules * 18;
  1429. }
  1430. static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples,
  1431. const uint8_t *buf, int buf_size)
  1432. {
  1433. int i, nb_frames, ch, ret;
  1434. OUT_INT *samples_ptr;
  1435. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
  1436. /* skip error protection field */
  1437. if (s->error_protection)
  1438. skip_bits(&s->gb, 16);
  1439. switch(s->layer) {
  1440. case 1:
  1441. s->avctx->frame_size = 384;
  1442. nb_frames = mp_decode_layer1(s);
  1443. break;
  1444. case 2:
  1445. s->avctx->frame_size = 1152;
  1446. nb_frames = mp_decode_layer2(s);
  1447. break;
  1448. case 3:
  1449. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1450. default:
  1451. nb_frames = mp_decode_layer3(s);
  1452. s->last_buf_size=0;
  1453. if (s->in_gb.buffer) {
  1454. align_get_bits(&s->gb);
  1455. i = get_bits_left(&s->gb)>>3;
  1456. if (i >= 0 && i <= BACKSTEP_SIZE) {
  1457. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1458. s->last_buf_size=i;
  1459. } else
  1460. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1461. s->gb = s->in_gb;
  1462. s->in_gb.buffer = NULL;
  1463. }
  1464. align_get_bits(&s->gb);
  1465. av_assert1((get_bits_count(&s->gb) & 7) == 0);
  1466. i = get_bits_left(&s->gb) >> 3;
  1467. if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
  1468. if (i < 0)
  1469. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  1470. i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  1471. }
  1472. av_assert1(i <= buf_size - HEADER_SIZE && i >= 0);
  1473. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  1474. s->last_buf_size += i;
  1475. }
  1476. if(nb_frames < 0)
  1477. return nb_frames;
  1478. /* get output buffer */
  1479. if (!samples) {
  1480. s->frame.nb_samples = s->avctx->frame_size;
  1481. if ((ret = ff_get_buffer(s->avctx, &s->frame)) < 0) {
  1482. av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1483. return ret;
  1484. }
  1485. samples = (OUT_INT **)s->frame.extended_data;
  1486. }
  1487. /* apply the synthesis filter */
  1488. for (ch = 0; ch < s->nb_channels; ch++) {
  1489. int sample_stride;
  1490. if (s->avctx->sample_fmt == OUT_FMT_P) {
  1491. samples_ptr = samples[ch];
  1492. sample_stride = 1;
  1493. } else {
  1494. samples_ptr = samples[0] + ch;
  1495. sample_stride = s->nb_channels;
  1496. }
  1497. for (i = 0; i < nb_frames; i++) {
  1498. RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch],
  1499. &(s->synth_buf_offset[ch]),
  1500. RENAME(ff_mpa_synth_window),
  1501. &s->dither_state, samples_ptr,
  1502. sample_stride, s->sb_samples[ch][i]);
  1503. samples_ptr += 32 * sample_stride;
  1504. }
  1505. }
  1506. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  1507. }
  1508. static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
  1509. AVPacket *avpkt)
  1510. {
  1511. const uint8_t *buf = avpkt->data;
  1512. int buf_size = avpkt->size;
  1513. MPADecodeContext *s = avctx->priv_data;
  1514. uint32_t header;
  1515. int ret;
  1516. while(buf_size && !*buf){
  1517. buf++;
  1518. buf_size--;
  1519. }
  1520. if (buf_size < HEADER_SIZE)
  1521. return AVERROR_INVALIDDATA;
  1522. header = AV_RB32(buf);
  1523. if (header>>8 == AV_RB32("TAG")>>8) {
  1524. av_log(avctx, AV_LOG_DEBUG, "discarding ID3 tag\n");
  1525. return buf_size;
  1526. }
  1527. if (ff_mpa_check_header(header) < 0) {
  1528. av_log(avctx, AV_LOG_ERROR, "Header missing\n");
  1529. return AVERROR_INVALIDDATA;
  1530. }
  1531. if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
  1532. /* free format: prepare to compute frame size */
  1533. s->frame_size = -1;
  1534. return AVERROR_INVALIDDATA;
  1535. }
  1536. /* update codec info */
  1537. avctx->channels = s->nb_channels;
  1538. avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
  1539. if (!avctx->bit_rate)
  1540. avctx->bit_rate = s->bit_rate;
  1541. if (s->frame_size <= 0 || s->frame_size > buf_size) {
  1542. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  1543. return AVERROR_INVALIDDATA;
  1544. } else if (s->frame_size < buf_size) {
  1545. av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
  1546. buf_size= s->frame_size;
  1547. }
  1548. ret = mp_decode_frame(s, NULL, buf, buf_size);
  1549. if (ret >= 0) {
  1550. *got_frame_ptr = 1;
  1551. *(AVFrame *)data = s->frame;
  1552. avctx->sample_rate = s->sample_rate;
  1553. //FIXME maybe move the other codec info stuff from above here too
  1554. } else {
  1555. av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
  1556. /* Only return an error if the bad frame makes up the whole packet or
  1557. * the error is related to buffer management.
  1558. * If there is more data in the packet, just consume the bad frame
  1559. * instead of returning an error, which would discard the whole
  1560. * packet. */
  1561. *got_frame_ptr = 0;
  1562. if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
  1563. return ret;
  1564. }
  1565. s->frame_size = 0;
  1566. return buf_size;
  1567. }
  1568. static void mp_flush(MPADecodeContext *ctx)
  1569. {
  1570. memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf));
  1571. ctx->last_buf_size = 0;
  1572. }
  1573. static void flush(AVCodecContext *avctx)
  1574. {
  1575. mp_flush(avctx->priv_data);
  1576. }
  1577. #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
  1578. static int decode_frame_adu(AVCodecContext *avctx, void *data,
  1579. int *got_frame_ptr, AVPacket *avpkt)
  1580. {
  1581. const uint8_t *buf = avpkt->data;
  1582. int buf_size = avpkt->size;
  1583. MPADecodeContext *s = avctx->priv_data;
  1584. uint32_t header;
  1585. int len, ret;
  1586. int av_unused out_size;
  1587. len = buf_size;
  1588. // Discard too short frames
  1589. if (buf_size < HEADER_SIZE) {
  1590. av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
  1591. return AVERROR_INVALIDDATA;
  1592. }
  1593. if (len > MPA_MAX_CODED_FRAME_SIZE)
  1594. len = MPA_MAX_CODED_FRAME_SIZE;
  1595. // Get header and restore sync word
  1596. header = AV_RB32(buf) | 0xffe00000;
  1597. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  1598. av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
  1599. return AVERROR_INVALIDDATA;
  1600. }
  1601. avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  1602. /* update codec info */
  1603. avctx->sample_rate = s->sample_rate;
  1604. avctx->channels = s->nb_channels;
  1605. if (!avctx->bit_rate)
  1606. avctx->bit_rate = s->bit_rate;
  1607. s->frame_size = len;
  1608. ret = mp_decode_frame(s, NULL, buf, buf_size);
  1609. if (ret < 0) {
  1610. av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
  1611. return ret;
  1612. }
  1613. *got_frame_ptr = 1;
  1614. *(AVFrame *)data = s->frame;
  1615. return buf_size;
  1616. }
  1617. #endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
  1618. #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
  1619. /**
  1620. * Context for MP3On4 decoder
  1621. */
  1622. typedef struct MP3On4DecodeContext {
  1623. AVFrame *frame;
  1624. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  1625. int syncword; ///< syncword patch
  1626. const uint8_t *coff; ///< channel offsets in output buffer
  1627. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  1628. } MP3On4DecodeContext;
  1629. #include "mpeg4audio.h"
  1630. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  1631. /* number of mp3 decoder instances */
  1632. static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
  1633. /* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
  1634. static const uint8_t chan_offset[8][5] = {
  1635. { 0 },
  1636. { 0 }, // C
  1637. { 0 }, // FLR
  1638. { 2, 0 }, // C FLR
  1639. { 2, 0, 3 }, // C FLR BS
  1640. { 2, 0, 3 }, // C FLR BLRS
  1641. { 2, 0, 4, 3 }, // C FLR BLRS LFE
  1642. { 2, 0, 6, 4, 3 }, // C FLR BLRS BLR LFE
  1643. };
  1644. /* mp3on4 channel layouts */
  1645. static const int16_t chan_layout[8] = {
  1646. 0,
  1647. AV_CH_LAYOUT_MONO,
  1648. AV_CH_LAYOUT_STEREO,
  1649. AV_CH_LAYOUT_SURROUND,
  1650. AV_CH_LAYOUT_4POINT0,
  1651. AV_CH_LAYOUT_5POINT0,
  1652. AV_CH_LAYOUT_5POINT1,
  1653. AV_CH_LAYOUT_7POINT1
  1654. };
  1655. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  1656. {
  1657. MP3On4DecodeContext *s = avctx->priv_data;
  1658. int i;
  1659. for (i = 0; i < s->frames; i++)
  1660. av_free(s->mp3decctx[i]);
  1661. return 0;
  1662. }
  1663. static int decode_init_mp3on4(AVCodecContext * avctx)
  1664. {
  1665. MP3On4DecodeContext *s = avctx->priv_data;
  1666. MPEG4AudioConfig cfg;
  1667. int i;
  1668. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  1669. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  1670. return AVERROR_INVALIDDATA;
  1671. }
  1672. avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
  1673. avctx->extradata_size * 8, 1);
  1674. if (!cfg.chan_config || cfg.chan_config > 7) {
  1675. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  1676. return AVERROR_INVALIDDATA;
  1677. }
  1678. s->frames = mp3Frames[cfg.chan_config];
  1679. s->coff = chan_offset[cfg.chan_config];
  1680. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  1681. avctx->channel_layout = chan_layout[cfg.chan_config];
  1682. if (cfg.sample_rate < 16000)
  1683. s->syncword = 0xffe00000;
  1684. else
  1685. s->syncword = 0xfff00000;
  1686. /* Init the first mp3 decoder in standard way, so that all tables get builded
  1687. * We replace avctx->priv_data with the context of the first decoder so that
  1688. * decode_init() does not have to be changed.
  1689. * Other decoders will be initialized here copying data from the first context
  1690. */
  1691. // Allocate zeroed memory for the first decoder context
  1692. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  1693. if (!s->mp3decctx[0])
  1694. goto alloc_fail;
  1695. // Put decoder context in place to make init_decode() happy
  1696. avctx->priv_data = s->mp3decctx[0];
  1697. decode_init(avctx);
  1698. s->frame = avctx->coded_frame;
  1699. // Restore mp3on4 context pointer
  1700. avctx->priv_data = s;
  1701. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  1702. /* Create a separate codec/context for each frame (first is already ok).
  1703. * Each frame is 1 or 2 channels - up to 5 frames allowed
  1704. */
  1705. for (i = 1; i < s->frames; i++) {
  1706. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  1707. if (!s->mp3decctx[i])
  1708. goto alloc_fail;
  1709. s->mp3decctx[i]->adu_mode = 1;
  1710. s->mp3decctx[i]->avctx = avctx;
  1711. s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
  1712. }
  1713. return 0;
  1714. alloc_fail:
  1715. decode_close_mp3on4(avctx);
  1716. return AVERROR(ENOMEM);
  1717. }
  1718. static void flush_mp3on4(AVCodecContext *avctx)
  1719. {
  1720. int i;
  1721. MP3On4DecodeContext *s = avctx->priv_data;
  1722. for (i = 0; i < s->frames; i++)
  1723. mp_flush(s->mp3decctx[i]);
  1724. }
  1725. static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
  1726. int *got_frame_ptr, AVPacket *avpkt)
  1727. {
  1728. const uint8_t *buf = avpkt->data;
  1729. int buf_size = avpkt->size;
  1730. MP3On4DecodeContext *s = avctx->priv_data;
  1731. MPADecodeContext *m;
  1732. int fsize, len = buf_size, out_size = 0;
  1733. uint32_t header;
  1734. OUT_INT **out_samples;
  1735. OUT_INT *outptr[2];
  1736. int fr, ch, ret;
  1737. /* get output buffer */
  1738. s->frame->nb_samples = MPA_FRAME_SIZE;
  1739. if ((ret = ff_get_buffer(avctx, s->frame)) < 0) {
  1740. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1741. return ret;
  1742. }
  1743. out_samples = (OUT_INT **)s->frame->extended_data;
  1744. // Discard too short frames
  1745. if (buf_size < HEADER_SIZE)
  1746. return AVERROR_INVALIDDATA;
  1747. avctx->bit_rate = 0;
  1748. ch = 0;
  1749. for (fr = 0; fr < s->frames; fr++) {
  1750. fsize = AV_RB16(buf) >> 4;
  1751. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  1752. m = s->mp3decctx[fr];
  1753. av_assert1(m);
  1754. if (fsize < HEADER_SIZE) {
  1755. av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
  1756. return AVERROR_INVALIDDATA;
  1757. }
  1758. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  1759. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  1760. break;
  1761. avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  1762. if (ch + m->nb_channels > avctx->channels || s->coff[fr] + m->nb_channels > avctx->channels) {
  1763. av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
  1764. "channel count\n");
  1765. return AVERROR_INVALIDDATA;
  1766. }
  1767. ch += m->nb_channels;
  1768. outptr[0] = out_samples[s->coff[fr]];
  1769. if (m->nb_channels > 1)
  1770. outptr[1] = out_samples[s->coff[fr] + 1];
  1771. if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0)
  1772. return ret;
  1773. out_size += ret;
  1774. buf += fsize;
  1775. len -= fsize;
  1776. avctx->bit_rate += m->bit_rate;
  1777. }
  1778. /* update codec info */
  1779. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  1780. s->frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
  1781. *got_frame_ptr = 1;
  1782. *(AVFrame *)data = *s->frame;
  1783. return buf_size;
  1784. }
  1785. #endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */
  1786. #if !CONFIG_FLOAT
  1787. #if CONFIG_MP1_DECODER
  1788. AVCodec ff_mp1_decoder = {
  1789. .name = "mp1",
  1790. .type = AVMEDIA_TYPE_AUDIO,
  1791. .id = AV_CODEC_ID_MP1,
  1792. .priv_data_size = sizeof(MPADecodeContext),
  1793. .init = decode_init,
  1794. .decode = decode_frame,
  1795. .capabilities = CODEC_CAP_DR1,
  1796. .flush = flush,
  1797. .long_name = NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
  1798. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1799. AV_SAMPLE_FMT_S16,
  1800. AV_SAMPLE_FMT_NONE },
  1801. };
  1802. #endif
  1803. #if CONFIG_MP2_DECODER
  1804. AVCodec ff_mp2_decoder = {
  1805. .name = "mp2",
  1806. .type = AVMEDIA_TYPE_AUDIO,
  1807. .id = AV_CODEC_ID_MP2,
  1808. .priv_data_size = sizeof(MPADecodeContext),
  1809. .init = decode_init,
  1810. .decode = decode_frame,
  1811. .capabilities = CODEC_CAP_DR1,
  1812. .flush = flush,
  1813. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  1814. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1815. AV_SAMPLE_FMT_S16,
  1816. AV_SAMPLE_FMT_NONE },
  1817. };
  1818. #endif
  1819. #if CONFIG_MP3_DECODER
  1820. AVCodec ff_mp3_decoder = {
  1821. .name = "mp3",
  1822. .type = AVMEDIA_TYPE_AUDIO,
  1823. .id = AV_CODEC_ID_MP3,
  1824. .priv_data_size = sizeof(MPADecodeContext),
  1825. .init = decode_init,
  1826. .decode = decode_frame,
  1827. .capabilities = CODEC_CAP_DR1,
  1828. .flush = flush,
  1829. .long_name = NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  1830. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1831. AV_SAMPLE_FMT_S16,
  1832. AV_SAMPLE_FMT_NONE },
  1833. };
  1834. #endif
  1835. #if CONFIG_MP3ADU_DECODER
  1836. AVCodec ff_mp3adu_decoder = {
  1837. .name = "mp3adu",
  1838. .type = AVMEDIA_TYPE_AUDIO,
  1839. .id = AV_CODEC_ID_MP3ADU,
  1840. .priv_data_size = sizeof(MPADecodeContext),
  1841. .init = decode_init,
  1842. .decode = decode_frame_adu,
  1843. .capabilities = CODEC_CAP_DR1,
  1844. .flush = flush,
  1845. .long_name = NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  1846. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1847. AV_SAMPLE_FMT_S16,
  1848. AV_SAMPLE_FMT_NONE },
  1849. };
  1850. #endif
  1851. #if CONFIG_MP3ON4_DECODER
  1852. AVCodec ff_mp3on4_decoder = {
  1853. .name = "mp3on4",
  1854. .type = AVMEDIA_TYPE_AUDIO,
  1855. .id = AV_CODEC_ID_MP3ON4,
  1856. .priv_data_size = sizeof(MP3On4DecodeContext),
  1857. .init = decode_init_mp3on4,
  1858. .close = decode_close_mp3on4,
  1859. .decode = decode_frame_mp3on4,
  1860. .capabilities = CODEC_CAP_DR1,
  1861. .flush = flush_mp3on4,
  1862. .long_name = NULL_IF_CONFIG_SMALL("MP3onMP4"),
  1863. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1864. AV_SAMPLE_FMT_NONE },
  1865. };
  1866. #endif
  1867. #endif