You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2531 lines
94KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/channel_layout.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/float_dsp.h"
  30. #include "libavutil/intmath.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "libavutil/mathematics.h"
  33. #include "libavutil/samplefmt.h"
  34. #include "avcodec.h"
  35. #include "dsputil.h"
  36. #include "fft.h"
  37. #include "get_bits.h"
  38. #include "put_bits.h"
  39. #include "dcadata.h"
  40. #include "dcahuff.h"
  41. #include "dca.h"
  42. #include "dca_parser.h"
  43. #include "synth_filter.h"
  44. #include "dcadsp.h"
  45. #include "fmtconvert.h"
  46. #include "internal.h"
  47. #if ARCH_ARM
  48. # include "arm/dca.h"
  49. #endif
  50. //#define TRACE
  51. #define DCA_PRIM_CHANNELS_MAX (7)
  52. #define DCA_SUBBANDS (64)
  53. #define DCA_ABITS_MAX (32) /* Should be 28 */
  54. #define DCA_SUBSUBFRAMES_MAX (4)
  55. #define DCA_SUBFRAMES_MAX (16)
  56. #define DCA_BLOCKS_MAX (16)
  57. #define DCA_LFE_MAX (3)
  58. #define DCA_CHSETS_MAX (4)
  59. #define DCA_CHSET_CHANS_MAX (8)
  60. enum DCAMode {
  61. DCA_MONO = 0,
  62. DCA_CHANNEL,
  63. DCA_STEREO,
  64. DCA_STEREO_SUMDIFF,
  65. DCA_STEREO_TOTAL,
  66. DCA_3F,
  67. DCA_2F1R,
  68. DCA_3F1R,
  69. DCA_2F2R,
  70. DCA_3F2R,
  71. DCA_4F2R
  72. };
  73. /* these are unconfirmed but should be mostly correct */
  74. enum DCAExSSSpeakerMask {
  75. DCA_EXSS_FRONT_CENTER = 0x0001,
  76. DCA_EXSS_FRONT_LEFT_RIGHT = 0x0002,
  77. DCA_EXSS_SIDE_REAR_LEFT_RIGHT = 0x0004,
  78. DCA_EXSS_LFE = 0x0008,
  79. DCA_EXSS_REAR_CENTER = 0x0010,
  80. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT = 0x0020,
  81. DCA_EXSS_REAR_LEFT_RIGHT = 0x0040,
  82. DCA_EXSS_FRONT_HIGH_CENTER = 0x0080,
  83. DCA_EXSS_OVERHEAD = 0x0100,
  84. DCA_EXSS_CENTER_LEFT_RIGHT = 0x0200,
  85. DCA_EXSS_WIDE_LEFT_RIGHT = 0x0400,
  86. DCA_EXSS_SIDE_LEFT_RIGHT = 0x0800,
  87. DCA_EXSS_LFE2 = 0x1000,
  88. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT = 0x2000,
  89. DCA_EXSS_REAR_HIGH_CENTER = 0x4000,
  90. DCA_EXSS_REAR_HIGH_LEFT_RIGHT = 0x8000,
  91. };
  92. enum DCAXxchSpeakerMask {
  93. DCA_XXCH_FRONT_CENTER = 0x0000001,
  94. DCA_XXCH_FRONT_LEFT = 0x0000002,
  95. DCA_XXCH_FRONT_RIGHT = 0x0000004,
  96. DCA_XXCH_SIDE_REAR_LEFT = 0x0000008,
  97. DCA_XXCH_SIDE_REAR_RIGHT = 0x0000010,
  98. DCA_XXCH_LFE1 = 0x0000020,
  99. DCA_XXCH_REAR_CENTER = 0x0000040,
  100. DCA_XXCH_SURROUND_REAR_LEFT = 0x0000080,
  101. DCA_XXCH_SURROUND_REAR_RIGHT = 0x0000100,
  102. DCA_XXCH_SIDE_SURROUND_LEFT = 0x0000200,
  103. DCA_XXCH_SIDE_SURROUND_RIGHT = 0x0000400,
  104. DCA_XXCH_FRONT_CENTER_LEFT = 0x0000800,
  105. DCA_XXCH_FRONT_CENTER_RIGHT = 0x0001000,
  106. DCA_XXCH_FRONT_HIGH_LEFT = 0x0002000,
  107. DCA_XXCH_FRONT_HIGH_CENTER = 0x0004000,
  108. DCA_XXCH_FRONT_HIGH_RIGHT = 0x0008000,
  109. DCA_XXCH_LFE2 = 0x0010000,
  110. DCA_XXCH_SIDE_FRONT_LEFT = 0x0020000,
  111. DCA_XXCH_SIDE_FRONT_RIGHT = 0x0040000,
  112. DCA_XXCH_OVERHEAD = 0x0080000,
  113. DCA_XXCH_SIDE_HIGH_LEFT = 0x0100000,
  114. DCA_XXCH_SIDE_HIGH_RIGHT = 0x0200000,
  115. DCA_XXCH_REAR_HIGH_CENTER = 0x0400000,
  116. DCA_XXCH_REAR_HIGH_LEFT = 0x0800000,
  117. DCA_XXCH_REAR_HIGH_RIGHT = 0x1000000,
  118. DCA_XXCH_REAR_LOW_CENTER = 0x2000000,
  119. DCA_XXCH_REAR_LOW_LEFT = 0x4000000,
  120. DCA_XXCH_REAR_LOW_RIGHT = 0x8000000,
  121. };
  122. static const uint32_t map_xxch_to_native[28] = {
  123. AV_CH_FRONT_CENTER,
  124. AV_CH_FRONT_LEFT,
  125. AV_CH_FRONT_RIGHT,
  126. AV_CH_SIDE_LEFT,
  127. AV_CH_SIDE_RIGHT,
  128. AV_CH_LOW_FREQUENCY,
  129. AV_CH_BACK_CENTER,
  130. AV_CH_BACK_LEFT,
  131. AV_CH_BACK_RIGHT,
  132. AV_CH_SIDE_LEFT, /* side surround left -- dup sur side L */
  133. AV_CH_SIDE_RIGHT, /* side surround right -- dup sur side R */
  134. AV_CH_FRONT_LEFT_OF_CENTER,
  135. AV_CH_FRONT_RIGHT_OF_CENTER,
  136. AV_CH_TOP_FRONT_LEFT,
  137. AV_CH_TOP_FRONT_CENTER,
  138. AV_CH_TOP_FRONT_RIGHT,
  139. AV_CH_LOW_FREQUENCY, /* lfe2 -- duplicate lfe1 position */
  140. AV_CH_FRONT_LEFT_OF_CENTER, /* side front left -- dup front cntr L */
  141. AV_CH_FRONT_RIGHT_OF_CENTER,/* side front right -- dup front cntr R */
  142. AV_CH_TOP_CENTER, /* overhead */
  143. AV_CH_TOP_FRONT_LEFT, /* side high left -- dup */
  144. AV_CH_TOP_FRONT_RIGHT, /* side high right -- dup */
  145. AV_CH_TOP_BACK_CENTER,
  146. AV_CH_TOP_BACK_LEFT,
  147. AV_CH_TOP_BACK_RIGHT,
  148. AV_CH_BACK_CENTER, /* rear low center -- dup */
  149. AV_CH_BACK_LEFT, /* rear low left -- dup */
  150. AV_CH_BACK_RIGHT /* read low right -- dup */
  151. };
  152. enum DCAExtensionMask {
  153. DCA_EXT_CORE = 0x001, ///< core in core substream
  154. DCA_EXT_XXCH = 0x002, ///< XXCh channels extension in core substream
  155. DCA_EXT_X96 = 0x004, ///< 96/24 extension in core substream
  156. DCA_EXT_XCH = 0x008, ///< XCh channel extension in core substream
  157. DCA_EXT_EXSS_CORE = 0x010, ///< core in ExSS (extension substream)
  158. DCA_EXT_EXSS_XBR = 0x020, ///< extended bitrate extension in ExSS
  159. DCA_EXT_EXSS_XXCH = 0x040, ///< XXCh channels extension in ExSS
  160. DCA_EXT_EXSS_X96 = 0x080, ///< 96/24 extension in ExSS
  161. DCA_EXT_EXSS_LBR = 0x100, ///< low bitrate component in ExSS
  162. DCA_EXT_EXSS_XLL = 0x200, ///< lossless extension in ExSS
  163. };
  164. /* -1 are reserved or unknown */
  165. static const int dca_ext_audio_descr_mask[] = {
  166. DCA_EXT_XCH,
  167. -1,
  168. DCA_EXT_X96,
  169. DCA_EXT_XCH | DCA_EXT_X96,
  170. -1,
  171. -1,
  172. DCA_EXT_XXCH,
  173. -1,
  174. };
  175. /* extensions that reside in core substream */
  176. #define DCA_CORE_EXTS (DCA_EXT_XCH | DCA_EXT_XXCH | DCA_EXT_X96)
  177. /* Tables for mapping dts channel configurations to libavcodec multichannel api.
  178. * Some compromises have been made for special configurations. Most configurations
  179. * are never used so complete accuracy is not needed.
  180. *
  181. * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
  182. * S -> side, when both rear and back are configured move one of them to the side channel
  183. * OV -> center back
  184. * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
  185. */
  186. static const uint64_t dca_core_channel_layout[] = {
  187. AV_CH_FRONT_CENTER, ///< 1, A
  188. AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
  189. AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
  190. AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference)
  191. AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total)
  192. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R
  193. AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S
  194. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S
  195. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR
  196. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
  197. AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR
  198. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  199. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
  200. AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
  201. AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV
  202. AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  203. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER |
  204. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR
  205. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  206. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  207. AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
  208. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  209. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  210. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
  211. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  212. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  213. AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR
  214. };
  215. static const int8_t dca_lfe_index[] = {
  216. 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3
  217. };
  218. static const int8_t dca_channel_reorder_lfe[][9] = {
  219. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  220. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  221. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  222. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  223. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  224. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  225. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  226. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  227. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  228. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  229. { 3, 4, 0, 1, 5, 6, -1, -1, -1},
  230. { 2, 0, 1, 4, 5, 6, -1, -1, -1},
  231. { 0, 6, 4, 5, 2, 3, -1, -1, -1},
  232. { 4, 2, 5, 0, 1, 6, 7, -1, -1},
  233. { 5, 6, 0, 1, 7, 3, 8, 4, -1},
  234. { 4, 2, 5, 0, 1, 6, 8, 7, -1},
  235. };
  236. static const int8_t dca_channel_reorder_lfe_xch[][9] = {
  237. { 0, 2, -1, -1, -1, -1, -1, -1, -1},
  238. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  239. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  240. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  241. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  242. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  243. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  244. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  245. { 0, 1, 4, 5, 3, -1, -1, -1, -1},
  246. { 2, 0, 1, 5, 6, 4, -1, -1, -1},
  247. { 3, 4, 0, 1, 6, 7, 5, -1, -1},
  248. { 2, 0, 1, 4, 5, 6, 7, -1, -1},
  249. { 0, 6, 4, 5, 2, 3, 7, -1, -1},
  250. { 4, 2, 5, 0, 1, 7, 8, 6, -1},
  251. { 5, 6, 0, 1, 8, 3, 9, 4, 7},
  252. { 4, 2, 5, 0, 1, 6, 9, 8, 7},
  253. };
  254. static const int8_t dca_channel_reorder_nolfe[][9] = {
  255. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  256. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  257. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  258. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  259. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  260. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  261. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  262. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  263. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  264. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  265. { 2, 3, 0, 1, 4, 5, -1, -1, -1},
  266. { 2, 0, 1, 3, 4, 5, -1, -1, -1},
  267. { 0, 5, 3, 4, 1, 2, -1, -1, -1},
  268. { 3, 2, 4, 0, 1, 5, 6, -1, -1},
  269. { 4, 5, 0, 1, 6, 2, 7, 3, -1},
  270. { 3, 2, 4, 0, 1, 5, 7, 6, -1},
  271. };
  272. static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
  273. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  274. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  275. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  276. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  277. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  278. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  279. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  280. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  281. { 0, 1, 3, 4, 2, -1, -1, -1, -1},
  282. { 2, 0, 1, 4, 5, 3, -1, -1, -1},
  283. { 2, 3, 0, 1, 5, 6, 4, -1, -1},
  284. { 2, 0, 1, 3, 4, 5, 6, -1, -1},
  285. { 0, 5, 3, 4, 1, 2, 6, -1, -1},
  286. { 3, 2, 4, 0, 1, 6, 7, 5, -1},
  287. { 4, 5, 0, 1, 7, 2, 8, 3, 6},
  288. { 3, 2, 4, 0, 1, 5, 8, 7, 6},
  289. };
  290. #define DCA_DOLBY 101 /* FIXME */
  291. #define DCA_CHANNEL_BITS 6
  292. #define DCA_CHANNEL_MASK 0x3F
  293. #define DCA_LFE 0x80
  294. #define HEADER_SIZE 14
  295. #define DCA_MAX_FRAME_SIZE 16384
  296. #define DCA_MAX_EXSS_HEADER_SIZE 4096
  297. #define DCA_BUFFER_PADDING_SIZE 1024
  298. /** Bit allocation */
  299. typedef struct {
  300. int offset; ///< code values offset
  301. int maxbits[8]; ///< max bits in VLC
  302. int wrap; ///< wrap for get_vlc2()
  303. VLC vlc[8]; ///< actual codes
  304. } BitAlloc;
  305. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  306. static BitAlloc dca_tmode; ///< transition mode VLCs
  307. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  308. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  309. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  310. int idx)
  311. {
  312. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  313. ba->offset;
  314. }
  315. typedef struct {
  316. AVCodecContext *avctx;
  317. AVFrame frame;
  318. /* Frame header */
  319. int frame_type; ///< type of the current frame
  320. int samples_deficit; ///< deficit sample count
  321. int crc_present; ///< crc is present in the bitstream
  322. int sample_blocks; ///< number of PCM sample blocks
  323. int frame_size; ///< primary frame byte size
  324. int amode; ///< audio channels arrangement
  325. int sample_rate; ///< audio sampling rate
  326. int bit_rate; ///< transmission bit rate
  327. int bit_rate_index; ///< transmission bit rate index
  328. int downmix; ///< embedded downmix enabled
  329. int dynrange; ///< embedded dynamic range flag
  330. int timestamp; ///< embedded time stamp flag
  331. int aux_data; ///< auxiliary data flag
  332. int hdcd; ///< source material is mastered in HDCD
  333. int ext_descr; ///< extension audio descriptor flag
  334. int ext_coding; ///< extended coding flag
  335. int aspf; ///< audio sync word insertion flag
  336. int lfe; ///< low frequency effects flag
  337. int predictor_history; ///< predictor history flag
  338. int header_crc; ///< header crc check bytes
  339. int multirate_inter; ///< multirate interpolator switch
  340. int version; ///< encoder software revision
  341. int copy_history; ///< copy history
  342. int source_pcm_res; ///< source pcm resolution
  343. int front_sum; ///< front sum/difference flag
  344. int surround_sum; ///< surround sum/difference flag
  345. int dialog_norm; ///< dialog normalisation parameter
  346. /* Primary audio coding header */
  347. int subframes; ///< number of subframes
  348. int total_channels; ///< number of channels including extensions
  349. int prim_channels; ///< number of primary audio channels
  350. int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
  351. int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
  352. int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
  353. int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
  354. int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
  355. int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
  356. int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
  357. float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
  358. /* Primary audio coding side information */
  359. int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes
  360. int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count
  361. int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
  362. int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
  363. int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
  364. int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
  365. int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2]; ///< scale factors (2 if transient)
  366. int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
  367. int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
  368. int downmix_coef[DCA_PRIM_CHANNELS_MAX][2]; ///< stereo downmix coefficients
  369. int dynrange_coef; ///< dynamic range coefficient
  370. int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
  371. float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data
  372. int lfe_scale_factor;
  373. /* Subband samples history (for ADPCM) */
  374. DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
  375. DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
  376. DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
  377. int hist_index[DCA_PRIM_CHANNELS_MAX];
  378. DECLARE_ALIGNED(32, float, raXin)[32];
  379. int output; ///< type of output
  380. DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
  381. float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
  382. float *extra_channels[DCA_PRIM_CHANNELS_MAX + 1];
  383. uint8_t *extra_channels_buffer;
  384. unsigned int extra_channels_buffer_size;
  385. uint8_t dca_buffer[DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE + DCA_BUFFER_PADDING_SIZE];
  386. int dca_buffer_size; ///< how much data is in the dca_buffer
  387. const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe
  388. GetBitContext gb;
  389. /* Current position in DCA frame */
  390. int current_subframe;
  391. int current_subsubframe;
  392. int core_ext_mask; ///< present extensions in the core substream
  393. /* XCh extension information */
  394. int xch_present; ///< XCh extension present and valid
  395. int xch_base_channel; ///< index of first (only) channel containing XCH data
  396. /* XXCH extension information */
  397. int xxch_chset;
  398. int xxch_nbits_spk_mask;
  399. uint32_t xxch_core_spkmask;
  400. uint32_t xxch_spk_masks[4]; /* speaker masks, last element is core mask */
  401. int xxch_chset_nch[4];
  402. float xxch_dmix_sf[DCA_CHSETS_MAX];
  403. uint32_t xxch_dmix_embedded; /* lower layer has mix pre-embedded, per chset */
  404. float xxch_dmix_coeff[DCA_PRIM_CHANNELS_MAX][32]; /* worst case sizing */
  405. int8_t xxch_order_tab[32];
  406. int8_t lfe_index;
  407. /* ExSS header parser */
  408. int static_fields; ///< static fields present
  409. int mix_metadata; ///< mixing metadata present
  410. int num_mix_configs; ///< number of mix out configurations
  411. int mix_config_num_ch[4]; ///< number of channels in each mix out configuration
  412. int profile;
  413. int debug_flag; ///< used for suppressing repeated error messages output
  414. AVFloatDSPContext fdsp;
  415. FFTContext imdct;
  416. SynthFilterContext synth;
  417. DCADSPContext dcadsp;
  418. FmtConvertContext fmt_conv;
  419. } DCAContext;
  420. static const uint16_t dca_vlc_offs[] = {
  421. 0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
  422. 5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
  423. 5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
  424. 7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
  425. 12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
  426. 18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
  427. };
  428. static av_cold void dca_init_vlcs(void)
  429. {
  430. static int vlcs_initialized = 0;
  431. int i, j, c = 14;
  432. static VLC_TYPE dca_table[23622][2];
  433. if (vlcs_initialized)
  434. return;
  435. dca_bitalloc_index.offset = 1;
  436. dca_bitalloc_index.wrap = 2;
  437. for (i = 0; i < 5; i++) {
  438. dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
  439. dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
  440. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  441. bitalloc_12_bits[i], 1, 1,
  442. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  443. }
  444. dca_scalefactor.offset = -64;
  445. dca_scalefactor.wrap = 2;
  446. for (i = 0; i < 5; i++) {
  447. dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
  448. dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
  449. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  450. scales_bits[i], 1, 1,
  451. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  452. }
  453. dca_tmode.offset = 0;
  454. dca_tmode.wrap = 1;
  455. for (i = 0; i < 4; i++) {
  456. dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
  457. dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
  458. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  459. tmode_bits[i], 1, 1,
  460. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  461. }
  462. for (i = 0; i < 10; i++)
  463. for (j = 0; j < 7; j++) {
  464. if (!bitalloc_codes[i][j])
  465. break;
  466. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  467. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  468. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
  469. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
  470. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  471. bitalloc_sizes[i],
  472. bitalloc_bits[i][j], 1, 1,
  473. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  474. c++;
  475. }
  476. vlcs_initialized = 1;
  477. }
  478. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  479. {
  480. while (len--)
  481. *dst++ = get_bits(gb, bits);
  482. }
  483. static inline int dca_xxch2index(DCAContext *s, int xxch_ch)
  484. {
  485. int i, base, mask;
  486. /* locate channel set containing the channel */
  487. for (i = -1, base = 0, mask = (s->xxch_core_spkmask & ~DCA_XXCH_LFE1);
  488. i <= s->xxch_chset && !(mask & xxch_ch); mask = s->xxch_spk_masks[++i])
  489. base += av_popcount(mask);
  490. return base + av_popcount(mask & (xxch_ch - 1));
  491. }
  492. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel,
  493. int xxch)
  494. {
  495. int i, j;
  496. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  497. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  498. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  499. int hdr_pos = 0, hdr_size = 0;
  500. float sign, mag, scale_factor;
  501. int this_chans, acc_mask;
  502. int embedded_downmix;
  503. int nchans, mask[8];
  504. int coeff, ichan;
  505. /* xxch has arbitrary sized audio coding headers */
  506. if (xxch) {
  507. hdr_pos = get_bits_count(&s->gb);
  508. hdr_size = get_bits(&s->gb, 7) + 1;
  509. }
  510. nchans = get_bits(&s->gb, 3) + 1;
  511. s->total_channels = nchans + base_channel;
  512. s->prim_channels = s->total_channels;
  513. /* obtain speaker layout mask & downmix coefficients for XXCH */
  514. if (xxch) {
  515. acc_mask = s->xxch_core_spkmask;
  516. this_chans = get_bits(&s->gb, s->xxch_nbits_spk_mask - 6) << 6;
  517. s->xxch_spk_masks[s->xxch_chset] = this_chans;
  518. s->xxch_chset_nch[s->xxch_chset] = nchans;
  519. for (i = 0; i <= s->xxch_chset; i++)
  520. acc_mask |= s->xxch_spk_masks[i];
  521. /* check for downmixing information */
  522. if (get_bits1(&s->gb)) {
  523. embedded_downmix = get_bits1(&s->gb);
  524. scale_factor =
  525. 1.0f / dca_downmix_scale_factors[(get_bits(&s->gb, 6) - 1) << 2];
  526. s->xxch_dmix_sf[s->xxch_chset] = scale_factor;
  527. for (i = base_channel; i < s->prim_channels; i++) {
  528. mask[i] = get_bits(&s->gb, s->xxch_nbits_spk_mask);
  529. }
  530. for (j = base_channel; j < s->prim_channels; j++) {
  531. memset(s->xxch_dmix_coeff[j], 0, sizeof(s->xxch_dmix_coeff[0]));
  532. s->xxch_dmix_embedded |= (embedded_downmix << j);
  533. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  534. if (mask[j] & (1 << i)) {
  535. if ((1 << i) == DCA_XXCH_LFE1) {
  536. av_log(s->avctx, AV_LOG_WARNING,
  537. "DCA-XXCH: dmix to LFE1 not supported.\n");
  538. continue;
  539. }
  540. coeff = get_bits(&s->gb, 7);
  541. sign = (coeff & 64) ? 1.0 : -1.0;
  542. mag = dca_downmix_scale_factors[((coeff & 63) - 1) << 2];
  543. ichan = dca_xxch2index(s, 1 << i);
  544. s->xxch_dmix_coeff[j][ichan] = sign * mag;
  545. }
  546. }
  547. }
  548. }
  549. }
  550. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  551. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  552. for (i = base_channel; i < s->prim_channels; i++) {
  553. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  554. if (s->subband_activity[i] > DCA_SUBBANDS)
  555. s->subband_activity[i] = DCA_SUBBANDS;
  556. }
  557. for (i = base_channel; i < s->prim_channels; i++) {
  558. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  559. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  560. s->vq_start_subband[i] = DCA_SUBBANDS;
  561. }
  562. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  563. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  564. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  565. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  566. /* Get codebooks quantization indexes */
  567. if (!base_channel)
  568. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  569. for (j = 1; j < 11; j++)
  570. for (i = base_channel; i < s->prim_channels; i++)
  571. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  572. /* Get scale factor adjustment */
  573. for (j = 0; j < 11; j++)
  574. for (i = base_channel; i < s->prim_channels; i++)
  575. s->scalefactor_adj[i][j] = 1;
  576. for (j = 1; j < 11; j++)
  577. for (i = base_channel; i < s->prim_channels; i++)
  578. if (s->quant_index_huffman[i][j] < thr[j])
  579. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  580. if (!xxch) {
  581. if (s->crc_present) {
  582. /* Audio header CRC check */
  583. get_bits(&s->gb, 16);
  584. }
  585. } else {
  586. /* Skip to the end of the header, also ignore CRC if present */
  587. i = get_bits_count(&s->gb);
  588. if (hdr_pos + 8 * hdr_size > i)
  589. skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i);
  590. }
  591. s->current_subframe = 0;
  592. s->current_subsubframe = 0;
  593. #ifdef TRACE
  594. av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
  595. av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
  596. for (i = base_channel; i < s->prim_channels; i++) {
  597. av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n",
  598. s->subband_activity[i]);
  599. av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n",
  600. s->vq_start_subband[i]);
  601. av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n",
  602. s->joint_intensity[i]);
  603. av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n",
  604. s->transient_huffman[i]);
  605. av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n",
  606. s->scalefactor_huffman[i]);
  607. av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n",
  608. s->bitalloc_huffman[i]);
  609. av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
  610. for (j = 0; j < 11; j++)
  611. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->quant_index_huffman[i][j]);
  612. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  613. av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
  614. for (j = 0; j < 11; j++)
  615. av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
  616. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  617. }
  618. #endif
  619. return 0;
  620. }
  621. static int dca_parse_frame_header(DCAContext *s)
  622. {
  623. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  624. /* Sync code */
  625. skip_bits_long(&s->gb, 32);
  626. /* Frame header */
  627. s->frame_type = get_bits(&s->gb, 1);
  628. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  629. s->crc_present = get_bits(&s->gb, 1);
  630. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  631. s->frame_size = get_bits(&s->gb, 14) + 1;
  632. if (s->frame_size < 95)
  633. return AVERROR_INVALIDDATA;
  634. s->amode = get_bits(&s->gb, 6);
  635. s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
  636. if (!s->sample_rate)
  637. return AVERROR_INVALIDDATA;
  638. s->bit_rate_index = get_bits(&s->gb, 5);
  639. s->bit_rate = dca_bit_rates[s->bit_rate_index];
  640. if (!s->bit_rate)
  641. return AVERROR_INVALIDDATA;
  642. s->downmix = get_bits(&s->gb, 1); /* note: this is FixedBit == 0 */
  643. s->dynrange = get_bits(&s->gb, 1);
  644. s->timestamp = get_bits(&s->gb, 1);
  645. s->aux_data = get_bits(&s->gb, 1);
  646. s->hdcd = get_bits(&s->gb, 1);
  647. s->ext_descr = get_bits(&s->gb, 3);
  648. s->ext_coding = get_bits(&s->gb, 1);
  649. s->aspf = get_bits(&s->gb, 1);
  650. s->lfe = get_bits(&s->gb, 2);
  651. s->predictor_history = get_bits(&s->gb, 1);
  652. if (s->lfe == 3) {
  653. s->lfe = 0;
  654. av_log_ask_for_sample(s->avctx, "LFE is 3\n");
  655. return AVERROR_PATCHWELCOME;
  656. }
  657. /* TODO: check CRC */
  658. if (s->crc_present)
  659. s->header_crc = get_bits(&s->gb, 16);
  660. s->multirate_inter = get_bits(&s->gb, 1);
  661. s->version = get_bits(&s->gb, 4);
  662. s->copy_history = get_bits(&s->gb, 2);
  663. s->source_pcm_res = get_bits(&s->gb, 3);
  664. s->front_sum = get_bits(&s->gb, 1);
  665. s->surround_sum = get_bits(&s->gb, 1);
  666. s->dialog_norm = get_bits(&s->gb, 4);
  667. /* FIXME: channels mixing levels */
  668. s->output = s->amode;
  669. if (s->lfe)
  670. s->output |= DCA_LFE;
  671. #ifdef TRACE
  672. av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
  673. av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
  674. av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
  675. av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
  676. s->sample_blocks, s->sample_blocks * 32);
  677. av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
  678. av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
  679. s->amode, dca_channels[s->amode]);
  680. av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
  681. s->sample_rate);
  682. av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
  683. s->bit_rate);
  684. av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix);
  685. av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
  686. av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
  687. av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
  688. av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
  689. av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
  690. av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
  691. av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
  692. av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
  693. av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
  694. s->predictor_history);
  695. av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
  696. av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
  697. s->multirate_inter);
  698. av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
  699. av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
  700. av_log(s->avctx, AV_LOG_DEBUG,
  701. "source pcm resolution: %i (%i bits/sample)\n",
  702. s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
  703. av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
  704. av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
  705. av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
  706. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  707. #endif
  708. /* Primary audio coding header */
  709. s->subframes = get_bits(&s->gb, 4) + 1;
  710. return dca_parse_audio_coding_header(s, 0, 0);
  711. }
  712. static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
  713. {
  714. if (level < 5) {
  715. /* huffman encoded */
  716. value += get_bitalloc(gb, &dca_scalefactor, level);
  717. value = av_clip(value, 0, (1 << log2range) - 1);
  718. } else if (level < 8) {
  719. if (level + 1 > log2range) {
  720. skip_bits(gb, level + 1 - log2range);
  721. value = get_bits(gb, log2range);
  722. } else {
  723. value = get_bits(gb, level + 1);
  724. }
  725. }
  726. return value;
  727. }
  728. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  729. {
  730. /* Primary audio coding side information */
  731. int j, k;
  732. if (get_bits_left(&s->gb) < 0)
  733. return AVERROR_INVALIDDATA;
  734. if (!base_channel) {
  735. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  736. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  737. }
  738. for (j = base_channel; j < s->prim_channels; j++) {
  739. for (k = 0; k < s->subband_activity[j]; k++)
  740. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  741. }
  742. /* Get prediction codebook */
  743. for (j = base_channel; j < s->prim_channels; j++) {
  744. for (k = 0; k < s->subband_activity[j]; k++) {
  745. if (s->prediction_mode[j][k] > 0) {
  746. /* (Prediction coefficient VQ address) */
  747. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  748. }
  749. }
  750. }
  751. /* Bit allocation index */
  752. for (j = base_channel; j < s->prim_channels; j++) {
  753. for (k = 0; k < s->vq_start_subband[j]; k++) {
  754. if (s->bitalloc_huffman[j] == 6)
  755. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  756. else if (s->bitalloc_huffman[j] == 5)
  757. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  758. else if (s->bitalloc_huffman[j] == 7) {
  759. av_log(s->avctx, AV_LOG_ERROR,
  760. "Invalid bit allocation index\n");
  761. return AVERROR_INVALIDDATA;
  762. } else {
  763. s->bitalloc[j][k] =
  764. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  765. }
  766. if (s->bitalloc[j][k] > 26) {
  767. av_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
  768. j, k, s->bitalloc[j][k]);
  769. return AVERROR_INVALIDDATA;
  770. }
  771. }
  772. }
  773. /* Transition mode */
  774. for (j = base_channel; j < s->prim_channels; j++) {
  775. for (k = 0; k < s->subband_activity[j]; k++) {
  776. s->transition_mode[j][k] = 0;
  777. if (s->subsubframes[s->current_subframe] > 1 &&
  778. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  779. s->transition_mode[j][k] =
  780. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  781. }
  782. }
  783. }
  784. if (get_bits_left(&s->gb) < 0)
  785. return AVERROR_INVALIDDATA;
  786. for (j = base_channel; j < s->prim_channels; j++) {
  787. const uint32_t *scale_table;
  788. int scale_sum, log_size;
  789. memset(s->scale_factor[j], 0,
  790. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  791. if (s->scalefactor_huffman[j] == 6) {
  792. scale_table = scale_factor_quant7;
  793. log_size = 7;
  794. } else {
  795. scale_table = scale_factor_quant6;
  796. log_size = 6;
  797. }
  798. /* When huffman coded, only the difference is encoded */
  799. scale_sum = 0;
  800. for (k = 0; k < s->subband_activity[j]; k++) {
  801. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  802. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  803. s->scale_factor[j][k][0] = scale_table[scale_sum];
  804. }
  805. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  806. /* Get second scale factor */
  807. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  808. s->scale_factor[j][k][1] = scale_table[scale_sum];
  809. }
  810. }
  811. }
  812. /* Joint subband scale factor codebook select */
  813. for (j = base_channel; j < s->prim_channels; j++) {
  814. /* Transmitted only if joint subband coding enabled */
  815. if (s->joint_intensity[j] > 0)
  816. s->joint_huff[j] = get_bits(&s->gb, 3);
  817. }
  818. if (get_bits_left(&s->gb) < 0)
  819. return AVERROR_INVALIDDATA;
  820. /* Scale factors for joint subband coding */
  821. for (j = base_channel; j < s->prim_channels; j++) {
  822. int source_channel;
  823. /* Transmitted only if joint subband coding enabled */
  824. if (s->joint_intensity[j] > 0) {
  825. int scale = 0;
  826. source_channel = s->joint_intensity[j] - 1;
  827. /* When huffman coded, only the difference is encoded
  828. * (is this valid as well for joint scales ???) */
  829. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  830. scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
  831. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  832. }
  833. if (!(s->debug_flag & 0x02)) {
  834. av_log(s->avctx, AV_LOG_DEBUG,
  835. "Joint stereo coding not supported\n");
  836. s->debug_flag |= 0x02;
  837. }
  838. }
  839. }
  840. /* Stereo downmix coefficients */
  841. if (!base_channel && s->prim_channels > 2) {
  842. if (s->downmix) {
  843. for (j = base_channel; j < s->prim_channels; j++) {
  844. s->downmix_coef[j][0] = get_bits(&s->gb, 7);
  845. s->downmix_coef[j][1] = get_bits(&s->gb, 7);
  846. }
  847. } else {
  848. int am = s->amode & DCA_CHANNEL_MASK;
  849. if (am >= FF_ARRAY_ELEMS(dca_default_coeffs)) {
  850. av_log(s->avctx, AV_LOG_ERROR,
  851. "Invalid channel mode %d\n", am);
  852. return AVERROR_INVALIDDATA;
  853. }
  854. for (j = base_channel; j < FFMIN(s->prim_channels, FF_ARRAY_ELEMS(dca_default_coeffs[am])); j++) {
  855. s->downmix_coef[j][0] = dca_default_coeffs[am][j][0];
  856. s->downmix_coef[j][1] = dca_default_coeffs[am][j][1];
  857. }
  858. }
  859. }
  860. /* Dynamic range coefficient */
  861. if (!base_channel && s->dynrange)
  862. s->dynrange_coef = get_bits(&s->gb, 8);
  863. /* Side information CRC check word */
  864. if (s->crc_present) {
  865. get_bits(&s->gb, 16);
  866. }
  867. /*
  868. * Primary audio data arrays
  869. */
  870. /* VQ encoded high frequency subbands */
  871. for (j = base_channel; j < s->prim_channels; j++)
  872. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  873. /* 1 vector -> 32 samples */
  874. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  875. /* Low frequency effect data */
  876. if (!base_channel && s->lfe) {
  877. int quant7;
  878. /* LFE samples */
  879. int lfe_samples = 2 * s->lfe * (4 + block_index);
  880. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  881. float lfe_scale;
  882. for (j = lfe_samples; j < lfe_end_sample; j++) {
  883. /* Signed 8 bits int */
  884. s->lfe_data[j] = get_sbits(&s->gb, 8);
  885. }
  886. /* Scale factor index */
  887. quant7 = get_bits(&s->gb, 8);
  888. if (quant7 > 127) {
  889. av_log_ask_for_sample(s->avctx, "LFEScaleIndex larger than 127\n");
  890. return AVERROR_INVALIDDATA;
  891. }
  892. s->lfe_scale_factor = scale_factor_quant7[quant7];
  893. /* Quantization step size * scale factor */
  894. lfe_scale = 0.035 * s->lfe_scale_factor;
  895. for (j = lfe_samples; j < lfe_end_sample; j++)
  896. s->lfe_data[j] *= lfe_scale;
  897. }
  898. #ifdef TRACE
  899. av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n",
  900. s->subsubframes[s->current_subframe]);
  901. av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
  902. s->partial_samples[s->current_subframe]);
  903. for (j = base_channel; j < s->prim_channels; j++) {
  904. av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
  905. for (k = 0; k < s->subband_activity[j]; k++)
  906. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
  907. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  908. }
  909. for (j = base_channel; j < s->prim_channels; j++) {
  910. for (k = 0; k < s->subband_activity[j]; k++)
  911. av_log(s->avctx, AV_LOG_DEBUG,
  912. "prediction coefs: %f, %f, %f, %f\n",
  913. (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
  914. (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
  915. (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
  916. (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
  917. }
  918. for (j = base_channel; j < s->prim_channels; j++) {
  919. av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
  920. for (k = 0; k < s->vq_start_subband[j]; k++)
  921. av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
  922. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  923. }
  924. for (j = base_channel; j < s->prim_channels; j++) {
  925. av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
  926. for (k = 0; k < s->subband_activity[j]; k++)
  927. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
  928. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  929. }
  930. for (j = base_channel; j < s->prim_channels; j++) {
  931. av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
  932. for (k = 0; k < s->subband_activity[j]; k++) {
  933. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
  934. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
  935. if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
  936. av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
  937. }
  938. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  939. }
  940. for (j = base_channel; j < s->prim_channels; j++) {
  941. if (s->joint_intensity[j] > 0) {
  942. int source_channel = s->joint_intensity[j] - 1;
  943. av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
  944. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
  945. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
  946. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  947. }
  948. }
  949. if (!base_channel && s->prim_channels > 2 && s->downmix) {
  950. av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n");
  951. for (j = 0; j < s->prim_channels; j++) {
  952. av_log(s->avctx, AV_LOG_DEBUG, "Channel 0, %d = %f\n", j,
  953. dca_downmix_coeffs[s->downmix_coef[j][0]]);
  954. av_log(s->avctx, AV_LOG_DEBUG, "Channel 1, %d = %f\n", j,
  955. dca_downmix_coeffs[s->downmix_coef[j][1]]);
  956. }
  957. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  958. }
  959. for (j = base_channel; j < s->prim_channels; j++)
  960. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  961. av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
  962. if (!base_channel && s->lfe) {
  963. int lfe_samples = 2 * s->lfe * (4 + block_index);
  964. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  965. av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
  966. for (j = lfe_samples; j < lfe_end_sample; j++)
  967. av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
  968. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  969. }
  970. #endif
  971. return 0;
  972. }
  973. static void qmf_32_subbands(DCAContext *s, int chans,
  974. float samples_in[32][8], float *samples_out,
  975. float scale)
  976. {
  977. const float *prCoeff;
  978. int i;
  979. int sb_act = s->subband_activity[chans];
  980. int subindex;
  981. scale *= sqrt(1 / 8.0);
  982. /* Select filter */
  983. if (!s->multirate_inter) /* Non-perfect reconstruction */
  984. prCoeff = fir_32bands_nonperfect;
  985. else /* Perfect reconstruction */
  986. prCoeff = fir_32bands_perfect;
  987. for (i = sb_act; i < 32; i++)
  988. s->raXin[i] = 0.0;
  989. /* Reconstructed channel sample index */
  990. for (subindex = 0; subindex < 8; subindex++) {
  991. /* Load in one sample from each subband and clear inactive subbands */
  992. for (i = 0; i < sb_act; i++) {
  993. unsigned sign = (i - 1) & 2;
  994. uint32_t v = AV_RN32A(&samples_in[i][subindex]) ^ sign << 30;
  995. AV_WN32A(&s->raXin[i], v);
  996. }
  997. s->synth.synth_filter_float(&s->imdct,
  998. s->subband_fir_hist[chans],
  999. &s->hist_index[chans],
  1000. s->subband_fir_noidea[chans], prCoeff,
  1001. samples_out, s->raXin, scale);
  1002. samples_out += 32;
  1003. }
  1004. }
  1005. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  1006. int num_deci_sample, float *samples_in,
  1007. float *samples_out, float scale)
  1008. {
  1009. /* samples_in: An array holding decimated samples.
  1010. * Samples in current subframe starts from samples_in[0],
  1011. * while samples_in[-1], samples_in[-2], ..., stores samples
  1012. * from last subframe as history.
  1013. *
  1014. * samples_out: An array holding interpolated samples
  1015. */
  1016. int decifactor;
  1017. const float *prCoeff;
  1018. int deciindex;
  1019. /* Select decimation filter */
  1020. if (decimation_select == 1) {
  1021. decifactor = 64;
  1022. prCoeff = lfe_fir_128;
  1023. } else {
  1024. decifactor = 32;
  1025. prCoeff = lfe_fir_64;
  1026. }
  1027. /* Interpolation */
  1028. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  1029. s->dcadsp.lfe_fir(samples_out, samples_in, prCoeff, decifactor, scale);
  1030. samples_in++;
  1031. samples_out += 2 * decifactor;
  1032. }
  1033. }
  1034. /* downmixing routines */
  1035. #define MIX_REAR1(samples, s1, rs, coef) \
  1036. samples[0][i] += samples[s1][i] * coef[rs][0]; \
  1037. samples[1][i] += samples[s1][i] * coef[rs][1];
  1038. #define MIX_REAR2(samples, s1, s2, rs, coef) \
  1039. samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
  1040. samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];
  1041. #define MIX_FRONT3(samples, coef) \
  1042. t = samples[c][i]; \
  1043. u = samples[l][i]; \
  1044. v = samples[r][i]; \
  1045. samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  1046. samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  1047. #define DOWNMIX_TO_STEREO(op1, op2) \
  1048. for (i = 0; i < 256; i++) { \
  1049. op1 \
  1050. op2 \
  1051. }
  1052. static void dca_downmix(float **samples, int srcfmt,
  1053. int downmix_coef[DCA_PRIM_CHANNELS_MAX][2],
  1054. const int8_t *channel_mapping)
  1055. {
  1056. int c, l, r, sl, sr, s;
  1057. int i;
  1058. float t, u, v;
  1059. float coef[DCA_PRIM_CHANNELS_MAX][2];
  1060. for (i = 0; i < DCA_PRIM_CHANNELS_MAX; i++) {
  1061. coef[i][0] = dca_downmix_coeffs[downmix_coef[i][0]];
  1062. coef[i][1] = dca_downmix_coeffs[downmix_coef[i][1]];
  1063. }
  1064. switch (srcfmt) {
  1065. case DCA_MONO:
  1066. case DCA_CHANNEL:
  1067. case DCA_STEREO_TOTAL:
  1068. case DCA_STEREO_SUMDIFF:
  1069. case DCA_4F2R:
  1070. av_log(NULL, AV_LOG_ERROR, "Not implemented!\n");
  1071. break;
  1072. case DCA_STEREO:
  1073. break;
  1074. case DCA_3F:
  1075. c = channel_mapping[0];
  1076. l = channel_mapping[1];
  1077. r = channel_mapping[2];
  1078. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  1079. break;
  1080. case DCA_2F1R:
  1081. s = channel_mapping[2];
  1082. DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
  1083. break;
  1084. case DCA_3F1R:
  1085. c = channel_mapping[0];
  1086. l = channel_mapping[1];
  1087. r = channel_mapping[2];
  1088. s = channel_mapping[3];
  1089. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  1090. MIX_REAR1(samples, s, 3, coef));
  1091. break;
  1092. case DCA_2F2R:
  1093. sl = channel_mapping[2];
  1094. sr = channel_mapping[3];
  1095. DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
  1096. break;
  1097. case DCA_3F2R:
  1098. c = channel_mapping[0];
  1099. l = channel_mapping[1];
  1100. r = channel_mapping[2];
  1101. sl = channel_mapping[3];
  1102. sr = channel_mapping[4];
  1103. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  1104. MIX_REAR2(samples, sl, sr, 3, coef));
  1105. break;
  1106. }
  1107. }
  1108. #ifndef decode_blockcodes
  1109. /* Very compact version of the block code decoder that does not use table
  1110. * look-up but is slightly slower */
  1111. static int decode_blockcode(int code, int levels, int *values)
  1112. {
  1113. int i;
  1114. int offset = (levels - 1) >> 1;
  1115. for (i = 0; i < 4; i++) {
  1116. int div = FASTDIV(code, levels);
  1117. values[i] = code - offset - div * levels;
  1118. code = div;
  1119. }
  1120. return code;
  1121. }
  1122. static int decode_blockcodes(int code1, int code2, int levels, int *values)
  1123. {
  1124. return decode_blockcode(code1, levels, values) |
  1125. decode_blockcode(code2, levels, values + 4);
  1126. }
  1127. #endif
  1128. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  1129. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  1130. #ifndef int8x8_fmul_int32
  1131. static inline void int8x8_fmul_int32(float *dst, const int8_t *src, int scale)
  1132. {
  1133. float fscale = scale / 16.0;
  1134. int i;
  1135. for (i = 0; i < 8; i++)
  1136. dst[i] = src[i] * fscale;
  1137. }
  1138. #endif
  1139. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  1140. {
  1141. int k, l;
  1142. int subsubframe = s->current_subsubframe;
  1143. const float *quant_step_table;
  1144. /* FIXME */
  1145. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1146. LOCAL_ALIGNED_16(int, block, [8]);
  1147. /*
  1148. * Audio data
  1149. */
  1150. /* Select quantization step size table */
  1151. if (s->bit_rate_index == 0x1f)
  1152. quant_step_table = lossless_quant_d;
  1153. else
  1154. quant_step_table = lossy_quant_d;
  1155. for (k = base_channel; k < s->prim_channels; k++) {
  1156. if (get_bits_left(&s->gb) < 0)
  1157. return AVERROR_INVALIDDATA;
  1158. for (l = 0; l < s->vq_start_subband[k]; l++) {
  1159. int m;
  1160. /* Select the mid-tread linear quantizer */
  1161. int abits = s->bitalloc[k][l];
  1162. float quant_step_size = quant_step_table[abits];
  1163. /*
  1164. * Determine quantization index code book and its type
  1165. */
  1166. /* Select quantization index code book */
  1167. int sel = s->quant_index_huffman[k][abits];
  1168. /*
  1169. * Extract bits from the bit stream
  1170. */
  1171. if (!abits) {
  1172. memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0]));
  1173. } else {
  1174. /* Deal with transients */
  1175. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  1176. float rscale = quant_step_size * s->scale_factor[k][l][sfi] *
  1177. s->scalefactor_adj[k][sel];
  1178. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  1179. if (abits <= 7) {
  1180. /* Block code */
  1181. int block_code1, block_code2, size, levels, err;
  1182. size = abits_sizes[abits - 1];
  1183. levels = abits_levels[abits - 1];
  1184. block_code1 = get_bits(&s->gb, size);
  1185. block_code2 = get_bits(&s->gb, size);
  1186. err = decode_blockcodes(block_code1, block_code2,
  1187. levels, block);
  1188. if (err) {
  1189. av_log(s->avctx, AV_LOG_ERROR,
  1190. "ERROR: block code look-up failed\n");
  1191. return AVERROR_INVALIDDATA;
  1192. }
  1193. } else {
  1194. /* no coding */
  1195. for (m = 0; m < 8; m++)
  1196. block[m] = get_sbits(&s->gb, abits - 3);
  1197. }
  1198. } else {
  1199. /* Huffman coded */
  1200. for (m = 0; m < 8; m++)
  1201. block[m] = get_bitalloc(&s->gb,
  1202. &dca_smpl_bitalloc[abits], sel);
  1203. }
  1204. s->fmt_conv.int32_to_float_fmul_scalar(subband_samples[k][l],
  1205. block, rscale, 8);
  1206. }
  1207. /*
  1208. * Inverse ADPCM if in prediction mode
  1209. */
  1210. if (s->prediction_mode[k][l]) {
  1211. int n;
  1212. for (m = 0; m < 8; m++) {
  1213. for (n = 1; n <= 4; n++)
  1214. if (m >= n)
  1215. subband_samples[k][l][m] +=
  1216. (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1217. subband_samples[k][l][m - n] / 8192);
  1218. else if (s->predictor_history)
  1219. subband_samples[k][l][m] +=
  1220. (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1221. s->subband_samples_hist[k][l][m - n + 4] / 8192);
  1222. }
  1223. }
  1224. }
  1225. /*
  1226. * Decode VQ encoded high frequencies
  1227. */
  1228. for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
  1229. /* 1 vector -> 32 samples but we only need the 8 samples
  1230. * for this subsubframe. */
  1231. int hfvq = s->high_freq_vq[k][l];
  1232. if (!s->debug_flag & 0x01) {
  1233. av_log(s->avctx, AV_LOG_DEBUG,
  1234. "Stream with high frequencies VQ coding\n");
  1235. s->debug_flag |= 0x01;
  1236. }
  1237. int8x8_fmul_int32(subband_samples[k][l],
  1238. &high_freq_vq[hfvq][subsubframe * 8],
  1239. s->scale_factor[k][l][0]);
  1240. }
  1241. }
  1242. /* Check for DSYNC after subsubframe */
  1243. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  1244. if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
  1245. #ifdef TRACE
  1246. av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
  1247. #endif
  1248. } else {
  1249. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  1250. }
  1251. }
  1252. /* Backup predictor history for adpcm */
  1253. for (k = base_channel; k < s->prim_channels; k++)
  1254. for (l = 0; l < s->vq_start_subband[k]; l++)
  1255. memcpy(s->subband_samples_hist[k][l],
  1256. &subband_samples[k][l][4],
  1257. 4 * sizeof(subband_samples[0][0][0]));
  1258. return 0;
  1259. }
  1260. static int dca_filter_channels(DCAContext *s, int block_index)
  1261. {
  1262. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1263. int k;
  1264. /* 32 subbands QMF */
  1265. for (k = 0; k < s->prim_channels; k++) {
  1266. /* static float pcm_to_double[8] = { 32768.0, 32768.0, 524288.0, 524288.0,
  1267. 0, 8388608.0, 8388608.0 };*/
  1268. if (s->channel_order_tab[k] >= 0)
  1269. qmf_32_subbands(s, k, subband_samples[k],
  1270. s->samples_chanptr[s->channel_order_tab[k]],
  1271. M_SQRT1_2 / 32768.0 /* pcm_to_double[s->source_pcm_res] */);
  1272. }
  1273. /* Down mixing */
  1274. if (s->avctx->request_channels == 2 && s->prim_channels > 2) {
  1275. dca_downmix(s->samples_chanptr, s->amode, s->downmix_coef, s->channel_order_tab);
  1276. }
  1277. /* Generate LFE samples for this subsubframe FIXME!!! */
  1278. if (s->output & DCA_LFE) {
  1279. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  1280. s->lfe_data + 2 * s->lfe * (block_index + 4),
  1281. s->samples_chanptr[s->lfe_index],
  1282. 1.0 / (256.0 * 32768.0));
  1283. /* Outputs 20bits pcm samples */
  1284. }
  1285. return 0;
  1286. }
  1287. static int dca_subframe_footer(DCAContext *s, int base_channel)
  1288. {
  1289. int aux_data_count = 0, i;
  1290. /*
  1291. * Unpack optional information
  1292. */
  1293. /* presumably optional information only appears in the core? */
  1294. if (!base_channel) {
  1295. if (s->timestamp)
  1296. skip_bits_long(&s->gb, 32);
  1297. if (s->aux_data)
  1298. aux_data_count = get_bits(&s->gb, 6);
  1299. for (i = 0; i < aux_data_count; i++)
  1300. get_bits(&s->gb, 8);
  1301. if (s->crc_present && (s->downmix || s->dynrange))
  1302. get_bits(&s->gb, 16);
  1303. }
  1304. return 0;
  1305. }
  1306. /**
  1307. * Decode a dca frame block
  1308. *
  1309. * @param s pointer to the DCAContext
  1310. */
  1311. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  1312. {
  1313. int ret;
  1314. /* Sanity check */
  1315. if (s->current_subframe >= s->subframes) {
  1316. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  1317. s->current_subframe, s->subframes);
  1318. return AVERROR_INVALIDDATA;
  1319. }
  1320. if (!s->current_subsubframe) {
  1321. #ifdef TRACE
  1322. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
  1323. #endif
  1324. /* Read subframe header */
  1325. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  1326. return ret;
  1327. }
  1328. /* Read subsubframe */
  1329. #ifdef TRACE
  1330. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
  1331. #endif
  1332. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  1333. return ret;
  1334. /* Update state */
  1335. s->current_subsubframe++;
  1336. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  1337. s->current_subsubframe = 0;
  1338. s->current_subframe++;
  1339. }
  1340. if (s->current_subframe >= s->subframes) {
  1341. #ifdef TRACE
  1342. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
  1343. #endif
  1344. /* Read subframe footer */
  1345. if ((ret = dca_subframe_footer(s, base_channel)))
  1346. return ret;
  1347. }
  1348. return 0;
  1349. }
  1350. /**
  1351. * Return the number of channels in an ExSS speaker mask (HD)
  1352. */
  1353. static int dca_exss_mask2count(int mask)
  1354. {
  1355. /* count bits that mean speaker pairs twice */
  1356. return av_popcount(mask) +
  1357. av_popcount(mask & (DCA_EXSS_CENTER_LEFT_RIGHT |
  1358. DCA_EXSS_FRONT_LEFT_RIGHT |
  1359. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT |
  1360. DCA_EXSS_WIDE_LEFT_RIGHT |
  1361. DCA_EXSS_SIDE_LEFT_RIGHT |
  1362. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT |
  1363. DCA_EXSS_SIDE_REAR_LEFT_RIGHT |
  1364. DCA_EXSS_REAR_LEFT_RIGHT |
  1365. DCA_EXSS_REAR_HIGH_LEFT_RIGHT));
  1366. }
  1367. /**
  1368. * Skip mixing coefficients of a single mix out configuration (HD)
  1369. */
  1370. static void dca_exss_skip_mix_coeffs(GetBitContext *gb, int channels, int out_ch)
  1371. {
  1372. int i;
  1373. for (i = 0; i < channels; i++) {
  1374. int mix_map_mask = get_bits(gb, out_ch);
  1375. int num_coeffs = av_popcount(mix_map_mask);
  1376. skip_bits_long(gb, num_coeffs * 6);
  1377. }
  1378. }
  1379. /**
  1380. * Parse extension substream asset header (HD)
  1381. */
  1382. static int dca_exss_parse_asset_header(DCAContext *s)
  1383. {
  1384. int header_pos = get_bits_count(&s->gb);
  1385. int header_size;
  1386. int channels = 0;
  1387. int embedded_stereo = 0;
  1388. int embedded_6ch = 0;
  1389. int drc_code_present;
  1390. int av_uninit(extensions_mask);
  1391. int i, j;
  1392. if (get_bits_left(&s->gb) < 16)
  1393. return -1;
  1394. /* We will parse just enough to get to the extensions bitmask with which
  1395. * we can set the profile value. */
  1396. header_size = get_bits(&s->gb, 9) + 1;
  1397. skip_bits(&s->gb, 3); // asset index
  1398. if (s->static_fields) {
  1399. if (get_bits1(&s->gb))
  1400. skip_bits(&s->gb, 4); // asset type descriptor
  1401. if (get_bits1(&s->gb))
  1402. skip_bits_long(&s->gb, 24); // language descriptor
  1403. if (get_bits1(&s->gb)) {
  1404. /* How can one fit 1024 bytes of text here if the maximum value
  1405. * for the asset header size field above was 512 bytes? */
  1406. int text_length = get_bits(&s->gb, 10) + 1;
  1407. if (get_bits_left(&s->gb) < text_length * 8)
  1408. return -1;
  1409. skip_bits_long(&s->gb, text_length * 8); // info text
  1410. }
  1411. skip_bits(&s->gb, 5); // bit resolution - 1
  1412. skip_bits(&s->gb, 4); // max sample rate code
  1413. channels = get_bits(&s->gb, 8) + 1;
  1414. if (get_bits1(&s->gb)) { // 1-to-1 channels to speakers
  1415. int spkr_remap_sets;
  1416. int spkr_mask_size = 16;
  1417. int num_spkrs[7];
  1418. if (channels > 2)
  1419. embedded_stereo = get_bits1(&s->gb);
  1420. if (channels > 6)
  1421. embedded_6ch = get_bits1(&s->gb);
  1422. if (get_bits1(&s->gb)) {
  1423. spkr_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1424. skip_bits(&s->gb, spkr_mask_size); // spkr activity mask
  1425. }
  1426. spkr_remap_sets = get_bits(&s->gb, 3);
  1427. for (i = 0; i < spkr_remap_sets; i++) {
  1428. /* std layout mask for each remap set */
  1429. num_spkrs[i] = dca_exss_mask2count(get_bits(&s->gb, spkr_mask_size));
  1430. }
  1431. for (i = 0; i < spkr_remap_sets; i++) {
  1432. int num_dec_ch_remaps = get_bits(&s->gb, 5) + 1;
  1433. if (get_bits_left(&s->gb) < 0)
  1434. return -1;
  1435. for (j = 0; j < num_spkrs[i]; j++) {
  1436. int remap_dec_ch_mask = get_bits_long(&s->gb, num_dec_ch_remaps);
  1437. int num_dec_ch = av_popcount(remap_dec_ch_mask);
  1438. skip_bits_long(&s->gb, num_dec_ch * 5); // remap codes
  1439. }
  1440. }
  1441. } else {
  1442. skip_bits(&s->gb, 3); // representation type
  1443. }
  1444. }
  1445. drc_code_present = get_bits1(&s->gb);
  1446. if (drc_code_present)
  1447. get_bits(&s->gb, 8); // drc code
  1448. if (get_bits1(&s->gb))
  1449. skip_bits(&s->gb, 5); // dialog normalization code
  1450. if (drc_code_present && embedded_stereo)
  1451. get_bits(&s->gb, 8); // drc stereo code
  1452. if (s->mix_metadata && get_bits1(&s->gb)) {
  1453. skip_bits(&s->gb, 1); // external mix
  1454. skip_bits(&s->gb, 6); // post mix gain code
  1455. if (get_bits(&s->gb, 2) != 3) // mixer drc code
  1456. skip_bits(&s->gb, 3); // drc limit
  1457. else
  1458. skip_bits(&s->gb, 8); // custom drc code
  1459. if (get_bits1(&s->gb)) // channel specific scaling
  1460. for (i = 0; i < s->num_mix_configs; i++)
  1461. skip_bits_long(&s->gb, s->mix_config_num_ch[i] * 6); // scale codes
  1462. else
  1463. skip_bits_long(&s->gb, s->num_mix_configs * 6); // scale codes
  1464. for (i = 0; i < s->num_mix_configs; i++) {
  1465. if (get_bits_left(&s->gb) < 0)
  1466. return -1;
  1467. dca_exss_skip_mix_coeffs(&s->gb, channels, s->mix_config_num_ch[i]);
  1468. if (embedded_6ch)
  1469. dca_exss_skip_mix_coeffs(&s->gb, 6, s->mix_config_num_ch[i]);
  1470. if (embedded_stereo)
  1471. dca_exss_skip_mix_coeffs(&s->gb, 2, s->mix_config_num_ch[i]);
  1472. }
  1473. }
  1474. switch (get_bits(&s->gb, 2)) {
  1475. case 0: extensions_mask = get_bits(&s->gb, 12); break;
  1476. case 1: extensions_mask = DCA_EXT_EXSS_XLL; break;
  1477. case 2: extensions_mask = DCA_EXT_EXSS_LBR; break;
  1478. case 3: extensions_mask = 0; /* aux coding */ break;
  1479. }
  1480. /* not parsed further, we were only interested in the extensions mask */
  1481. if (get_bits_left(&s->gb) < 0)
  1482. return -1;
  1483. if (get_bits_count(&s->gb) - header_pos > header_size * 8) {
  1484. av_log(s->avctx, AV_LOG_WARNING, "Asset header size mismatch.\n");
  1485. return -1;
  1486. }
  1487. skip_bits_long(&s->gb, header_pos + header_size * 8 - get_bits_count(&s->gb));
  1488. if (extensions_mask & DCA_EXT_EXSS_XLL)
  1489. s->profile = FF_PROFILE_DTS_HD_MA;
  1490. else if (extensions_mask & (DCA_EXT_EXSS_XBR | DCA_EXT_EXSS_X96 |
  1491. DCA_EXT_EXSS_XXCH))
  1492. s->profile = FF_PROFILE_DTS_HD_HRA;
  1493. if (!(extensions_mask & DCA_EXT_CORE))
  1494. av_log(s->avctx, AV_LOG_WARNING, "DTS core detection mismatch.\n");
  1495. if ((extensions_mask & DCA_CORE_EXTS) != s->core_ext_mask)
  1496. av_log(s->avctx, AV_LOG_WARNING,
  1497. "DTS extensions detection mismatch (%d, %d)\n",
  1498. extensions_mask & DCA_CORE_EXTS, s->core_ext_mask);
  1499. return 0;
  1500. }
  1501. static int dca_xbr_parse_frame(DCAContext *s)
  1502. {
  1503. int scale_table_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS][2];
  1504. int active_bands[DCA_CHSETS_MAX][DCA_CHSET_CHANS_MAX];
  1505. int abits_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS];
  1506. int anctemp[DCA_CHSET_CHANS_MAX];
  1507. int chset_fsize[DCA_CHSETS_MAX];
  1508. int n_xbr_ch[DCA_CHSETS_MAX];
  1509. int hdr_size, num_chsets, xbr_tmode, hdr_pos;
  1510. int i, j, k, l, chset, chan_base;
  1511. av_log(s->avctx, AV_LOG_DEBUG, "DTS-XBR: decoding XBR extension\n");
  1512. /* get bit position of sync header */
  1513. hdr_pos = get_bits_count(&s->gb) - 32;
  1514. hdr_size = get_bits(&s->gb, 6) + 1;
  1515. num_chsets = get_bits(&s->gb, 2) + 1;
  1516. for(i = 0; i < num_chsets; i++)
  1517. chset_fsize[i] = get_bits(&s->gb, 14) + 1;
  1518. xbr_tmode = get_bits1(&s->gb);
  1519. for(i = 0; i < num_chsets; i++) {
  1520. n_xbr_ch[i] = get_bits(&s->gb, 3) + 1;
  1521. k = get_bits(&s->gb, 2) + 5;
  1522. for(j = 0; j < n_xbr_ch[i]; j++)
  1523. active_bands[i][j] = get_bits(&s->gb, k) + 1;
  1524. }
  1525. /* skip to the end of the header */
  1526. i = get_bits_count(&s->gb);
  1527. if(hdr_pos + hdr_size * 8 > i)
  1528. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1529. /* loop over the channel data sets */
  1530. /* only decode as many channels as we've decoded base data for */
  1531. for(chset = 0, chan_base = 0;
  1532. chset < num_chsets && chan_base + n_xbr_ch[chset] <= s->prim_channels;
  1533. chan_base += n_xbr_ch[chset++]) {
  1534. int start_posn = get_bits_count(&s->gb);
  1535. int subsubframe = 0;
  1536. int subframe = 0;
  1537. /* loop over subframes */
  1538. for (k = 0; k < (s->sample_blocks / 8); k++) {
  1539. /* parse header if we're on first subsubframe of a block */
  1540. if(subsubframe == 0) {
  1541. /* Parse subframe header */
  1542. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1543. anctemp[i] = get_bits(&s->gb, 2) + 2;
  1544. }
  1545. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1546. get_array(&s->gb, abits_high[i], active_bands[chset][i], anctemp[i]);
  1547. }
  1548. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1549. anctemp[i] = get_bits(&s->gb, 3);
  1550. if(anctemp[i] < 1) {
  1551. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: SYNC ERROR\n");
  1552. return AVERROR_INVALIDDATA;
  1553. }
  1554. }
  1555. /* generate scale factors */
  1556. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1557. const uint32_t *scale_table;
  1558. int nbits;
  1559. if (s->scalefactor_huffman[chan_base+i] == 6) {
  1560. scale_table = scale_factor_quant7;
  1561. } else {
  1562. scale_table = scale_factor_quant6;
  1563. }
  1564. nbits = anctemp[i];
  1565. for(j = 0; j < active_bands[chset][i]; j++) {
  1566. if(abits_high[i][j] > 0) {
  1567. scale_table_high[i][j][0] =
  1568. scale_table[get_bits(&s->gb, nbits)];
  1569. if(xbr_tmode && s->transition_mode[i][j]) {
  1570. scale_table_high[i][j][1] =
  1571. scale_table[get_bits(&s->gb, nbits)];
  1572. }
  1573. }
  1574. }
  1575. }
  1576. }
  1577. /* decode audio array for this block */
  1578. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1579. for(j = 0; j < active_bands[chset][i]; j++) {
  1580. const int xbr_abits = abits_high[i][j];
  1581. const float quant_step_size = lossless_quant_d[xbr_abits];
  1582. const int sfi = xbr_tmode && s->transition_mode[i][j] && subsubframe >= s->transition_mode[i][j];
  1583. const float rscale = quant_step_size * scale_table_high[i][j][sfi];
  1584. float *subband_samples = s->subband_samples[k][chan_base+i][j];
  1585. int block[8];
  1586. if(xbr_abits <= 0)
  1587. continue;
  1588. if(xbr_abits > 7) {
  1589. get_array(&s->gb, block, 8, xbr_abits - 3);
  1590. } else {
  1591. int block_code1, block_code2, size, levels, err;
  1592. size = abits_sizes[xbr_abits - 1];
  1593. levels = abits_levels[xbr_abits - 1];
  1594. block_code1 = get_bits(&s->gb, size);
  1595. block_code2 = get_bits(&s->gb, size);
  1596. err = decode_blockcodes(block_code1, block_code2,
  1597. levels, block);
  1598. if (err) {
  1599. av_log(s->avctx, AV_LOG_ERROR,
  1600. "ERROR: DTS-XBR: block code look-up failed\n");
  1601. return AVERROR_INVALIDDATA;
  1602. }
  1603. }
  1604. /* scale & sum into subband */
  1605. for(l = 0; l < 8; l++)
  1606. subband_samples[l] += (float)block[l] * rscale;
  1607. }
  1608. }
  1609. /* check DSYNC marker */
  1610. if(s->aspf || subsubframe == s->subsubframes[subframe] - 1) {
  1611. if(get_bits(&s->gb, 16) != 0xffff) {
  1612. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: Didn't get subframe DSYNC\n");
  1613. return AVERROR_INVALIDDATA;
  1614. }
  1615. }
  1616. /* advance sub-sub-frame index */
  1617. if(++subsubframe >= s->subsubframes[subframe]) {
  1618. subsubframe = 0;
  1619. subframe++;
  1620. }
  1621. }
  1622. /* skip to next channel set */
  1623. i = get_bits_count(&s->gb);
  1624. if(start_posn + chset_fsize[chset] * 8 != i) {
  1625. j = start_posn + chset_fsize[chset] * 8 - i;
  1626. if(j < 0 || j >= 8)
  1627. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: end of channel set,"
  1628. " skipping further than expected (%d bits)\n", j);
  1629. skip_bits_long(&s->gb, j);
  1630. }
  1631. }
  1632. return 0;
  1633. }
  1634. /* parse initial header for XXCH and dump details */
  1635. static int dca_xxch_decode_frame(DCAContext *s)
  1636. {
  1637. int hdr_size, spkmsk_bits, num_chsets, core_spk, hdr_pos;
  1638. int i, chset, base_channel, chstart, fsize[8];
  1639. /* assume header word has already been parsed */
  1640. hdr_pos = get_bits_count(&s->gb) - 32;
  1641. hdr_size = get_bits(&s->gb, 6) + 1;
  1642. /*chhdr_crc =*/ skip_bits1(&s->gb);
  1643. spkmsk_bits = get_bits(&s->gb, 5) + 1;
  1644. num_chsets = get_bits(&s->gb, 2) + 1;
  1645. for (i = 0; i < num_chsets; i++)
  1646. fsize[i] = get_bits(&s->gb, 14) + 1;
  1647. core_spk = get_bits(&s->gb, spkmsk_bits);
  1648. s->xxch_core_spkmask = core_spk;
  1649. s->xxch_nbits_spk_mask = spkmsk_bits;
  1650. s->xxch_dmix_embedded = 0;
  1651. /* skip to the end of the header */
  1652. i = get_bits_count(&s->gb);
  1653. if (hdr_pos + hdr_size * 8 > i)
  1654. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1655. for (chset = 0; chset < num_chsets; chset++) {
  1656. chstart = get_bits_count(&s->gb);
  1657. base_channel = s->prim_channels;
  1658. s->xxch_chset = chset;
  1659. /* XXCH and Core headers differ, see 6.4.2 "XXCH Channel Set Header" vs.
  1660. 5.3.2 "Primary Audio Coding Header", DTS Spec 1.3.1 */
  1661. dca_parse_audio_coding_header(s, base_channel, 1);
  1662. /* decode channel data */
  1663. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1664. if (dca_decode_block(s, base_channel, i)) {
  1665. av_log(s->avctx, AV_LOG_ERROR,
  1666. "Error decoding DTS-XXCH extension\n");
  1667. continue;
  1668. }
  1669. }
  1670. /* skip to end of this section */
  1671. i = get_bits_count(&s->gb);
  1672. if (chstart + fsize[chset] * 8 > i)
  1673. skip_bits_long(&s->gb, chstart + fsize[chset] * 8 - i);
  1674. }
  1675. s->xxch_chset = num_chsets;
  1676. return 0;
  1677. }
  1678. /**
  1679. * Parse extension substream header (HD)
  1680. */
  1681. static void dca_exss_parse_header(DCAContext *s)
  1682. {
  1683. int asset_size[8];
  1684. int ss_index;
  1685. int blownup;
  1686. int num_audiop = 1;
  1687. int num_assets = 1;
  1688. int active_ss_mask[8];
  1689. int i, j;
  1690. int start_posn;
  1691. int hdrsize;
  1692. uint32_t mkr;
  1693. if (get_bits_left(&s->gb) < 52)
  1694. return;
  1695. start_posn = get_bits_count(&s->gb) - 32;
  1696. skip_bits(&s->gb, 8); // user data
  1697. ss_index = get_bits(&s->gb, 2);
  1698. blownup = get_bits1(&s->gb);
  1699. hdrsize = get_bits(&s->gb, 8 + 4 * blownup) + 1; // header_size
  1700. skip_bits(&s->gb, 16 + 4 * blownup); // hd_size
  1701. s->static_fields = get_bits1(&s->gb);
  1702. if (s->static_fields) {
  1703. skip_bits(&s->gb, 2); // reference clock code
  1704. skip_bits(&s->gb, 3); // frame duration code
  1705. if (get_bits1(&s->gb))
  1706. skip_bits_long(&s->gb, 36); // timestamp
  1707. /* a single stream can contain multiple audio assets that can be
  1708. * combined to form multiple audio presentations */
  1709. num_audiop = get_bits(&s->gb, 3) + 1;
  1710. if (num_audiop > 1) {
  1711. av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio presentations.");
  1712. /* ignore such streams for now */
  1713. return;
  1714. }
  1715. num_assets = get_bits(&s->gb, 3) + 1;
  1716. if (num_assets > 1) {
  1717. av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio assets.");
  1718. /* ignore such streams for now */
  1719. return;
  1720. }
  1721. for (i = 0; i < num_audiop; i++)
  1722. active_ss_mask[i] = get_bits(&s->gb, ss_index + 1);
  1723. for (i = 0; i < num_audiop; i++)
  1724. for (j = 0; j <= ss_index; j++)
  1725. if (active_ss_mask[i] & (1 << j))
  1726. skip_bits(&s->gb, 8); // active asset mask
  1727. s->mix_metadata = get_bits1(&s->gb);
  1728. if (s->mix_metadata) {
  1729. int mix_out_mask_size;
  1730. skip_bits(&s->gb, 2); // adjustment level
  1731. mix_out_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1732. s->num_mix_configs = get_bits(&s->gb, 2) + 1;
  1733. for (i = 0; i < s->num_mix_configs; i++) {
  1734. int mix_out_mask = get_bits(&s->gb, mix_out_mask_size);
  1735. s->mix_config_num_ch[i] = dca_exss_mask2count(mix_out_mask);
  1736. }
  1737. }
  1738. }
  1739. for (i = 0; i < num_assets; i++)
  1740. asset_size[i] = get_bits_long(&s->gb, 16 + 4 * blownup);
  1741. for (i = 0; i < num_assets; i++) {
  1742. if (dca_exss_parse_asset_header(s))
  1743. return;
  1744. }
  1745. /* not parsed further, we were only interested in the extensions mask
  1746. * from the asset header */
  1747. if (num_assets > 0) {
  1748. j = get_bits_count(&s->gb);
  1749. if (start_posn + hdrsize * 8 > j)
  1750. skip_bits_long(&s->gb, start_posn + hdrsize * 8 - j);
  1751. for (i = 0; i < num_assets; i++) {
  1752. start_posn = get_bits_count(&s->gb);
  1753. mkr = get_bits_long(&s->gb, 32);
  1754. /* parse extensions that we know about */
  1755. if (mkr == 0x655e315e) {
  1756. dca_xbr_parse_frame(s);
  1757. } else if (mkr == 0x47004a03) {
  1758. dca_xxch_decode_frame(s);
  1759. s->core_ext_mask |= DCA_EXT_XXCH; /* xxx use for chan reordering */
  1760. } else {
  1761. av_log(s->avctx, AV_LOG_DEBUG,
  1762. "DTS-ExSS: unknown marker = 0x%08x\n", mkr);
  1763. }
  1764. /* skip to end of block */
  1765. j = get_bits_count(&s->gb);
  1766. if (start_posn + asset_size[i] * 8 > j)
  1767. skip_bits_long(&s->gb, start_posn + asset_size[i] * 8 - j);
  1768. }
  1769. }
  1770. }
  1771. /**
  1772. * Main frame decoding function
  1773. * FIXME add arguments
  1774. */
  1775. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  1776. int *got_frame_ptr, AVPacket *avpkt)
  1777. {
  1778. const uint8_t *buf = avpkt->data;
  1779. int buf_size = avpkt->size;
  1780. int channel_mask;
  1781. int channel_layout;
  1782. int lfe_samples;
  1783. int num_core_channels = 0;
  1784. int i, ret;
  1785. float **samples_flt;
  1786. float *src_chan;
  1787. float *dst_chan;
  1788. DCAContext *s = avctx->priv_data;
  1789. int core_ss_end;
  1790. int channels, full_channels;
  1791. float scale;
  1792. int achan;
  1793. int chset;
  1794. int mask;
  1795. int lavc;
  1796. int posn;
  1797. int j, k;
  1798. int endch;
  1799. s->xch_present = 0;
  1800. s->dca_buffer_size = ff_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  1801. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1802. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1803. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1804. return AVERROR_INVALIDDATA;
  1805. }
  1806. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  1807. if ((ret = dca_parse_frame_header(s)) < 0) {
  1808. //seems like the frame is corrupt, try with the next one
  1809. return ret;
  1810. }
  1811. //set AVCodec values with parsed data
  1812. avctx->sample_rate = s->sample_rate;
  1813. avctx->bit_rate = s->bit_rate;
  1814. s->profile = FF_PROFILE_DTS;
  1815. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1816. if ((ret = dca_decode_block(s, 0, i))) {
  1817. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1818. return ret;
  1819. }
  1820. }
  1821. /* record number of core channels incase less than max channels are requested */
  1822. num_core_channels = s->prim_channels;
  1823. if (s->ext_coding)
  1824. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  1825. else
  1826. s->core_ext_mask = 0;
  1827. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1828. /* only scan for extensions if ext_descr was unknown or indicated a
  1829. * supported XCh extension */
  1830. if (s->core_ext_mask < 0 || s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH)) {
  1831. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1832. * extensions scan can fill it up */
  1833. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1834. /* extensions start at 32-bit boundaries into bitstream */
  1835. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1836. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  1837. uint32_t bits = get_bits_long(&s->gb, 32);
  1838. switch (bits) {
  1839. case 0x5a5a5a5a: {
  1840. int ext_amode, xch_fsize;
  1841. s->xch_base_channel = s->prim_channels;
  1842. /* validate sync word using XCHFSIZE field */
  1843. xch_fsize = show_bits(&s->gb, 10);
  1844. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1845. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1846. continue;
  1847. /* skip length-to-end-of-frame field for the moment */
  1848. skip_bits(&s->gb, 10);
  1849. s->core_ext_mask |= DCA_EXT_XCH;
  1850. /* extension amode(number of channels in extension) should be 1 */
  1851. /* AFAIK XCh is not used for more channels */
  1852. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1853. av_log(avctx, AV_LOG_ERROR, "XCh extension amode %d not"
  1854. " supported!\n", ext_amode);
  1855. continue;
  1856. }
  1857. if (s->xch_base_channel < 2) {
  1858. av_log_ask_for_sample(avctx, "XCh with fewer than 2 base channels is not supported\n");
  1859. continue;
  1860. }
  1861. /* much like core primary audio coding header */
  1862. dca_parse_audio_coding_header(s, s->xch_base_channel, 0);
  1863. for (i = 0; i < (s->sample_blocks / 8); i++)
  1864. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1865. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1866. continue;
  1867. }
  1868. s->xch_present = 1;
  1869. break;
  1870. }
  1871. case 0x47004a03:
  1872. /* XXCh: extended channels */
  1873. /* usually found either in core or HD part in DTS-HD HRA streams,
  1874. * but not in DTS-ES which contains XCh extensions instead */
  1875. s->core_ext_mask |= DCA_EXT_XXCH;
  1876. dca_xxch_decode_frame(s);
  1877. break;
  1878. case 0x1d95f262: {
  1879. int fsize96 = show_bits(&s->gb, 12) + 1;
  1880. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1881. continue;
  1882. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  1883. get_bits_count(&s->gb));
  1884. skip_bits(&s->gb, 12);
  1885. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1886. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1887. s->core_ext_mask |= DCA_EXT_X96;
  1888. break;
  1889. }
  1890. }
  1891. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1892. }
  1893. } else {
  1894. /* no supported extensions, skip the rest of the core substream */
  1895. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1896. }
  1897. if (s->core_ext_mask & DCA_EXT_X96)
  1898. s->profile = FF_PROFILE_DTS_96_24;
  1899. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  1900. s->profile = FF_PROFILE_DTS_ES;
  1901. /* check for ExSS (HD part) */
  1902. if (s->dca_buffer_size - s->frame_size > 32 &&
  1903. get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
  1904. dca_exss_parse_header(s);
  1905. avctx->profile = s->profile;
  1906. full_channels = channels = s->prim_channels + !!s->lfe;
  1907. /* If we have XXCH then the channel layout is managed differently */
  1908. /* note that XLL will also have another way to do things */
  1909. if (!(s->core_ext_mask & DCA_EXT_XXCH)
  1910. || (s->core_ext_mask & DCA_EXT_XXCH && avctx->request_channels > 0
  1911. && avctx->request_channels
  1912. < num_core_channels + !!s->lfe + s->xxch_chset_nch[0]))
  1913. { /* xxx should also do MA extensions */
  1914. if (s->amode < 16) {
  1915. avctx->channel_layout = dca_core_channel_layout[s->amode];
  1916. if (s->xch_present && (!avctx->request_channels ||
  1917. avctx->request_channels
  1918. > num_core_channels + !!s->lfe)) {
  1919. avctx->channel_layout |= AV_CH_BACK_CENTER;
  1920. if (s->lfe) {
  1921. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1922. s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
  1923. } else {
  1924. s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
  1925. }
  1926. if (s->channel_order_tab[s->xch_base_channel] < 0)
  1927. return AVERROR_INVALIDDATA;
  1928. } else {
  1929. channels = num_core_channels + !!s->lfe;
  1930. s->xch_present = 0; /* disable further xch processing */
  1931. if (s->lfe) {
  1932. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1933. s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
  1934. } else
  1935. s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
  1936. }
  1937. if (channels > !!s->lfe &&
  1938. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  1939. return AVERROR_INVALIDDATA;
  1940. if (av_get_channel_layout_nb_channels(avctx->channel_layout) != channels) {
  1941. av_log(avctx, AV_LOG_ERROR, "Number of channels %d mismatches layout %d\n", channels, av_get_channel_layout_nb_channels(avctx->channel_layout));
  1942. return AVERROR_INVALIDDATA;
  1943. }
  1944. if (avctx->request_channels == 2 && s->prim_channels > 2) {
  1945. channels = 2;
  1946. s->output = DCA_STEREO;
  1947. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  1948. }
  1949. else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
  1950. static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  1951. s->channel_order_tab = dca_channel_order_native;
  1952. }
  1953. s->lfe_index = dca_lfe_index[s->amode];
  1954. } else {
  1955. av_log(avctx, AV_LOG_ERROR,
  1956. "Non standard configuration %d !\n", s->amode);
  1957. return AVERROR_INVALIDDATA;
  1958. }
  1959. s->xxch_dmix_embedded = 0;
  1960. } else {
  1961. /* we only get here if an XXCH channel set can be added to the mix */
  1962. channel_mask = s->xxch_core_spkmask;
  1963. if (avctx->request_channels > 0
  1964. && avctx->request_channels < s->prim_channels) {
  1965. channels = num_core_channels + !!s->lfe;
  1966. for (i = 0; i < s->xxch_chset && channels + s->xxch_chset_nch[i]
  1967. <= avctx->request_channels; i++) {
  1968. channels += s->xxch_chset_nch[i];
  1969. channel_mask |= s->xxch_spk_masks[i];
  1970. }
  1971. } else {
  1972. channels = s->prim_channels + !!s->lfe;
  1973. for (i = 0; i < s->xxch_chset; i++) {
  1974. channel_mask |= s->xxch_spk_masks[i];
  1975. }
  1976. }
  1977. /* Given the DTS spec'ed channel mask, generate an avcodec version */
  1978. channel_layout = 0;
  1979. for (i = 0; i < s->xxch_nbits_spk_mask; ++i) {
  1980. if (channel_mask & (1 << i)) {
  1981. channel_layout |= map_xxch_to_native[i];
  1982. }
  1983. }
  1984. /* make sure that we have managed to get equivelant dts/avcodec channel
  1985. * masks in some sense -- unfortunately some channels could overlap */
  1986. if (av_popcount(channel_mask) != av_popcount(channel_layout)) {
  1987. av_log(avctx, AV_LOG_DEBUG,
  1988. "DTS-XXCH: Inconsistant avcodec/dts channel layouts\n");
  1989. return AVERROR_INVALIDDATA;
  1990. }
  1991. avctx->channel_layout = channel_layout;
  1992. if (!(avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE)) {
  1993. /* Estimate DTS --> avcodec ordering table */
  1994. for (chset = -1, j = 0; chset < s->xxch_chset; ++chset) {
  1995. mask = chset >= 0 ? s->xxch_spk_masks[chset]
  1996. : s->xxch_core_spkmask;
  1997. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  1998. if (mask & ~(DCA_XXCH_LFE1 | DCA_XXCH_LFE2) & (1 << i)) {
  1999. lavc = map_xxch_to_native[i];
  2000. posn = av_popcount(channel_layout & (lavc - 1));
  2001. s->xxch_order_tab[j++] = posn;
  2002. }
  2003. }
  2004. }
  2005. s->lfe_index = av_popcount(channel_layout & (AV_CH_LOW_FREQUENCY-1));
  2006. } else { /* native ordering */
  2007. for (i = 0; i < channels; i++)
  2008. s->xxch_order_tab[i] = i;
  2009. s->lfe_index = channels - 1;
  2010. }
  2011. s->channel_order_tab = s->xxch_order_tab;
  2012. }
  2013. if (avctx->channels != channels) {
  2014. if (avctx->channels)
  2015. av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
  2016. avctx->channels = channels;
  2017. }
  2018. /* get output buffer */
  2019. s->frame.nb_samples = 256 * (s->sample_blocks / 8);
  2020. if ((ret = ff_get_buffer(avctx, &s->frame)) < 0) {
  2021. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  2022. return ret;
  2023. }
  2024. samples_flt = (float **) s->frame.extended_data;
  2025. /* allocate buffer for extra channels if downmixing */
  2026. if (avctx->channels < full_channels) {
  2027. ret = av_samples_get_buffer_size(NULL, full_channels - channels,
  2028. s->frame.nb_samples,
  2029. avctx->sample_fmt, 0);
  2030. if (ret < 0)
  2031. return ret;
  2032. av_fast_malloc(&s->extra_channels_buffer,
  2033. &s->extra_channels_buffer_size, ret);
  2034. if (!s->extra_channels_buffer)
  2035. return AVERROR(ENOMEM);
  2036. ret = av_samples_fill_arrays((uint8_t **)s->extra_channels, NULL,
  2037. s->extra_channels_buffer,
  2038. full_channels - channels,
  2039. s->frame.nb_samples, avctx->sample_fmt, 0);
  2040. if (ret < 0)
  2041. return ret;
  2042. }
  2043. /* filter to get final output */
  2044. for (i = 0; i < (s->sample_blocks / 8); i++) {
  2045. int ch;
  2046. for (ch = 0; ch < channels; ch++)
  2047. s->samples_chanptr[ch] = samples_flt[ch] + i * 256;
  2048. for (; ch < full_channels; ch++)
  2049. s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * 256;
  2050. dca_filter_channels(s, i);
  2051. /* If this was marked as a DTS-ES stream we need to subtract back- */
  2052. /* channel from SL & SR to remove matrixed back-channel signal */
  2053. if ((s->source_pcm_res & 1) && s->xch_present) {
  2054. float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
  2055. float *lt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
  2056. float *rt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
  2057. s->fdsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  2058. s->fdsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  2059. }
  2060. /* If stream contains XXCH, we might need to undo an embedded downmix */
  2061. if (s->xxch_dmix_embedded) {
  2062. /* Loop over channel sets in turn */
  2063. ch = num_core_channels;
  2064. for (chset = 0; chset < s->xxch_chset; chset++) {
  2065. endch = ch + s->xxch_chset_nch[chset];
  2066. mask = s->xxch_dmix_embedded;
  2067. /* undo downmix */
  2068. for (j = ch; j < endch; j++) {
  2069. if (mask & (1 << j)) { /* this channel has been mixed-out */
  2070. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  2071. for (k = 0; k < endch; k++) {
  2072. achan = s->channel_order_tab[k];
  2073. scale = s->xxch_dmix_coeff[j][k];
  2074. if (scale != 0.0) {
  2075. dst_chan = s->samples_chanptr[achan];
  2076. s->fdsp.vector_fmac_scalar(dst_chan, src_chan,
  2077. -scale, 256);
  2078. }
  2079. }
  2080. }
  2081. }
  2082. /* if a downmix has been embedded then undo the pre-scaling */
  2083. if ((mask & (1 << ch)) && s->xxch_dmix_sf[chset] != 1.0f) {
  2084. scale = s->xxch_dmix_sf[chset];
  2085. for (j = 0; j < ch; j++) {
  2086. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  2087. for (k = 0; k < 256; k++)
  2088. src_chan[k] *= scale;
  2089. }
  2090. /* LFE channel is always part of core, scale if it exists */
  2091. if (s->lfe) {
  2092. src_chan = s->samples_chanptr[s->lfe_index];
  2093. for (k = 0; k < 256; k++)
  2094. src_chan[k] *= scale;
  2095. }
  2096. }
  2097. ch = endch;
  2098. }
  2099. }
  2100. }
  2101. /* update lfe history */
  2102. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  2103. for (i = 0; i < 2 * s->lfe * 4; i++)
  2104. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  2105. *got_frame_ptr = 1;
  2106. *(AVFrame *) data = s->frame;
  2107. return buf_size;
  2108. }
  2109. /**
  2110. * DCA initialization
  2111. *
  2112. * @param avctx pointer to the AVCodecContext
  2113. */
  2114. static av_cold int dca_decode_init(AVCodecContext *avctx)
  2115. {
  2116. DCAContext *s = avctx->priv_data;
  2117. s->avctx = avctx;
  2118. dca_init_vlcs();
  2119. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  2120. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  2121. ff_synth_filter_init(&s->synth);
  2122. ff_dcadsp_init(&s->dcadsp);
  2123. ff_fmt_convert_init(&s->fmt_conv, avctx);
  2124. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  2125. /* allow downmixing to stereo */
  2126. if (avctx->channels > 0 && avctx->request_channels < avctx->channels &&
  2127. avctx->request_channels == 2) {
  2128. avctx->channels = avctx->request_channels;
  2129. }
  2130. avcodec_get_frame_defaults(&s->frame);
  2131. avctx->coded_frame = &s->frame;
  2132. return 0;
  2133. }
  2134. static av_cold int dca_decode_end(AVCodecContext *avctx)
  2135. {
  2136. DCAContext *s = avctx->priv_data;
  2137. ff_mdct_end(&s->imdct);
  2138. av_freep(&s->extra_channels_buffer);
  2139. return 0;
  2140. }
  2141. static const AVProfile profiles[] = {
  2142. { FF_PROFILE_DTS, "DTS" },
  2143. { FF_PROFILE_DTS_ES, "DTS-ES" },
  2144. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  2145. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  2146. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  2147. { FF_PROFILE_UNKNOWN },
  2148. };
  2149. AVCodec ff_dca_decoder = {
  2150. .name = "dca",
  2151. .type = AVMEDIA_TYPE_AUDIO,
  2152. .id = AV_CODEC_ID_DTS,
  2153. .priv_data_size = sizeof(DCAContext),
  2154. .init = dca_decode_init,
  2155. .decode = dca_decode_frame,
  2156. .close = dca_decode_end,
  2157. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  2158. .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
  2159. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  2160. AV_SAMPLE_FMT_NONE },
  2161. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  2162. };