You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2696 lines
80KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file mpegaudiodec.c
  23. * MPEG Audio decoder.
  24. */
  25. //#define DEBUG
  26. #include "avcodec.h"
  27. #include "bitstream.h"
  28. #include "dsputil.h"
  29. /*
  30. * TODO:
  31. * - in low precision mode, use more 16 bit multiplies in synth filter
  32. * - test lsf / mpeg25 extensively.
  33. */
  34. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  35. audio decoder */
  36. #ifdef CONFIG_MPEGAUDIO_HP
  37. # define USE_HIGHPRECISION
  38. #endif
  39. #include "mpegaudio.h"
  40. #include "mpegaudiodecheader.h"
  41. #include "mathops.h"
  42. /* WARNING: only correct for posititive numbers */
  43. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  44. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  45. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  46. /****************/
  47. #define HEADER_SIZE 4
  48. /**
  49. * Context for MP3On4 decoder
  50. */
  51. typedef struct MP3On4DecodeContext {
  52. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  53. int chan_cfg; ///< channel config number
  54. int syncword; ///< syncword patch
  55. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  56. } MP3On4DecodeContext;
  57. /* layer 3 "granule" */
  58. typedef struct GranuleDef {
  59. uint8_t scfsi;
  60. int part2_3_length;
  61. int big_values;
  62. int global_gain;
  63. int scalefac_compress;
  64. uint8_t block_type;
  65. uint8_t switch_point;
  66. int table_select[3];
  67. int subblock_gain[3];
  68. uint8_t scalefac_scale;
  69. uint8_t count1table_select;
  70. int region_size[3]; /* number of huffman codes in each region */
  71. int preflag;
  72. int short_start, long_end; /* long/short band indexes */
  73. uint8_t scale_factors[40];
  74. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  75. } GranuleDef;
  76. #include "mpegaudiodata.h"
  77. #include "mpegaudiodectab.h"
  78. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  79. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  80. /* vlc structure for decoding layer 3 huffman tables */
  81. static VLC huff_vlc[16];
  82. static VLC huff_quad_vlc[2];
  83. /* computed from band_size_long */
  84. static uint16_t band_index_long[9][23];
  85. /* XXX: free when all decoders are closed */
  86. #define TABLE_4_3_SIZE (8191 + 16)*4
  87. static int8_t table_4_3_exp[TABLE_4_3_SIZE];
  88. static uint32_t table_4_3_value[TABLE_4_3_SIZE];
  89. static uint32_t exp_table[512];
  90. static uint32_t expval_table[512][16];
  91. /* intensity stereo coef table */
  92. static int32_t is_table[2][16];
  93. static int32_t is_table_lsf[2][2][16];
  94. static int32_t csa_table[8][4];
  95. static float csa_table_float[8][4];
  96. static int32_t mdct_win[8][36];
  97. /* lower 2 bits: modulo 3, higher bits: shift */
  98. static uint16_t scale_factor_modshift[64];
  99. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  100. static int32_t scale_factor_mult[15][3];
  101. /* mult table for layer 2 group quantization */
  102. #define SCALE_GEN(v) \
  103. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  104. static const int32_t scale_factor_mult2[3][3] = {
  105. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  106. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  107. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  108. };
  109. static DECLARE_ALIGNED_16(MPA_INT, window[512]);
  110. /**
  111. * Convert region offsets to region sizes and truncate
  112. * size to big_values.
  113. */
  114. void ff_region_offset2size(GranuleDef *g){
  115. int i, k, j=0;
  116. g->region_size[2] = (576 / 2);
  117. for(i=0;i<3;i++) {
  118. k = FFMIN(g->region_size[i], g->big_values);
  119. g->region_size[i] = k - j;
  120. j = k;
  121. }
  122. }
  123. void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
  124. if (g->block_type == 2)
  125. g->region_size[0] = (36 / 2);
  126. else {
  127. if (s->sample_rate_index <= 2)
  128. g->region_size[0] = (36 / 2);
  129. else if (s->sample_rate_index != 8)
  130. g->region_size[0] = (54 / 2);
  131. else
  132. g->region_size[0] = (108 / 2);
  133. }
  134. g->region_size[1] = (576 / 2);
  135. }
  136. void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
  137. int l;
  138. g->region_size[0] =
  139. band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  140. /* should not overflow */
  141. l = FFMIN(ra1 + ra2 + 2, 22);
  142. g->region_size[1] =
  143. band_index_long[s->sample_rate_index][l] >> 1;
  144. }
  145. void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
  146. if (g->block_type == 2) {
  147. if (g->switch_point) {
  148. /* if switched mode, we handle the 36 first samples as
  149. long blocks. For 8000Hz, we handle the 48 first
  150. exponents as long blocks (XXX: check this!) */
  151. if (s->sample_rate_index <= 2)
  152. g->long_end = 8;
  153. else if (s->sample_rate_index != 8)
  154. g->long_end = 6;
  155. else
  156. g->long_end = 4; /* 8000 Hz */
  157. g->short_start = 2 + (s->sample_rate_index != 8);
  158. } else {
  159. g->long_end = 0;
  160. g->short_start = 0;
  161. }
  162. } else {
  163. g->short_start = 13;
  164. g->long_end = 22;
  165. }
  166. }
  167. /* layer 1 unscaling */
  168. /* n = number of bits of the mantissa minus 1 */
  169. static inline int l1_unscale(int n, int mant, int scale_factor)
  170. {
  171. int shift, mod;
  172. int64_t val;
  173. shift = scale_factor_modshift[scale_factor];
  174. mod = shift & 3;
  175. shift >>= 2;
  176. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  177. shift += n;
  178. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  179. return (int)((val + (1LL << (shift - 1))) >> shift);
  180. }
  181. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  182. {
  183. int shift, mod, val;
  184. shift = scale_factor_modshift[scale_factor];
  185. mod = shift & 3;
  186. shift >>= 2;
  187. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  188. /* NOTE: at this point, 0 <= shift <= 21 */
  189. if (shift > 0)
  190. val = (val + (1 << (shift - 1))) >> shift;
  191. return val;
  192. }
  193. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  194. static inline int l3_unscale(int value, int exponent)
  195. {
  196. unsigned int m;
  197. int e;
  198. e = table_4_3_exp [4*value + (exponent&3)];
  199. m = table_4_3_value[4*value + (exponent&3)];
  200. e -= (exponent >> 2);
  201. assert(e>=1);
  202. if (e > 31)
  203. return 0;
  204. m = (m + (1 << (e-1))) >> e;
  205. return m;
  206. }
  207. /* all integer n^(4/3) computation code */
  208. #define DEV_ORDER 13
  209. #define POW_FRAC_BITS 24
  210. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  211. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  212. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  213. static int dev_4_3_coefs[DEV_ORDER];
  214. #if 0 /* unused */
  215. static int pow_mult3[3] = {
  216. POW_FIX(1.0),
  217. POW_FIX(1.25992104989487316476),
  218. POW_FIX(1.58740105196819947474),
  219. };
  220. #endif
  221. static void int_pow_init(void)
  222. {
  223. int i, a;
  224. a = POW_FIX(1.0);
  225. for(i=0;i<DEV_ORDER;i++) {
  226. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  227. dev_4_3_coefs[i] = a;
  228. }
  229. }
  230. #if 0 /* unused, remove? */
  231. /* return the mantissa and the binary exponent */
  232. static int int_pow(int i, int *exp_ptr)
  233. {
  234. int e, er, eq, j;
  235. int a, a1;
  236. /* renormalize */
  237. a = i;
  238. e = POW_FRAC_BITS;
  239. while (a < (1 << (POW_FRAC_BITS - 1))) {
  240. a = a << 1;
  241. e--;
  242. }
  243. a -= (1 << POW_FRAC_BITS);
  244. a1 = 0;
  245. for(j = DEV_ORDER - 1; j >= 0; j--)
  246. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  247. a = (1 << POW_FRAC_BITS) + a1;
  248. /* exponent compute (exact) */
  249. e = e * 4;
  250. er = e % 3;
  251. eq = e / 3;
  252. a = POW_MULL(a, pow_mult3[er]);
  253. while (a >= 2 * POW_FRAC_ONE) {
  254. a = a >> 1;
  255. eq++;
  256. }
  257. /* convert to float */
  258. while (a < POW_FRAC_ONE) {
  259. a = a << 1;
  260. eq--;
  261. }
  262. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  263. #if POW_FRAC_BITS > FRAC_BITS
  264. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  265. /* correct overflow */
  266. if (a >= 2 * (1 << FRAC_BITS)) {
  267. a = a >> 1;
  268. eq++;
  269. }
  270. #endif
  271. *exp_ptr = eq;
  272. return a;
  273. }
  274. #endif
  275. static int decode_init(AVCodecContext * avctx)
  276. {
  277. MPADecodeContext *s = avctx->priv_data;
  278. static int init=0;
  279. int i, j, k;
  280. s->avctx = avctx;
  281. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  282. avctx->sample_fmt= SAMPLE_FMT_S32;
  283. #else
  284. avctx->sample_fmt= SAMPLE_FMT_S16;
  285. #endif
  286. s->error_resilience= avctx->error_resilience;
  287. if(avctx->antialias_algo != FF_AA_FLOAT)
  288. s->compute_antialias= compute_antialias_integer;
  289. else
  290. s->compute_antialias= compute_antialias_float;
  291. if (!init && !avctx->parse_only) {
  292. /* scale factors table for layer 1/2 */
  293. for(i=0;i<64;i++) {
  294. int shift, mod;
  295. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  296. shift = (i / 3);
  297. mod = i % 3;
  298. scale_factor_modshift[i] = mod | (shift << 2);
  299. }
  300. /* scale factor multiply for layer 1 */
  301. for(i=0;i<15;i++) {
  302. int n, norm;
  303. n = i + 2;
  304. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  305. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  306. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  307. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  308. dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
  309. i, norm,
  310. scale_factor_mult[i][0],
  311. scale_factor_mult[i][1],
  312. scale_factor_mult[i][2]);
  313. }
  314. ff_mpa_synth_init(window);
  315. /* huffman decode tables */
  316. for(i=1;i<16;i++) {
  317. const HuffTable *h = &mpa_huff_tables[i];
  318. int xsize, x, y;
  319. unsigned int n;
  320. uint8_t tmp_bits [512];
  321. uint16_t tmp_codes[512];
  322. memset(tmp_bits , 0, sizeof(tmp_bits ));
  323. memset(tmp_codes, 0, sizeof(tmp_codes));
  324. xsize = h->xsize;
  325. n = xsize * xsize;
  326. j = 0;
  327. for(x=0;x<xsize;x++) {
  328. for(y=0;y<xsize;y++){
  329. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  330. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  331. }
  332. }
  333. /* XXX: fail test */
  334. init_vlc(&huff_vlc[i], 7, 512,
  335. tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
  336. }
  337. for(i=0;i<2;i++) {
  338. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  339. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  340. }
  341. for(i=0;i<9;i++) {
  342. k = 0;
  343. for(j=0;j<22;j++) {
  344. band_index_long[i][j] = k;
  345. k += band_size_long[i][j];
  346. }
  347. band_index_long[i][22] = k;
  348. }
  349. /* compute n ^ (4/3) and store it in mantissa/exp format */
  350. int_pow_init();
  351. for(i=1;i<TABLE_4_3_SIZE;i++) {
  352. double f, fm;
  353. int e, m;
  354. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  355. fm = frexp(f, &e);
  356. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  357. e+= FRAC_BITS - 31 + 5 - 100;
  358. /* normalized to FRAC_BITS */
  359. table_4_3_value[i] = m;
  360. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  361. table_4_3_exp[i] = -e;
  362. }
  363. for(i=0; i<512*16; i++){
  364. int exponent= (i>>4);
  365. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  366. expval_table[exponent][i&15]= llrint(f);
  367. if((i&15)==1)
  368. exp_table[exponent]= llrint(f);
  369. }
  370. for(i=0;i<7;i++) {
  371. float f;
  372. int v;
  373. if (i != 6) {
  374. f = tan((double)i * M_PI / 12.0);
  375. v = FIXR(f / (1.0 + f));
  376. } else {
  377. v = FIXR(1.0);
  378. }
  379. is_table[0][i] = v;
  380. is_table[1][6 - i] = v;
  381. }
  382. /* invalid values */
  383. for(i=7;i<16;i++)
  384. is_table[0][i] = is_table[1][i] = 0.0;
  385. for(i=0;i<16;i++) {
  386. double f;
  387. int e, k;
  388. for(j=0;j<2;j++) {
  389. e = -(j + 1) * ((i + 1) >> 1);
  390. f = pow(2.0, e / 4.0);
  391. k = i & 1;
  392. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  393. is_table_lsf[j][k][i] = FIXR(1.0);
  394. dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
  395. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  396. }
  397. }
  398. for(i=0;i<8;i++) {
  399. float ci, cs, ca;
  400. ci = ci_table[i];
  401. cs = 1.0 / sqrt(1.0 + ci * ci);
  402. ca = cs * ci;
  403. csa_table[i][0] = FIXHR(cs/4);
  404. csa_table[i][1] = FIXHR(ca/4);
  405. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  406. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  407. csa_table_float[i][0] = cs;
  408. csa_table_float[i][1] = ca;
  409. csa_table_float[i][2] = ca + cs;
  410. csa_table_float[i][3] = ca - cs;
  411. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  412. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  413. }
  414. /* compute mdct windows */
  415. for(i=0;i<36;i++) {
  416. for(j=0; j<4; j++){
  417. double d;
  418. if(j==2 && i%3 != 1)
  419. continue;
  420. d= sin(M_PI * (i + 0.5) / 36.0);
  421. if(j==1){
  422. if (i>=30) d= 0;
  423. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  424. else if(i>=18) d= 1;
  425. }else if(j==3){
  426. if (i< 6) d= 0;
  427. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  428. else if(i< 18) d= 1;
  429. }
  430. //merge last stage of imdct into the window coefficients
  431. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  432. if(j==2)
  433. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  434. else
  435. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  436. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  437. }
  438. }
  439. /* NOTE: we do frequency inversion adter the MDCT by changing
  440. the sign of the right window coefs */
  441. for(j=0;j<4;j++) {
  442. for(i=0;i<36;i+=2) {
  443. mdct_win[j + 4][i] = mdct_win[j][i];
  444. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  445. }
  446. }
  447. #if defined(DEBUG)
  448. for(j=0;j<8;j++) {
  449. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  450. for(i=0;i<36;i++)
  451. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  452. av_log(avctx, AV_LOG_DEBUG, "\n");
  453. }
  454. #endif
  455. init = 1;
  456. }
  457. #ifdef DEBUG
  458. s->frame_count = 0;
  459. #endif
  460. if (avctx->codec_id == CODEC_ID_MP3ADU)
  461. s->adu_mode = 1;
  462. return 0;
  463. }
  464. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  465. /* cos(i*pi/64) */
  466. #define COS0_0 FIXHR(0.50060299823519630134/2)
  467. #define COS0_1 FIXHR(0.50547095989754365998/2)
  468. #define COS0_2 FIXHR(0.51544730992262454697/2)
  469. #define COS0_3 FIXHR(0.53104259108978417447/2)
  470. #define COS0_4 FIXHR(0.55310389603444452782/2)
  471. #define COS0_5 FIXHR(0.58293496820613387367/2)
  472. #define COS0_6 FIXHR(0.62250412303566481615/2)
  473. #define COS0_7 FIXHR(0.67480834145500574602/2)
  474. #define COS0_8 FIXHR(0.74453627100229844977/2)
  475. #define COS0_9 FIXHR(0.83934964541552703873/2)
  476. #define COS0_10 FIXHR(0.97256823786196069369/2)
  477. #define COS0_11 FIXHR(1.16943993343288495515/4)
  478. #define COS0_12 FIXHR(1.48416461631416627724/4)
  479. #define COS0_13 FIXHR(2.05778100995341155085/8)
  480. #define COS0_14 FIXHR(3.40760841846871878570/8)
  481. #define COS0_15 FIXHR(10.19000812354805681150/32)
  482. #define COS1_0 FIXHR(0.50241928618815570551/2)
  483. #define COS1_1 FIXHR(0.52249861493968888062/2)
  484. #define COS1_2 FIXHR(0.56694403481635770368/2)
  485. #define COS1_3 FIXHR(0.64682178335999012954/2)
  486. #define COS1_4 FIXHR(0.78815462345125022473/2)
  487. #define COS1_5 FIXHR(1.06067768599034747134/4)
  488. #define COS1_6 FIXHR(1.72244709823833392782/4)
  489. #define COS1_7 FIXHR(5.10114861868916385802/16)
  490. #define COS2_0 FIXHR(0.50979557910415916894/2)
  491. #define COS2_1 FIXHR(0.60134488693504528054/2)
  492. #define COS2_2 FIXHR(0.89997622313641570463/2)
  493. #define COS2_3 FIXHR(2.56291544774150617881/8)
  494. #define COS3_0 FIXHR(0.54119610014619698439/2)
  495. #define COS3_1 FIXHR(1.30656296487637652785/4)
  496. #define COS4_0 FIXHR(0.70710678118654752439/2)
  497. /* butterfly operator */
  498. #define BF(a, b, c, s)\
  499. {\
  500. tmp0 = tab[a] + tab[b];\
  501. tmp1 = tab[a] - tab[b];\
  502. tab[a] = tmp0;\
  503. tab[b] = MULH(tmp1<<(s), c);\
  504. }
  505. #define BF1(a, b, c, d)\
  506. {\
  507. BF(a, b, COS4_0, 1);\
  508. BF(c, d,-COS4_0, 1);\
  509. tab[c] += tab[d];\
  510. }
  511. #define BF2(a, b, c, d)\
  512. {\
  513. BF(a, b, COS4_0, 1);\
  514. BF(c, d,-COS4_0, 1);\
  515. tab[c] += tab[d];\
  516. tab[a] += tab[c];\
  517. tab[c] += tab[b];\
  518. tab[b] += tab[d];\
  519. }
  520. #define ADD(a, b) tab[a] += tab[b]
  521. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  522. static void dct32(int32_t *out, int32_t *tab)
  523. {
  524. int tmp0, tmp1;
  525. /* pass 1 */
  526. BF( 0, 31, COS0_0 , 1);
  527. BF(15, 16, COS0_15, 5);
  528. /* pass 2 */
  529. BF( 0, 15, COS1_0 , 1);
  530. BF(16, 31,-COS1_0 , 1);
  531. /* pass 1 */
  532. BF( 7, 24, COS0_7 , 1);
  533. BF( 8, 23, COS0_8 , 1);
  534. /* pass 2 */
  535. BF( 7, 8, COS1_7 , 4);
  536. BF(23, 24,-COS1_7 , 4);
  537. /* pass 3 */
  538. BF( 0, 7, COS2_0 , 1);
  539. BF( 8, 15,-COS2_0 , 1);
  540. BF(16, 23, COS2_0 , 1);
  541. BF(24, 31,-COS2_0 , 1);
  542. /* pass 1 */
  543. BF( 3, 28, COS0_3 , 1);
  544. BF(12, 19, COS0_12, 2);
  545. /* pass 2 */
  546. BF( 3, 12, COS1_3 , 1);
  547. BF(19, 28,-COS1_3 , 1);
  548. /* pass 1 */
  549. BF( 4, 27, COS0_4 , 1);
  550. BF(11, 20, COS0_11, 2);
  551. /* pass 2 */
  552. BF( 4, 11, COS1_4 , 1);
  553. BF(20, 27,-COS1_4 , 1);
  554. /* pass 3 */
  555. BF( 3, 4, COS2_3 , 3);
  556. BF(11, 12,-COS2_3 , 3);
  557. BF(19, 20, COS2_3 , 3);
  558. BF(27, 28,-COS2_3 , 3);
  559. /* pass 4 */
  560. BF( 0, 3, COS3_0 , 1);
  561. BF( 4, 7,-COS3_0 , 1);
  562. BF( 8, 11, COS3_0 , 1);
  563. BF(12, 15,-COS3_0 , 1);
  564. BF(16, 19, COS3_0 , 1);
  565. BF(20, 23,-COS3_0 , 1);
  566. BF(24, 27, COS3_0 , 1);
  567. BF(28, 31,-COS3_0 , 1);
  568. /* pass 1 */
  569. BF( 1, 30, COS0_1 , 1);
  570. BF(14, 17, COS0_14, 3);
  571. /* pass 2 */
  572. BF( 1, 14, COS1_1 , 1);
  573. BF(17, 30,-COS1_1 , 1);
  574. /* pass 1 */
  575. BF( 6, 25, COS0_6 , 1);
  576. BF( 9, 22, COS0_9 , 1);
  577. /* pass 2 */
  578. BF( 6, 9, COS1_6 , 2);
  579. BF(22, 25,-COS1_6 , 2);
  580. /* pass 3 */
  581. BF( 1, 6, COS2_1 , 1);
  582. BF( 9, 14,-COS2_1 , 1);
  583. BF(17, 22, COS2_1 , 1);
  584. BF(25, 30,-COS2_1 , 1);
  585. /* pass 1 */
  586. BF( 2, 29, COS0_2 , 1);
  587. BF(13, 18, COS0_13, 3);
  588. /* pass 2 */
  589. BF( 2, 13, COS1_2 , 1);
  590. BF(18, 29,-COS1_2 , 1);
  591. /* pass 1 */
  592. BF( 5, 26, COS0_5 , 1);
  593. BF(10, 21, COS0_10, 1);
  594. /* pass 2 */
  595. BF( 5, 10, COS1_5 , 2);
  596. BF(21, 26,-COS1_5 , 2);
  597. /* pass 3 */
  598. BF( 2, 5, COS2_2 , 1);
  599. BF(10, 13,-COS2_2 , 1);
  600. BF(18, 21, COS2_2 , 1);
  601. BF(26, 29,-COS2_2 , 1);
  602. /* pass 4 */
  603. BF( 1, 2, COS3_1 , 2);
  604. BF( 5, 6,-COS3_1 , 2);
  605. BF( 9, 10, COS3_1 , 2);
  606. BF(13, 14,-COS3_1 , 2);
  607. BF(17, 18, COS3_1 , 2);
  608. BF(21, 22,-COS3_1 , 2);
  609. BF(25, 26, COS3_1 , 2);
  610. BF(29, 30,-COS3_1 , 2);
  611. /* pass 5 */
  612. BF1( 0, 1, 2, 3);
  613. BF2( 4, 5, 6, 7);
  614. BF1( 8, 9, 10, 11);
  615. BF2(12, 13, 14, 15);
  616. BF1(16, 17, 18, 19);
  617. BF2(20, 21, 22, 23);
  618. BF1(24, 25, 26, 27);
  619. BF2(28, 29, 30, 31);
  620. /* pass 6 */
  621. ADD( 8, 12);
  622. ADD(12, 10);
  623. ADD(10, 14);
  624. ADD(14, 9);
  625. ADD( 9, 13);
  626. ADD(13, 11);
  627. ADD(11, 15);
  628. out[ 0] = tab[0];
  629. out[16] = tab[1];
  630. out[ 8] = tab[2];
  631. out[24] = tab[3];
  632. out[ 4] = tab[4];
  633. out[20] = tab[5];
  634. out[12] = tab[6];
  635. out[28] = tab[7];
  636. out[ 2] = tab[8];
  637. out[18] = tab[9];
  638. out[10] = tab[10];
  639. out[26] = tab[11];
  640. out[ 6] = tab[12];
  641. out[22] = tab[13];
  642. out[14] = tab[14];
  643. out[30] = tab[15];
  644. ADD(24, 28);
  645. ADD(28, 26);
  646. ADD(26, 30);
  647. ADD(30, 25);
  648. ADD(25, 29);
  649. ADD(29, 27);
  650. ADD(27, 31);
  651. out[ 1] = tab[16] + tab[24];
  652. out[17] = tab[17] + tab[25];
  653. out[ 9] = tab[18] + tab[26];
  654. out[25] = tab[19] + tab[27];
  655. out[ 5] = tab[20] + tab[28];
  656. out[21] = tab[21] + tab[29];
  657. out[13] = tab[22] + tab[30];
  658. out[29] = tab[23] + tab[31];
  659. out[ 3] = tab[24] + tab[20];
  660. out[19] = tab[25] + tab[21];
  661. out[11] = tab[26] + tab[22];
  662. out[27] = tab[27] + tab[23];
  663. out[ 7] = tab[28] + tab[18];
  664. out[23] = tab[29] + tab[19];
  665. out[15] = tab[30] + tab[17];
  666. out[31] = tab[31];
  667. }
  668. #if FRAC_BITS <= 15
  669. static inline int round_sample(int *sum)
  670. {
  671. int sum1;
  672. sum1 = (*sum) >> OUT_SHIFT;
  673. *sum &= (1<<OUT_SHIFT)-1;
  674. if (sum1 < OUT_MIN)
  675. sum1 = OUT_MIN;
  676. else if (sum1 > OUT_MAX)
  677. sum1 = OUT_MAX;
  678. return sum1;
  679. }
  680. /* signed 16x16 -> 32 multiply add accumulate */
  681. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  682. /* signed 16x16 -> 32 multiply */
  683. #define MULS(ra, rb) MUL16(ra, rb)
  684. #else
  685. static inline int round_sample(int64_t *sum)
  686. {
  687. int sum1;
  688. sum1 = (int)((*sum) >> OUT_SHIFT);
  689. *sum &= (1<<OUT_SHIFT)-1;
  690. if (sum1 < OUT_MIN)
  691. sum1 = OUT_MIN;
  692. else if (sum1 > OUT_MAX)
  693. sum1 = OUT_MAX;
  694. return sum1;
  695. }
  696. # define MULS(ra, rb) MUL64(ra, rb)
  697. #endif
  698. #define SUM8(sum, op, w, p) \
  699. { \
  700. sum op MULS((w)[0 * 64], p[0 * 64]);\
  701. sum op MULS((w)[1 * 64], p[1 * 64]);\
  702. sum op MULS((w)[2 * 64], p[2 * 64]);\
  703. sum op MULS((w)[3 * 64], p[3 * 64]);\
  704. sum op MULS((w)[4 * 64], p[4 * 64]);\
  705. sum op MULS((w)[5 * 64], p[5 * 64]);\
  706. sum op MULS((w)[6 * 64], p[6 * 64]);\
  707. sum op MULS((w)[7 * 64], p[7 * 64]);\
  708. }
  709. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  710. { \
  711. int tmp;\
  712. tmp = p[0 * 64];\
  713. sum1 op1 MULS((w1)[0 * 64], tmp);\
  714. sum2 op2 MULS((w2)[0 * 64], tmp);\
  715. tmp = p[1 * 64];\
  716. sum1 op1 MULS((w1)[1 * 64], tmp);\
  717. sum2 op2 MULS((w2)[1 * 64], tmp);\
  718. tmp = p[2 * 64];\
  719. sum1 op1 MULS((w1)[2 * 64], tmp);\
  720. sum2 op2 MULS((w2)[2 * 64], tmp);\
  721. tmp = p[3 * 64];\
  722. sum1 op1 MULS((w1)[3 * 64], tmp);\
  723. sum2 op2 MULS((w2)[3 * 64], tmp);\
  724. tmp = p[4 * 64];\
  725. sum1 op1 MULS((w1)[4 * 64], tmp);\
  726. sum2 op2 MULS((w2)[4 * 64], tmp);\
  727. tmp = p[5 * 64];\
  728. sum1 op1 MULS((w1)[5 * 64], tmp);\
  729. sum2 op2 MULS((w2)[5 * 64], tmp);\
  730. tmp = p[6 * 64];\
  731. sum1 op1 MULS((w1)[6 * 64], tmp);\
  732. sum2 op2 MULS((w2)[6 * 64], tmp);\
  733. tmp = p[7 * 64];\
  734. sum1 op1 MULS((w1)[7 * 64], tmp);\
  735. sum2 op2 MULS((w2)[7 * 64], tmp);\
  736. }
  737. void ff_mpa_synth_init(MPA_INT *window)
  738. {
  739. int i;
  740. /* max = 18760, max sum over all 16 coefs : 44736 */
  741. for(i=0;i<257;i++) {
  742. int v;
  743. v = ff_mpa_enwindow[i];
  744. #if WFRAC_BITS < 16
  745. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  746. #endif
  747. window[i] = v;
  748. if ((i & 63) != 0)
  749. v = -v;
  750. if (i != 0)
  751. window[512 - i] = v;
  752. }
  753. }
  754. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  755. 32 samples. */
  756. /* XXX: optimize by avoiding ring buffer usage */
  757. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  758. MPA_INT *window, int *dither_state,
  759. OUT_INT *samples, int incr,
  760. int32_t sb_samples[SBLIMIT])
  761. {
  762. int32_t tmp[32];
  763. register MPA_INT *synth_buf;
  764. register const MPA_INT *w, *w2, *p;
  765. int j, offset, v;
  766. OUT_INT *samples2;
  767. #if FRAC_BITS <= 15
  768. int sum, sum2;
  769. #else
  770. int64_t sum, sum2;
  771. #endif
  772. dct32(tmp, sb_samples);
  773. offset = *synth_buf_offset;
  774. synth_buf = synth_buf_ptr + offset;
  775. for(j=0;j<32;j++) {
  776. v = tmp[j];
  777. #if FRAC_BITS <= 15
  778. /* NOTE: can cause a loss in precision if very high amplitude
  779. sound */
  780. v = av_clip_int16(v);
  781. #endif
  782. synth_buf[j] = v;
  783. }
  784. /* copy to avoid wrap */
  785. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  786. samples2 = samples + 31 * incr;
  787. w = window;
  788. w2 = window + 31;
  789. sum = *dither_state;
  790. p = synth_buf + 16;
  791. SUM8(sum, +=, w, p);
  792. p = synth_buf + 48;
  793. SUM8(sum, -=, w + 32, p);
  794. *samples = round_sample(&sum);
  795. samples += incr;
  796. w++;
  797. /* we calculate two samples at the same time to avoid one memory
  798. access per two sample */
  799. for(j=1;j<16;j++) {
  800. sum2 = 0;
  801. p = synth_buf + 16 + j;
  802. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  803. p = synth_buf + 48 - j;
  804. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  805. *samples = round_sample(&sum);
  806. samples += incr;
  807. sum += sum2;
  808. *samples2 = round_sample(&sum);
  809. samples2 -= incr;
  810. w++;
  811. w2--;
  812. }
  813. p = synth_buf + 32;
  814. SUM8(sum, -=, w + 32, p);
  815. *samples = round_sample(&sum);
  816. *dither_state= sum;
  817. offset = (offset - 32) & 511;
  818. *synth_buf_offset = offset;
  819. }
  820. #define C3 FIXHR(0.86602540378443864676/2)
  821. /* 0.5 / cos(pi*(2*i+1)/36) */
  822. static const int icos36[9] = {
  823. FIXR(0.50190991877167369479),
  824. FIXR(0.51763809020504152469), //0
  825. FIXR(0.55168895948124587824),
  826. FIXR(0.61038729438072803416),
  827. FIXR(0.70710678118654752439), //1
  828. FIXR(0.87172339781054900991),
  829. FIXR(1.18310079157624925896),
  830. FIXR(1.93185165257813657349), //2
  831. FIXR(5.73685662283492756461),
  832. };
  833. /* 0.5 / cos(pi*(2*i+1)/36) */
  834. static const int icos36h[9] = {
  835. FIXHR(0.50190991877167369479/2),
  836. FIXHR(0.51763809020504152469/2), //0
  837. FIXHR(0.55168895948124587824/2),
  838. FIXHR(0.61038729438072803416/2),
  839. FIXHR(0.70710678118654752439/2), //1
  840. FIXHR(0.87172339781054900991/2),
  841. FIXHR(1.18310079157624925896/4),
  842. FIXHR(1.93185165257813657349/4), //2
  843. // FIXHR(5.73685662283492756461),
  844. };
  845. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  846. cases. */
  847. static void imdct12(int *out, int *in)
  848. {
  849. int in0, in1, in2, in3, in4, in5, t1, t2;
  850. in0= in[0*3];
  851. in1= in[1*3] + in[0*3];
  852. in2= in[2*3] + in[1*3];
  853. in3= in[3*3] + in[2*3];
  854. in4= in[4*3] + in[3*3];
  855. in5= in[5*3] + in[4*3];
  856. in5 += in3;
  857. in3 += in1;
  858. in2= MULH(2*in2, C3);
  859. in3= MULH(4*in3, C3);
  860. t1 = in0 - in4;
  861. t2 = MULH(2*(in1 - in5), icos36h[4]);
  862. out[ 7]=
  863. out[10]= t1 + t2;
  864. out[ 1]=
  865. out[ 4]= t1 - t2;
  866. in0 += in4>>1;
  867. in4 = in0 + in2;
  868. in5 += 2*in1;
  869. in1 = MULH(in5 + in3, icos36h[1]);
  870. out[ 8]=
  871. out[ 9]= in4 + in1;
  872. out[ 2]=
  873. out[ 3]= in4 - in1;
  874. in0 -= in2;
  875. in5 = MULH(2*(in5 - in3), icos36h[7]);
  876. out[ 0]=
  877. out[ 5]= in0 - in5;
  878. out[ 6]=
  879. out[11]= in0 + in5;
  880. }
  881. /* cos(pi*i/18) */
  882. #define C1 FIXHR(0.98480775301220805936/2)
  883. #define C2 FIXHR(0.93969262078590838405/2)
  884. #define C3 FIXHR(0.86602540378443864676/2)
  885. #define C4 FIXHR(0.76604444311897803520/2)
  886. #define C5 FIXHR(0.64278760968653932632/2)
  887. #define C6 FIXHR(0.5/2)
  888. #define C7 FIXHR(0.34202014332566873304/2)
  889. #define C8 FIXHR(0.17364817766693034885/2)
  890. /* using Lee like decomposition followed by hand coded 9 points DCT */
  891. static void imdct36(int *out, int *buf, int *in, int *win)
  892. {
  893. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  894. int tmp[18], *tmp1, *in1;
  895. for(i=17;i>=1;i--)
  896. in[i] += in[i-1];
  897. for(i=17;i>=3;i-=2)
  898. in[i] += in[i-2];
  899. for(j=0;j<2;j++) {
  900. tmp1 = tmp + j;
  901. in1 = in + j;
  902. #if 0
  903. //more accurate but slower
  904. int64_t t0, t1, t2, t3;
  905. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  906. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  907. t1 = in1[2*0] - in1[2*6];
  908. tmp1[ 6] = t1 - (t2>>1);
  909. tmp1[16] = t1 + t2;
  910. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  911. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  912. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  913. tmp1[10] = (t3 - t0 - t2) >> 32;
  914. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  915. tmp1[14] = (t3 + t2 - t1) >> 32;
  916. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  917. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  918. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  919. t0 = MUL64(2*in1[2*3], C3);
  920. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  921. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  922. tmp1[12] = (t2 + t1 - t0) >> 32;
  923. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  924. #else
  925. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  926. t3 = in1[2*0] + (in1[2*6]>>1);
  927. t1 = in1[2*0] - in1[2*6];
  928. tmp1[ 6] = t1 - (t2>>1);
  929. tmp1[16] = t1 + t2;
  930. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  931. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  932. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  933. tmp1[10] = t3 - t0 - t2;
  934. tmp1[ 2] = t3 + t0 + t1;
  935. tmp1[14] = t3 + t2 - t1;
  936. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  937. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  938. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  939. t0 = MULH(2*in1[2*3], C3);
  940. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  941. tmp1[ 0] = t2 + t3 + t0;
  942. tmp1[12] = t2 + t1 - t0;
  943. tmp1[ 8] = t3 - t1 - t0;
  944. #endif
  945. }
  946. i = 0;
  947. for(j=0;j<4;j++) {
  948. t0 = tmp[i];
  949. t1 = tmp[i + 2];
  950. s0 = t1 + t0;
  951. s2 = t1 - t0;
  952. t2 = tmp[i + 1];
  953. t3 = tmp[i + 3];
  954. s1 = MULH(2*(t3 + t2), icos36h[j]);
  955. s3 = MULL(t3 - t2, icos36[8 - j]);
  956. t0 = s0 + s1;
  957. t1 = s0 - s1;
  958. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  959. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  960. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  961. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  962. t0 = s2 + s3;
  963. t1 = s2 - s3;
  964. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  965. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  966. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  967. buf[ + j] = MULH(t0, win[18 + j]);
  968. i += 4;
  969. }
  970. s0 = tmp[16];
  971. s1 = MULH(2*tmp[17], icos36h[4]);
  972. t0 = s0 + s1;
  973. t1 = s0 - s1;
  974. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  975. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  976. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  977. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  978. }
  979. /* return the number of decoded frames */
  980. static int mp_decode_layer1(MPADecodeContext *s)
  981. {
  982. int bound, i, v, n, ch, j, mant;
  983. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  984. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  985. if (s->mode == MPA_JSTEREO)
  986. bound = (s->mode_ext + 1) * 4;
  987. else
  988. bound = SBLIMIT;
  989. /* allocation bits */
  990. for(i=0;i<bound;i++) {
  991. for(ch=0;ch<s->nb_channels;ch++) {
  992. allocation[ch][i] = get_bits(&s->gb, 4);
  993. }
  994. }
  995. for(i=bound;i<SBLIMIT;i++) {
  996. allocation[0][i] = get_bits(&s->gb, 4);
  997. }
  998. /* scale factors */
  999. for(i=0;i<bound;i++) {
  1000. for(ch=0;ch<s->nb_channels;ch++) {
  1001. if (allocation[ch][i])
  1002. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1003. }
  1004. }
  1005. for(i=bound;i<SBLIMIT;i++) {
  1006. if (allocation[0][i]) {
  1007. scale_factors[0][i] = get_bits(&s->gb, 6);
  1008. scale_factors[1][i] = get_bits(&s->gb, 6);
  1009. }
  1010. }
  1011. /* compute samples */
  1012. for(j=0;j<12;j++) {
  1013. for(i=0;i<bound;i++) {
  1014. for(ch=0;ch<s->nb_channels;ch++) {
  1015. n = allocation[ch][i];
  1016. if (n) {
  1017. mant = get_bits(&s->gb, n + 1);
  1018. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1019. } else {
  1020. v = 0;
  1021. }
  1022. s->sb_samples[ch][j][i] = v;
  1023. }
  1024. }
  1025. for(i=bound;i<SBLIMIT;i++) {
  1026. n = allocation[0][i];
  1027. if (n) {
  1028. mant = get_bits(&s->gb, n + 1);
  1029. v = l1_unscale(n, mant, scale_factors[0][i]);
  1030. s->sb_samples[0][j][i] = v;
  1031. v = l1_unscale(n, mant, scale_factors[1][i]);
  1032. s->sb_samples[1][j][i] = v;
  1033. } else {
  1034. s->sb_samples[0][j][i] = 0;
  1035. s->sb_samples[1][j][i] = 0;
  1036. }
  1037. }
  1038. }
  1039. return 12;
  1040. }
  1041. static int mp_decode_layer2(MPADecodeContext *s)
  1042. {
  1043. int sblimit; /* number of used subbands */
  1044. const unsigned char *alloc_table;
  1045. int table, bit_alloc_bits, i, j, ch, bound, v;
  1046. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1047. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1048. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1049. int scale, qindex, bits, steps, k, l, m, b;
  1050. /* select decoding table */
  1051. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1052. s->sample_rate, s->lsf);
  1053. sblimit = ff_mpa_sblimit_table[table];
  1054. alloc_table = ff_mpa_alloc_tables[table];
  1055. if (s->mode == MPA_JSTEREO)
  1056. bound = (s->mode_ext + 1) * 4;
  1057. else
  1058. bound = sblimit;
  1059. dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  1060. /* sanity check */
  1061. if( bound > sblimit ) bound = sblimit;
  1062. /* parse bit allocation */
  1063. j = 0;
  1064. for(i=0;i<bound;i++) {
  1065. bit_alloc_bits = alloc_table[j];
  1066. for(ch=0;ch<s->nb_channels;ch++) {
  1067. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1068. }
  1069. j += 1 << bit_alloc_bits;
  1070. }
  1071. for(i=bound;i<sblimit;i++) {
  1072. bit_alloc_bits = alloc_table[j];
  1073. v = get_bits(&s->gb, bit_alloc_bits);
  1074. bit_alloc[0][i] = v;
  1075. bit_alloc[1][i] = v;
  1076. j += 1 << bit_alloc_bits;
  1077. }
  1078. #ifdef DEBUG
  1079. {
  1080. for(ch=0;ch<s->nb_channels;ch++) {
  1081. for(i=0;i<sblimit;i++)
  1082. dprintf(s->avctx, " %d", bit_alloc[ch][i]);
  1083. dprintf(s->avctx, "\n");
  1084. }
  1085. }
  1086. #endif
  1087. /* scale codes */
  1088. for(i=0;i<sblimit;i++) {
  1089. for(ch=0;ch<s->nb_channels;ch++) {
  1090. if (bit_alloc[ch][i])
  1091. scale_code[ch][i] = get_bits(&s->gb, 2);
  1092. }
  1093. }
  1094. /* scale factors */
  1095. for(i=0;i<sblimit;i++) {
  1096. for(ch=0;ch<s->nb_channels;ch++) {
  1097. if (bit_alloc[ch][i]) {
  1098. sf = scale_factors[ch][i];
  1099. switch(scale_code[ch][i]) {
  1100. default:
  1101. case 0:
  1102. sf[0] = get_bits(&s->gb, 6);
  1103. sf[1] = get_bits(&s->gb, 6);
  1104. sf[2] = get_bits(&s->gb, 6);
  1105. break;
  1106. case 2:
  1107. sf[0] = get_bits(&s->gb, 6);
  1108. sf[1] = sf[0];
  1109. sf[2] = sf[0];
  1110. break;
  1111. case 1:
  1112. sf[0] = get_bits(&s->gb, 6);
  1113. sf[2] = get_bits(&s->gb, 6);
  1114. sf[1] = sf[0];
  1115. break;
  1116. case 3:
  1117. sf[0] = get_bits(&s->gb, 6);
  1118. sf[2] = get_bits(&s->gb, 6);
  1119. sf[1] = sf[2];
  1120. break;
  1121. }
  1122. }
  1123. }
  1124. }
  1125. #ifdef DEBUG
  1126. for(ch=0;ch<s->nb_channels;ch++) {
  1127. for(i=0;i<sblimit;i++) {
  1128. if (bit_alloc[ch][i]) {
  1129. sf = scale_factors[ch][i];
  1130. dprintf(s->avctx, " %d %d %d", sf[0], sf[1], sf[2]);
  1131. } else {
  1132. dprintf(s->avctx, " -");
  1133. }
  1134. }
  1135. dprintf(s->avctx, "\n");
  1136. }
  1137. #endif
  1138. /* samples */
  1139. for(k=0;k<3;k++) {
  1140. for(l=0;l<12;l+=3) {
  1141. j = 0;
  1142. for(i=0;i<bound;i++) {
  1143. bit_alloc_bits = alloc_table[j];
  1144. for(ch=0;ch<s->nb_channels;ch++) {
  1145. b = bit_alloc[ch][i];
  1146. if (b) {
  1147. scale = scale_factors[ch][i][k];
  1148. qindex = alloc_table[j+b];
  1149. bits = ff_mpa_quant_bits[qindex];
  1150. if (bits < 0) {
  1151. /* 3 values at the same time */
  1152. v = get_bits(&s->gb, -bits);
  1153. steps = ff_mpa_quant_steps[qindex];
  1154. s->sb_samples[ch][k * 12 + l + 0][i] =
  1155. l2_unscale_group(steps, v % steps, scale);
  1156. v = v / steps;
  1157. s->sb_samples[ch][k * 12 + l + 1][i] =
  1158. l2_unscale_group(steps, v % steps, scale);
  1159. v = v / steps;
  1160. s->sb_samples[ch][k * 12 + l + 2][i] =
  1161. l2_unscale_group(steps, v, scale);
  1162. } else {
  1163. for(m=0;m<3;m++) {
  1164. v = get_bits(&s->gb, bits);
  1165. v = l1_unscale(bits - 1, v, scale);
  1166. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1167. }
  1168. }
  1169. } else {
  1170. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1171. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1172. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1173. }
  1174. }
  1175. /* next subband in alloc table */
  1176. j += 1 << bit_alloc_bits;
  1177. }
  1178. /* XXX: find a way to avoid this duplication of code */
  1179. for(i=bound;i<sblimit;i++) {
  1180. bit_alloc_bits = alloc_table[j];
  1181. b = bit_alloc[0][i];
  1182. if (b) {
  1183. int mant, scale0, scale1;
  1184. scale0 = scale_factors[0][i][k];
  1185. scale1 = scale_factors[1][i][k];
  1186. qindex = alloc_table[j+b];
  1187. bits = ff_mpa_quant_bits[qindex];
  1188. if (bits < 0) {
  1189. /* 3 values at the same time */
  1190. v = get_bits(&s->gb, -bits);
  1191. steps = ff_mpa_quant_steps[qindex];
  1192. mant = v % steps;
  1193. v = v / steps;
  1194. s->sb_samples[0][k * 12 + l + 0][i] =
  1195. l2_unscale_group(steps, mant, scale0);
  1196. s->sb_samples[1][k * 12 + l + 0][i] =
  1197. l2_unscale_group(steps, mant, scale1);
  1198. mant = v % steps;
  1199. v = v / steps;
  1200. s->sb_samples[0][k * 12 + l + 1][i] =
  1201. l2_unscale_group(steps, mant, scale0);
  1202. s->sb_samples[1][k * 12 + l + 1][i] =
  1203. l2_unscale_group(steps, mant, scale1);
  1204. s->sb_samples[0][k * 12 + l + 2][i] =
  1205. l2_unscale_group(steps, v, scale0);
  1206. s->sb_samples[1][k * 12 + l + 2][i] =
  1207. l2_unscale_group(steps, v, scale1);
  1208. } else {
  1209. for(m=0;m<3;m++) {
  1210. mant = get_bits(&s->gb, bits);
  1211. s->sb_samples[0][k * 12 + l + m][i] =
  1212. l1_unscale(bits - 1, mant, scale0);
  1213. s->sb_samples[1][k * 12 + l + m][i] =
  1214. l1_unscale(bits - 1, mant, scale1);
  1215. }
  1216. }
  1217. } else {
  1218. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1219. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1220. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1221. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1222. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1223. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1224. }
  1225. /* next subband in alloc table */
  1226. j += 1 << bit_alloc_bits;
  1227. }
  1228. /* fill remaining samples to zero */
  1229. for(i=sblimit;i<SBLIMIT;i++) {
  1230. for(ch=0;ch<s->nb_channels;ch++) {
  1231. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1232. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1233. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1234. }
  1235. }
  1236. }
  1237. }
  1238. return 3 * 12;
  1239. }
  1240. static inline void lsf_sf_expand(int *slen,
  1241. int sf, int n1, int n2, int n3)
  1242. {
  1243. if (n3) {
  1244. slen[3] = sf % n3;
  1245. sf /= n3;
  1246. } else {
  1247. slen[3] = 0;
  1248. }
  1249. if (n2) {
  1250. slen[2] = sf % n2;
  1251. sf /= n2;
  1252. } else {
  1253. slen[2] = 0;
  1254. }
  1255. slen[1] = sf % n1;
  1256. sf /= n1;
  1257. slen[0] = sf;
  1258. }
  1259. static void exponents_from_scale_factors(MPADecodeContext *s,
  1260. GranuleDef *g,
  1261. int16_t *exponents)
  1262. {
  1263. const uint8_t *bstab, *pretab;
  1264. int len, i, j, k, l, v0, shift, gain, gains[3];
  1265. int16_t *exp_ptr;
  1266. exp_ptr = exponents;
  1267. gain = g->global_gain - 210;
  1268. shift = g->scalefac_scale + 1;
  1269. bstab = band_size_long[s->sample_rate_index];
  1270. pretab = mpa_pretab[g->preflag];
  1271. for(i=0;i<g->long_end;i++) {
  1272. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1273. len = bstab[i];
  1274. for(j=len;j>0;j--)
  1275. *exp_ptr++ = v0;
  1276. }
  1277. if (g->short_start < 13) {
  1278. bstab = band_size_short[s->sample_rate_index];
  1279. gains[0] = gain - (g->subblock_gain[0] << 3);
  1280. gains[1] = gain - (g->subblock_gain[1] << 3);
  1281. gains[2] = gain - (g->subblock_gain[2] << 3);
  1282. k = g->long_end;
  1283. for(i=g->short_start;i<13;i++) {
  1284. len = bstab[i];
  1285. for(l=0;l<3;l++) {
  1286. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1287. for(j=len;j>0;j--)
  1288. *exp_ptr++ = v0;
  1289. }
  1290. }
  1291. }
  1292. }
  1293. /* handle n = 0 too */
  1294. static inline int get_bitsz(GetBitContext *s, int n)
  1295. {
  1296. if (n == 0)
  1297. return 0;
  1298. else
  1299. return get_bits(s, n);
  1300. }
  1301. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1302. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1303. s->gb= s->in_gb;
  1304. s->in_gb.buffer=NULL;
  1305. assert((get_bits_count(&s->gb) & 7) == 0);
  1306. skip_bits_long(&s->gb, *pos - *end_pos);
  1307. *end_pos2=
  1308. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1309. *pos= get_bits_count(&s->gb);
  1310. }
  1311. }
  1312. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1313. int16_t *exponents, int end_pos2)
  1314. {
  1315. int s_index;
  1316. int i;
  1317. int last_pos, bits_left;
  1318. VLC *vlc;
  1319. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1320. /* low frequencies (called big values) */
  1321. s_index = 0;
  1322. for(i=0;i<3;i++) {
  1323. int j, k, l, linbits;
  1324. j = g->region_size[i];
  1325. if (j == 0)
  1326. continue;
  1327. /* select vlc table */
  1328. k = g->table_select[i];
  1329. l = mpa_huff_data[k][0];
  1330. linbits = mpa_huff_data[k][1];
  1331. vlc = &huff_vlc[l];
  1332. if(!l){
  1333. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1334. s_index += 2*j;
  1335. continue;
  1336. }
  1337. /* read huffcode and compute each couple */
  1338. for(;j>0;j--) {
  1339. int exponent, x, y, v;
  1340. int pos= get_bits_count(&s->gb);
  1341. if (pos >= end_pos){
  1342. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1343. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1344. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1345. if(pos >= end_pos)
  1346. break;
  1347. }
  1348. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1349. if(!y){
  1350. g->sb_hybrid[s_index ] =
  1351. g->sb_hybrid[s_index+1] = 0;
  1352. s_index += 2;
  1353. continue;
  1354. }
  1355. exponent= exponents[s_index];
  1356. dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1357. i, g->region_size[i] - j, x, y, exponent);
  1358. if(y&16){
  1359. x = y >> 5;
  1360. y = y & 0x0f;
  1361. if (x < 15){
  1362. v = expval_table[ exponent ][ x ];
  1363. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1364. }else{
  1365. x += get_bitsz(&s->gb, linbits);
  1366. v = l3_unscale(x, exponent);
  1367. }
  1368. if (get_bits1(&s->gb))
  1369. v = -v;
  1370. g->sb_hybrid[s_index] = v;
  1371. if (y < 15){
  1372. v = expval_table[ exponent ][ y ];
  1373. }else{
  1374. y += get_bitsz(&s->gb, linbits);
  1375. v = l3_unscale(y, exponent);
  1376. }
  1377. if (get_bits1(&s->gb))
  1378. v = -v;
  1379. g->sb_hybrid[s_index+1] = v;
  1380. }else{
  1381. x = y >> 5;
  1382. y = y & 0x0f;
  1383. x += y;
  1384. if (x < 15){
  1385. v = expval_table[ exponent ][ x ];
  1386. }else{
  1387. x += get_bitsz(&s->gb, linbits);
  1388. v = l3_unscale(x, exponent);
  1389. }
  1390. if (get_bits1(&s->gb))
  1391. v = -v;
  1392. g->sb_hybrid[s_index+!!y] = v;
  1393. g->sb_hybrid[s_index+ !y] = 0;
  1394. }
  1395. s_index+=2;
  1396. }
  1397. }
  1398. /* high frequencies */
  1399. vlc = &huff_quad_vlc[g->count1table_select];
  1400. last_pos=0;
  1401. while (s_index <= 572) {
  1402. int pos, code;
  1403. pos = get_bits_count(&s->gb);
  1404. if (pos >= end_pos) {
  1405. if (pos > end_pos2 && last_pos){
  1406. /* some encoders generate an incorrect size for this
  1407. part. We must go back into the data */
  1408. s_index -= 4;
  1409. skip_bits_long(&s->gb, last_pos - pos);
  1410. av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1411. if(s->error_resilience >= FF_ER_COMPLIANT)
  1412. s_index=0;
  1413. break;
  1414. }
  1415. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1416. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1417. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1418. if(pos >= end_pos)
  1419. break;
  1420. }
  1421. last_pos= pos;
  1422. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1423. dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1424. g->sb_hybrid[s_index+0]=
  1425. g->sb_hybrid[s_index+1]=
  1426. g->sb_hybrid[s_index+2]=
  1427. g->sb_hybrid[s_index+3]= 0;
  1428. while(code){
  1429. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1430. int v;
  1431. int pos= s_index+idxtab[code];
  1432. code ^= 8>>idxtab[code];
  1433. v = exp_table[ exponents[pos] ];
  1434. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1435. if(get_bits1(&s->gb))
  1436. v = -v;
  1437. g->sb_hybrid[pos] = v;
  1438. }
  1439. s_index+=4;
  1440. }
  1441. /* skip extension bits */
  1442. bits_left = end_pos2 - get_bits_count(&s->gb);
  1443. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1444. if (bits_left < 0/* || bits_left > 500*/) {
  1445. av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1446. s_index=0;
  1447. }else if(bits_left > 0 && s->error_resilience >= FF_ER_AGGRESSIVE){
  1448. av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1449. s_index=0;
  1450. }
  1451. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1452. skip_bits_long(&s->gb, bits_left);
  1453. i= get_bits_count(&s->gb);
  1454. switch_buffer(s, &i, &end_pos, &end_pos2);
  1455. return 0;
  1456. }
  1457. /* Reorder short blocks from bitstream order to interleaved order. It
  1458. would be faster to do it in parsing, but the code would be far more
  1459. complicated */
  1460. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1461. {
  1462. int i, j, len;
  1463. int32_t *ptr, *dst, *ptr1;
  1464. int32_t tmp[576];
  1465. if (g->block_type != 2)
  1466. return;
  1467. if (g->switch_point) {
  1468. if (s->sample_rate_index != 8) {
  1469. ptr = g->sb_hybrid + 36;
  1470. } else {
  1471. ptr = g->sb_hybrid + 48;
  1472. }
  1473. } else {
  1474. ptr = g->sb_hybrid;
  1475. }
  1476. for(i=g->short_start;i<13;i++) {
  1477. len = band_size_short[s->sample_rate_index][i];
  1478. ptr1 = ptr;
  1479. dst = tmp;
  1480. for(j=len;j>0;j--) {
  1481. *dst++ = ptr[0*len];
  1482. *dst++ = ptr[1*len];
  1483. *dst++ = ptr[2*len];
  1484. ptr++;
  1485. }
  1486. ptr+=2*len;
  1487. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1488. }
  1489. }
  1490. #define ISQRT2 FIXR(0.70710678118654752440)
  1491. static void compute_stereo(MPADecodeContext *s,
  1492. GranuleDef *g0, GranuleDef *g1)
  1493. {
  1494. int i, j, k, l;
  1495. int32_t v1, v2;
  1496. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1497. int32_t (*is_tab)[16];
  1498. int32_t *tab0, *tab1;
  1499. int non_zero_found_short[3];
  1500. /* intensity stereo */
  1501. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1502. if (!s->lsf) {
  1503. is_tab = is_table;
  1504. sf_max = 7;
  1505. } else {
  1506. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1507. sf_max = 16;
  1508. }
  1509. tab0 = g0->sb_hybrid + 576;
  1510. tab1 = g1->sb_hybrid + 576;
  1511. non_zero_found_short[0] = 0;
  1512. non_zero_found_short[1] = 0;
  1513. non_zero_found_short[2] = 0;
  1514. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1515. for(i = 12;i >= g1->short_start;i--) {
  1516. /* for last band, use previous scale factor */
  1517. if (i != 11)
  1518. k -= 3;
  1519. len = band_size_short[s->sample_rate_index][i];
  1520. for(l=2;l>=0;l--) {
  1521. tab0 -= len;
  1522. tab1 -= len;
  1523. if (!non_zero_found_short[l]) {
  1524. /* test if non zero band. if so, stop doing i-stereo */
  1525. for(j=0;j<len;j++) {
  1526. if (tab1[j] != 0) {
  1527. non_zero_found_short[l] = 1;
  1528. goto found1;
  1529. }
  1530. }
  1531. sf = g1->scale_factors[k + l];
  1532. if (sf >= sf_max)
  1533. goto found1;
  1534. v1 = is_tab[0][sf];
  1535. v2 = is_tab[1][sf];
  1536. for(j=0;j<len;j++) {
  1537. tmp0 = tab0[j];
  1538. tab0[j] = MULL(tmp0, v1);
  1539. tab1[j] = MULL(tmp0, v2);
  1540. }
  1541. } else {
  1542. found1:
  1543. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1544. /* lower part of the spectrum : do ms stereo
  1545. if enabled */
  1546. for(j=0;j<len;j++) {
  1547. tmp0 = tab0[j];
  1548. tmp1 = tab1[j];
  1549. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1550. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1551. }
  1552. }
  1553. }
  1554. }
  1555. }
  1556. non_zero_found = non_zero_found_short[0] |
  1557. non_zero_found_short[1] |
  1558. non_zero_found_short[2];
  1559. for(i = g1->long_end - 1;i >= 0;i--) {
  1560. len = band_size_long[s->sample_rate_index][i];
  1561. tab0 -= len;
  1562. tab1 -= len;
  1563. /* test if non zero band. if so, stop doing i-stereo */
  1564. if (!non_zero_found) {
  1565. for(j=0;j<len;j++) {
  1566. if (tab1[j] != 0) {
  1567. non_zero_found = 1;
  1568. goto found2;
  1569. }
  1570. }
  1571. /* for last band, use previous scale factor */
  1572. k = (i == 21) ? 20 : i;
  1573. sf = g1->scale_factors[k];
  1574. if (sf >= sf_max)
  1575. goto found2;
  1576. v1 = is_tab[0][sf];
  1577. v2 = is_tab[1][sf];
  1578. for(j=0;j<len;j++) {
  1579. tmp0 = tab0[j];
  1580. tab0[j] = MULL(tmp0, v1);
  1581. tab1[j] = MULL(tmp0, v2);
  1582. }
  1583. } else {
  1584. found2:
  1585. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1586. /* lower part of the spectrum : do ms stereo
  1587. if enabled */
  1588. for(j=0;j<len;j++) {
  1589. tmp0 = tab0[j];
  1590. tmp1 = tab1[j];
  1591. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1592. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1593. }
  1594. }
  1595. }
  1596. }
  1597. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1598. /* ms stereo ONLY */
  1599. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1600. global gain */
  1601. tab0 = g0->sb_hybrid;
  1602. tab1 = g1->sb_hybrid;
  1603. for(i=0;i<576;i++) {
  1604. tmp0 = tab0[i];
  1605. tmp1 = tab1[i];
  1606. tab0[i] = tmp0 + tmp1;
  1607. tab1[i] = tmp0 - tmp1;
  1608. }
  1609. }
  1610. }
  1611. static void compute_antialias_integer(MPADecodeContext *s,
  1612. GranuleDef *g)
  1613. {
  1614. int32_t *ptr, *csa;
  1615. int n, i;
  1616. /* we antialias only "long" bands */
  1617. if (g->block_type == 2) {
  1618. if (!g->switch_point)
  1619. return;
  1620. /* XXX: check this for 8000Hz case */
  1621. n = 1;
  1622. } else {
  1623. n = SBLIMIT - 1;
  1624. }
  1625. ptr = g->sb_hybrid + 18;
  1626. for(i = n;i > 0;i--) {
  1627. int tmp0, tmp1, tmp2;
  1628. csa = &csa_table[0][0];
  1629. #define INT_AA(j) \
  1630. tmp0 = ptr[-1-j];\
  1631. tmp1 = ptr[ j];\
  1632. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1633. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1634. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1635. INT_AA(0)
  1636. INT_AA(1)
  1637. INT_AA(2)
  1638. INT_AA(3)
  1639. INT_AA(4)
  1640. INT_AA(5)
  1641. INT_AA(6)
  1642. INT_AA(7)
  1643. ptr += 18;
  1644. }
  1645. }
  1646. static void compute_antialias_float(MPADecodeContext *s,
  1647. GranuleDef *g)
  1648. {
  1649. int32_t *ptr;
  1650. int n, i;
  1651. /* we antialias only "long" bands */
  1652. if (g->block_type == 2) {
  1653. if (!g->switch_point)
  1654. return;
  1655. /* XXX: check this for 8000Hz case */
  1656. n = 1;
  1657. } else {
  1658. n = SBLIMIT - 1;
  1659. }
  1660. ptr = g->sb_hybrid + 18;
  1661. for(i = n;i > 0;i--) {
  1662. float tmp0, tmp1;
  1663. float *csa = &csa_table_float[0][0];
  1664. #define FLOAT_AA(j)\
  1665. tmp0= ptr[-1-j];\
  1666. tmp1= ptr[ j];\
  1667. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1668. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1669. FLOAT_AA(0)
  1670. FLOAT_AA(1)
  1671. FLOAT_AA(2)
  1672. FLOAT_AA(3)
  1673. FLOAT_AA(4)
  1674. FLOAT_AA(5)
  1675. FLOAT_AA(6)
  1676. FLOAT_AA(7)
  1677. ptr += 18;
  1678. }
  1679. }
  1680. static void compute_imdct(MPADecodeContext *s,
  1681. GranuleDef *g,
  1682. int32_t *sb_samples,
  1683. int32_t *mdct_buf)
  1684. {
  1685. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1686. int32_t out2[12];
  1687. int i, j, mdct_long_end, v, sblimit;
  1688. /* find last non zero block */
  1689. ptr = g->sb_hybrid + 576;
  1690. ptr1 = g->sb_hybrid + 2 * 18;
  1691. while (ptr >= ptr1) {
  1692. ptr -= 6;
  1693. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1694. if (v != 0)
  1695. break;
  1696. }
  1697. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1698. if (g->block_type == 2) {
  1699. /* XXX: check for 8000 Hz */
  1700. if (g->switch_point)
  1701. mdct_long_end = 2;
  1702. else
  1703. mdct_long_end = 0;
  1704. } else {
  1705. mdct_long_end = sblimit;
  1706. }
  1707. buf = mdct_buf;
  1708. ptr = g->sb_hybrid;
  1709. for(j=0;j<mdct_long_end;j++) {
  1710. /* apply window & overlap with previous buffer */
  1711. out_ptr = sb_samples + j;
  1712. /* select window */
  1713. if (g->switch_point && j < 2)
  1714. win1 = mdct_win[0];
  1715. else
  1716. win1 = mdct_win[g->block_type];
  1717. /* select frequency inversion */
  1718. win = win1 + ((4 * 36) & -(j & 1));
  1719. imdct36(out_ptr, buf, ptr, win);
  1720. out_ptr += 18*SBLIMIT;
  1721. ptr += 18;
  1722. buf += 18;
  1723. }
  1724. for(j=mdct_long_end;j<sblimit;j++) {
  1725. /* select frequency inversion */
  1726. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1727. out_ptr = sb_samples + j;
  1728. for(i=0; i<6; i++){
  1729. *out_ptr = buf[i];
  1730. out_ptr += SBLIMIT;
  1731. }
  1732. imdct12(out2, ptr + 0);
  1733. for(i=0;i<6;i++) {
  1734. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1735. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1736. out_ptr += SBLIMIT;
  1737. }
  1738. imdct12(out2, ptr + 1);
  1739. for(i=0;i<6;i++) {
  1740. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1741. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1742. out_ptr += SBLIMIT;
  1743. }
  1744. imdct12(out2, ptr + 2);
  1745. for(i=0;i<6;i++) {
  1746. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1747. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1748. buf[i + 6*2] = 0;
  1749. }
  1750. ptr += 18;
  1751. buf += 18;
  1752. }
  1753. /* zero bands */
  1754. for(j=sblimit;j<SBLIMIT;j++) {
  1755. /* overlap */
  1756. out_ptr = sb_samples + j;
  1757. for(i=0;i<18;i++) {
  1758. *out_ptr = buf[i];
  1759. buf[i] = 0;
  1760. out_ptr += SBLIMIT;
  1761. }
  1762. buf += 18;
  1763. }
  1764. }
  1765. #if defined(DEBUG)
  1766. void sample_dump(int fnum, int32_t *tab, int n)
  1767. {
  1768. static FILE *files[16], *f;
  1769. char buf[512];
  1770. int i;
  1771. int32_t v;
  1772. f = files[fnum];
  1773. if (!f) {
  1774. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1775. fnum,
  1776. #ifdef USE_HIGHPRECISION
  1777. "hp"
  1778. #else
  1779. "lp"
  1780. #endif
  1781. );
  1782. f = fopen(buf, "w");
  1783. if (!f)
  1784. return;
  1785. files[fnum] = f;
  1786. }
  1787. if (fnum == 0) {
  1788. static int pos = 0;
  1789. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1790. for(i=0;i<n;i++) {
  1791. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1792. if ((i % 18) == 17)
  1793. av_log(NULL, AV_LOG_DEBUG, "\n");
  1794. }
  1795. pos += n;
  1796. }
  1797. for(i=0;i<n;i++) {
  1798. /* normalize to 23 frac bits */
  1799. v = tab[i] << (23 - FRAC_BITS);
  1800. fwrite(&v, 1, sizeof(int32_t), f);
  1801. }
  1802. }
  1803. #endif
  1804. /* main layer3 decoding function */
  1805. static int mp_decode_layer3(MPADecodeContext *s)
  1806. {
  1807. int nb_granules, main_data_begin, private_bits;
  1808. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1809. GranuleDef granules[2][2], *g;
  1810. int16_t exponents[576];
  1811. /* read side info */
  1812. if (s->lsf) {
  1813. main_data_begin = get_bits(&s->gb, 8);
  1814. private_bits = get_bits(&s->gb, s->nb_channels);
  1815. nb_granules = 1;
  1816. } else {
  1817. main_data_begin = get_bits(&s->gb, 9);
  1818. if (s->nb_channels == 2)
  1819. private_bits = get_bits(&s->gb, 3);
  1820. else
  1821. private_bits = get_bits(&s->gb, 5);
  1822. nb_granules = 2;
  1823. for(ch=0;ch<s->nb_channels;ch++) {
  1824. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1825. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1826. }
  1827. }
  1828. for(gr=0;gr<nb_granules;gr++) {
  1829. for(ch=0;ch<s->nb_channels;ch++) {
  1830. dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1831. g = &granules[ch][gr];
  1832. g->part2_3_length = get_bits(&s->gb, 12);
  1833. g->big_values = get_bits(&s->gb, 9);
  1834. if(g->big_values > 288){
  1835. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1836. return -1;
  1837. }
  1838. g->global_gain = get_bits(&s->gb, 8);
  1839. /* if MS stereo only is selected, we precompute the
  1840. 1/sqrt(2) renormalization factor */
  1841. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1842. MODE_EXT_MS_STEREO)
  1843. g->global_gain -= 2;
  1844. if (s->lsf)
  1845. g->scalefac_compress = get_bits(&s->gb, 9);
  1846. else
  1847. g->scalefac_compress = get_bits(&s->gb, 4);
  1848. blocksplit_flag = get_bits1(&s->gb);
  1849. if (blocksplit_flag) {
  1850. g->block_type = get_bits(&s->gb, 2);
  1851. if (g->block_type == 0){
  1852. av_log(NULL, AV_LOG_ERROR, "invalid block type\n");
  1853. return -1;
  1854. }
  1855. g->switch_point = get_bits1(&s->gb);
  1856. for(i=0;i<2;i++)
  1857. g->table_select[i] = get_bits(&s->gb, 5);
  1858. for(i=0;i<3;i++)
  1859. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1860. ff_init_short_region(s, g);
  1861. } else {
  1862. int region_address1, region_address2;
  1863. g->block_type = 0;
  1864. g->switch_point = 0;
  1865. for(i=0;i<3;i++)
  1866. g->table_select[i] = get_bits(&s->gb, 5);
  1867. /* compute huffman coded region sizes */
  1868. region_address1 = get_bits(&s->gb, 4);
  1869. region_address2 = get_bits(&s->gb, 3);
  1870. dprintf(s->avctx, "region1=%d region2=%d\n",
  1871. region_address1, region_address2);
  1872. ff_init_long_region(s, g, region_address1, region_address2);
  1873. }
  1874. ff_region_offset2size(g);
  1875. ff_compute_band_indexes(s, g);
  1876. g->preflag = 0;
  1877. if (!s->lsf)
  1878. g->preflag = get_bits1(&s->gb);
  1879. g->scalefac_scale = get_bits1(&s->gb);
  1880. g->count1table_select = get_bits1(&s->gb);
  1881. dprintf(s->avctx, "block_type=%d switch_point=%d\n",
  1882. g->block_type, g->switch_point);
  1883. }
  1884. }
  1885. if (!s->adu_mode) {
  1886. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1887. assert((get_bits_count(&s->gb) & 7) == 0);
  1888. /* now we get bits from the main_data_begin offset */
  1889. dprintf(s->avctx, "seekback: %d\n", main_data_begin);
  1890. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  1891. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  1892. s->in_gb= s->gb;
  1893. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1894. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  1895. }
  1896. for(gr=0;gr<nb_granules;gr++) {
  1897. for(ch=0;ch<s->nb_channels;ch++) {
  1898. g = &granules[ch][gr];
  1899. if(get_bits_count(&s->gb)<0){
  1900. av_log(NULL, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skipping granule %d\n",
  1901. main_data_begin, s->last_buf_size, gr);
  1902. skip_bits_long(&s->gb, g->part2_3_length);
  1903. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1904. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  1905. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  1906. s->gb= s->in_gb;
  1907. s->in_gb.buffer=NULL;
  1908. }
  1909. continue;
  1910. }
  1911. bits_pos = get_bits_count(&s->gb);
  1912. if (!s->lsf) {
  1913. uint8_t *sc;
  1914. int slen, slen1, slen2;
  1915. /* MPEG1 scale factors */
  1916. slen1 = slen_table[0][g->scalefac_compress];
  1917. slen2 = slen_table[1][g->scalefac_compress];
  1918. dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1919. if (g->block_type == 2) {
  1920. n = g->switch_point ? 17 : 18;
  1921. j = 0;
  1922. if(slen1){
  1923. for(i=0;i<n;i++)
  1924. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1925. }else{
  1926. for(i=0;i<n;i++)
  1927. g->scale_factors[j++] = 0;
  1928. }
  1929. if(slen2){
  1930. for(i=0;i<18;i++)
  1931. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1932. for(i=0;i<3;i++)
  1933. g->scale_factors[j++] = 0;
  1934. }else{
  1935. for(i=0;i<21;i++)
  1936. g->scale_factors[j++] = 0;
  1937. }
  1938. } else {
  1939. sc = granules[ch][0].scale_factors;
  1940. j = 0;
  1941. for(k=0;k<4;k++) {
  1942. n = (k == 0 ? 6 : 5);
  1943. if ((g->scfsi & (0x8 >> k)) == 0) {
  1944. slen = (k < 2) ? slen1 : slen2;
  1945. if(slen){
  1946. for(i=0;i<n;i++)
  1947. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1948. }else{
  1949. for(i=0;i<n;i++)
  1950. g->scale_factors[j++] = 0;
  1951. }
  1952. } else {
  1953. /* simply copy from last granule */
  1954. for(i=0;i<n;i++) {
  1955. g->scale_factors[j] = sc[j];
  1956. j++;
  1957. }
  1958. }
  1959. }
  1960. g->scale_factors[j++] = 0;
  1961. }
  1962. #if defined(DEBUG)
  1963. {
  1964. dprintf(s->avctx, "scfsi=%x gr=%d ch=%d scale_factors:\n",
  1965. g->scfsi, gr, ch);
  1966. for(i=0;i<j;i++)
  1967. dprintf(s->avctx, " %d", g->scale_factors[i]);
  1968. dprintf(s->avctx, "\n");
  1969. }
  1970. #endif
  1971. } else {
  1972. int tindex, tindex2, slen[4], sl, sf;
  1973. /* LSF scale factors */
  1974. if (g->block_type == 2) {
  1975. tindex = g->switch_point ? 2 : 1;
  1976. } else {
  1977. tindex = 0;
  1978. }
  1979. sf = g->scalefac_compress;
  1980. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1981. /* intensity stereo case */
  1982. sf >>= 1;
  1983. if (sf < 180) {
  1984. lsf_sf_expand(slen, sf, 6, 6, 0);
  1985. tindex2 = 3;
  1986. } else if (sf < 244) {
  1987. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1988. tindex2 = 4;
  1989. } else {
  1990. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1991. tindex2 = 5;
  1992. }
  1993. } else {
  1994. /* normal case */
  1995. if (sf < 400) {
  1996. lsf_sf_expand(slen, sf, 5, 4, 4);
  1997. tindex2 = 0;
  1998. } else if (sf < 500) {
  1999. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2000. tindex2 = 1;
  2001. } else {
  2002. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2003. tindex2 = 2;
  2004. g->preflag = 1;
  2005. }
  2006. }
  2007. j = 0;
  2008. for(k=0;k<4;k++) {
  2009. n = lsf_nsf_table[tindex2][tindex][k];
  2010. sl = slen[k];
  2011. if(sl){
  2012. for(i=0;i<n;i++)
  2013. g->scale_factors[j++] = get_bits(&s->gb, sl);
  2014. }else{
  2015. for(i=0;i<n;i++)
  2016. g->scale_factors[j++] = 0;
  2017. }
  2018. }
  2019. /* XXX: should compute exact size */
  2020. for(;j<40;j++)
  2021. g->scale_factors[j] = 0;
  2022. #if defined(DEBUG)
  2023. {
  2024. dprintf(s->avctx, "gr=%d ch=%d scale_factors:\n",
  2025. gr, ch);
  2026. for(i=0;i<40;i++)
  2027. dprintf(s->avctx, " %d", g->scale_factors[i]);
  2028. dprintf(s->avctx, "\n");
  2029. }
  2030. #endif
  2031. }
  2032. exponents_from_scale_factors(s, g, exponents);
  2033. /* read Huffman coded residue */
  2034. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  2035. #if defined(DEBUG)
  2036. sample_dump(0, g->sb_hybrid, 576);
  2037. #endif
  2038. } /* ch */
  2039. if (s->nb_channels == 2)
  2040. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2041. for(ch=0;ch<s->nb_channels;ch++) {
  2042. g = &granules[ch][gr];
  2043. reorder_block(s, g);
  2044. #if defined(DEBUG)
  2045. sample_dump(0, g->sb_hybrid, 576);
  2046. #endif
  2047. s->compute_antialias(s, g);
  2048. #if defined(DEBUG)
  2049. sample_dump(1, g->sb_hybrid, 576);
  2050. #endif
  2051. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2052. #if defined(DEBUG)
  2053. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2054. #endif
  2055. }
  2056. } /* gr */
  2057. if(get_bits_count(&s->gb)<0)
  2058. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  2059. return nb_granules * 18;
  2060. }
  2061. static int mp_decode_frame(MPADecodeContext *s,
  2062. OUT_INT *samples, const uint8_t *buf, int buf_size)
  2063. {
  2064. int i, nb_frames, ch;
  2065. OUT_INT *samples_ptr;
  2066. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  2067. /* skip error protection field */
  2068. if (s->error_protection)
  2069. skip_bits(&s->gb, 16);
  2070. dprintf(s->avctx, "frame %d:\n", s->frame_count);
  2071. switch(s->layer) {
  2072. case 1:
  2073. s->avctx->frame_size = 384;
  2074. nb_frames = mp_decode_layer1(s);
  2075. break;
  2076. case 2:
  2077. s->avctx->frame_size = 1152;
  2078. nb_frames = mp_decode_layer2(s);
  2079. break;
  2080. case 3:
  2081. s->avctx->frame_size = s->lsf ? 576 : 1152;
  2082. default:
  2083. nb_frames = mp_decode_layer3(s);
  2084. s->last_buf_size=0;
  2085. if(s->in_gb.buffer){
  2086. align_get_bits(&s->gb);
  2087. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2088. if(i >= 0 && i <= BACKSTEP_SIZE){
  2089. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  2090. s->last_buf_size=i;
  2091. }else
  2092. av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  2093. s->gb= s->in_gb;
  2094. s->in_gb.buffer= NULL;
  2095. }
  2096. align_get_bits(&s->gb);
  2097. assert((get_bits_count(&s->gb) & 7) == 0);
  2098. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2099. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2100. av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  2101. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2102. }
  2103. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2104. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2105. s->last_buf_size += i;
  2106. break;
  2107. }
  2108. #if defined(DEBUG)
  2109. for(i=0;i<nb_frames;i++) {
  2110. for(ch=0;ch<s->nb_channels;ch++) {
  2111. int j;
  2112. dprintf(s->avctx, "%d-%d:", i, ch);
  2113. for(j=0;j<SBLIMIT;j++)
  2114. dprintf(s->avctx, " %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2115. dprintf(s->avctx, "\n");
  2116. }
  2117. }
  2118. #endif
  2119. /* apply the synthesis filter */
  2120. for(ch=0;ch<s->nb_channels;ch++) {
  2121. samples_ptr = samples + ch;
  2122. for(i=0;i<nb_frames;i++) {
  2123. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2124. window, &s->dither_state,
  2125. samples_ptr, s->nb_channels,
  2126. s->sb_samples[ch][i]);
  2127. samples_ptr += 32 * s->nb_channels;
  2128. }
  2129. }
  2130. #ifdef DEBUG
  2131. s->frame_count++;
  2132. #endif
  2133. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2134. }
  2135. static int decode_frame(AVCodecContext * avctx,
  2136. void *data, int *data_size,
  2137. const uint8_t * buf, int buf_size)
  2138. {
  2139. MPADecodeContext *s = avctx->priv_data;
  2140. uint32_t header;
  2141. int out_size;
  2142. OUT_INT *out_samples = data;
  2143. retry:
  2144. if(buf_size < HEADER_SIZE)
  2145. return -1;
  2146. header = AV_RB32(buf);
  2147. if(ff_mpa_check_header(header) < 0){
  2148. buf++;
  2149. // buf_size--;
  2150. av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
  2151. goto retry;
  2152. }
  2153. if (ff_mpegaudio_decode_header(s, header) == 1) {
  2154. /* free format: prepare to compute frame size */
  2155. s->frame_size = -1;
  2156. return -1;
  2157. }
  2158. /* update codec info */
  2159. avctx->channels = s->nb_channels;
  2160. avctx->bit_rate = s->bit_rate;
  2161. avctx->sub_id = s->layer;
  2162. if(s->frame_size<=0 || s->frame_size > buf_size){
  2163. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2164. return -1;
  2165. }else if(s->frame_size < buf_size){
  2166. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2167. buf_size= s->frame_size;
  2168. }
  2169. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2170. if(out_size>=0){
  2171. *data_size = out_size;
  2172. avctx->sample_rate = s->sample_rate;
  2173. //FIXME maybe move the other codec info stuff from above here too
  2174. }else
  2175. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2176. s->frame_size = 0;
  2177. return buf_size;
  2178. }
  2179. static void flush(AVCodecContext *avctx){
  2180. MPADecodeContext *s = avctx->priv_data;
  2181. memset(s->synth_buf, 0, sizeof(s->synth_buf));
  2182. s->last_buf_size= 0;
  2183. }
  2184. #ifdef CONFIG_MP3ADU_DECODER
  2185. static int decode_frame_adu(AVCodecContext * avctx,
  2186. void *data, int *data_size,
  2187. const uint8_t * buf, int buf_size)
  2188. {
  2189. MPADecodeContext *s = avctx->priv_data;
  2190. uint32_t header;
  2191. int len, out_size;
  2192. OUT_INT *out_samples = data;
  2193. len = buf_size;
  2194. // Discard too short frames
  2195. if (buf_size < HEADER_SIZE) {
  2196. *data_size = 0;
  2197. return buf_size;
  2198. }
  2199. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2200. len = MPA_MAX_CODED_FRAME_SIZE;
  2201. // Get header and restore sync word
  2202. header = AV_RB32(buf) | 0xffe00000;
  2203. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2204. *data_size = 0;
  2205. return buf_size;
  2206. }
  2207. ff_mpegaudio_decode_header(s, header);
  2208. /* update codec info */
  2209. avctx->sample_rate = s->sample_rate;
  2210. avctx->channels = s->nb_channels;
  2211. avctx->bit_rate = s->bit_rate;
  2212. avctx->sub_id = s->layer;
  2213. s->frame_size = len;
  2214. if (avctx->parse_only) {
  2215. out_size = buf_size;
  2216. } else {
  2217. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2218. }
  2219. *data_size = out_size;
  2220. return buf_size;
  2221. }
  2222. #endif /* CONFIG_MP3ADU_DECODER */
  2223. #ifdef CONFIG_MP3ON4_DECODER
  2224. #include "mpeg4audio.h"
  2225. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2226. static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
  2227. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2228. static const uint8_t chan_offset[8][5] = {
  2229. {0},
  2230. {0}, // C
  2231. {0}, // FLR
  2232. {2,0}, // C FLR
  2233. {2,0,3}, // C FLR BS
  2234. {4,0,2}, // C FLR BLRS
  2235. {4,0,2,5}, // C FLR BLRS LFE
  2236. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2237. };
  2238. static int decode_init_mp3on4(AVCodecContext * avctx)
  2239. {
  2240. MP3On4DecodeContext *s = avctx->priv_data;
  2241. MPEG4AudioConfig cfg;
  2242. int i;
  2243. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2244. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2245. return -1;
  2246. }
  2247. ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
  2248. if (!cfg.chan_config || cfg.chan_config > 7) {
  2249. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2250. return -1;
  2251. }
  2252. s->chan_cfg = cfg.chan_config;
  2253. s->frames = mp3Frames[s->chan_cfg];
  2254. avctx->channels = ff_mpeg4audio_channels[s->chan_cfg];
  2255. if (cfg.sample_rate < 16000)
  2256. s->syncword = 0xffe00000;
  2257. else
  2258. s->syncword = 0xfff00000;
  2259. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2260. * We replace avctx->priv_data with the context of the first decoder so that
  2261. * decode_init() does not have to be changed.
  2262. * Other decoders will be initialized here copying data from the first context
  2263. */
  2264. // Allocate zeroed memory for the first decoder context
  2265. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2266. // Put decoder context in place to make init_decode() happy
  2267. avctx->priv_data = s->mp3decctx[0];
  2268. decode_init(avctx);
  2269. // Restore mp3on4 context pointer
  2270. avctx->priv_data = s;
  2271. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2272. /* Create a separate codec/context for each frame (first is already ok).
  2273. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2274. */
  2275. for (i = 1; i < s->frames; i++) {
  2276. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2277. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2278. s->mp3decctx[i]->adu_mode = 1;
  2279. s->mp3decctx[i]->avctx = avctx;
  2280. }
  2281. return 0;
  2282. }
  2283. static int decode_close_mp3on4(AVCodecContext * avctx)
  2284. {
  2285. MP3On4DecodeContext *s = avctx->priv_data;
  2286. int i;
  2287. for (i = 0; i < s->frames; i++)
  2288. if (s->mp3decctx[i])
  2289. av_free(s->mp3decctx[i]);
  2290. return 0;
  2291. }
  2292. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2293. void *data, int *data_size,
  2294. const uint8_t * buf, int buf_size)
  2295. {
  2296. MP3On4DecodeContext *s = avctx->priv_data;
  2297. MPADecodeContext *m;
  2298. int len, out_size = 0;
  2299. uint32_t header;
  2300. OUT_INT *out_samples = data;
  2301. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2302. OUT_INT *outptr, *bp;
  2303. int fsize;
  2304. int fr, i, j, n;
  2305. int off = avctx->channels;
  2306. const uint8_t *coff = chan_offset[s->chan_cfg];
  2307. len = buf_size;
  2308. *data_size = 0;
  2309. // Discard too short frames
  2310. if (buf_size < HEADER_SIZE)
  2311. return -1;
  2312. // If only one decoder interleave is not needed
  2313. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2314. for (fr = 0; fr < s->frames; fr++) {
  2315. fsize = AV_RB16(buf) >> 4;
  2316. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  2317. m = s->mp3decctx[fr];
  2318. assert (m != NULL);
  2319. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  2320. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2321. *data_size = 0;
  2322. return buf_size;
  2323. }
  2324. ff_mpegaudio_decode_header(m, header);
  2325. out_size += mp_decode_frame(m, outptr, buf, fsize);
  2326. buf += fsize;
  2327. len -= fsize;
  2328. if(s->frames > 1) {
  2329. n = m->avctx->frame_size*m->nb_channels;
  2330. /* interleave output data */
  2331. bp = out_samples + coff[fr];
  2332. if(m->nb_channels == 1) {
  2333. for(j = 0; j < n; j++) {
  2334. *bp = decoded_buf[j];
  2335. bp += off;
  2336. }
  2337. } else {
  2338. for(j = 0; j < n; j++) {
  2339. bp[0] = decoded_buf[j++];
  2340. bp[1] = decoded_buf[j];
  2341. bp += off;
  2342. }
  2343. }
  2344. }
  2345. }
  2346. /* update codec info */
  2347. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2348. avctx->bit_rate = 0;
  2349. for (i = 0; i < s->frames; i++)
  2350. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2351. *data_size = out_size;
  2352. return buf_size;
  2353. }
  2354. #endif /* CONFIG_MP3ON4_DECODER */
  2355. #ifdef CONFIG_MP2_DECODER
  2356. AVCodec mp2_decoder =
  2357. {
  2358. "mp2",
  2359. CODEC_TYPE_AUDIO,
  2360. CODEC_ID_MP2,
  2361. sizeof(MPADecodeContext),
  2362. decode_init,
  2363. NULL,
  2364. NULL,
  2365. decode_frame,
  2366. CODEC_CAP_PARSE_ONLY,
  2367. .flush= flush,
  2368. };
  2369. #endif
  2370. #ifdef CONFIG_MP3_DECODER
  2371. AVCodec mp3_decoder =
  2372. {
  2373. "mp3",
  2374. CODEC_TYPE_AUDIO,
  2375. CODEC_ID_MP3,
  2376. sizeof(MPADecodeContext),
  2377. decode_init,
  2378. NULL,
  2379. NULL,
  2380. decode_frame,
  2381. CODEC_CAP_PARSE_ONLY,
  2382. .flush= flush,
  2383. };
  2384. #endif
  2385. #ifdef CONFIG_MP3ADU_DECODER
  2386. AVCodec mp3adu_decoder =
  2387. {
  2388. "mp3adu",
  2389. CODEC_TYPE_AUDIO,
  2390. CODEC_ID_MP3ADU,
  2391. sizeof(MPADecodeContext),
  2392. decode_init,
  2393. NULL,
  2394. NULL,
  2395. decode_frame_adu,
  2396. CODEC_CAP_PARSE_ONLY,
  2397. .flush= flush,
  2398. };
  2399. #endif
  2400. #ifdef CONFIG_MP3ON4_DECODER
  2401. AVCodec mp3on4_decoder =
  2402. {
  2403. "mp3on4",
  2404. CODEC_TYPE_AUDIO,
  2405. CODEC_ID_MP3ON4,
  2406. sizeof(MP3On4DecodeContext),
  2407. decode_init_mp3on4,
  2408. NULL,
  2409. decode_close_mp3on4,
  2410. decode_frame_mp3on4,
  2411. .flush= flush,
  2412. };
  2413. #endif