You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

352 lines
9.0KB

  1. /*
  2. * Sample rate convertion for both audio and video
  3. * Copyright (c) 2000 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file resample.c
  21. * Sample rate convertion for both audio and video.
  22. */
  23. #include "avcodec.h"
  24. typedef struct {
  25. /* fractional resampling */
  26. uint32_t incr; /* fractional increment */
  27. uint32_t frac;
  28. int last_sample;
  29. /* integer down sample */
  30. int iratio; /* integer divison ratio */
  31. int icount, isum;
  32. int inv;
  33. } ReSampleChannelContext;
  34. struct ReSampleContext {
  35. ReSampleChannelContext channel_ctx[2];
  36. float ratio;
  37. /* channel convert */
  38. int input_channels, output_channels, filter_channels;
  39. };
  40. #define FRAC_BITS 16
  41. #define FRAC (1 << FRAC_BITS)
  42. static void init_mono_resample(ReSampleChannelContext *s, float ratio)
  43. {
  44. ratio = 1.0 / ratio;
  45. s->iratio = (int)floorf(ratio);
  46. if (s->iratio == 0)
  47. s->iratio = 1;
  48. s->incr = (int)((ratio / s->iratio) * FRAC);
  49. s->frac = FRAC;
  50. s->last_sample = 0;
  51. s->icount = s->iratio;
  52. s->isum = 0;
  53. s->inv = (FRAC / s->iratio);
  54. }
  55. /* fractional audio resampling */
  56. static int fractional_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  57. {
  58. unsigned int frac, incr;
  59. int l0, l1;
  60. short *q, *p, *pend;
  61. l0 = s->last_sample;
  62. incr = s->incr;
  63. frac = s->frac;
  64. p = input;
  65. pend = input + nb_samples;
  66. q = output;
  67. l1 = *p++;
  68. for(;;) {
  69. /* interpolate */
  70. *q++ = (l0 * (FRAC - frac) + l1 * frac) >> FRAC_BITS;
  71. frac = frac + s->incr;
  72. while (frac >= FRAC) {
  73. frac -= FRAC;
  74. if (p >= pend)
  75. goto the_end;
  76. l0 = l1;
  77. l1 = *p++;
  78. }
  79. }
  80. the_end:
  81. s->last_sample = l1;
  82. s->frac = frac;
  83. return q - output;
  84. }
  85. static int integer_downsample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  86. {
  87. short *q, *p, *pend;
  88. int c, sum;
  89. p = input;
  90. pend = input + nb_samples;
  91. q = output;
  92. c = s->icount;
  93. sum = s->isum;
  94. for(;;) {
  95. sum += *p++;
  96. if (--c == 0) {
  97. *q++ = (sum * s->inv) >> FRAC_BITS;
  98. c = s->iratio;
  99. sum = 0;
  100. }
  101. if (p >= pend)
  102. break;
  103. }
  104. s->isum = sum;
  105. s->icount = c;
  106. return q - output;
  107. }
  108. /* n1: number of samples */
  109. static void stereo_to_mono(short *output, short *input, int n1)
  110. {
  111. short *p, *q;
  112. int n = n1;
  113. p = input;
  114. q = output;
  115. while (n >= 4) {
  116. q[0] = (p[0] + p[1]) >> 1;
  117. q[1] = (p[2] + p[3]) >> 1;
  118. q[2] = (p[4] + p[5]) >> 1;
  119. q[3] = (p[6] + p[7]) >> 1;
  120. q += 4;
  121. p += 8;
  122. n -= 4;
  123. }
  124. while (n > 0) {
  125. q[0] = (p[0] + p[1]) >> 1;
  126. q++;
  127. p += 2;
  128. n--;
  129. }
  130. }
  131. /* n1: number of samples */
  132. static void mono_to_stereo(short *output, short *input, int n1)
  133. {
  134. short *p, *q;
  135. int n = n1;
  136. int v;
  137. p = input;
  138. q = output;
  139. while (n >= 4) {
  140. v = p[0]; q[0] = v; q[1] = v;
  141. v = p[1]; q[2] = v; q[3] = v;
  142. v = p[2]; q[4] = v; q[5] = v;
  143. v = p[3]; q[6] = v; q[7] = v;
  144. q += 8;
  145. p += 4;
  146. n -= 4;
  147. }
  148. while (n > 0) {
  149. v = p[0]; q[0] = v; q[1] = v;
  150. q += 2;
  151. p += 1;
  152. n--;
  153. }
  154. }
  155. /* XXX: should use more abstract 'N' channels system */
  156. static void stereo_split(short *output1, short *output2, short *input, int n)
  157. {
  158. int i;
  159. for(i=0;i<n;i++) {
  160. *output1++ = *input++;
  161. *output2++ = *input++;
  162. }
  163. }
  164. static void stereo_mux(short *output, short *input1, short *input2, int n)
  165. {
  166. int i;
  167. for(i=0;i<n;i++) {
  168. *output++ = *input1++;
  169. *output++ = *input2++;
  170. }
  171. }
  172. static void ac3_5p1_mux(short *output, short *input1, short *input2, int n)
  173. {
  174. int i;
  175. short l,r;
  176. for(i=0;i<n;i++) {
  177. l=*input1++;
  178. r=*input2++;
  179. *output++ = l; /* left */
  180. *output++ = (l/2)+(r/2); /* center */
  181. *output++ = r; /* right */
  182. *output++ = 0; /* left surround */
  183. *output++ = 0; /* right surroud */
  184. *output++ = 0; /* low freq */
  185. }
  186. }
  187. static int mono_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  188. {
  189. short *buf1;
  190. short *buftmp;
  191. buf1= (short*)av_malloc( nb_samples * sizeof(short) );
  192. /* first downsample by an integer factor with averaging filter */
  193. if (s->iratio > 1) {
  194. buftmp = buf1;
  195. nb_samples = integer_downsample(s, buftmp, input, nb_samples);
  196. } else {
  197. buftmp = input;
  198. }
  199. /* then do a fractional resampling with linear interpolation */
  200. if (s->incr != FRAC) {
  201. nb_samples = fractional_resample(s, output, buftmp, nb_samples);
  202. } else {
  203. memcpy(output, buftmp, nb_samples * sizeof(short));
  204. }
  205. av_free(buf1);
  206. return nb_samples;
  207. }
  208. ReSampleContext *audio_resample_init(int output_channels, int input_channels,
  209. int output_rate, int input_rate)
  210. {
  211. ReSampleContext *s;
  212. int i;
  213. if ( input_channels > 2)
  214. {
  215. av_log(NULL, AV_LOG_ERROR, "Resampling with input channels greater than 2 unsupported.");
  216. return NULL;
  217. }
  218. s = av_mallocz(sizeof(ReSampleContext));
  219. if (!s)
  220. {
  221. av_log(NULL, AV_LOG_ERROR, "Can't allocate memory for resample context.");
  222. return NULL;
  223. }
  224. s->ratio = (float)output_rate / (float)input_rate;
  225. s->input_channels = input_channels;
  226. s->output_channels = output_channels;
  227. s->filter_channels = s->input_channels;
  228. if (s->output_channels < s->filter_channels)
  229. s->filter_channels = s->output_channels;
  230. /*
  231. * ac3 output is the only case where filter_channels could be greater than 2.
  232. * input channels can't be greater than 2, so resample the 2 channels and then
  233. * expand to 6 channels after the resampling.
  234. */
  235. if(s->filter_channels>2)
  236. s->filter_channels = 2;
  237. for(i=0;i<s->filter_channels;i++) {
  238. init_mono_resample(&s->channel_ctx[i], s->ratio);
  239. }
  240. return s;
  241. }
  242. /* resample audio. 'nb_samples' is the number of input samples */
  243. /* XXX: optimize it ! */
  244. /* XXX: do it with polyphase filters, since the quality here is
  245. HORRIBLE. Return the number of samples available in output */
  246. int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples)
  247. {
  248. int i, nb_samples1;
  249. short *bufin[2];
  250. short *bufout[2];
  251. short *buftmp2[2], *buftmp3[2];
  252. int lenout;
  253. if (s->input_channels == s->output_channels && s->ratio == 1.0) {
  254. /* nothing to do */
  255. memcpy(output, input, nb_samples * s->input_channels * sizeof(short));
  256. return nb_samples;
  257. }
  258. /* XXX: move those malloc to resample init code */
  259. bufin[0]= (short*) av_malloc( nb_samples * sizeof(short) );
  260. bufin[1]= (short*) av_malloc( nb_samples * sizeof(short) );
  261. /* make some zoom to avoid round pb */
  262. lenout= (int)(nb_samples * s->ratio) + 16;
  263. bufout[0]= (short*) av_malloc( lenout * sizeof(short) );
  264. bufout[1]= (short*) av_malloc( lenout * sizeof(short) );
  265. if (s->input_channels == 2 &&
  266. s->output_channels == 1) {
  267. buftmp2[0] = bufin[0];
  268. buftmp3[0] = output;
  269. stereo_to_mono(buftmp2[0], input, nb_samples);
  270. } else if (s->output_channels >= 2 && s->input_channels == 1) {
  271. buftmp2[0] = input;
  272. buftmp3[0] = bufout[0];
  273. } else if (s->output_channels >= 2) {
  274. buftmp2[0] = bufin[0];
  275. buftmp2[1] = bufin[1];
  276. buftmp3[0] = bufout[0];
  277. buftmp3[1] = bufout[1];
  278. stereo_split(buftmp2[0], buftmp2[1], input, nb_samples);
  279. } else {
  280. buftmp2[0] = input;
  281. buftmp3[0] = output;
  282. }
  283. /* resample each channel */
  284. nb_samples1 = 0; /* avoid warning */
  285. for(i=0;i<s->filter_channels;i++) {
  286. nb_samples1 = mono_resample(&s->channel_ctx[i], buftmp3[i], buftmp2[i], nb_samples);
  287. }
  288. if (s->output_channels == 2 && s->input_channels == 1) {
  289. mono_to_stereo(output, buftmp3[0], nb_samples1);
  290. } else if (s->output_channels == 2) {
  291. stereo_mux(output, buftmp3[0], buftmp3[1], nb_samples1);
  292. } else if (s->output_channels == 6) {
  293. ac3_5p1_mux(output, buftmp3[0], buftmp3[1], nb_samples1);
  294. }
  295. av_free(bufin[0]);
  296. av_free(bufin[1]);
  297. av_free(bufout[0]);
  298. av_free(bufout[1]);
  299. return nb_samples1;
  300. }
  301. void audio_resample_close(ReSampleContext *s)
  302. {
  303. av_free(s);
  304. }