You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2604 lines
77KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "mpegaudio.h"
  26. /*
  27. * TODO:
  28. * - in low precision mode, use more 16 bit multiplies in synth filter
  29. * - test lsf / mpeg25 extensively.
  30. */
  31. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  32. audio decoder */
  33. #ifdef CONFIG_MPEGAUDIO_HP
  34. #define USE_HIGHPRECISION
  35. #endif
  36. #ifdef USE_HIGHPRECISION
  37. #define FRAC_BITS 23 /* fractional bits for sb_samples and dct */
  38. #define WFRAC_BITS 16 /* fractional bits for window */
  39. #else
  40. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  41. #define WFRAC_BITS 14 /* fractional bits for window */
  42. #endif
  43. #define FRAC_ONE (1 << FRAC_BITS)
  44. #define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  45. #define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  46. #define FIX(a) ((int)((a) * FRAC_ONE))
  47. /* WARNING: only correct for posititive numbers */
  48. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  49. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  50. #if FRAC_BITS <= 15
  51. typedef int16_t MPA_INT;
  52. #else
  53. typedef int32_t MPA_INT;
  54. #endif
  55. /****************/
  56. #define HEADER_SIZE 4
  57. #define BACKSTEP_SIZE 512
  58. typedef struct MPADecodeContext {
  59. uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  60. int inbuf_index;
  61. uint8_t *inbuf_ptr, *inbuf;
  62. int frame_size;
  63. int free_format_frame_size; /* frame size in case of free format
  64. (zero if currently unknown) */
  65. /* next header (used in free format parsing) */
  66. uint32_t free_format_next_header;
  67. int error_protection;
  68. int layer;
  69. int sample_rate;
  70. int sample_rate_index; /* between 0 and 8 */
  71. int bit_rate;
  72. int old_frame_size;
  73. GetBitContext gb;
  74. int nb_channels;
  75. int mode;
  76. int mode_ext;
  77. int lsf;
  78. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  79. int synth_buf_offset[MPA_MAX_CHANNELS];
  80. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  81. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  82. #ifdef DEBUG
  83. int frame_count;
  84. #endif
  85. } MPADecodeContext;
  86. /* layer 3 "granule" */
  87. typedef struct GranuleDef {
  88. uint8_t scfsi;
  89. int part2_3_length;
  90. int big_values;
  91. int global_gain;
  92. int scalefac_compress;
  93. uint8_t block_type;
  94. uint8_t switch_point;
  95. int table_select[3];
  96. int subblock_gain[3];
  97. uint8_t scalefac_scale;
  98. uint8_t count1table_select;
  99. int region_size[3]; /* number of huffman codes in each region */
  100. int preflag;
  101. int short_start, long_end; /* long/short band indexes */
  102. uint8_t scale_factors[40];
  103. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  104. } GranuleDef;
  105. #define MODE_EXT_MS_STEREO 2
  106. #define MODE_EXT_I_STEREO 1
  107. /* layer 3 huffman tables */
  108. typedef struct HuffTable {
  109. int xsize;
  110. const uint8_t *bits;
  111. const uint16_t *codes;
  112. } HuffTable;
  113. #include "mpegaudiodectab.h"
  114. /* vlc structure for decoding layer 3 huffman tables */
  115. static VLC huff_vlc[16];
  116. static uint8_t *huff_code_table[16];
  117. static VLC huff_quad_vlc[2];
  118. /* computed from band_size_long */
  119. static uint16_t band_index_long[9][23];
  120. /* XXX: free when all decoders are closed */
  121. #define TABLE_4_3_SIZE (8191 + 16)
  122. static int8_t *table_4_3_exp;
  123. #if FRAC_BITS <= 15
  124. static uint16_t *table_4_3_value;
  125. #else
  126. static uint32_t *table_4_3_value;
  127. #endif
  128. /* intensity stereo coef table */
  129. static int32_t is_table[2][16];
  130. static int32_t is_table_lsf[2][2][16];
  131. static int32_t csa_table[8][2];
  132. static int32_t mdct_win[8][36];
  133. /* lower 2 bits: modulo 3, higher bits: shift */
  134. static uint16_t scale_factor_modshift[64];
  135. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  136. static int32_t scale_factor_mult[15][3];
  137. /* mult table for layer 2 group quantization */
  138. #define SCALE_GEN(v) \
  139. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  140. static int32_t scale_factor_mult2[3][3] = {
  141. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  142. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  143. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  144. };
  145. /* 2^(n/4) */
  146. static uint32_t scale_factor_mult3[4] = {
  147. FIXR(1.0),
  148. FIXR(1.18920711500272106671),
  149. FIXR(1.41421356237309504880),
  150. FIXR(1.68179283050742908605),
  151. };
  152. static MPA_INT window[512] __attribute__((aligned(16)));
  153. /* layer 1 unscaling */
  154. /* n = number of bits of the mantissa minus 1 */
  155. static inline int l1_unscale(int n, int mant, int scale_factor)
  156. {
  157. int shift, mod;
  158. int64_t val;
  159. shift = scale_factor_modshift[scale_factor];
  160. mod = shift & 3;
  161. shift >>= 2;
  162. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  163. shift += n;
  164. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  165. return (int)((val + (1LL << (shift - 1))) >> shift);
  166. }
  167. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  168. {
  169. int shift, mod, val;
  170. shift = scale_factor_modshift[scale_factor];
  171. mod = shift & 3;
  172. shift >>= 2;
  173. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  174. /* NOTE: at this point, 0 <= shift <= 21 */
  175. if (shift > 0)
  176. val = (val + (1 << (shift - 1))) >> shift;
  177. return val;
  178. }
  179. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  180. static inline int l3_unscale(int value, int exponent)
  181. {
  182. #if FRAC_BITS <= 15
  183. unsigned int m;
  184. #else
  185. uint64_t m;
  186. #endif
  187. int e;
  188. e = table_4_3_exp[value];
  189. e += (exponent >> 2);
  190. e = FRAC_BITS - e;
  191. #if FRAC_BITS <= 15
  192. if (e > 31)
  193. e = 31;
  194. #endif
  195. m = table_4_3_value[value];
  196. #if FRAC_BITS <= 15
  197. m = (m * scale_factor_mult3[exponent & 3]);
  198. m = (m + (1 << (e-1))) >> e;
  199. return m;
  200. #else
  201. m = MUL64(m, scale_factor_mult3[exponent & 3]);
  202. m = (m + (uint64_t_C(1) << (e-1))) >> e;
  203. return m;
  204. #endif
  205. }
  206. /* all integer n^(4/3) computation code */
  207. #define DEV_ORDER 13
  208. #define POW_FRAC_BITS 24
  209. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  210. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  211. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  212. static int dev_4_3_coefs[DEV_ORDER];
  213. static int pow_mult3[3] = {
  214. POW_FIX(1.0),
  215. POW_FIX(1.25992104989487316476),
  216. POW_FIX(1.58740105196819947474),
  217. };
  218. static void int_pow_init(void)
  219. {
  220. int i, a;
  221. a = POW_FIX(1.0);
  222. for(i=0;i<DEV_ORDER;i++) {
  223. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  224. dev_4_3_coefs[i] = a;
  225. }
  226. }
  227. /* return the mantissa and the binary exponent */
  228. static int int_pow(int i, int *exp_ptr)
  229. {
  230. int e, er, eq, j;
  231. int a, a1;
  232. /* renormalize */
  233. a = i;
  234. e = POW_FRAC_BITS;
  235. while (a < (1 << (POW_FRAC_BITS - 1))) {
  236. a = a << 1;
  237. e--;
  238. }
  239. a -= (1 << POW_FRAC_BITS);
  240. a1 = 0;
  241. for(j = DEV_ORDER - 1; j >= 0; j--)
  242. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  243. a = (1 << POW_FRAC_BITS) + a1;
  244. /* exponent compute (exact) */
  245. e = e * 4;
  246. er = e % 3;
  247. eq = e / 3;
  248. a = POW_MULL(a, pow_mult3[er]);
  249. while (a >= 2 * POW_FRAC_ONE) {
  250. a = a >> 1;
  251. eq++;
  252. }
  253. /* convert to float */
  254. while (a < POW_FRAC_ONE) {
  255. a = a << 1;
  256. eq--;
  257. }
  258. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  259. #if POW_FRAC_BITS > FRAC_BITS
  260. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  261. /* correct overflow */
  262. if (a >= 2 * (1 << FRAC_BITS)) {
  263. a = a >> 1;
  264. eq++;
  265. }
  266. #endif
  267. *exp_ptr = eq;
  268. return a;
  269. }
  270. static int decode_init(AVCodecContext * avctx)
  271. {
  272. MPADecodeContext *s = avctx->priv_data;
  273. static int init=0;
  274. int i, j, k;
  275. if (!init && !avctx->parse_only) {
  276. /* scale factors table for layer 1/2 */
  277. for(i=0;i<64;i++) {
  278. int shift, mod;
  279. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  280. shift = (i / 3);
  281. mod = i % 3;
  282. scale_factor_modshift[i] = mod | (shift << 2);
  283. }
  284. /* scale factor multiply for layer 1 */
  285. for(i=0;i<15;i++) {
  286. int n, norm;
  287. n = i + 2;
  288. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  289. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  290. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  291. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  292. dprintf("%d: norm=%x s=%x %x %x\n",
  293. i, norm,
  294. scale_factor_mult[i][0],
  295. scale_factor_mult[i][1],
  296. scale_factor_mult[i][2]);
  297. }
  298. /* window */
  299. /* max = 18760, max sum over all 16 coefs : 44736 */
  300. for(i=0;i<257;i++) {
  301. int v;
  302. v = mpa_enwindow[i];
  303. #if WFRAC_BITS < 16
  304. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  305. #endif
  306. window[i] = v;
  307. if ((i & 63) != 0)
  308. v = -v;
  309. if (i != 0)
  310. window[512 - i] = v;
  311. }
  312. /* huffman decode tables */
  313. huff_code_table[0] = NULL;
  314. for(i=1;i<16;i++) {
  315. const HuffTable *h = &mpa_huff_tables[i];
  316. int xsize, x, y;
  317. unsigned int n;
  318. uint8_t *code_table;
  319. xsize = h->xsize;
  320. n = xsize * xsize;
  321. /* XXX: fail test */
  322. init_vlc(&huff_vlc[i], 8, n,
  323. h->bits, 1, 1, h->codes, 2, 2);
  324. code_table = av_mallocz(n);
  325. j = 0;
  326. for(x=0;x<xsize;x++) {
  327. for(y=0;y<xsize;y++)
  328. code_table[j++] = (x << 4) | y;
  329. }
  330. huff_code_table[i] = code_table;
  331. }
  332. for(i=0;i<2;i++) {
  333. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  334. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1);
  335. }
  336. for(i=0;i<9;i++) {
  337. k = 0;
  338. for(j=0;j<22;j++) {
  339. band_index_long[i][j] = k;
  340. k += band_size_long[i][j];
  341. }
  342. band_index_long[i][22] = k;
  343. }
  344. /* compute n ^ (4/3) and store it in mantissa/exp format */
  345. if (!av_mallocz_static(&table_4_3_exp,
  346. TABLE_4_3_SIZE * sizeof(table_4_3_exp[0])))
  347. return -1;
  348. if (!av_mallocz_static(&table_4_3_value,
  349. TABLE_4_3_SIZE * sizeof(table_4_3_value[0])))
  350. return -1;
  351. int_pow_init();
  352. for(i=1;i<TABLE_4_3_SIZE;i++) {
  353. int e, m;
  354. m = int_pow(i, &e);
  355. #if 0
  356. /* test code */
  357. {
  358. double f, fm;
  359. int e1, m1;
  360. f = pow((double)i, 4.0 / 3.0);
  361. fm = frexp(f, &e1);
  362. m1 = FIXR(2 * fm);
  363. #if FRAC_BITS <= 15
  364. if ((unsigned short)m1 != m1) {
  365. m1 = m1 >> 1;
  366. e1++;
  367. }
  368. #endif
  369. e1--;
  370. if (m != m1 || e != e1) {
  371. printf("%4d: m=%x m1=%x e=%d e1=%d\n",
  372. i, m, m1, e, e1);
  373. }
  374. }
  375. #endif
  376. /* normalized to FRAC_BITS */
  377. table_4_3_value[i] = m;
  378. table_4_3_exp[i] = e;
  379. }
  380. for(i=0;i<7;i++) {
  381. float f;
  382. int v;
  383. if (i != 6) {
  384. f = tan((double)i * M_PI / 12.0);
  385. v = FIXR(f / (1.0 + f));
  386. } else {
  387. v = FIXR(1.0);
  388. }
  389. is_table[0][i] = v;
  390. is_table[1][6 - i] = v;
  391. }
  392. /* invalid values */
  393. for(i=7;i<16;i++)
  394. is_table[0][i] = is_table[1][i] = 0.0;
  395. for(i=0;i<16;i++) {
  396. double f;
  397. int e, k;
  398. for(j=0;j<2;j++) {
  399. e = -(j + 1) * ((i + 1) >> 1);
  400. f = pow(2.0, e / 4.0);
  401. k = i & 1;
  402. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  403. is_table_lsf[j][k][i] = FIXR(1.0);
  404. dprintf("is_table_lsf %d %d: %x %x\n",
  405. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  406. }
  407. }
  408. for(i=0;i<8;i++) {
  409. float ci, cs, ca;
  410. ci = ci_table[i];
  411. cs = 1.0 / sqrt(1.0 + ci * ci);
  412. ca = cs * ci;
  413. csa_table[i][0] = FIX(cs);
  414. csa_table[i][1] = FIX(ca);
  415. }
  416. /* compute mdct windows */
  417. for(i=0;i<36;i++) {
  418. int v;
  419. v = FIXR(sin(M_PI * (i + 0.5) / 36.0));
  420. mdct_win[0][i] = v;
  421. mdct_win[1][i] = v;
  422. mdct_win[3][i] = v;
  423. }
  424. for(i=0;i<6;i++) {
  425. mdct_win[1][18 + i] = FIXR(1.0);
  426. mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0));
  427. mdct_win[1][30 + i] = FIXR(0.0);
  428. mdct_win[3][i] = FIXR(0.0);
  429. mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  430. mdct_win[3][12 + i] = FIXR(1.0);
  431. }
  432. for(i=0;i<12;i++)
  433. mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  434. /* NOTE: we do frequency inversion adter the MDCT by changing
  435. the sign of the right window coefs */
  436. for(j=0;j<4;j++) {
  437. for(i=0;i<36;i+=2) {
  438. mdct_win[j + 4][i] = mdct_win[j][i];
  439. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  440. }
  441. }
  442. #if defined(DEBUG)
  443. for(j=0;j<8;j++) {
  444. printf("win%d=\n", j);
  445. for(i=0;i<36;i++)
  446. printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  447. printf("\n");
  448. }
  449. #endif
  450. init = 1;
  451. }
  452. s->inbuf_index = 0;
  453. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  454. s->inbuf_ptr = s->inbuf;
  455. #ifdef DEBUG
  456. s->frame_count = 0;
  457. #endif
  458. return 0;
  459. }
  460. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  461. /* cos(i*pi/64) */
  462. #define COS0_0 FIXR(0.50060299823519630134)
  463. #define COS0_1 FIXR(0.50547095989754365998)
  464. #define COS0_2 FIXR(0.51544730992262454697)
  465. #define COS0_3 FIXR(0.53104259108978417447)
  466. #define COS0_4 FIXR(0.55310389603444452782)
  467. #define COS0_5 FIXR(0.58293496820613387367)
  468. #define COS0_6 FIXR(0.62250412303566481615)
  469. #define COS0_7 FIXR(0.67480834145500574602)
  470. #define COS0_8 FIXR(0.74453627100229844977)
  471. #define COS0_9 FIXR(0.83934964541552703873)
  472. #define COS0_10 FIXR(0.97256823786196069369)
  473. #define COS0_11 FIXR(1.16943993343288495515)
  474. #define COS0_12 FIXR(1.48416461631416627724)
  475. #define COS0_13 FIXR(2.05778100995341155085)
  476. #define COS0_14 FIXR(3.40760841846871878570)
  477. #define COS0_15 FIXR(10.19000812354805681150)
  478. #define COS1_0 FIXR(0.50241928618815570551)
  479. #define COS1_1 FIXR(0.52249861493968888062)
  480. #define COS1_2 FIXR(0.56694403481635770368)
  481. #define COS1_3 FIXR(0.64682178335999012954)
  482. #define COS1_4 FIXR(0.78815462345125022473)
  483. #define COS1_5 FIXR(1.06067768599034747134)
  484. #define COS1_6 FIXR(1.72244709823833392782)
  485. #define COS1_7 FIXR(5.10114861868916385802)
  486. #define COS2_0 FIXR(0.50979557910415916894)
  487. #define COS2_1 FIXR(0.60134488693504528054)
  488. #define COS2_2 FIXR(0.89997622313641570463)
  489. #define COS2_3 FIXR(2.56291544774150617881)
  490. #define COS3_0 FIXR(0.54119610014619698439)
  491. #define COS3_1 FIXR(1.30656296487637652785)
  492. #define COS4_0 FIXR(0.70710678118654752439)
  493. /* butterfly operator */
  494. #define BF(a, b, c)\
  495. {\
  496. tmp0 = tab[a] + tab[b];\
  497. tmp1 = tab[a] - tab[b];\
  498. tab[a] = tmp0;\
  499. tab[b] = MULL(tmp1, c);\
  500. }
  501. #define BF1(a, b, c, d)\
  502. {\
  503. BF(a, b, COS4_0);\
  504. BF(c, d, -COS4_0);\
  505. tab[c] += tab[d];\
  506. }
  507. #define BF2(a, b, c, d)\
  508. {\
  509. BF(a, b, COS4_0);\
  510. BF(c, d, -COS4_0);\
  511. tab[c] += tab[d];\
  512. tab[a] += tab[c];\
  513. tab[c] += tab[b];\
  514. tab[b] += tab[d];\
  515. }
  516. #define ADD(a, b) tab[a] += tab[b]
  517. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  518. static void dct32(int32_t *out, int32_t *tab)
  519. {
  520. int tmp0, tmp1;
  521. /* pass 1 */
  522. BF(0, 31, COS0_0);
  523. BF(1, 30, COS0_1);
  524. BF(2, 29, COS0_2);
  525. BF(3, 28, COS0_3);
  526. BF(4, 27, COS0_4);
  527. BF(5, 26, COS0_5);
  528. BF(6, 25, COS0_6);
  529. BF(7, 24, COS0_7);
  530. BF(8, 23, COS0_8);
  531. BF(9, 22, COS0_9);
  532. BF(10, 21, COS0_10);
  533. BF(11, 20, COS0_11);
  534. BF(12, 19, COS0_12);
  535. BF(13, 18, COS0_13);
  536. BF(14, 17, COS0_14);
  537. BF(15, 16, COS0_15);
  538. /* pass 2 */
  539. BF(0, 15, COS1_0);
  540. BF(1, 14, COS1_1);
  541. BF(2, 13, COS1_2);
  542. BF(3, 12, COS1_3);
  543. BF(4, 11, COS1_4);
  544. BF(5, 10, COS1_5);
  545. BF(6, 9, COS1_6);
  546. BF(7, 8, COS1_7);
  547. BF(16, 31, -COS1_0);
  548. BF(17, 30, -COS1_1);
  549. BF(18, 29, -COS1_2);
  550. BF(19, 28, -COS1_3);
  551. BF(20, 27, -COS1_4);
  552. BF(21, 26, -COS1_5);
  553. BF(22, 25, -COS1_6);
  554. BF(23, 24, -COS1_7);
  555. /* pass 3 */
  556. BF(0, 7, COS2_0);
  557. BF(1, 6, COS2_1);
  558. BF(2, 5, COS2_2);
  559. BF(3, 4, COS2_3);
  560. BF(8, 15, -COS2_0);
  561. BF(9, 14, -COS2_1);
  562. BF(10, 13, -COS2_2);
  563. BF(11, 12, -COS2_3);
  564. BF(16, 23, COS2_0);
  565. BF(17, 22, COS2_1);
  566. BF(18, 21, COS2_2);
  567. BF(19, 20, COS2_3);
  568. BF(24, 31, -COS2_0);
  569. BF(25, 30, -COS2_1);
  570. BF(26, 29, -COS2_2);
  571. BF(27, 28, -COS2_3);
  572. /* pass 4 */
  573. BF(0, 3, COS3_0);
  574. BF(1, 2, COS3_1);
  575. BF(4, 7, -COS3_0);
  576. BF(5, 6, -COS3_1);
  577. BF(8, 11, COS3_0);
  578. BF(9, 10, COS3_1);
  579. BF(12, 15, -COS3_0);
  580. BF(13, 14, -COS3_1);
  581. BF(16, 19, COS3_0);
  582. BF(17, 18, COS3_1);
  583. BF(20, 23, -COS3_0);
  584. BF(21, 22, -COS3_1);
  585. BF(24, 27, COS3_0);
  586. BF(25, 26, COS3_1);
  587. BF(28, 31, -COS3_0);
  588. BF(29, 30, -COS3_1);
  589. /* pass 5 */
  590. BF1(0, 1, 2, 3);
  591. BF2(4, 5, 6, 7);
  592. BF1(8, 9, 10, 11);
  593. BF2(12, 13, 14, 15);
  594. BF1(16, 17, 18, 19);
  595. BF2(20, 21, 22, 23);
  596. BF1(24, 25, 26, 27);
  597. BF2(28, 29, 30, 31);
  598. /* pass 6 */
  599. ADD( 8, 12);
  600. ADD(12, 10);
  601. ADD(10, 14);
  602. ADD(14, 9);
  603. ADD( 9, 13);
  604. ADD(13, 11);
  605. ADD(11, 15);
  606. out[ 0] = tab[0];
  607. out[16] = tab[1];
  608. out[ 8] = tab[2];
  609. out[24] = tab[3];
  610. out[ 4] = tab[4];
  611. out[20] = tab[5];
  612. out[12] = tab[6];
  613. out[28] = tab[7];
  614. out[ 2] = tab[8];
  615. out[18] = tab[9];
  616. out[10] = tab[10];
  617. out[26] = tab[11];
  618. out[ 6] = tab[12];
  619. out[22] = tab[13];
  620. out[14] = tab[14];
  621. out[30] = tab[15];
  622. ADD(24, 28);
  623. ADD(28, 26);
  624. ADD(26, 30);
  625. ADD(30, 25);
  626. ADD(25, 29);
  627. ADD(29, 27);
  628. ADD(27, 31);
  629. out[ 1] = tab[16] + tab[24];
  630. out[17] = tab[17] + tab[25];
  631. out[ 9] = tab[18] + tab[26];
  632. out[25] = tab[19] + tab[27];
  633. out[ 5] = tab[20] + tab[28];
  634. out[21] = tab[21] + tab[29];
  635. out[13] = tab[22] + tab[30];
  636. out[29] = tab[23] + tab[31];
  637. out[ 3] = tab[24] + tab[20];
  638. out[19] = tab[25] + tab[21];
  639. out[11] = tab[26] + tab[22];
  640. out[27] = tab[27] + tab[23];
  641. out[ 7] = tab[28] + tab[18];
  642. out[23] = tab[29] + tab[19];
  643. out[15] = tab[30] + tab[17];
  644. out[31] = tab[31];
  645. }
  646. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
  647. #if FRAC_BITS <= 15
  648. static inline int round_sample(int sum)
  649. {
  650. int sum1;
  651. sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;
  652. if (sum1 < -32768)
  653. sum1 = -32768;
  654. else if (sum1 > 32767)
  655. sum1 = 32767;
  656. return sum1;
  657. }
  658. #if defined(ARCH_POWERPC_405)
  659. /* signed 16x16 -> 32 multiply add accumulate */
  660. #define MACS(rt, ra, rb) \
  661. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  662. /* signed 16x16 -> 32 multiply */
  663. #define MULS(ra, rb) \
  664. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  665. #else
  666. /* signed 16x16 -> 32 multiply add accumulate */
  667. #define MACS(rt, ra, rb) rt += (ra) * (rb)
  668. /* signed 16x16 -> 32 multiply */
  669. #define MULS(ra, rb) ((ra) * (rb))
  670. #endif
  671. #else
  672. static inline int round_sample(int64_t sum)
  673. {
  674. int sum1;
  675. sum1 = (int)((sum + (int64_t_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);
  676. if (sum1 < -32768)
  677. sum1 = -32768;
  678. else if (sum1 > 32767)
  679. sum1 = 32767;
  680. return sum1;
  681. }
  682. #define MULS(ra, rb) MUL64(ra, rb)
  683. #endif
  684. #define SUM8(sum, op, w, p) \
  685. { \
  686. sum op MULS((w)[0 * 64], p[0 * 64]);\
  687. sum op MULS((w)[1 * 64], p[1 * 64]);\
  688. sum op MULS((w)[2 * 64], p[2 * 64]);\
  689. sum op MULS((w)[3 * 64], p[3 * 64]);\
  690. sum op MULS((w)[4 * 64], p[4 * 64]);\
  691. sum op MULS((w)[5 * 64], p[5 * 64]);\
  692. sum op MULS((w)[6 * 64], p[6 * 64]);\
  693. sum op MULS((w)[7 * 64], p[7 * 64]);\
  694. }
  695. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  696. { \
  697. int tmp;\
  698. tmp = p[0 * 64];\
  699. sum1 op1 MULS((w1)[0 * 64], tmp);\
  700. sum2 op2 MULS((w2)[0 * 64], tmp);\
  701. tmp = p[1 * 64];\
  702. sum1 op1 MULS((w1)[1 * 64], tmp);\
  703. sum2 op2 MULS((w2)[1 * 64], tmp);\
  704. tmp = p[2 * 64];\
  705. sum1 op1 MULS((w1)[2 * 64], tmp);\
  706. sum2 op2 MULS((w2)[2 * 64], tmp);\
  707. tmp = p[3 * 64];\
  708. sum1 op1 MULS((w1)[3 * 64], tmp);\
  709. sum2 op2 MULS((w2)[3 * 64], tmp);\
  710. tmp = p[4 * 64];\
  711. sum1 op1 MULS((w1)[4 * 64], tmp);\
  712. sum2 op2 MULS((w2)[4 * 64], tmp);\
  713. tmp = p[5 * 64];\
  714. sum1 op1 MULS((w1)[5 * 64], tmp);\
  715. sum2 op2 MULS((w2)[5 * 64], tmp);\
  716. tmp = p[6 * 64];\
  717. sum1 op1 MULS((w1)[6 * 64], tmp);\
  718. sum2 op2 MULS((w2)[6 * 64], tmp);\
  719. tmp = p[7 * 64];\
  720. sum1 op1 MULS((w1)[7 * 64], tmp);\
  721. sum2 op2 MULS((w2)[7 * 64], tmp);\
  722. }
  723. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  724. 32 samples. */
  725. /* XXX: optimize by avoiding ring buffer usage */
  726. static void synth_filter(MPADecodeContext *s1,
  727. int ch, int16_t *samples, int incr,
  728. int32_t sb_samples[SBLIMIT])
  729. {
  730. int32_t tmp[32];
  731. register MPA_INT *synth_buf;
  732. const register MPA_INT *w, *w2, *p;
  733. int j, offset, v;
  734. int16_t *samples2;
  735. #if FRAC_BITS <= 15
  736. int sum, sum2;
  737. #else
  738. int64_t sum, sum2;
  739. #endif
  740. dct32(tmp, sb_samples);
  741. offset = s1->synth_buf_offset[ch];
  742. synth_buf = s1->synth_buf[ch] + offset;
  743. for(j=0;j<32;j++) {
  744. v = tmp[j];
  745. #if FRAC_BITS <= 15
  746. /* NOTE: can cause a loss in precision if very high amplitude
  747. sound */
  748. if (v > 32767)
  749. v = 32767;
  750. else if (v < -32768)
  751. v = -32768;
  752. #endif
  753. synth_buf[j] = v;
  754. }
  755. /* copy to avoid wrap */
  756. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  757. samples2 = samples + 31 * incr;
  758. w = window;
  759. w2 = window + 31;
  760. sum = 0;
  761. p = synth_buf + 16;
  762. SUM8(sum, +=, w, p);
  763. p = synth_buf + 48;
  764. SUM8(sum, -=, w + 32, p);
  765. *samples = round_sample(sum);
  766. samples += incr;
  767. w++;
  768. /* we calculate two samples at the same time to avoid one memory
  769. access per two sample */
  770. for(j=1;j<16;j++) {
  771. sum = 0;
  772. sum2 = 0;
  773. p = synth_buf + 16 + j;
  774. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  775. p = synth_buf + 48 - j;
  776. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  777. *samples = round_sample(sum);
  778. samples += incr;
  779. *samples2 = round_sample(sum2);
  780. samples2 -= incr;
  781. w++;
  782. w2--;
  783. }
  784. p = synth_buf + 32;
  785. sum = 0;
  786. SUM8(sum, -=, w + 32, p);
  787. *samples = round_sample(sum);
  788. offset = (offset - 32) & 511;
  789. s1->synth_buf_offset[ch] = offset;
  790. }
  791. /* cos(pi*i/24) */
  792. #define C1 FIXR(0.99144486137381041114)
  793. #define C3 FIXR(0.92387953251128675612)
  794. #define C5 FIXR(0.79335334029123516458)
  795. #define C7 FIXR(0.60876142900872063941)
  796. #define C9 FIXR(0.38268343236508977173)
  797. #define C11 FIXR(0.13052619222005159154)
  798. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  799. cases. */
  800. static void imdct12(int *out, int *in)
  801. {
  802. int tmp;
  803. int64_t in1_3, in1_9, in4_3, in4_9;
  804. in1_3 = MUL64(in[1], C3);
  805. in1_9 = MUL64(in[1], C9);
  806. in4_3 = MUL64(in[4], C3);
  807. in4_9 = MUL64(in[4], C9);
  808. tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) +
  809. MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5));
  810. out[0] = tmp;
  811. out[5] = -tmp;
  812. tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 +
  813. MUL64(in[2] + in[5], C3) - in4_9);
  814. out[1] = tmp;
  815. out[4] = -tmp;
  816. tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) -
  817. MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1));
  818. out[2] = tmp;
  819. out[3] = -tmp;
  820. tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) +
  821. MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7));
  822. out[6] = tmp;
  823. out[11] = tmp;
  824. tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 +
  825. MUL64(in[2] + in[5], C9) + in4_3);
  826. out[7] = tmp;
  827. out[10] = tmp;
  828. tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) -
  829. MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11));
  830. out[8] = tmp;
  831. out[9] = tmp;
  832. }
  833. #undef C1
  834. #undef C3
  835. #undef C5
  836. #undef C7
  837. #undef C9
  838. #undef C11
  839. /* cos(pi*i/18) */
  840. #define C1 FIXR(0.98480775301220805936)
  841. #define C2 FIXR(0.93969262078590838405)
  842. #define C3 FIXR(0.86602540378443864676)
  843. #define C4 FIXR(0.76604444311897803520)
  844. #define C5 FIXR(0.64278760968653932632)
  845. #define C6 FIXR(0.5)
  846. #define C7 FIXR(0.34202014332566873304)
  847. #define C8 FIXR(0.17364817766693034885)
  848. /* 0.5 / cos(pi*(2*i+1)/36) */
  849. static const int icos36[9] = {
  850. FIXR(0.50190991877167369479),
  851. FIXR(0.51763809020504152469),
  852. FIXR(0.55168895948124587824),
  853. FIXR(0.61038729438072803416),
  854. FIXR(0.70710678118654752439),
  855. FIXR(0.87172339781054900991),
  856. FIXR(1.18310079157624925896),
  857. FIXR(1.93185165257813657349),
  858. FIXR(5.73685662283492756461),
  859. };
  860. static const int icos72[18] = {
  861. /* 0.5 / cos(pi*(2*i+19)/72) */
  862. FIXR(0.74009361646113053152),
  863. FIXR(0.82133981585229078570),
  864. FIXR(0.93057949835178895673),
  865. FIXR(1.08284028510010010928),
  866. FIXR(1.30656296487637652785),
  867. FIXR(1.66275476171152078719),
  868. FIXR(2.31011315767264929558),
  869. FIXR(3.83064878777019433457),
  870. FIXR(11.46279281302667383546),
  871. /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */
  872. FIXR(-0.67817085245462840086),
  873. FIXR(-0.63023620700513223342),
  874. FIXR(-0.59284452371708034528),
  875. FIXR(-0.56369097343317117734),
  876. FIXR(-0.54119610014619698439),
  877. FIXR(-0.52426456257040533932),
  878. FIXR(-0.51213975715725461845),
  879. FIXR(-0.50431448029007636036),
  880. FIXR(-0.50047634258165998492),
  881. };
  882. /* using Lee like decomposition followed by hand coded 9 points DCT */
  883. static void imdct36(int *out, int *in)
  884. {
  885. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  886. int tmp[18], *tmp1, *in1;
  887. int64_t in3_3, in6_6;
  888. for(i=17;i>=1;i--)
  889. in[i] += in[i-1];
  890. for(i=17;i>=3;i-=2)
  891. in[i] += in[i-2];
  892. for(j=0;j<2;j++) {
  893. tmp1 = tmp + j;
  894. in1 = in + j;
  895. in3_3 = MUL64(in1[2*3], C3);
  896. in6_6 = MUL64(in1[2*6], C6);
  897. tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 +
  898. MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7));
  899. tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) +
  900. MUL64(in1[2*4], C4) + in6_6 +
  901. MUL64(in1[2*8], C8));
  902. tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3));
  903. tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) -
  904. in1[2*6] + in1[2*0];
  905. tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 -
  906. MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1));
  907. tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) -
  908. MUL64(in1[2*4], C2) + in6_6 +
  909. MUL64(in1[2*8], C4));
  910. tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 +
  911. MUL64(in1[2*5], C1) -
  912. MUL64(in1[2*7], C5));
  913. tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) +
  914. MUL64(in1[2*4], C8) + in6_6 -
  915. MUL64(in1[2*8], C2));
  916. tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8];
  917. }
  918. i = 0;
  919. for(j=0;j<4;j++) {
  920. t0 = tmp[i];
  921. t1 = tmp[i + 2];
  922. s0 = t1 + t0;
  923. s2 = t1 - t0;
  924. t2 = tmp[i + 1];
  925. t3 = tmp[i + 3];
  926. s1 = MULL(t3 + t2, icos36[j]);
  927. s3 = MULL(t3 - t2, icos36[8 - j]);
  928. t0 = MULL(s0 + s1, icos72[9 + 8 - j]);
  929. t1 = MULL(s0 - s1, icos72[8 - j]);
  930. out[18 + 9 + j] = t0;
  931. out[18 + 8 - j] = t0;
  932. out[9 + j] = -t1;
  933. out[8 - j] = t1;
  934. t0 = MULL(s2 + s3, icos72[9+j]);
  935. t1 = MULL(s2 - s3, icos72[j]);
  936. out[18 + 9 + (8 - j)] = t0;
  937. out[18 + j] = t0;
  938. out[9 + (8 - j)] = -t1;
  939. out[j] = t1;
  940. i += 4;
  941. }
  942. s0 = tmp[16];
  943. s1 = MULL(tmp[17], icos36[4]);
  944. t0 = MULL(s0 + s1, icos72[9 + 4]);
  945. t1 = MULL(s0 - s1, icos72[4]);
  946. out[18 + 9 + 4] = t0;
  947. out[18 + 8 - 4] = t0;
  948. out[9 + 4] = -t1;
  949. out[8 - 4] = t1;
  950. }
  951. /* fast header check for resync */
  952. static int check_header(uint32_t header)
  953. {
  954. /* header */
  955. if ((header & 0xffe00000) != 0xffe00000)
  956. return -1;
  957. /* layer check */
  958. if (((header >> 17) & 3) == 0)
  959. return -1;
  960. /* bit rate */
  961. if (((header >> 12) & 0xf) == 0xf)
  962. return -1;
  963. /* frequency */
  964. if (((header >> 10) & 3) == 3)
  965. return -1;
  966. return 0;
  967. }
  968. /* header + layer + bitrate + freq + lsf/mpeg25 */
  969. #define SAME_HEADER_MASK \
  970. (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19))
  971. /* header decoding. MUST check the header before because no
  972. consistency check is done there. Return 1 if free format found and
  973. that the frame size must be computed externally */
  974. static int decode_header(MPADecodeContext *s, uint32_t header)
  975. {
  976. int sample_rate, frame_size, mpeg25, padding;
  977. int sample_rate_index, bitrate_index;
  978. if (header & (1<<20)) {
  979. s->lsf = (header & (1<<19)) ? 0 : 1;
  980. mpeg25 = 0;
  981. } else {
  982. s->lsf = 1;
  983. mpeg25 = 1;
  984. }
  985. s->layer = 4 - ((header >> 17) & 3);
  986. /* extract frequency */
  987. sample_rate_index = (header >> 10) & 3;
  988. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  989. sample_rate_index += 3 * (s->lsf + mpeg25);
  990. s->sample_rate_index = sample_rate_index;
  991. s->error_protection = ((header >> 16) & 1) ^ 1;
  992. s->sample_rate = sample_rate;
  993. bitrate_index = (header >> 12) & 0xf;
  994. padding = (header >> 9) & 1;
  995. //extension = (header >> 8) & 1;
  996. s->mode = (header >> 6) & 3;
  997. s->mode_ext = (header >> 4) & 3;
  998. //copyright = (header >> 3) & 1;
  999. //original = (header >> 2) & 1;
  1000. //emphasis = header & 3;
  1001. if (s->mode == MPA_MONO)
  1002. s->nb_channels = 1;
  1003. else
  1004. s->nb_channels = 2;
  1005. if (bitrate_index != 0) {
  1006. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1007. s->bit_rate = frame_size * 1000;
  1008. switch(s->layer) {
  1009. case 1:
  1010. frame_size = (frame_size * 12000) / sample_rate;
  1011. frame_size = (frame_size + padding) * 4;
  1012. break;
  1013. case 2:
  1014. frame_size = (frame_size * 144000) / sample_rate;
  1015. frame_size += padding;
  1016. break;
  1017. default:
  1018. case 3:
  1019. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1020. frame_size += padding;
  1021. break;
  1022. }
  1023. s->frame_size = frame_size;
  1024. } else {
  1025. /* if no frame size computed, signal it */
  1026. if (!s->free_format_frame_size)
  1027. return 1;
  1028. /* free format: compute bitrate and real frame size from the
  1029. frame size we extracted by reading the bitstream */
  1030. s->frame_size = s->free_format_frame_size;
  1031. switch(s->layer) {
  1032. case 1:
  1033. s->frame_size += padding * 4;
  1034. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  1035. break;
  1036. case 2:
  1037. s->frame_size += padding;
  1038. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1039. break;
  1040. default:
  1041. case 3:
  1042. s->frame_size += padding;
  1043. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1044. break;
  1045. }
  1046. }
  1047. #if defined(DEBUG)
  1048. printf("layer%d, %d Hz, %d kbits/s, ",
  1049. s->layer, s->sample_rate, s->bit_rate);
  1050. if (s->nb_channels == 2) {
  1051. if (s->layer == 3) {
  1052. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1053. printf("ms-");
  1054. if (s->mode_ext & MODE_EXT_I_STEREO)
  1055. printf("i-");
  1056. }
  1057. printf("stereo");
  1058. } else {
  1059. printf("mono");
  1060. }
  1061. printf("\n");
  1062. #endif
  1063. return 0;
  1064. }
  1065. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1066. header, otherwise the coded frame size in bytes */
  1067. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1068. {
  1069. MPADecodeContext s1, *s = &s1;
  1070. if (check_header(head) != 0)
  1071. return -1;
  1072. if (decode_header(s, head) != 0) {
  1073. return -1;
  1074. }
  1075. switch(s->layer) {
  1076. case 1:
  1077. avctx->frame_size = 384;
  1078. break;
  1079. case 2:
  1080. avctx->frame_size = 1152;
  1081. break;
  1082. default:
  1083. case 3:
  1084. if (s->lsf)
  1085. avctx->frame_size = 576;
  1086. else
  1087. avctx->frame_size = 1152;
  1088. break;
  1089. }
  1090. avctx->sample_rate = s->sample_rate;
  1091. avctx->channels = s->nb_channels;
  1092. avctx->bit_rate = s->bit_rate;
  1093. avctx->sub_id = s->layer;
  1094. return s->frame_size;
  1095. }
  1096. /* return the number of decoded frames */
  1097. static int mp_decode_layer1(MPADecodeContext *s)
  1098. {
  1099. int bound, i, v, n, ch, j, mant;
  1100. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1101. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1102. if (s->mode == MPA_JSTEREO)
  1103. bound = (s->mode_ext + 1) * 4;
  1104. else
  1105. bound = SBLIMIT;
  1106. /* allocation bits */
  1107. for(i=0;i<bound;i++) {
  1108. for(ch=0;ch<s->nb_channels;ch++) {
  1109. allocation[ch][i] = get_bits(&s->gb, 4);
  1110. }
  1111. }
  1112. for(i=bound;i<SBLIMIT;i++) {
  1113. allocation[0][i] = get_bits(&s->gb, 4);
  1114. }
  1115. /* scale factors */
  1116. for(i=0;i<bound;i++) {
  1117. for(ch=0;ch<s->nb_channels;ch++) {
  1118. if (allocation[ch][i])
  1119. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1120. }
  1121. }
  1122. for(i=bound;i<SBLIMIT;i++) {
  1123. if (allocation[0][i]) {
  1124. scale_factors[0][i] = get_bits(&s->gb, 6);
  1125. scale_factors[1][i] = get_bits(&s->gb, 6);
  1126. }
  1127. }
  1128. /* compute samples */
  1129. for(j=0;j<12;j++) {
  1130. for(i=0;i<bound;i++) {
  1131. for(ch=0;ch<s->nb_channels;ch++) {
  1132. n = allocation[ch][i];
  1133. if (n) {
  1134. mant = get_bits(&s->gb, n + 1);
  1135. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1136. } else {
  1137. v = 0;
  1138. }
  1139. s->sb_samples[ch][j][i] = v;
  1140. }
  1141. }
  1142. for(i=bound;i<SBLIMIT;i++) {
  1143. n = allocation[0][i];
  1144. if (n) {
  1145. mant = get_bits(&s->gb, n + 1);
  1146. v = l1_unscale(n, mant, scale_factors[0][i]);
  1147. s->sb_samples[0][j][i] = v;
  1148. v = l1_unscale(n, mant, scale_factors[1][i]);
  1149. s->sb_samples[1][j][i] = v;
  1150. } else {
  1151. s->sb_samples[0][j][i] = 0;
  1152. s->sb_samples[1][j][i] = 0;
  1153. }
  1154. }
  1155. }
  1156. return 12;
  1157. }
  1158. /* bitrate is in kb/s */
  1159. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1160. {
  1161. int ch_bitrate, table;
  1162. ch_bitrate = bitrate / nb_channels;
  1163. if (!lsf) {
  1164. if ((freq == 48000 && ch_bitrate >= 56) ||
  1165. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1166. table = 0;
  1167. else if (freq != 48000 && ch_bitrate >= 96)
  1168. table = 1;
  1169. else if (freq != 32000 && ch_bitrate <= 48)
  1170. table = 2;
  1171. else
  1172. table = 3;
  1173. } else {
  1174. table = 4;
  1175. }
  1176. return table;
  1177. }
  1178. static int mp_decode_layer2(MPADecodeContext *s)
  1179. {
  1180. int sblimit; /* number of used subbands */
  1181. const unsigned char *alloc_table;
  1182. int table, bit_alloc_bits, i, j, ch, bound, v;
  1183. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1184. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1185. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1186. int scale, qindex, bits, steps, k, l, m, b;
  1187. /* select decoding table */
  1188. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1189. s->sample_rate, s->lsf);
  1190. sblimit = sblimit_table[table];
  1191. alloc_table = alloc_tables[table];
  1192. if (s->mode == MPA_JSTEREO)
  1193. bound = (s->mode_ext + 1) * 4;
  1194. else
  1195. bound = sblimit;
  1196. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1197. /* parse bit allocation */
  1198. j = 0;
  1199. for(i=0;i<bound;i++) {
  1200. bit_alloc_bits = alloc_table[j];
  1201. for(ch=0;ch<s->nb_channels;ch++) {
  1202. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1203. }
  1204. j += 1 << bit_alloc_bits;
  1205. }
  1206. for(i=bound;i<sblimit;i++) {
  1207. bit_alloc_bits = alloc_table[j];
  1208. v = get_bits(&s->gb, bit_alloc_bits);
  1209. bit_alloc[0][i] = v;
  1210. bit_alloc[1][i] = v;
  1211. j += 1 << bit_alloc_bits;
  1212. }
  1213. #ifdef DEBUG
  1214. {
  1215. for(ch=0;ch<s->nb_channels;ch++) {
  1216. for(i=0;i<sblimit;i++)
  1217. printf(" %d", bit_alloc[ch][i]);
  1218. printf("\n");
  1219. }
  1220. }
  1221. #endif
  1222. /* scale codes */
  1223. for(i=0;i<sblimit;i++) {
  1224. for(ch=0;ch<s->nb_channels;ch++) {
  1225. if (bit_alloc[ch][i])
  1226. scale_code[ch][i] = get_bits(&s->gb, 2);
  1227. }
  1228. }
  1229. /* scale factors */
  1230. for(i=0;i<sblimit;i++) {
  1231. for(ch=0;ch<s->nb_channels;ch++) {
  1232. if (bit_alloc[ch][i]) {
  1233. sf = scale_factors[ch][i];
  1234. switch(scale_code[ch][i]) {
  1235. default:
  1236. case 0:
  1237. sf[0] = get_bits(&s->gb, 6);
  1238. sf[1] = get_bits(&s->gb, 6);
  1239. sf[2] = get_bits(&s->gb, 6);
  1240. break;
  1241. case 2:
  1242. sf[0] = get_bits(&s->gb, 6);
  1243. sf[1] = sf[0];
  1244. sf[2] = sf[0];
  1245. break;
  1246. case 1:
  1247. sf[0] = get_bits(&s->gb, 6);
  1248. sf[2] = get_bits(&s->gb, 6);
  1249. sf[1] = sf[0];
  1250. break;
  1251. case 3:
  1252. sf[0] = get_bits(&s->gb, 6);
  1253. sf[2] = get_bits(&s->gb, 6);
  1254. sf[1] = sf[2];
  1255. break;
  1256. }
  1257. }
  1258. }
  1259. }
  1260. #ifdef DEBUG
  1261. for(ch=0;ch<s->nb_channels;ch++) {
  1262. for(i=0;i<sblimit;i++) {
  1263. if (bit_alloc[ch][i]) {
  1264. sf = scale_factors[ch][i];
  1265. printf(" %d %d %d", sf[0], sf[1], sf[2]);
  1266. } else {
  1267. printf(" -");
  1268. }
  1269. }
  1270. printf("\n");
  1271. }
  1272. #endif
  1273. /* samples */
  1274. for(k=0;k<3;k++) {
  1275. for(l=0;l<12;l+=3) {
  1276. j = 0;
  1277. for(i=0;i<bound;i++) {
  1278. bit_alloc_bits = alloc_table[j];
  1279. for(ch=0;ch<s->nb_channels;ch++) {
  1280. b = bit_alloc[ch][i];
  1281. if (b) {
  1282. scale = scale_factors[ch][i][k];
  1283. qindex = alloc_table[j+b];
  1284. bits = quant_bits[qindex];
  1285. if (bits < 0) {
  1286. /* 3 values at the same time */
  1287. v = get_bits(&s->gb, -bits);
  1288. steps = quant_steps[qindex];
  1289. s->sb_samples[ch][k * 12 + l + 0][i] =
  1290. l2_unscale_group(steps, v % steps, scale);
  1291. v = v / steps;
  1292. s->sb_samples[ch][k * 12 + l + 1][i] =
  1293. l2_unscale_group(steps, v % steps, scale);
  1294. v = v / steps;
  1295. s->sb_samples[ch][k * 12 + l + 2][i] =
  1296. l2_unscale_group(steps, v, scale);
  1297. } else {
  1298. for(m=0;m<3;m++) {
  1299. v = get_bits(&s->gb, bits);
  1300. v = l1_unscale(bits - 1, v, scale);
  1301. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1302. }
  1303. }
  1304. } else {
  1305. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1306. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1307. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1308. }
  1309. }
  1310. /* next subband in alloc table */
  1311. j += 1 << bit_alloc_bits;
  1312. }
  1313. /* XXX: find a way to avoid this duplication of code */
  1314. for(i=bound;i<sblimit;i++) {
  1315. bit_alloc_bits = alloc_table[j];
  1316. b = bit_alloc[0][i];
  1317. if (b) {
  1318. int mant, scale0, scale1;
  1319. scale0 = scale_factors[0][i][k];
  1320. scale1 = scale_factors[1][i][k];
  1321. qindex = alloc_table[j+b];
  1322. bits = quant_bits[qindex];
  1323. if (bits < 0) {
  1324. /* 3 values at the same time */
  1325. v = get_bits(&s->gb, -bits);
  1326. steps = quant_steps[qindex];
  1327. mant = v % steps;
  1328. v = v / steps;
  1329. s->sb_samples[0][k * 12 + l + 0][i] =
  1330. l2_unscale_group(steps, mant, scale0);
  1331. s->sb_samples[1][k * 12 + l + 0][i] =
  1332. l2_unscale_group(steps, mant, scale1);
  1333. mant = v % steps;
  1334. v = v / steps;
  1335. s->sb_samples[0][k * 12 + l + 1][i] =
  1336. l2_unscale_group(steps, mant, scale0);
  1337. s->sb_samples[1][k * 12 + l + 1][i] =
  1338. l2_unscale_group(steps, mant, scale1);
  1339. s->sb_samples[0][k * 12 + l + 2][i] =
  1340. l2_unscale_group(steps, v, scale0);
  1341. s->sb_samples[1][k * 12 + l + 2][i] =
  1342. l2_unscale_group(steps, v, scale1);
  1343. } else {
  1344. for(m=0;m<3;m++) {
  1345. mant = get_bits(&s->gb, bits);
  1346. s->sb_samples[0][k * 12 + l + m][i] =
  1347. l1_unscale(bits - 1, mant, scale0);
  1348. s->sb_samples[1][k * 12 + l + m][i] =
  1349. l1_unscale(bits - 1, mant, scale1);
  1350. }
  1351. }
  1352. } else {
  1353. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1354. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1355. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1356. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1357. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1358. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1359. }
  1360. /* next subband in alloc table */
  1361. j += 1 << bit_alloc_bits;
  1362. }
  1363. /* fill remaining samples to zero */
  1364. for(i=sblimit;i<SBLIMIT;i++) {
  1365. for(ch=0;ch<s->nb_channels;ch++) {
  1366. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1367. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1368. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1369. }
  1370. }
  1371. }
  1372. }
  1373. return 3 * 12;
  1374. }
  1375. /*
  1376. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1377. */
  1378. static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
  1379. {
  1380. uint8_t *ptr;
  1381. /* compute current position in stream */
  1382. ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
  1383. /* copy old data before current one */
  1384. ptr -= backstep;
  1385. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1386. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1387. /* init get bits again */
  1388. init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
  1389. /* prepare next buffer */
  1390. s->inbuf_index ^= 1;
  1391. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1392. s->old_frame_size = s->frame_size;
  1393. }
  1394. static inline void lsf_sf_expand(int *slen,
  1395. int sf, int n1, int n2, int n3)
  1396. {
  1397. if (n3) {
  1398. slen[3] = sf % n3;
  1399. sf /= n3;
  1400. } else {
  1401. slen[3] = 0;
  1402. }
  1403. if (n2) {
  1404. slen[2] = sf % n2;
  1405. sf /= n2;
  1406. } else {
  1407. slen[2] = 0;
  1408. }
  1409. slen[1] = sf % n1;
  1410. sf /= n1;
  1411. slen[0] = sf;
  1412. }
  1413. static void exponents_from_scale_factors(MPADecodeContext *s,
  1414. GranuleDef *g,
  1415. int16_t *exponents)
  1416. {
  1417. const uint8_t *bstab, *pretab;
  1418. int len, i, j, k, l, v0, shift, gain, gains[3];
  1419. int16_t *exp_ptr;
  1420. exp_ptr = exponents;
  1421. gain = g->global_gain - 210;
  1422. shift = g->scalefac_scale + 1;
  1423. bstab = band_size_long[s->sample_rate_index];
  1424. pretab = mpa_pretab[g->preflag];
  1425. for(i=0;i<g->long_end;i++) {
  1426. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1427. len = bstab[i];
  1428. for(j=len;j>0;j--)
  1429. *exp_ptr++ = v0;
  1430. }
  1431. if (g->short_start < 13) {
  1432. bstab = band_size_short[s->sample_rate_index];
  1433. gains[0] = gain - (g->subblock_gain[0] << 3);
  1434. gains[1] = gain - (g->subblock_gain[1] << 3);
  1435. gains[2] = gain - (g->subblock_gain[2] << 3);
  1436. k = g->long_end;
  1437. for(i=g->short_start;i<13;i++) {
  1438. len = bstab[i];
  1439. for(l=0;l<3;l++) {
  1440. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1441. for(j=len;j>0;j--)
  1442. *exp_ptr++ = v0;
  1443. }
  1444. }
  1445. }
  1446. }
  1447. /* handle n = 0 too */
  1448. static inline int get_bitsz(GetBitContext *s, int n)
  1449. {
  1450. if (n == 0)
  1451. return 0;
  1452. else
  1453. return get_bits(s, n);
  1454. }
  1455. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1456. int16_t *exponents, int end_pos)
  1457. {
  1458. int s_index;
  1459. int linbits, code, x, y, l, v, i, j, k, pos;
  1460. GetBitContext last_gb;
  1461. VLC *vlc;
  1462. uint8_t *code_table;
  1463. /* low frequencies (called big values) */
  1464. s_index = 0;
  1465. for(i=0;i<3;i++) {
  1466. j = g->region_size[i];
  1467. if (j == 0)
  1468. continue;
  1469. /* select vlc table */
  1470. k = g->table_select[i];
  1471. l = mpa_huff_data[k][0];
  1472. linbits = mpa_huff_data[k][1];
  1473. vlc = &huff_vlc[l];
  1474. code_table = huff_code_table[l];
  1475. /* read huffcode and compute each couple */
  1476. for(;j>0;j--) {
  1477. if (get_bits_count(&s->gb) >= end_pos)
  1478. break;
  1479. if (code_table) {
  1480. code = get_vlc(&s->gb, vlc);
  1481. if (code < 0)
  1482. return -1;
  1483. y = code_table[code];
  1484. x = y >> 4;
  1485. y = y & 0x0f;
  1486. } else {
  1487. x = 0;
  1488. y = 0;
  1489. }
  1490. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1491. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1492. if (x) {
  1493. if (x == 15)
  1494. x += get_bitsz(&s->gb, linbits);
  1495. v = l3_unscale(x, exponents[s_index]);
  1496. if (get_bits1(&s->gb))
  1497. v = -v;
  1498. } else {
  1499. v = 0;
  1500. }
  1501. g->sb_hybrid[s_index++] = v;
  1502. if (y) {
  1503. if (y == 15)
  1504. y += get_bitsz(&s->gb, linbits);
  1505. v = l3_unscale(y, exponents[s_index]);
  1506. if (get_bits1(&s->gb))
  1507. v = -v;
  1508. } else {
  1509. v = 0;
  1510. }
  1511. g->sb_hybrid[s_index++] = v;
  1512. }
  1513. }
  1514. /* high frequencies */
  1515. vlc = &huff_quad_vlc[g->count1table_select];
  1516. last_gb.buffer = NULL;
  1517. while (s_index <= 572) {
  1518. pos = get_bits_count(&s->gb);
  1519. if (pos >= end_pos) {
  1520. if (pos > end_pos && last_gb.buffer != NULL) {
  1521. /* some encoders generate an incorrect size for this
  1522. part. We must go back into the data */
  1523. s_index -= 4;
  1524. s->gb = last_gb;
  1525. }
  1526. break;
  1527. }
  1528. last_gb= s->gb;
  1529. code = get_vlc(&s->gb, vlc);
  1530. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1531. if (code < 0)
  1532. return -1;
  1533. for(i=0;i<4;i++) {
  1534. if (code & (8 >> i)) {
  1535. /* non zero value. Could use a hand coded function for
  1536. 'one' value */
  1537. v = l3_unscale(1, exponents[s_index]);
  1538. if(get_bits1(&s->gb))
  1539. v = -v;
  1540. } else {
  1541. v = 0;
  1542. }
  1543. g->sb_hybrid[s_index++] = v;
  1544. }
  1545. }
  1546. while (s_index < 576)
  1547. g->sb_hybrid[s_index++] = 0;
  1548. return 0;
  1549. }
  1550. /* Reorder short blocks from bitstream order to interleaved order. It
  1551. would be faster to do it in parsing, but the code would be far more
  1552. complicated */
  1553. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1554. {
  1555. int i, j, k, len;
  1556. int32_t *ptr, *dst, *ptr1;
  1557. int32_t tmp[576];
  1558. if (g->block_type != 2)
  1559. return;
  1560. if (g->switch_point) {
  1561. if (s->sample_rate_index != 8) {
  1562. ptr = g->sb_hybrid + 36;
  1563. } else {
  1564. ptr = g->sb_hybrid + 48;
  1565. }
  1566. } else {
  1567. ptr = g->sb_hybrid;
  1568. }
  1569. for(i=g->short_start;i<13;i++) {
  1570. len = band_size_short[s->sample_rate_index][i];
  1571. ptr1 = ptr;
  1572. for(k=0;k<3;k++) {
  1573. dst = tmp + k;
  1574. for(j=len;j>0;j--) {
  1575. *dst = *ptr++;
  1576. dst += 3;
  1577. }
  1578. }
  1579. memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
  1580. }
  1581. }
  1582. #define ISQRT2 FIXR(0.70710678118654752440)
  1583. static void compute_stereo(MPADecodeContext *s,
  1584. GranuleDef *g0, GranuleDef *g1)
  1585. {
  1586. int i, j, k, l;
  1587. int32_t v1, v2;
  1588. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1589. int32_t (*is_tab)[16];
  1590. int32_t *tab0, *tab1;
  1591. int non_zero_found_short[3];
  1592. /* intensity stereo */
  1593. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1594. if (!s->lsf) {
  1595. is_tab = is_table;
  1596. sf_max = 7;
  1597. } else {
  1598. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1599. sf_max = 16;
  1600. }
  1601. tab0 = g0->sb_hybrid + 576;
  1602. tab1 = g1->sb_hybrid + 576;
  1603. non_zero_found_short[0] = 0;
  1604. non_zero_found_short[1] = 0;
  1605. non_zero_found_short[2] = 0;
  1606. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1607. for(i = 12;i >= g1->short_start;i--) {
  1608. /* for last band, use previous scale factor */
  1609. if (i != 11)
  1610. k -= 3;
  1611. len = band_size_short[s->sample_rate_index][i];
  1612. for(l=2;l>=0;l--) {
  1613. tab0 -= len;
  1614. tab1 -= len;
  1615. if (!non_zero_found_short[l]) {
  1616. /* test if non zero band. if so, stop doing i-stereo */
  1617. for(j=0;j<len;j++) {
  1618. if (tab1[j] != 0) {
  1619. non_zero_found_short[l] = 1;
  1620. goto found1;
  1621. }
  1622. }
  1623. sf = g1->scale_factors[k + l];
  1624. if (sf >= sf_max)
  1625. goto found1;
  1626. v1 = is_tab[0][sf];
  1627. v2 = is_tab[1][sf];
  1628. for(j=0;j<len;j++) {
  1629. tmp0 = tab0[j];
  1630. tab0[j] = MULL(tmp0, v1);
  1631. tab1[j] = MULL(tmp0, v2);
  1632. }
  1633. } else {
  1634. found1:
  1635. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1636. /* lower part of the spectrum : do ms stereo
  1637. if enabled */
  1638. for(j=0;j<len;j++) {
  1639. tmp0 = tab0[j];
  1640. tmp1 = tab1[j];
  1641. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1642. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1643. }
  1644. }
  1645. }
  1646. }
  1647. }
  1648. non_zero_found = non_zero_found_short[0] |
  1649. non_zero_found_short[1] |
  1650. non_zero_found_short[2];
  1651. for(i = g1->long_end - 1;i >= 0;i--) {
  1652. len = band_size_long[s->sample_rate_index][i];
  1653. tab0 -= len;
  1654. tab1 -= len;
  1655. /* test if non zero band. if so, stop doing i-stereo */
  1656. if (!non_zero_found) {
  1657. for(j=0;j<len;j++) {
  1658. if (tab1[j] != 0) {
  1659. non_zero_found = 1;
  1660. goto found2;
  1661. }
  1662. }
  1663. /* for last band, use previous scale factor */
  1664. k = (i == 21) ? 20 : i;
  1665. sf = g1->scale_factors[k];
  1666. if (sf >= sf_max)
  1667. goto found2;
  1668. v1 = is_tab[0][sf];
  1669. v2 = is_tab[1][sf];
  1670. for(j=0;j<len;j++) {
  1671. tmp0 = tab0[j];
  1672. tab0[j] = MULL(tmp0, v1);
  1673. tab1[j] = MULL(tmp0, v2);
  1674. }
  1675. } else {
  1676. found2:
  1677. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1678. /* lower part of the spectrum : do ms stereo
  1679. if enabled */
  1680. for(j=0;j<len;j++) {
  1681. tmp0 = tab0[j];
  1682. tmp1 = tab1[j];
  1683. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1684. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1685. }
  1686. }
  1687. }
  1688. }
  1689. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1690. /* ms stereo ONLY */
  1691. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1692. global gain */
  1693. tab0 = g0->sb_hybrid;
  1694. tab1 = g1->sb_hybrid;
  1695. for(i=0;i<576;i++) {
  1696. tmp0 = tab0[i];
  1697. tmp1 = tab1[i];
  1698. tab0[i] = tmp0 + tmp1;
  1699. tab1[i] = tmp0 - tmp1;
  1700. }
  1701. }
  1702. }
  1703. static void compute_antialias(MPADecodeContext *s,
  1704. GranuleDef *g)
  1705. {
  1706. int32_t *ptr, *p0, *p1, *csa;
  1707. int n, tmp0, tmp1, i, j;
  1708. /* we antialias only "long" bands */
  1709. if (g->block_type == 2) {
  1710. if (!g->switch_point)
  1711. return;
  1712. /* XXX: check this for 8000Hz case */
  1713. n = 1;
  1714. } else {
  1715. n = SBLIMIT - 1;
  1716. }
  1717. ptr = g->sb_hybrid + 18;
  1718. for(i = n;i > 0;i--) {
  1719. p0 = ptr - 1;
  1720. p1 = ptr;
  1721. csa = &csa_table[0][0];
  1722. for(j=0;j<8;j++) {
  1723. tmp0 = *p0;
  1724. tmp1 = *p1;
  1725. *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
  1726. *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
  1727. p0--;
  1728. p1++;
  1729. csa += 2;
  1730. }
  1731. ptr += 18;
  1732. }
  1733. }
  1734. static void compute_imdct(MPADecodeContext *s,
  1735. GranuleDef *g,
  1736. int32_t *sb_samples,
  1737. int32_t *mdct_buf)
  1738. {
  1739. int32_t *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1;
  1740. int32_t in[6];
  1741. int32_t out[36];
  1742. int32_t out2[12];
  1743. int i, j, k, mdct_long_end, v, sblimit;
  1744. /* find last non zero block */
  1745. ptr = g->sb_hybrid + 576;
  1746. ptr1 = g->sb_hybrid + 2 * 18;
  1747. while (ptr >= ptr1) {
  1748. ptr -= 6;
  1749. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1750. if (v != 0)
  1751. break;
  1752. }
  1753. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1754. if (g->block_type == 2) {
  1755. /* XXX: check for 8000 Hz */
  1756. if (g->switch_point)
  1757. mdct_long_end = 2;
  1758. else
  1759. mdct_long_end = 0;
  1760. } else {
  1761. mdct_long_end = sblimit;
  1762. }
  1763. buf = mdct_buf;
  1764. ptr = g->sb_hybrid;
  1765. for(j=0;j<mdct_long_end;j++) {
  1766. imdct36(out, ptr);
  1767. /* apply window & overlap with previous buffer */
  1768. out_ptr = sb_samples + j;
  1769. /* select window */
  1770. if (g->switch_point && j < 2)
  1771. win1 = mdct_win[0];
  1772. else
  1773. win1 = mdct_win[g->block_type];
  1774. /* select frequency inversion */
  1775. win = win1 + ((4 * 36) & -(j & 1));
  1776. for(i=0;i<18;i++) {
  1777. *out_ptr = MULL(out[i], win[i]) + buf[i];
  1778. buf[i] = MULL(out[i + 18], win[i + 18]);
  1779. out_ptr += SBLIMIT;
  1780. }
  1781. ptr += 18;
  1782. buf += 18;
  1783. }
  1784. for(j=mdct_long_end;j<sblimit;j++) {
  1785. for(i=0;i<6;i++) {
  1786. out[i] = 0;
  1787. out[6 + i] = 0;
  1788. out[30+i] = 0;
  1789. }
  1790. /* select frequency inversion */
  1791. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1792. buf2 = out + 6;
  1793. for(k=0;k<3;k++) {
  1794. /* reorder input for short mdct */
  1795. ptr1 = ptr + k;
  1796. for(i=0;i<6;i++) {
  1797. in[i] = *ptr1;
  1798. ptr1 += 3;
  1799. }
  1800. imdct12(out2, in);
  1801. /* apply 12 point window and do small overlap */
  1802. for(i=0;i<6;i++) {
  1803. buf2[i] = MULL(out2[i], win[i]) + buf2[i];
  1804. buf2[i + 6] = MULL(out2[i + 6], win[i + 6]);
  1805. }
  1806. buf2 += 6;
  1807. }
  1808. /* overlap */
  1809. out_ptr = sb_samples + j;
  1810. for(i=0;i<18;i++) {
  1811. *out_ptr = out[i] + buf[i];
  1812. buf[i] = out[i + 18];
  1813. out_ptr += SBLIMIT;
  1814. }
  1815. ptr += 18;
  1816. buf += 18;
  1817. }
  1818. /* zero bands */
  1819. for(j=sblimit;j<SBLIMIT;j++) {
  1820. /* overlap */
  1821. out_ptr = sb_samples + j;
  1822. for(i=0;i<18;i++) {
  1823. *out_ptr = buf[i];
  1824. buf[i] = 0;
  1825. out_ptr += SBLIMIT;
  1826. }
  1827. buf += 18;
  1828. }
  1829. }
  1830. #if defined(DEBUG)
  1831. void sample_dump(int fnum, int32_t *tab, int n)
  1832. {
  1833. static FILE *files[16], *f;
  1834. char buf[512];
  1835. int i;
  1836. int32_t v;
  1837. f = files[fnum];
  1838. if (!f) {
  1839. sprintf(buf, "/tmp/out%d.%s.pcm",
  1840. fnum,
  1841. #ifdef USE_HIGHPRECISION
  1842. "hp"
  1843. #else
  1844. "lp"
  1845. #endif
  1846. );
  1847. f = fopen(buf, "w");
  1848. if (!f)
  1849. return;
  1850. files[fnum] = f;
  1851. }
  1852. if (fnum == 0) {
  1853. static int pos = 0;
  1854. printf("pos=%d\n", pos);
  1855. for(i=0;i<n;i++) {
  1856. printf(" %0.4f", (double)tab[i] / FRAC_ONE);
  1857. if ((i % 18) == 17)
  1858. printf("\n");
  1859. }
  1860. pos += n;
  1861. }
  1862. for(i=0;i<n;i++) {
  1863. /* normalize to 23 frac bits */
  1864. v = tab[i] << (23 - FRAC_BITS);
  1865. fwrite(&v, 1, sizeof(int32_t), f);
  1866. }
  1867. }
  1868. #endif
  1869. /* main layer3 decoding function */
  1870. static int mp_decode_layer3(MPADecodeContext *s)
  1871. {
  1872. int nb_granules, main_data_begin, private_bits;
  1873. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1874. GranuleDef granules[2][2], *g;
  1875. int16_t exponents[576];
  1876. /* read side info */
  1877. if (s->lsf) {
  1878. main_data_begin = get_bits(&s->gb, 8);
  1879. if (s->nb_channels == 2)
  1880. private_bits = get_bits(&s->gb, 2);
  1881. else
  1882. private_bits = get_bits(&s->gb, 1);
  1883. nb_granules = 1;
  1884. } else {
  1885. main_data_begin = get_bits(&s->gb, 9);
  1886. if (s->nb_channels == 2)
  1887. private_bits = get_bits(&s->gb, 3);
  1888. else
  1889. private_bits = get_bits(&s->gb, 5);
  1890. nb_granules = 2;
  1891. for(ch=0;ch<s->nb_channels;ch++) {
  1892. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1893. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1894. }
  1895. }
  1896. for(gr=0;gr<nb_granules;gr++) {
  1897. for(ch=0;ch<s->nb_channels;ch++) {
  1898. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1899. g = &granules[ch][gr];
  1900. g->part2_3_length = get_bits(&s->gb, 12);
  1901. g->big_values = get_bits(&s->gb, 9);
  1902. g->global_gain = get_bits(&s->gb, 8);
  1903. /* if MS stereo only is selected, we precompute the
  1904. 1/sqrt(2) renormalization factor */
  1905. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1906. MODE_EXT_MS_STEREO)
  1907. g->global_gain -= 2;
  1908. if (s->lsf)
  1909. g->scalefac_compress = get_bits(&s->gb, 9);
  1910. else
  1911. g->scalefac_compress = get_bits(&s->gb, 4);
  1912. blocksplit_flag = get_bits(&s->gb, 1);
  1913. if (blocksplit_flag) {
  1914. g->block_type = get_bits(&s->gb, 2);
  1915. if (g->block_type == 0)
  1916. return -1;
  1917. g->switch_point = get_bits(&s->gb, 1);
  1918. for(i=0;i<2;i++)
  1919. g->table_select[i] = get_bits(&s->gb, 5);
  1920. for(i=0;i<3;i++)
  1921. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1922. /* compute huffman coded region sizes */
  1923. if (g->block_type == 2)
  1924. g->region_size[0] = (36 / 2);
  1925. else {
  1926. if (s->sample_rate_index <= 2)
  1927. g->region_size[0] = (36 / 2);
  1928. else if (s->sample_rate_index != 8)
  1929. g->region_size[0] = (54 / 2);
  1930. else
  1931. g->region_size[0] = (108 / 2);
  1932. }
  1933. g->region_size[1] = (576 / 2);
  1934. } else {
  1935. int region_address1, region_address2, l;
  1936. g->block_type = 0;
  1937. g->switch_point = 0;
  1938. for(i=0;i<3;i++)
  1939. g->table_select[i] = get_bits(&s->gb, 5);
  1940. /* compute huffman coded region sizes */
  1941. region_address1 = get_bits(&s->gb, 4);
  1942. region_address2 = get_bits(&s->gb, 3);
  1943. dprintf("region1=%d region2=%d\n",
  1944. region_address1, region_address2);
  1945. g->region_size[0] =
  1946. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1947. l = region_address1 + region_address2 + 2;
  1948. /* should not overflow */
  1949. if (l > 22)
  1950. l = 22;
  1951. g->region_size[1] =
  1952. band_index_long[s->sample_rate_index][l] >> 1;
  1953. }
  1954. /* convert region offsets to region sizes and truncate
  1955. size to big_values */
  1956. g->region_size[2] = (576 / 2);
  1957. j = 0;
  1958. for(i=0;i<3;i++) {
  1959. k = g->region_size[i];
  1960. if (k > g->big_values)
  1961. k = g->big_values;
  1962. g->region_size[i] = k - j;
  1963. j = k;
  1964. }
  1965. /* compute band indexes */
  1966. if (g->block_type == 2) {
  1967. if (g->switch_point) {
  1968. /* if switched mode, we handle the 36 first samples as
  1969. long blocks. For 8000Hz, we handle the 48 first
  1970. exponents as long blocks (XXX: check this!) */
  1971. if (s->sample_rate_index <= 2)
  1972. g->long_end = 8;
  1973. else if (s->sample_rate_index != 8)
  1974. g->long_end = 6;
  1975. else
  1976. g->long_end = 4; /* 8000 Hz */
  1977. if (s->sample_rate_index != 8)
  1978. g->short_start = 3;
  1979. else
  1980. g->short_start = 2;
  1981. } else {
  1982. g->long_end = 0;
  1983. g->short_start = 0;
  1984. }
  1985. } else {
  1986. g->short_start = 13;
  1987. g->long_end = 22;
  1988. }
  1989. g->preflag = 0;
  1990. if (!s->lsf)
  1991. g->preflag = get_bits(&s->gb, 1);
  1992. g->scalefac_scale = get_bits(&s->gb, 1);
  1993. g->count1table_select = get_bits(&s->gb, 1);
  1994. dprintf("block_type=%d switch_point=%d\n",
  1995. g->block_type, g->switch_point);
  1996. }
  1997. }
  1998. /* now we get bits from the main_data_begin offset */
  1999. dprintf("seekback: %d\n", main_data_begin);
  2000. seek_to_maindata(s, main_data_begin);
  2001. for(gr=0;gr<nb_granules;gr++) {
  2002. for(ch=0;ch<s->nb_channels;ch++) {
  2003. g = &granules[ch][gr];
  2004. bits_pos = get_bits_count(&s->gb);
  2005. if (!s->lsf) {
  2006. uint8_t *sc;
  2007. int slen, slen1, slen2;
  2008. /* MPEG1 scale factors */
  2009. slen1 = slen_table[0][g->scalefac_compress];
  2010. slen2 = slen_table[1][g->scalefac_compress];
  2011. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2012. if (g->block_type == 2) {
  2013. n = g->switch_point ? 17 : 18;
  2014. j = 0;
  2015. for(i=0;i<n;i++)
  2016. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  2017. for(i=0;i<18;i++)
  2018. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  2019. for(i=0;i<3;i++)
  2020. g->scale_factors[j++] = 0;
  2021. } else {
  2022. sc = granules[ch][0].scale_factors;
  2023. j = 0;
  2024. for(k=0;k<4;k++) {
  2025. n = (k == 0 ? 6 : 5);
  2026. if ((g->scfsi & (0x8 >> k)) == 0) {
  2027. slen = (k < 2) ? slen1 : slen2;
  2028. for(i=0;i<n;i++)
  2029. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  2030. } else {
  2031. /* simply copy from last granule */
  2032. for(i=0;i<n;i++) {
  2033. g->scale_factors[j] = sc[j];
  2034. j++;
  2035. }
  2036. }
  2037. }
  2038. g->scale_factors[j++] = 0;
  2039. }
  2040. #if defined(DEBUG)
  2041. {
  2042. printf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2043. g->scfsi, gr, ch);
  2044. for(i=0;i<j;i++)
  2045. printf(" %d", g->scale_factors[i]);
  2046. printf("\n");
  2047. }
  2048. #endif
  2049. } else {
  2050. int tindex, tindex2, slen[4], sl, sf;
  2051. /* LSF scale factors */
  2052. if (g->block_type == 2) {
  2053. tindex = g->switch_point ? 2 : 1;
  2054. } else {
  2055. tindex = 0;
  2056. }
  2057. sf = g->scalefac_compress;
  2058. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2059. /* intensity stereo case */
  2060. sf >>= 1;
  2061. if (sf < 180) {
  2062. lsf_sf_expand(slen, sf, 6, 6, 0);
  2063. tindex2 = 3;
  2064. } else if (sf < 244) {
  2065. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2066. tindex2 = 4;
  2067. } else {
  2068. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2069. tindex2 = 5;
  2070. }
  2071. } else {
  2072. /* normal case */
  2073. if (sf < 400) {
  2074. lsf_sf_expand(slen, sf, 5, 4, 4);
  2075. tindex2 = 0;
  2076. } else if (sf < 500) {
  2077. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2078. tindex2 = 1;
  2079. } else {
  2080. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2081. tindex2 = 2;
  2082. g->preflag = 1;
  2083. }
  2084. }
  2085. j = 0;
  2086. for(k=0;k<4;k++) {
  2087. n = lsf_nsf_table[tindex2][tindex][k];
  2088. sl = slen[k];
  2089. for(i=0;i<n;i++)
  2090. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  2091. }
  2092. /* XXX: should compute exact size */
  2093. for(;j<40;j++)
  2094. g->scale_factors[j] = 0;
  2095. #if defined(DEBUG)
  2096. {
  2097. printf("gr=%d ch=%d scale_factors:\n",
  2098. gr, ch);
  2099. for(i=0;i<40;i++)
  2100. printf(" %d", g->scale_factors[i]);
  2101. printf("\n");
  2102. }
  2103. #endif
  2104. }
  2105. exponents_from_scale_factors(s, g, exponents);
  2106. /* read Huffman coded residue */
  2107. if (huffman_decode(s, g, exponents,
  2108. bits_pos + g->part2_3_length) < 0)
  2109. return -1;
  2110. #if defined(DEBUG)
  2111. sample_dump(0, g->sb_hybrid, 576);
  2112. #endif
  2113. /* skip extension bits */
  2114. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2115. if (bits_left < 0) {
  2116. dprintf("bits_left=%d\n", bits_left);
  2117. return -1;
  2118. }
  2119. while (bits_left >= 16) {
  2120. skip_bits(&s->gb, 16);
  2121. bits_left -= 16;
  2122. }
  2123. if (bits_left > 0)
  2124. skip_bits(&s->gb, bits_left);
  2125. } /* ch */
  2126. if (s->nb_channels == 2)
  2127. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2128. for(ch=0;ch<s->nb_channels;ch++) {
  2129. g = &granules[ch][gr];
  2130. reorder_block(s, g);
  2131. #if defined(DEBUG)
  2132. sample_dump(0, g->sb_hybrid, 576);
  2133. #endif
  2134. compute_antialias(s, g);
  2135. #if defined(DEBUG)
  2136. sample_dump(1, g->sb_hybrid, 576);
  2137. #endif
  2138. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2139. #if defined(DEBUG)
  2140. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2141. #endif
  2142. }
  2143. } /* gr */
  2144. return nb_granules * 18;
  2145. }
  2146. static int mp_decode_frame(MPADecodeContext *s,
  2147. short *samples)
  2148. {
  2149. int i, nb_frames, ch;
  2150. short *samples_ptr;
  2151. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2152. (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
  2153. /* skip error protection field */
  2154. if (s->error_protection)
  2155. get_bits(&s->gb, 16);
  2156. dprintf("frame %d:\n", s->frame_count);
  2157. switch(s->layer) {
  2158. case 1:
  2159. nb_frames = mp_decode_layer1(s);
  2160. break;
  2161. case 2:
  2162. nb_frames = mp_decode_layer2(s);
  2163. break;
  2164. case 3:
  2165. default:
  2166. nb_frames = mp_decode_layer3(s);
  2167. break;
  2168. }
  2169. #if defined(DEBUG)
  2170. for(i=0;i<nb_frames;i++) {
  2171. for(ch=0;ch<s->nb_channels;ch++) {
  2172. int j;
  2173. printf("%d-%d:", i, ch);
  2174. for(j=0;j<SBLIMIT;j++)
  2175. printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2176. printf("\n");
  2177. }
  2178. }
  2179. #endif
  2180. /* apply the synthesis filter */
  2181. for(ch=0;ch<s->nb_channels;ch++) {
  2182. samples_ptr = samples + ch;
  2183. for(i=0;i<nb_frames;i++) {
  2184. synth_filter(s, ch, samples_ptr, s->nb_channels,
  2185. s->sb_samples[ch][i]);
  2186. samples_ptr += 32 * s->nb_channels;
  2187. }
  2188. }
  2189. #ifdef DEBUG
  2190. s->frame_count++;
  2191. #endif
  2192. return nb_frames * 32 * sizeof(short) * s->nb_channels;
  2193. }
  2194. static int decode_frame(AVCodecContext * avctx,
  2195. void *data, int *data_size,
  2196. uint8_t * buf, int buf_size)
  2197. {
  2198. MPADecodeContext *s = avctx->priv_data;
  2199. uint32_t header;
  2200. uint8_t *buf_ptr;
  2201. int len, out_size;
  2202. short *out_samples = data;
  2203. *data_size = 0;
  2204. buf_ptr = buf;
  2205. while (buf_size > 0) {
  2206. len = s->inbuf_ptr - s->inbuf;
  2207. if (s->frame_size == 0) {
  2208. /* special case for next header for first frame in free
  2209. format case (XXX: find a simpler method) */
  2210. if (s->free_format_next_header != 0) {
  2211. s->inbuf[0] = s->free_format_next_header >> 24;
  2212. s->inbuf[1] = s->free_format_next_header >> 16;
  2213. s->inbuf[2] = s->free_format_next_header >> 8;
  2214. s->inbuf[3] = s->free_format_next_header;
  2215. s->inbuf_ptr = s->inbuf + 4;
  2216. s->free_format_next_header = 0;
  2217. goto got_header;
  2218. }
  2219. /* no header seen : find one. We need at least HEADER_SIZE
  2220. bytes to parse it */
  2221. len = HEADER_SIZE - len;
  2222. if (len > buf_size)
  2223. len = buf_size;
  2224. if (len > 0) {
  2225. memcpy(s->inbuf_ptr, buf_ptr, len);
  2226. buf_ptr += len;
  2227. buf_size -= len;
  2228. s->inbuf_ptr += len;
  2229. }
  2230. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2231. got_header:
  2232. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2233. (s->inbuf[2] << 8) | s->inbuf[3];
  2234. if (check_header(header) < 0) {
  2235. /* no sync found : move by one byte (inefficient, but simple!) */
  2236. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2237. s->inbuf_ptr--;
  2238. dprintf("skip %x\n", header);
  2239. /* reset free format frame size to give a chance
  2240. to get a new bitrate */
  2241. s->free_format_frame_size = 0;
  2242. } else {
  2243. if (decode_header(s, header) == 1) {
  2244. /* free format: prepare to compute frame size */
  2245. s->frame_size = -1;
  2246. }
  2247. /* update codec info */
  2248. avctx->sample_rate = s->sample_rate;
  2249. avctx->channels = s->nb_channels;
  2250. avctx->bit_rate = s->bit_rate;
  2251. avctx->sub_id = s->layer;
  2252. switch(s->layer) {
  2253. case 1:
  2254. avctx->frame_size = 384;
  2255. break;
  2256. case 2:
  2257. avctx->frame_size = 1152;
  2258. break;
  2259. case 3:
  2260. if (s->lsf)
  2261. avctx->frame_size = 576;
  2262. else
  2263. avctx->frame_size = 1152;
  2264. break;
  2265. }
  2266. }
  2267. }
  2268. } else if (s->frame_size == -1) {
  2269. /* free format : find next sync to compute frame size */
  2270. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2271. if (len > buf_size)
  2272. len = buf_size;
  2273. if (len == 0) {
  2274. /* frame too long: resync */
  2275. s->frame_size = 0;
  2276. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2277. s->inbuf_ptr--;
  2278. } else {
  2279. uint8_t *p, *pend;
  2280. uint32_t header1;
  2281. int padding;
  2282. memcpy(s->inbuf_ptr, buf_ptr, len);
  2283. /* check for header */
  2284. p = s->inbuf_ptr - 3;
  2285. pend = s->inbuf_ptr + len - 4;
  2286. while (p <= pend) {
  2287. header = (p[0] << 24) | (p[1] << 16) |
  2288. (p[2] << 8) | p[3];
  2289. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2290. (s->inbuf[2] << 8) | s->inbuf[3];
  2291. /* check with high probability that we have a
  2292. valid header */
  2293. if ((header & SAME_HEADER_MASK) ==
  2294. (header1 & SAME_HEADER_MASK)) {
  2295. /* header found: update pointers */
  2296. len = (p + 4) - s->inbuf_ptr;
  2297. buf_ptr += len;
  2298. buf_size -= len;
  2299. s->inbuf_ptr = p;
  2300. /* compute frame size */
  2301. s->free_format_next_header = header;
  2302. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2303. padding = (header1 >> 9) & 1;
  2304. if (s->layer == 1)
  2305. s->free_format_frame_size -= padding * 4;
  2306. else
  2307. s->free_format_frame_size -= padding;
  2308. dprintf("free frame size=%d padding=%d\n",
  2309. s->free_format_frame_size, padding);
  2310. decode_header(s, header1);
  2311. goto next_data;
  2312. }
  2313. p++;
  2314. }
  2315. /* not found: simply increase pointers */
  2316. buf_ptr += len;
  2317. s->inbuf_ptr += len;
  2318. buf_size -= len;
  2319. }
  2320. } else if (len < s->frame_size) {
  2321. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2322. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2323. len = s->frame_size - len;
  2324. if (len > buf_size)
  2325. len = buf_size;
  2326. memcpy(s->inbuf_ptr, buf_ptr, len);
  2327. buf_ptr += len;
  2328. s->inbuf_ptr += len;
  2329. buf_size -= len;
  2330. }
  2331. next_data:
  2332. if (s->frame_size > 0 &&
  2333. (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
  2334. if (avctx->parse_only) {
  2335. /* simply return the frame data */
  2336. *(uint8_t **)data = s->inbuf;
  2337. out_size = s->inbuf_ptr - s->inbuf;
  2338. } else {
  2339. out_size = mp_decode_frame(s, out_samples);
  2340. }
  2341. s->inbuf_ptr = s->inbuf;
  2342. s->frame_size = 0;
  2343. *data_size = out_size;
  2344. break;
  2345. }
  2346. }
  2347. return buf_ptr - buf;
  2348. }
  2349. AVCodec mp2_decoder =
  2350. {
  2351. "mp2",
  2352. CODEC_TYPE_AUDIO,
  2353. CODEC_ID_MP2,
  2354. sizeof(MPADecodeContext),
  2355. decode_init,
  2356. NULL,
  2357. NULL,
  2358. decode_frame,
  2359. CODEC_CAP_PARSE_ONLY,
  2360. };
  2361. AVCodec mp3_decoder =
  2362. {
  2363. "mp3",
  2364. CODEC_TYPE_AUDIO,
  2365. CODEC_ID_MP3,
  2366. sizeof(MPADecodeContext),
  2367. decode_init,
  2368. NULL,
  2369. NULL,
  2370. decode_frame,
  2371. CODEC_CAP_PARSE_ONLY,
  2372. };