You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1123 lines
37KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  21. * the algorithm used
  22. */
  23. /**
  24. * @file huffyuv.c
  25. * huffyuv codec for libavcodec.
  26. */
  27. #include "common.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #ifndef INT64_MAX
  31. #define INT64_MAX 9223372036854775807LL
  32. #endif
  33. #define VLC_BITS 11
  34. typedef enum Predictor{
  35. LEFT= 0,
  36. PLANE,
  37. MEDIAN,
  38. } Predictor;
  39. typedef struct HYuvContext{
  40. AVCodecContext *avctx;
  41. Predictor predictor;
  42. GetBitContext gb;
  43. PutBitContext pb;
  44. int interlaced;
  45. int decorrelate;
  46. int bitstream_bpp;
  47. int version;
  48. int yuy2; //use yuy2 instead of 422P
  49. int bgr32; //use bgr32 instead of bgr24
  50. int width, height;
  51. int flags;
  52. int picture_number;
  53. int last_slice_end;
  54. uint8_t __align8 temp[3][2560];
  55. uint64_t stats[3][256];
  56. uint8_t len[3][256];
  57. uint32_t bits[3][256];
  58. VLC vlc[3];
  59. AVFrame picture;
  60. uint8_t __align8 bitstream_buffer[1024*1024*3]; //FIXME dynamic alloc or some other solution
  61. DSPContext dsp;
  62. }HYuvContext;
  63. static const unsigned char classic_shift_luma[] = {
  64. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  65. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  66. 69,68, 0
  67. };
  68. static const unsigned char classic_shift_chroma[] = {
  69. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  70. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  71. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  72. };
  73. static const unsigned char classic_add_luma[256] = {
  74. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  75. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  76. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  77. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  78. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  79. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  80. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  81. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  82. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  83. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  84. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  85. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  86. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  87. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  88. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  89. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  90. };
  91. static const unsigned char classic_add_chroma[256] = {
  92. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  93. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  94. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  95. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  96. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  97. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  98. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  99. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  100. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  101. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  102. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  103. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  104. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  105. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  106. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  107. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  108. };
  109. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  110. int i;
  111. for(i=0; i<w-1; i++){
  112. acc+= src[i];
  113. dst[i]= acc;
  114. i++;
  115. acc+= src[i];
  116. dst[i]= acc;
  117. }
  118. for(; i<w; i++){
  119. acc+= src[i];
  120. dst[i]= acc;
  121. }
  122. return acc;
  123. }
  124. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  125. int i;
  126. uint8_t l, lt;
  127. l= *left;
  128. lt= *left_top;
  129. for(i=0; i<w; i++){
  130. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  131. lt= src1[i];
  132. dst[i]= l;
  133. }
  134. *left= l;
  135. *left_top= lt;
  136. }
  137. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  138. int i;
  139. int r,g,b;
  140. r= *red;
  141. g= *green;
  142. b= *blue;
  143. for(i=0; i<w; i++){
  144. b+= src[4*i+0];
  145. g+= src[4*i+1];
  146. r+= src[4*i+2];
  147. dst[4*i+0]= b;
  148. dst[4*i+1]= g;
  149. dst[4*i+2]= r;
  150. }
  151. *red= r;
  152. *green= g;
  153. *blue= b;
  154. }
  155. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  156. int i;
  157. if(w<32){
  158. for(i=0; i<w; i++){
  159. const int temp= src[i];
  160. dst[i]= temp - left;
  161. left= temp;
  162. }
  163. return left;
  164. }else{
  165. for(i=0; i<16; i++){
  166. const int temp= src[i];
  167. dst[i]= temp - left;
  168. left= temp;
  169. }
  170. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  171. return src[w-1];
  172. }
  173. }
  174. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  175. int i, val, repeat;
  176. for(i=0; i<256;){
  177. repeat= get_bits(gb, 3);
  178. val = get_bits(gb, 5);
  179. if(repeat==0)
  180. repeat= get_bits(gb, 8);
  181. //printf("%d %d\n", val, repeat);
  182. while (repeat--)
  183. dst[i++] = val;
  184. }
  185. }
  186. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  187. int len, index;
  188. uint32_t bits=0;
  189. for(len=32; len>0; len--){
  190. for(index=0; index<256; index++){
  191. if(len_table[index]==len)
  192. dst[index]= bits++;
  193. }
  194. if(bits & 1){
  195. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  196. return -1;
  197. }
  198. bits >>= 1;
  199. }
  200. return 0;
  201. }
  202. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  203. uint64_t counts[2*size];
  204. int up[2*size];
  205. int offset, i, next;
  206. for(offset=1; ; offset<<=1){
  207. for(i=0; i<size; i++){
  208. counts[i]= stats[i] + offset - 1;
  209. }
  210. for(next=size; next<size*2; next++){
  211. uint64_t min1, min2;
  212. int min1_i, min2_i;
  213. min1=min2= INT64_MAX;
  214. min1_i= min2_i=-1;
  215. for(i=0; i<next; i++){
  216. if(min2 > counts[i]){
  217. if(min1 > counts[i]){
  218. min2= min1;
  219. min2_i= min1_i;
  220. min1= counts[i];
  221. min1_i= i;
  222. }else{
  223. min2= counts[i];
  224. min2_i= i;
  225. }
  226. }
  227. }
  228. if(min2==INT64_MAX) break;
  229. counts[next]= min1 + min2;
  230. counts[min1_i]=
  231. counts[min2_i]= INT64_MAX;
  232. up[min1_i]=
  233. up[min2_i]= next;
  234. up[next]= -1;
  235. }
  236. for(i=0; i<size; i++){
  237. int len;
  238. int index=i;
  239. for(len=0; up[index] != -1; len++)
  240. index= up[index];
  241. if(len > 32) break;
  242. dst[i]= len;
  243. }
  244. if(i==size) break;
  245. }
  246. }
  247. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  248. GetBitContext gb;
  249. int i;
  250. init_get_bits(&gb, src, length*8);
  251. for(i=0; i<3; i++){
  252. read_len_table(s->len[i], &gb);
  253. if(generate_bits_table(s->bits[i], s->len[i])<0){
  254. return -1;
  255. }
  256. #if 0
  257. for(j=0; j<256; j++){
  258. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  259. }
  260. #endif
  261. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  262. }
  263. return 0;
  264. }
  265. static int read_old_huffman_tables(HYuvContext *s){
  266. #if 1
  267. GetBitContext gb;
  268. int i;
  269. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  270. read_len_table(s->len[0], &gb);
  271. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  272. read_len_table(s->len[1], &gb);
  273. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  274. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  275. if(s->bitstream_bpp >= 24){
  276. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  277. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  278. }
  279. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  280. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  281. for(i=0; i<3; i++)
  282. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  283. return 0;
  284. #else
  285. fprintf(stderr, "v1 huffyuv is not supported \n");
  286. return -1;
  287. #endif
  288. }
  289. static int decode_init(AVCodecContext *avctx)
  290. {
  291. HYuvContext *s = avctx->priv_data;
  292. int width, height;
  293. s->avctx= avctx;
  294. s->flags= avctx->flags;
  295. dsputil_init(&s->dsp, avctx);
  296. width= s->width= avctx->width;
  297. height= s->height= avctx->height;
  298. avctx->coded_frame= &s->picture;
  299. s->bgr32=1;
  300. assert(width && height);
  301. //if(avctx->extradata)
  302. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  303. if(avctx->extradata_size){
  304. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  305. s->version=1; // do such files exist at all?
  306. else
  307. s->version=2;
  308. }else
  309. s->version=0;
  310. if(s->version==2){
  311. int method;
  312. method= ((uint8_t*)avctx->extradata)[0];
  313. s->decorrelate= method&64 ? 1 : 0;
  314. s->predictor= method&63;
  315. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  316. if(s->bitstream_bpp==0)
  317. s->bitstream_bpp= avctx->bits_per_sample&~7;
  318. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  319. return -1;
  320. }else{
  321. switch(avctx->bits_per_sample&7){
  322. case 1:
  323. s->predictor= LEFT;
  324. s->decorrelate= 0;
  325. break;
  326. case 2:
  327. s->predictor= LEFT;
  328. s->decorrelate= 1;
  329. break;
  330. case 3:
  331. s->predictor= PLANE;
  332. s->decorrelate= avctx->bits_per_sample >= 24;
  333. break;
  334. case 4:
  335. s->predictor= MEDIAN;
  336. s->decorrelate= 0;
  337. break;
  338. default:
  339. s->predictor= LEFT; //OLD
  340. s->decorrelate= 0;
  341. break;
  342. }
  343. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  344. if(read_old_huffman_tables(s) < 0)
  345. return -1;
  346. }
  347. s->interlaced= height > 288;
  348. switch(s->bitstream_bpp){
  349. case 12:
  350. avctx->pix_fmt = PIX_FMT_YUV420P;
  351. break;
  352. case 16:
  353. if(s->yuy2){
  354. avctx->pix_fmt = PIX_FMT_YUV422;
  355. }else{
  356. avctx->pix_fmt = PIX_FMT_YUV422P;
  357. }
  358. break;
  359. case 24:
  360. case 32:
  361. if(s->bgr32){
  362. avctx->pix_fmt = PIX_FMT_RGBA32;
  363. }else{
  364. avctx->pix_fmt = PIX_FMT_BGR24;
  365. }
  366. break;
  367. default:
  368. assert(0);
  369. }
  370. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  371. return 0;
  372. }
  373. static void store_table(HYuvContext *s, uint8_t *len){
  374. int i;
  375. int index= s->avctx->extradata_size;
  376. for(i=0; i<256;){
  377. int val= len[i];
  378. int repeat=0;
  379. for(; i<256 && len[i]==val && repeat<255; i++)
  380. repeat++;
  381. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  382. if(repeat>7){
  383. ((uint8_t*)s->avctx->extradata)[index++]= val;
  384. ((uint8_t*)s->avctx->extradata)[index++]= repeat;
  385. }else{
  386. ((uint8_t*)s->avctx->extradata)[index++]= val | (repeat<<5);
  387. }
  388. }
  389. s->avctx->extradata_size= index;
  390. }
  391. static int encode_init(AVCodecContext *avctx)
  392. {
  393. HYuvContext *s = avctx->priv_data;
  394. int i, j, width, height;
  395. s->avctx= avctx;
  396. s->flags= avctx->flags;
  397. dsputil_init(&s->dsp, avctx);
  398. width= s->width= avctx->width;
  399. height= s->height= avctx->height;
  400. assert(width && height);
  401. avctx->extradata= av_mallocz(1024*30);
  402. avctx->stats_out= av_mallocz(1024*30);
  403. s->version=2;
  404. avctx->coded_frame= &s->picture;
  405. switch(avctx->pix_fmt){
  406. case PIX_FMT_YUV420P:
  407. if(avctx->strict_std_compliance>=0){
  408. av_log(avctx, AV_LOG_ERROR, "YV12-huffyuv is experimental, there WILL be no compatbility! (use (v)strict=-1)\n");
  409. return -1;
  410. }
  411. s->bitstream_bpp= 12;
  412. break;
  413. case PIX_FMT_YUV422P:
  414. s->bitstream_bpp= 16;
  415. break;
  416. default:
  417. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  418. return -1;
  419. }
  420. avctx->bits_per_sample= s->bitstream_bpp;
  421. s->decorrelate= s->bitstream_bpp >= 24;
  422. s->predictor= avctx->prediction_method;
  423. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  424. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  425. ((uint8_t*)avctx->extradata)[2]=
  426. ((uint8_t*)avctx->extradata)[3]= 0;
  427. s->avctx->extradata_size= 4;
  428. if(avctx->stats_in){
  429. char *p= avctx->stats_in;
  430. for(i=0; i<3; i++)
  431. for(j=0; j<256; j++)
  432. s->stats[i][j]= 1;
  433. for(;;){
  434. for(i=0; i<3; i++){
  435. char *next;
  436. for(j=0; j<256; j++){
  437. s->stats[i][j]+= strtol(p, &next, 0);
  438. if(next==p) return -1;
  439. p=next;
  440. }
  441. }
  442. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  443. }
  444. }else{
  445. for(i=0; i<3; i++)
  446. for(j=0; j<256; j++){
  447. int d= FFMIN(j, 256-j);
  448. s->stats[i][j]= 100000000/(d+1);
  449. }
  450. }
  451. for(i=0; i<3; i++){
  452. generate_len_table(s->len[i], s->stats[i], 256);
  453. if(generate_bits_table(s->bits[i], s->len[i])<0){
  454. return -1;
  455. }
  456. store_table(s, s->len[i]);
  457. }
  458. for(i=0; i<3; i++)
  459. for(j=0; j<256; j++)
  460. s->stats[i][j]= 0;
  461. s->interlaced= height > 288;
  462. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  463. s->picture_number=0;
  464. return 0;
  465. }
  466. static void decode_422_bitstream(HYuvContext *s, int count){
  467. int i;
  468. count/=2;
  469. for(i=0; i<count; i++){
  470. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  471. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  472. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  473. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  474. }
  475. }
  476. static void decode_gray_bitstream(HYuvContext *s, int count){
  477. int i;
  478. count/=2;
  479. for(i=0; i<count; i++){
  480. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  481. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  482. }
  483. }
  484. static void encode_422_bitstream(HYuvContext *s, int count){
  485. int i;
  486. count/=2;
  487. if(s->flags&CODEC_FLAG_PASS1){
  488. for(i=0; i<count; i++){
  489. s->stats[0][ s->temp[0][2*i ] ]++;
  490. s->stats[1][ s->temp[1][ i ] ]++;
  491. s->stats[0][ s->temp[0][2*i+1] ]++;
  492. s->stats[2][ s->temp[2][ i ] ]++;
  493. }
  494. }else{
  495. for(i=0; i<count; i++){
  496. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  497. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  498. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  499. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  500. }
  501. }
  502. }
  503. static void encode_gray_bitstream(HYuvContext *s, int count){
  504. int i;
  505. count/=2;
  506. if(s->flags&CODEC_FLAG_PASS1){
  507. for(i=0; i<count; i++){
  508. s->stats[0][ s->temp[0][2*i ] ]++;
  509. s->stats[0][ s->temp[0][2*i+1] ]++;
  510. }
  511. }else{
  512. for(i=0; i<count; i++){
  513. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  514. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  515. }
  516. }
  517. }
  518. static void decode_bgr_bitstream(HYuvContext *s, int count){
  519. int i;
  520. if(s->decorrelate){
  521. if(s->bitstream_bpp==24){
  522. for(i=0; i<count; i++){
  523. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  524. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  525. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  526. }
  527. }else{
  528. for(i=0; i<count; i++){
  529. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  530. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  531. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  532. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  533. }
  534. }
  535. }else{
  536. if(s->bitstream_bpp==24){
  537. for(i=0; i<count; i++){
  538. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  539. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  540. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  541. }
  542. }else{
  543. for(i=0; i<count; i++){
  544. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  545. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  546. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  547. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  548. }
  549. }
  550. }
  551. }
  552. static void draw_slice(HYuvContext *s, int y){
  553. int h, cy;
  554. int offset[4];
  555. if(s->avctx->draw_horiz_band==NULL)
  556. return;
  557. h= y - s->last_slice_end;
  558. y -= h;
  559. if(s->bitstream_bpp==12){
  560. cy= y>>1;
  561. }else{
  562. cy= y;
  563. }
  564. offset[0] = s->picture.linesize[0]*y;
  565. offset[1] = s->picture.linesize[1]*cy;
  566. offset[2] = s->picture.linesize[2]*cy;
  567. offset[3] = 0;
  568. emms_c();
  569. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  570. s->last_slice_end= y + h;
  571. }
  572. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  573. HYuvContext *s = avctx->priv_data;
  574. const int width= s->width;
  575. const int width2= s->width>>1;
  576. const int height= s->height;
  577. int fake_ystride, fake_ustride, fake_vstride;
  578. AVFrame * const p= &s->picture;
  579. AVFrame *picture = data;
  580. *data_size = 0;
  581. /* no supplementary picture */
  582. if (buf_size == 0)
  583. return 0;
  584. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  585. init_get_bits(&s->gb, s->bitstream_buffer, buf_size*8);
  586. if(p->data[0])
  587. avctx->release_buffer(avctx, p);
  588. p->reference= 0;
  589. if(avctx->get_buffer(avctx, p) < 0){
  590. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  591. return -1;
  592. }
  593. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  594. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  595. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  596. s->last_slice_end= 0;
  597. if(s->bitstream_bpp<24){
  598. int y, cy;
  599. int lefty, leftu, leftv;
  600. int lefttopy, lefttopu, lefttopv;
  601. if(s->yuy2){
  602. p->data[0][3]= get_bits(&s->gb, 8);
  603. p->data[0][2]= get_bits(&s->gb, 8);
  604. p->data[0][1]= get_bits(&s->gb, 8);
  605. p->data[0][0]= get_bits(&s->gb, 8);
  606. av_log(avctx, AV_LOG_ERROR, "YUY2 output isnt implemenetd yet\n");
  607. return -1;
  608. }else{
  609. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  610. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  611. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  612. p->data[0][0]= get_bits(&s->gb, 8);
  613. switch(s->predictor){
  614. case LEFT:
  615. case PLANE:
  616. decode_422_bitstream(s, width-2);
  617. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  618. if(!(s->flags&CODEC_FLAG_GRAY)){
  619. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  620. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  621. }
  622. for(cy=y=1; y<s->height; y++,cy++){
  623. uint8_t *ydst, *udst, *vdst;
  624. if(s->bitstream_bpp==12){
  625. decode_gray_bitstream(s, width);
  626. ydst= p->data[0] + p->linesize[0]*y;
  627. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  628. if(s->predictor == PLANE){
  629. if(y>s->interlaced)
  630. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  631. }
  632. y++;
  633. if(y>=s->height) break;
  634. }
  635. draw_slice(s, y);
  636. ydst= p->data[0] + p->linesize[0]*y;
  637. udst= p->data[1] + p->linesize[1]*cy;
  638. vdst= p->data[2] + p->linesize[2]*cy;
  639. decode_422_bitstream(s, width);
  640. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  641. if(!(s->flags&CODEC_FLAG_GRAY)){
  642. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  643. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  644. }
  645. if(s->predictor == PLANE){
  646. if(cy>s->interlaced){
  647. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  648. if(!(s->flags&CODEC_FLAG_GRAY)){
  649. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  650. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  651. }
  652. }
  653. }
  654. }
  655. draw_slice(s, height);
  656. break;
  657. case MEDIAN:
  658. /* first line except first 2 pixels is left predicted */
  659. decode_422_bitstream(s, width-2);
  660. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  661. if(!(s->flags&CODEC_FLAG_GRAY)){
  662. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  663. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  664. }
  665. cy=y=1;
  666. /* second line is left predicted for interlaced case */
  667. if(s->interlaced){
  668. decode_422_bitstream(s, width);
  669. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  670. if(!(s->flags&CODEC_FLAG_GRAY)){
  671. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  672. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  673. }
  674. y++; cy++;
  675. }
  676. /* next 4 pixels are left predicted too */
  677. decode_422_bitstream(s, 4);
  678. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  679. if(!(s->flags&CODEC_FLAG_GRAY)){
  680. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  681. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  682. }
  683. /* next line except the first 4 pixels is median predicted */
  684. lefttopy= p->data[0][3];
  685. decode_422_bitstream(s, width-4);
  686. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  687. if(!(s->flags&CODEC_FLAG_GRAY)){
  688. lefttopu= p->data[1][1];
  689. lefttopv= p->data[2][1];
  690. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  691. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  692. }
  693. y++; cy++;
  694. for(; y<height; y++,cy++){
  695. uint8_t *ydst, *udst, *vdst;
  696. if(s->bitstream_bpp==12){
  697. while(2*cy > y){
  698. decode_gray_bitstream(s, width);
  699. ydst= p->data[0] + p->linesize[0]*y;
  700. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  701. y++;
  702. }
  703. if(y>=height) break;
  704. }
  705. draw_slice(s, y);
  706. decode_422_bitstream(s, width);
  707. ydst= p->data[0] + p->linesize[0]*y;
  708. udst= p->data[1] + p->linesize[1]*cy;
  709. vdst= p->data[2] + p->linesize[2]*cy;
  710. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  711. if(!(s->flags&CODEC_FLAG_GRAY)){
  712. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  713. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  714. }
  715. }
  716. draw_slice(s, height);
  717. break;
  718. }
  719. }
  720. }else{
  721. int y;
  722. int leftr, leftg, leftb;
  723. const int last_line= (height-1)*p->linesize[0];
  724. if(s->bitstream_bpp==32){
  725. p->data[0][last_line+3]= get_bits(&s->gb, 8);
  726. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  727. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  728. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  729. }else{
  730. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  731. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  732. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  733. skip_bits(&s->gb, 8);
  734. }
  735. if(s->bgr32){
  736. switch(s->predictor){
  737. case LEFT:
  738. case PLANE:
  739. decode_bgr_bitstream(s, width-1);
  740. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  741. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  742. decode_bgr_bitstream(s, width);
  743. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  744. if(s->predictor == PLANE){
  745. if((y&s->interlaced)==0){
  746. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  747. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  748. }
  749. }
  750. }
  751. draw_slice(s, height); // just 1 large slice as this isnt possible in reverse order
  752. break;
  753. default:
  754. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  755. }
  756. }else{
  757. av_log(avctx, AV_LOG_ERROR, "BGR24 output isnt implemenetd yet\n");
  758. return -1;
  759. }
  760. }
  761. emms_c();
  762. *picture= *p;
  763. *data_size = sizeof(AVFrame);
  764. return (get_bits_count(&s->gb)+31)/32*4;
  765. }
  766. static int decode_end(AVCodecContext *avctx)
  767. {
  768. HYuvContext *s = avctx->priv_data;
  769. int i;
  770. for(i=0; i<3; i++){
  771. free_vlc(&s->vlc[i]);
  772. }
  773. avcodec_default_free_buffers(avctx);
  774. return 0;
  775. }
  776. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  777. HYuvContext *s = avctx->priv_data;
  778. AVFrame *pict = data;
  779. const int width= s->width;
  780. const int width2= s->width>>1;
  781. const int height= s->height;
  782. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  783. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  784. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  785. AVFrame * const p= &s->picture;
  786. int i, size;
  787. init_put_bits(&s->pb, buf, buf_size);
  788. *p = *pict;
  789. p->pict_type= FF_I_TYPE;
  790. p->key_frame= 1;
  791. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  792. int lefty, leftu, leftv, y, cy;
  793. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  794. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  795. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  796. put_bits(&s->pb, 8, p->data[0][0]);
  797. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  798. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  799. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  800. encode_422_bitstream(s, width-2);
  801. if(s->predictor==MEDIAN){
  802. int lefttopy, lefttopu, lefttopv;
  803. cy=y=1;
  804. if(s->interlaced){
  805. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  806. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  807. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  808. encode_422_bitstream(s, width);
  809. y++; cy++;
  810. }
  811. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  812. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ystride, 2, leftu);
  813. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_ystride, 2, leftv);
  814. encode_422_bitstream(s, 4);
  815. lefttopy= p->data[0][3];
  816. lefttopu= p->data[1][1];
  817. lefttopv= p->data[2][1];
  818. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  819. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  820. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  821. encode_422_bitstream(s, width-4);
  822. y++; cy++;
  823. for(; y<height; y++,cy++){
  824. uint8_t *ydst, *udst, *vdst;
  825. if(s->bitstream_bpp==12){
  826. while(2*cy > y){
  827. ydst= p->data[0] + p->linesize[0]*y;
  828. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  829. encode_gray_bitstream(s, width);
  830. y++;
  831. }
  832. if(y>=height) break;
  833. }
  834. ydst= p->data[0] + p->linesize[0]*y;
  835. udst= p->data[1] + p->linesize[1]*cy;
  836. vdst= p->data[2] + p->linesize[2]*cy;
  837. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  838. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  839. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  840. encode_422_bitstream(s, width);
  841. }
  842. }else{
  843. for(cy=y=1; y<height; y++,cy++){
  844. uint8_t *ydst, *udst, *vdst;
  845. /* encode a luma only line & y++ */
  846. if(s->bitstream_bpp==12){
  847. ydst= p->data[0] + p->linesize[0]*y;
  848. if(s->predictor == PLANE && s->interlaced < y){
  849. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  850. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  851. }else{
  852. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  853. }
  854. encode_gray_bitstream(s, width);
  855. y++;
  856. if(y>=height) break;
  857. }
  858. ydst= p->data[0] + p->linesize[0]*y;
  859. udst= p->data[1] + p->linesize[1]*cy;
  860. vdst= p->data[2] + p->linesize[2]*cy;
  861. if(s->predictor == PLANE && s->interlaced < cy){
  862. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  863. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  864. s->dsp.diff_bytes(s->temp[2] + 1250, vdst, vdst - fake_vstride, width2);
  865. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  866. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  867. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + 1250, width2, leftv);
  868. }else{
  869. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  870. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  871. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  872. }
  873. encode_422_bitstream(s, width);
  874. }
  875. }
  876. }else{
  877. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  878. }
  879. emms_c();
  880. size= (get_bit_count(&s->pb)+31)/32;
  881. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  882. int j;
  883. char *p= avctx->stats_out;
  884. for(i=0; i<3; i++){
  885. for(j=0; j<256; j++){
  886. sprintf(p, "%llu ", s->stats[i][j]);
  887. p+= strlen(p);
  888. s->stats[i][j]= 0;
  889. }
  890. sprintf(p, "\n");
  891. p++;
  892. }
  893. }else{
  894. flush_put_bits(&s->pb);
  895. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  896. }
  897. s->picture_number++;
  898. return size*4;
  899. }
  900. static int encode_end(AVCodecContext *avctx)
  901. {
  902. // HYuvContext *s = avctx->priv_data;
  903. av_freep(&avctx->extradata);
  904. av_freep(&avctx->stats_out);
  905. return 0;
  906. }
  907. static const AVOption huffyuv_options[] =
  908. {
  909. AVOPTION_CODEC_INT("prediction_method", "prediction_method", prediction_method, 0, 2, 0),
  910. AVOPTION_END()
  911. };
  912. AVCodec huffyuv_decoder = {
  913. "huffyuv",
  914. CODEC_TYPE_VIDEO,
  915. CODEC_ID_HUFFYUV,
  916. sizeof(HYuvContext),
  917. decode_init,
  918. NULL,
  919. decode_end,
  920. decode_frame,
  921. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  922. NULL
  923. };
  924. #ifdef CONFIG_ENCODERS
  925. AVCodec huffyuv_encoder = {
  926. "huffyuv",
  927. CODEC_TYPE_VIDEO,
  928. CODEC_ID_HUFFYUV,
  929. sizeof(HYuvContext),
  930. encode_init,
  931. encode_frame,
  932. encode_end,
  933. .options = huffyuv_options,
  934. };
  935. #endif //CONFIG_ENCODERS