You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

974 lines
35KB

  1. /*
  2. * MPEG-4 Parametric Stereo decoding functions
  3. * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <stdint.h>
  22. #include "libavutil/common.h"
  23. #include "libavutil/internal.h"
  24. #include "libavutil/mathematics.h"
  25. #include "avcodec.h"
  26. #include "get_bits.h"
  27. #include "aacps.h"
  28. #include "aacps_tablegen.h"
  29. #include "aacpsdata.c"
  30. #define PS_BASELINE 0 ///< Operate in Baseline PS mode
  31. ///< Baseline implies 10 or 20 stereo bands,
  32. ///< mixing mode A, and no ipd/opd
  33. #define numQMFSlots 32 //numTimeSlots * RATE
  34. static const int8_t num_env_tab[2][4] = {
  35. { 0, 1, 2, 4, },
  36. { 1, 2, 3, 4, },
  37. };
  38. static const int8_t nr_iidicc_par_tab[] = {
  39. 10, 20, 34, 10, 20, 34,
  40. };
  41. static const int8_t nr_iidopd_par_tab[] = {
  42. 5, 11, 17, 5, 11, 17,
  43. };
  44. enum {
  45. huff_iid_df1,
  46. huff_iid_dt1,
  47. huff_iid_df0,
  48. huff_iid_dt0,
  49. huff_icc_df,
  50. huff_icc_dt,
  51. huff_ipd_df,
  52. huff_ipd_dt,
  53. huff_opd_df,
  54. huff_opd_dt,
  55. };
  56. static const int huff_iid[] = {
  57. huff_iid_df0,
  58. huff_iid_df1,
  59. huff_iid_dt0,
  60. huff_iid_dt1,
  61. };
  62. static VLC vlc_ps[10];
  63. #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
  64. /** \
  65. * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \
  66. * Inter-channel Phase Difference/Overall Phase Difference parameters from the \
  67. * bitstream. \
  68. * \
  69. * @param avctx contains the current codec context \
  70. * @param gb pointer to the input bitstream \
  71. * @param ps pointer to the Parametric Stereo context \
  72. * @param PAR pointer to the parameter to be read \
  73. * @param e envelope to decode \
  74. * @param dt 1: time delta-coded, 0: frequency delta-coded \
  75. */ \
  76. static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
  77. int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
  78. { \
  79. int b, num = ps->nr_ ## PAR ## _par; \
  80. VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
  81. if (dt) { \
  82. int e_prev = e ? e - 1 : ps->num_env_old - 1; \
  83. e_prev = FFMAX(e_prev, 0); \
  84. for (b = 0; b < num; b++) { \
  85. int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  86. if (MASK) val &= MASK; \
  87. PAR[e][b] = val; \
  88. if (ERR_CONDITION) \
  89. goto err; \
  90. } \
  91. } else { \
  92. int val = 0; \
  93. for (b = 0; b < num; b++) { \
  94. val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  95. if (MASK) val &= MASK; \
  96. PAR[e][b] = val; \
  97. if (ERR_CONDITION) \
  98. goto err; \
  99. } \
  100. } \
  101. return 0; \
  102. err: \
  103. av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
  104. return -1; \
  105. }
  106. READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
  107. READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U)
  108. READ_PAR_DATA(ipdopd, 0, 0x07, 0)
  109. static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
  110. {
  111. int e;
  112. int count = get_bits_count(gb);
  113. if (ps_extension_id)
  114. return 0;
  115. ps->enable_ipdopd = get_bits1(gb);
  116. if (ps->enable_ipdopd) {
  117. for (e = 0; e < ps->num_env; e++) {
  118. int dt = get_bits1(gb);
  119. read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
  120. dt = get_bits1(gb);
  121. read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
  122. }
  123. }
  124. skip_bits1(gb); //reserved_ps
  125. return get_bits_count(gb) - count;
  126. }
  127. static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist)
  128. {
  129. int i;
  130. for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
  131. opd_hist[i] = 0;
  132. ipd_hist[i] = 0;
  133. }
  134. }
  135. int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
  136. {
  137. int e;
  138. int bit_count_start = get_bits_count(gb_host);
  139. int header;
  140. int bits_consumed;
  141. GetBitContext gbc = *gb_host, *gb = &gbc;
  142. header = get_bits1(gb);
  143. if (header) { //enable_ps_header
  144. ps->enable_iid = get_bits1(gb);
  145. if (ps->enable_iid) {
  146. int iid_mode = get_bits(gb, 3);
  147. if (iid_mode > 5) {
  148. av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
  149. iid_mode);
  150. goto err;
  151. }
  152. ps->nr_iid_par = nr_iidicc_par_tab[iid_mode];
  153. ps->iid_quant = iid_mode > 2;
  154. ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
  155. }
  156. ps->enable_icc = get_bits1(gb);
  157. if (ps->enable_icc) {
  158. ps->icc_mode = get_bits(gb, 3);
  159. if (ps->icc_mode > 5) {
  160. av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
  161. ps->icc_mode);
  162. goto err;
  163. }
  164. ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
  165. }
  166. ps->enable_ext = get_bits1(gb);
  167. }
  168. ps->frame_class = get_bits1(gb);
  169. ps->num_env_old = ps->num_env;
  170. ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)];
  171. ps->border_position[0] = -1;
  172. if (ps->frame_class) {
  173. for (e = 1; e <= ps->num_env; e++)
  174. ps->border_position[e] = get_bits(gb, 5);
  175. } else
  176. for (e = 1; e <= ps->num_env; e++)
  177. ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
  178. if (ps->enable_iid) {
  179. for (e = 0; e < ps->num_env; e++) {
  180. int dt = get_bits1(gb);
  181. if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
  182. goto err;
  183. }
  184. } else
  185. memset(ps->iid_par, 0, sizeof(ps->iid_par));
  186. if (ps->enable_icc)
  187. for (e = 0; e < ps->num_env; e++) {
  188. int dt = get_bits1(gb);
  189. if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
  190. goto err;
  191. }
  192. else
  193. memset(ps->icc_par, 0, sizeof(ps->icc_par));
  194. if (ps->enable_ext) {
  195. int cnt = get_bits(gb, 4);
  196. if (cnt == 15) {
  197. cnt += get_bits(gb, 8);
  198. }
  199. cnt *= 8;
  200. while (cnt > 7) {
  201. int ps_extension_id = get_bits(gb, 2);
  202. cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
  203. }
  204. if (cnt < 0) {
  205. av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt);
  206. goto err;
  207. }
  208. skip_bits(gb, cnt);
  209. }
  210. ps->enable_ipdopd &= !PS_BASELINE;
  211. //Fix up envelopes
  212. if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
  213. //Create a fake envelope
  214. int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
  215. int b;
  216. if (source >= 0 && source != ps->num_env) {
  217. if (ps->enable_iid) {
  218. memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
  219. }
  220. if (ps->enable_icc) {
  221. memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
  222. }
  223. if (ps->enable_ipdopd) {
  224. memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
  225. memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
  226. }
  227. }
  228. if (ps->enable_iid){
  229. for (b = 0; b < ps->nr_iid_par; b++) {
  230. if (FFABS(ps->iid_par[ps->num_env][b]) > 7 + 8 * ps->iid_quant) {
  231. av_log(avctx, AV_LOG_ERROR, "iid_par invalid\n");
  232. goto err;
  233. }
  234. }
  235. }
  236. if (ps->enable_icc){
  237. for (b = 0; b < ps->nr_iid_par; b++) {
  238. if (ps->icc_par[ps->num_env][b] > 7U) {
  239. av_log(avctx, AV_LOG_ERROR, "icc_par invalid\n");
  240. goto err;
  241. }
  242. }
  243. }
  244. ps->num_env++;
  245. ps->border_position[ps->num_env] = numQMFSlots - 1;
  246. }
  247. ps->is34bands_old = ps->is34bands;
  248. if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
  249. ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
  250. (ps->enable_icc && ps->nr_icc_par == 34);
  251. //Baseline
  252. if (!ps->enable_ipdopd) {
  253. memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  254. memset(ps->opd_par, 0, sizeof(ps->opd_par));
  255. }
  256. if (header)
  257. ps->start = 1;
  258. bits_consumed = get_bits_count(gb) - bit_count_start;
  259. if (bits_consumed <= bits_left) {
  260. skip_bits_long(gb_host, bits_consumed);
  261. return bits_consumed;
  262. }
  263. av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
  264. err:
  265. ps->start = 0;
  266. skip_bits_long(gb_host, bits_left);
  267. memset(ps->iid_par, 0, sizeof(ps->iid_par));
  268. memset(ps->icc_par, 0, sizeof(ps->icc_par));
  269. memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  270. memset(ps->opd_par, 0, sizeof(ps->opd_par));
  271. return bits_left;
  272. }
  273. /** Split one subband into 2 subsubbands with a symmetric real filter.
  274. * The filter must have its non-center even coefficients equal to zero. */
  275. static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[8], int len, int reverse)
  276. {
  277. int i, j;
  278. for (i = 0; i < len; i++, in++) {
  279. float re_in = filter[6] * in[6][0]; //real inphase
  280. float re_op = 0.0f; //real out of phase
  281. float im_in = filter[6] * in[6][1]; //imag inphase
  282. float im_op = 0.0f; //imag out of phase
  283. for (j = 0; j < 6; j += 2) {
  284. re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
  285. im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
  286. }
  287. out[ reverse][i][0] = re_in + re_op;
  288. out[ reverse][i][1] = im_in + im_op;
  289. out[!reverse][i][0] = re_in - re_op;
  290. out[!reverse][i][1] = im_in - im_op;
  291. }
  292. }
  293. /** Split one subband into 6 subsubbands with a complex filter */
  294. static void hybrid6_cx(PSDSPContext *dsp, float (*in)[2], float (*out)[32][2],
  295. TABLE_CONST float (*filter)[8][2], int len)
  296. {
  297. int i;
  298. int N = 8;
  299. LOCAL_ALIGNED_16(float, temp, [8], [2]);
  300. for (i = 0; i < len; i++, in++) {
  301. dsp->hybrid_analysis(temp, in, (const float (*)[8][2]) filter, 1, N);
  302. out[0][i][0] = temp[6][0];
  303. out[0][i][1] = temp[6][1];
  304. out[1][i][0] = temp[7][0];
  305. out[1][i][1] = temp[7][1];
  306. out[2][i][0] = temp[0][0];
  307. out[2][i][1] = temp[0][1];
  308. out[3][i][0] = temp[1][0];
  309. out[3][i][1] = temp[1][1];
  310. out[4][i][0] = temp[2][0] + temp[5][0];
  311. out[4][i][1] = temp[2][1] + temp[5][1];
  312. out[5][i][0] = temp[3][0] + temp[4][0];
  313. out[5][i][1] = temp[3][1] + temp[4][1];
  314. }
  315. }
  316. static void hybrid4_8_12_cx(PSDSPContext *dsp,
  317. float (*in)[2], float (*out)[32][2],
  318. TABLE_CONST float (*filter)[8][2], int N, int len)
  319. {
  320. int i;
  321. for (i = 0; i < len; i++, in++) {
  322. dsp->hybrid_analysis(out[0] + i, in, (const float (*)[8][2]) filter, 32, N);
  323. }
  324. }
  325. static void hybrid_analysis(PSDSPContext *dsp, float out[91][32][2],
  326. float in[5][44][2], float L[2][38][64],
  327. int is34, int len)
  328. {
  329. int i, j;
  330. for (i = 0; i < 5; i++) {
  331. for (j = 0; j < 38; j++) {
  332. in[i][j+6][0] = L[0][j][i];
  333. in[i][j+6][1] = L[1][j][i];
  334. }
  335. }
  336. if (is34) {
  337. hybrid4_8_12_cx(dsp, in[0], out, f34_0_12, 12, len);
  338. hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8, 8, len);
  339. hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4, 4, len);
  340. hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4, 4, len);
  341. hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4, 4, len);
  342. dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
  343. } else {
  344. hybrid6_cx(dsp, in[0], out, f20_0_8, len);
  345. hybrid2_re(in[1], out+6, g1_Q2, len, 1);
  346. hybrid2_re(in[2], out+8, g1_Q2, len, 0);
  347. dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
  348. }
  349. //update in_buf
  350. for (i = 0; i < 5; i++) {
  351. memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
  352. }
  353. }
  354. static void hybrid_synthesis(PSDSPContext *dsp, float out[2][38][64],
  355. float in[91][32][2], int is34, int len)
  356. {
  357. int i, n;
  358. if (is34) {
  359. for (n = 0; n < len; n++) {
  360. memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
  361. memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
  362. for (i = 0; i < 12; i++) {
  363. out[0][n][0] += in[ i][n][0];
  364. out[1][n][0] += in[ i][n][1];
  365. }
  366. for (i = 0; i < 8; i++) {
  367. out[0][n][1] += in[12+i][n][0];
  368. out[1][n][1] += in[12+i][n][1];
  369. }
  370. for (i = 0; i < 4; i++) {
  371. out[0][n][2] += in[20+i][n][0];
  372. out[1][n][2] += in[20+i][n][1];
  373. out[0][n][3] += in[24+i][n][0];
  374. out[1][n][3] += in[24+i][n][1];
  375. out[0][n][4] += in[28+i][n][0];
  376. out[1][n][4] += in[28+i][n][1];
  377. }
  378. }
  379. dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
  380. } else {
  381. for (n = 0; n < len; n++) {
  382. out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
  383. in[3][n][0] + in[4][n][0] + in[5][n][0];
  384. out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
  385. in[3][n][1] + in[4][n][1] + in[5][n][1];
  386. out[0][n][1] = in[6][n][0] + in[7][n][0];
  387. out[1][n][1] = in[6][n][1] + in[7][n][1];
  388. out[0][n][2] = in[8][n][0] + in[9][n][0];
  389. out[1][n][2] = in[8][n][1] + in[9][n][1];
  390. }
  391. dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
  392. }
  393. }
  394. /// All-pass filter decay slope
  395. #define DECAY_SLOPE 0.05f
  396. /// Number of frequency bands that can be addressed by the parameter index, b(k)
  397. static const int NR_PAR_BANDS[] = { 20, 34 };
  398. /// Number of frequency bands that can be addressed by the sub subband index, k
  399. static const int NR_BANDS[] = { 71, 91 };
  400. /// Start frequency band for the all-pass filter decay slope
  401. static const int DECAY_CUTOFF[] = { 10, 32 };
  402. /// Number of all-pass filer bands
  403. static const int NR_ALLPASS_BANDS[] = { 30, 50 };
  404. /// First stereo band using the short one sample delay
  405. static const int SHORT_DELAY_BAND[] = { 42, 62 };
  406. /** Table 8.46 */
  407. static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
  408. {
  409. int b;
  410. if (full)
  411. b = 9;
  412. else {
  413. b = 4;
  414. par_mapped[10] = 0;
  415. }
  416. for (; b >= 0; b--) {
  417. par_mapped[2*b+1] = par_mapped[2*b] = par[b];
  418. }
  419. }
  420. static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
  421. {
  422. par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
  423. par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
  424. par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
  425. par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
  426. par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
  427. par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
  428. par_mapped[ 6] = par[10];
  429. par_mapped[ 7] = par[11];
  430. par_mapped[ 8] = ( par[12] + par[13]) / 2;
  431. par_mapped[ 9] = ( par[14] + par[15]) / 2;
  432. par_mapped[10] = par[16];
  433. if (full) {
  434. par_mapped[11] = par[17];
  435. par_mapped[12] = par[18];
  436. par_mapped[13] = par[19];
  437. par_mapped[14] = ( par[20] + par[21]) / 2;
  438. par_mapped[15] = ( par[22] + par[23]) / 2;
  439. par_mapped[16] = ( par[24] + par[25]) / 2;
  440. par_mapped[17] = ( par[26] + par[27]) / 2;
  441. par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
  442. par_mapped[19] = ( par[32] + par[33]) / 2;
  443. }
  444. }
  445. static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
  446. {
  447. par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
  448. par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
  449. par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
  450. par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
  451. par[ 4] = ( par[ 6] + par[ 7]) * 0.5f;
  452. par[ 5] = ( par[ 8] + par[ 9]) * 0.5f;
  453. par[ 6] = par[10];
  454. par[ 7] = par[11];
  455. par[ 8] = ( par[12] + par[13]) * 0.5f;
  456. par[ 9] = ( par[14] + par[15]) * 0.5f;
  457. par[10] = par[16];
  458. par[11] = par[17];
  459. par[12] = par[18];
  460. par[13] = par[19];
  461. par[14] = ( par[20] + par[21]) * 0.5f;
  462. par[15] = ( par[22] + par[23]) * 0.5f;
  463. par[16] = ( par[24] + par[25]) * 0.5f;
  464. par[17] = ( par[26] + par[27]) * 0.5f;
  465. par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
  466. par[19] = ( par[32] + par[33]) * 0.5f;
  467. }
  468. static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
  469. {
  470. if (full) {
  471. par_mapped[33] = par[9];
  472. par_mapped[32] = par[9];
  473. par_mapped[31] = par[9];
  474. par_mapped[30] = par[9];
  475. par_mapped[29] = par[9];
  476. par_mapped[28] = par[9];
  477. par_mapped[27] = par[8];
  478. par_mapped[26] = par[8];
  479. par_mapped[25] = par[8];
  480. par_mapped[24] = par[8];
  481. par_mapped[23] = par[7];
  482. par_mapped[22] = par[7];
  483. par_mapped[21] = par[7];
  484. par_mapped[20] = par[7];
  485. par_mapped[19] = par[6];
  486. par_mapped[18] = par[6];
  487. par_mapped[17] = par[5];
  488. par_mapped[16] = par[5];
  489. } else {
  490. par_mapped[16] = 0;
  491. }
  492. par_mapped[15] = par[4];
  493. par_mapped[14] = par[4];
  494. par_mapped[13] = par[4];
  495. par_mapped[12] = par[4];
  496. par_mapped[11] = par[3];
  497. par_mapped[10] = par[3];
  498. par_mapped[ 9] = par[2];
  499. par_mapped[ 8] = par[2];
  500. par_mapped[ 7] = par[2];
  501. par_mapped[ 6] = par[2];
  502. par_mapped[ 5] = par[1];
  503. par_mapped[ 4] = par[1];
  504. par_mapped[ 3] = par[1];
  505. par_mapped[ 2] = par[0];
  506. par_mapped[ 1] = par[0];
  507. par_mapped[ 0] = par[0];
  508. }
  509. static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
  510. {
  511. if (full) {
  512. par_mapped[33] = par[19];
  513. par_mapped[32] = par[19];
  514. par_mapped[31] = par[18];
  515. par_mapped[30] = par[18];
  516. par_mapped[29] = par[18];
  517. par_mapped[28] = par[18];
  518. par_mapped[27] = par[17];
  519. par_mapped[26] = par[17];
  520. par_mapped[25] = par[16];
  521. par_mapped[24] = par[16];
  522. par_mapped[23] = par[15];
  523. par_mapped[22] = par[15];
  524. par_mapped[21] = par[14];
  525. par_mapped[20] = par[14];
  526. par_mapped[19] = par[13];
  527. par_mapped[18] = par[12];
  528. par_mapped[17] = par[11];
  529. }
  530. par_mapped[16] = par[10];
  531. par_mapped[15] = par[ 9];
  532. par_mapped[14] = par[ 9];
  533. par_mapped[13] = par[ 8];
  534. par_mapped[12] = par[ 8];
  535. par_mapped[11] = par[ 7];
  536. par_mapped[10] = par[ 6];
  537. par_mapped[ 9] = par[ 5];
  538. par_mapped[ 8] = par[ 5];
  539. par_mapped[ 7] = par[ 4];
  540. par_mapped[ 6] = par[ 4];
  541. par_mapped[ 5] = par[ 3];
  542. par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
  543. par_mapped[ 3] = par[ 2];
  544. par_mapped[ 2] = par[ 1];
  545. par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
  546. par_mapped[ 0] = par[ 0];
  547. }
  548. static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
  549. {
  550. par[33] = par[19];
  551. par[32] = par[19];
  552. par[31] = par[18];
  553. par[30] = par[18];
  554. par[29] = par[18];
  555. par[28] = par[18];
  556. par[27] = par[17];
  557. par[26] = par[17];
  558. par[25] = par[16];
  559. par[24] = par[16];
  560. par[23] = par[15];
  561. par[22] = par[15];
  562. par[21] = par[14];
  563. par[20] = par[14];
  564. par[19] = par[13];
  565. par[18] = par[12];
  566. par[17] = par[11];
  567. par[16] = par[10];
  568. par[15] = par[ 9];
  569. par[14] = par[ 9];
  570. par[13] = par[ 8];
  571. par[12] = par[ 8];
  572. par[11] = par[ 7];
  573. par[10] = par[ 6];
  574. par[ 9] = par[ 5];
  575. par[ 8] = par[ 5];
  576. par[ 7] = par[ 4];
  577. par[ 6] = par[ 4];
  578. par[ 5] = par[ 3];
  579. par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
  580. par[ 3] = par[ 2];
  581. par[ 2] = par[ 1];
  582. par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
  583. }
  584. static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
  585. {
  586. LOCAL_ALIGNED_16(float, power, [34], [PS_QMF_TIME_SLOTS]);
  587. LOCAL_ALIGNED_16(float, transient_gain, [34], [PS_QMF_TIME_SLOTS]);
  588. float *peak_decay_nrg = ps->peak_decay_nrg;
  589. float *power_smooth = ps->power_smooth;
  590. float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
  591. float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
  592. float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
  593. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  594. const float peak_decay_factor = 0.76592833836465f;
  595. const float transient_impact = 1.5f;
  596. const float a_smooth = 0.25f; ///< Smoothing coefficient
  597. int i, k, m, n;
  598. int n0 = 0, nL = 32;
  599. memset(power, 0, 34 * sizeof(*power));
  600. if (is34 != ps->is34bands_old) {
  601. memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
  602. memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
  603. memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
  604. memset(ps->delay, 0, sizeof(ps->delay));
  605. memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
  606. }
  607. for (k = 0; k < NR_BANDS[is34]; k++) {
  608. int i = k_to_i[k];
  609. ps->dsp.add_squares(power[i], s[k], nL - n0);
  610. }
  611. //Transient detection
  612. for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
  613. for (n = n0; n < nL; n++) {
  614. float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
  615. float denom;
  616. peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
  617. power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
  618. peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
  619. denom = transient_impact * peak_decay_diff_smooth[i];
  620. transient_gain[i][n] = (denom > power_smooth[i]) ?
  621. power_smooth[i] / denom : 1.0f;
  622. }
  623. }
  624. //Decorrelation and transient reduction
  625. // PS_AP_LINKS - 1
  626. // -----
  627. // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
  628. //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
  629. // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
  630. // m = 0
  631. //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
  632. for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
  633. int b = k_to_i[k];
  634. float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
  635. g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
  636. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  637. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  638. for (m = 0; m < PS_AP_LINKS; m++) {
  639. memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
  640. }
  641. ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
  642. phi_fract[is34][k],
  643. (const float (*)[2]) Q_fract_allpass[is34][k],
  644. transient_gain[b], g_decay_slope, nL - n0);
  645. }
  646. for (; k < SHORT_DELAY_BAND[is34]; k++) {
  647. int i = k_to_i[k];
  648. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  649. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  650. //H = delay 14
  651. ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
  652. transient_gain[i], nL - n0);
  653. }
  654. for (; k < NR_BANDS[is34]; k++) {
  655. int i = k_to_i[k];
  656. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  657. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  658. //H = delay 1
  659. ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
  660. transient_gain[i], nL - n0);
  661. }
  662. }
  663. static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  664. int8_t (*par)[PS_MAX_NR_IIDICC],
  665. int num_par, int num_env, int full)
  666. {
  667. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  668. int e;
  669. if (num_par == 20 || num_par == 11) {
  670. for (e = 0; e < num_env; e++) {
  671. map_idx_20_to_34(par_mapped[e], par[e], full);
  672. }
  673. } else if (num_par == 10 || num_par == 5) {
  674. for (e = 0; e < num_env; e++) {
  675. map_idx_10_to_34(par_mapped[e], par[e], full);
  676. }
  677. } else {
  678. *p_par_mapped = par;
  679. }
  680. }
  681. static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  682. int8_t (*par)[PS_MAX_NR_IIDICC],
  683. int num_par, int num_env, int full)
  684. {
  685. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  686. int e;
  687. if (num_par == 34 || num_par == 17) {
  688. for (e = 0; e < num_env; e++) {
  689. map_idx_34_to_20(par_mapped[e], par[e], full);
  690. }
  691. } else if (num_par == 10 || num_par == 5) {
  692. for (e = 0; e < num_env; e++) {
  693. map_idx_10_to_20(par_mapped[e], par[e], full);
  694. }
  695. } else {
  696. *p_par_mapped = par;
  697. }
  698. }
  699. static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
  700. {
  701. int e, b, k;
  702. float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
  703. float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
  704. float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
  705. float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
  706. int8_t *opd_hist = ps->opd_hist;
  707. int8_t *ipd_hist = ps->ipd_hist;
  708. int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  709. int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  710. int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  711. int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  712. int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
  713. int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
  714. int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
  715. int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
  716. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  717. TABLE_CONST float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
  718. //Remapping
  719. if (ps->num_env_old) {
  720. memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
  721. memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
  722. memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
  723. memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
  724. memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
  725. memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
  726. memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
  727. memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
  728. }
  729. if (is34) {
  730. remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  731. remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  732. if (ps->enable_ipdopd) {
  733. remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  734. remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  735. }
  736. if (!ps->is34bands_old) {
  737. map_val_20_to_34(H11[0][0]);
  738. map_val_20_to_34(H11[1][0]);
  739. map_val_20_to_34(H12[0][0]);
  740. map_val_20_to_34(H12[1][0]);
  741. map_val_20_to_34(H21[0][0]);
  742. map_val_20_to_34(H21[1][0]);
  743. map_val_20_to_34(H22[0][0]);
  744. map_val_20_to_34(H22[1][0]);
  745. ipdopd_reset(ipd_hist, opd_hist);
  746. }
  747. } else {
  748. remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  749. remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  750. if (ps->enable_ipdopd) {
  751. remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  752. remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  753. }
  754. if (ps->is34bands_old) {
  755. map_val_34_to_20(H11[0][0]);
  756. map_val_34_to_20(H11[1][0]);
  757. map_val_34_to_20(H12[0][0]);
  758. map_val_34_to_20(H12[1][0]);
  759. map_val_34_to_20(H21[0][0]);
  760. map_val_34_to_20(H21[1][0]);
  761. map_val_34_to_20(H22[0][0]);
  762. map_val_34_to_20(H22[1][0]);
  763. ipdopd_reset(ipd_hist, opd_hist);
  764. }
  765. }
  766. //Mixing
  767. for (e = 0; e < ps->num_env; e++) {
  768. for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
  769. float h11, h12, h21, h22;
  770. h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
  771. h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
  772. h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
  773. h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
  774. if (!PS_BASELINE && ps->enable_ipdopd && 2*b <= NR_PAR_BANDS[is34]) {
  775. //The spec say says to only run this smoother when enable_ipdopd
  776. //is set but the reference decoder appears to run it constantly
  777. float h11i, h12i, h21i, h22i;
  778. float ipd_adj_re, ipd_adj_im;
  779. int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
  780. int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
  781. float opd_re = pd_re_smooth[opd_idx];
  782. float opd_im = pd_im_smooth[opd_idx];
  783. float ipd_re = pd_re_smooth[ipd_idx];
  784. float ipd_im = pd_im_smooth[ipd_idx];
  785. opd_hist[b] = opd_idx & 0x3F;
  786. ipd_hist[b] = ipd_idx & 0x3F;
  787. ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
  788. ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
  789. h11i = h11 * opd_im;
  790. h11 = h11 * opd_re;
  791. h12i = h12 * ipd_adj_im;
  792. h12 = h12 * ipd_adj_re;
  793. h21i = h21 * opd_im;
  794. h21 = h21 * opd_re;
  795. h22i = h22 * ipd_adj_im;
  796. h22 = h22 * ipd_adj_re;
  797. H11[1][e+1][b] = h11i;
  798. H12[1][e+1][b] = h12i;
  799. H21[1][e+1][b] = h21i;
  800. H22[1][e+1][b] = h22i;
  801. }
  802. H11[0][e+1][b] = h11;
  803. H12[0][e+1][b] = h12;
  804. H21[0][e+1][b] = h21;
  805. H22[0][e+1][b] = h22;
  806. }
  807. for (k = 0; k < NR_BANDS[is34]; k++) {
  808. float h[2][4];
  809. float h_step[2][4];
  810. int start = ps->border_position[e];
  811. int stop = ps->border_position[e+1];
  812. float width = 1.f / (stop - start);
  813. b = k_to_i[k];
  814. h[0][0] = H11[0][e][b];
  815. h[0][1] = H12[0][e][b];
  816. h[0][2] = H21[0][e][b];
  817. h[0][3] = H22[0][e][b];
  818. if (!PS_BASELINE && ps->enable_ipdopd) {
  819. //Is this necessary? ps_04_new seems unchanged
  820. if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
  821. h[1][0] = -H11[1][e][b];
  822. h[1][1] = -H12[1][e][b];
  823. h[1][2] = -H21[1][e][b];
  824. h[1][3] = -H22[1][e][b];
  825. } else {
  826. h[1][0] = H11[1][e][b];
  827. h[1][1] = H12[1][e][b];
  828. h[1][2] = H21[1][e][b];
  829. h[1][3] = H22[1][e][b];
  830. }
  831. }
  832. //Interpolation
  833. h_step[0][0] = (H11[0][e+1][b] - h[0][0]) * width;
  834. h_step[0][1] = (H12[0][e+1][b] - h[0][1]) * width;
  835. h_step[0][2] = (H21[0][e+1][b] - h[0][2]) * width;
  836. h_step[0][3] = (H22[0][e+1][b] - h[0][3]) * width;
  837. if (!PS_BASELINE && ps->enable_ipdopd) {
  838. h_step[1][0] = (H11[1][e+1][b] - h[1][0]) * width;
  839. h_step[1][1] = (H12[1][e+1][b] - h[1][1]) * width;
  840. h_step[1][2] = (H21[1][e+1][b] - h[1][2]) * width;
  841. h_step[1][3] = (H22[1][e+1][b] - h[1][3]) * width;
  842. }
  843. ps->dsp.stereo_interpolate[!PS_BASELINE && ps->enable_ipdopd](
  844. l[k] + start + 1, r[k] + start + 1,
  845. h, h_step, stop - start);
  846. }
  847. }
  848. }
  849. int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
  850. {
  851. LOCAL_ALIGNED_16(float, Lbuf, [91], [32][2]);
  852. LOCAL_ALIGNED_16(float, Rbuf, [91], [32][2]);
  853. const int len = 32;
  854. int is34 = ps->is34bands;
  855. top += NR_BANDS[is34] - 64;
  856. memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
  857. if (top < NR_ALLPASS_BANDS[is34])
  858. memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
  859. hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
  860. decorrelation(ps, Rbuf, (const float (*)[32][2]) Lbuf, is34);
  861. stereo_processing(ps, Lbuf, Rbuf, is34);
  862. hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
  863. hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);
  864. return 0;
  865. }
  866. #define PS_INIT_VLC_STATIC(num, size) \
  867. INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \
  868. ps_tmp[num].ps_bits, 1, 1, \
  869. ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
  870. size);
  871. #define PS_VLC_ROW(name) \
  872. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  873. av_cold void ff_ps_init(void) {
  874. // Syntax initialization
  875. static const struct {
  876. const void *ps_codes, *ps_bits;
  877. const unsigned int table_size, elem_size;
  878. } ps_tmp[] = {
  879. PS_VLC_ROW(huff_iid_df1),
  880. PS_VLC_ROW(huff_iid_dt1),
  881. PS_VLC_ROW(huff_iid_df0),
  882. PS_VLC_ROW(huff_iid_dt0),
  883. PS_VLC_ROW(huff_icc_df),
  884. PS_VLC_ROW(huff_icc_dt),
  885. PS_VLC_ROW(huff_ipd_df),
  886. PS_VLC_ROW(huff_ipd_dt),
  887. PS_VLC_ROW(huff_opd_df),
  888. PS_VLC_ROW(huff_opd_dt),
  889. };
  890. PS_INIT_VLC_STATIC(0, 1544);
  891. PS_INIT_VLC_STATIC(1, 832);
  892. PS_INIT_VLC_STATIC(2, 1024);
  893. PS_INIT_VLC_STATIC(3, 1036);
  894. PS_INIT_VLC_STATIC(4, 544);
  895. PS_INIT_VLC_STATIC(5, 544);
  896. PS_INIT_VLC_STATIC(6, 512);
  897. PS_INIT_VLC_STATIC(7, 512);
  898. PS_INIT_VLC_STATIC(8, 512);
  899. PS_INIT_VLC_STATIC(9, 512);
  900. ps_tableinit();
  901. }
  902. av_cold void ff_ps_ctx_init(PSContext *ps)
  903. {
  904. ff_psdsp_init(&ps->dsp);
  905. }