You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

369 lines
9.9KB

  1. /*
  2. * Real Audio 1.0 (14.4K)
  3. *
  4. * Copyright (c) 2008 Vitor Sessak
  5. * Copyright (c) 2003 Nick Kurshev
  6. * Based on public domain decoder at http://www.honeypot.net/audio
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "ra144.h"
  27. #include "acelp_filters.h"
  28. #define NBLOCKS 4 ///< number of subblocks within a block
  29. #define BLOCKSIZE 40 ///< subblock size in 16-bit words
  30. #define BUFFERSIZE 146 ///< the size of the adaptive codebook
  31. typedef struct {
  32. unsigned int old_energy; ///< previous frame energy
  33. unsigned int lpc_tables[2][10];
  34. /** LPC coefficients: lpc_coef[0] is the coefficients of the current frame
  35. * and lpc_coef[1] of the previous one */
  36. unsigned int *lpc_coef[2];
  37. unsigned int lpc_refl_rms[2];
  38. /** the current subblock padded by the last 10 values of the previous one*/
  39. int16_t curr_sblock[50];
  40. /** adaptive codebook. Its size is two units bigger to avoid a
  41. * buffer overflow */
  42. uint16_t adapt_cb[148];
  43. } RA144Context;
  44. static int ra144_decode_init(AVCodecContext * avctx)
  45. {
  46. RA144Context *ractx = avctx->priv_data;
  47. ractx->lpc_coef[0] = ractx->lpc_tables[0];
  48. ractx->lpc_coef[1] = ractx->lpc_tables[1];
  49. return 0;
  50. }
  51. /**
  52. * Evaluate sqrt(x << 24). x must fit in 20 bits. This value is evaluated in an
  53. * odd way to make the output identical to the binary decoder.
  54. */
  55. static int t_sqrt(unsigned int x)
  56. {
  57. int s = 2;
  58. while (x > 0xfff) {
  59. s++;
  60. x = x >> 2;
  61. }
  62. return ff_sqrt(x << 20) << s;
  63. }
  64. /**
  65. * Evaluate the LPC filter coefficients from the reflection coefficients.
  66. * Does the inverse of the eval_refl() function.
  67. */
  68. static void eval_coefs(int *coefs, const int *refl)
  69. {
  70. int buffer[10];
  71. int *b1 = buffer;
  72. int *b2 = coefs;
  73. int x, y;
  74. for (x=0; x < 10; x++) {
  75. b1[x] = refl[x] << 4;
  76. for (y=0; y < x; y++)
  77. b1[y] = ((refl[x] * b2[x-y-1]) >> 12) + b2[y];
  78. FFSWAP(int *, b1, b2);
  79. }
  80. for (x=0; x < 10; x++)
  81. coefs[x] >>= 4;
  82. }
  83. /**
  84. * Copy the last offset values of *source to *target. If those values are not
  85. * enough to fill the target buffer, fill it with another copy of those values.
  86. */
  87. static void copy_and_dup(int16_t *target, const int16_t *source, int offset)
  88. {
  89. source += BUFFERSIZE - offset;
  90. if (offset > BLOCKSIZE) {
  91. memcpy(target, source, BLOCKSIZE*sizeof(*target));
  92. } else {
  93. memcpy(target, source, offset*sizeof(*target));
  94. memcpy(target + offset, source, (BLOCKSIZE - offset)*sizeof(*target));
  95. }
  96. }
  97. /** inverse root mean square */
  98. static int irms(const int16_t *data)
  99. {
  100. unsigned int i, sum = 0;
  101. for (i=0; i < BLOCKSIZE; i++)
  102. sum += data[i] * data[i];
  103. if (sum == 0)
  104. return 0; /* OOPS - division by zero */
  105. return 0x20000000 / (t_sqrt(sum) >> 8);
  106. }
  107. static void add_wav(int16_t *dest, int n, int skip_first, int *m,
  108. const int16_t *s1, const int8_t *s2, const int8_t *s3)
  109. {
  110. int i;
  111. int v[3];
  112. v[0] = 0;
  113. for (i=!skip_first; i<3; i++)
  114. v[i] = (gain_val_tab[n][i] * m[i]) >> (gain_exp_tab[n][i] + 1);
  115. for (i=0; i < BLOCKSIZE; i++)
  116. dest[i] = (s1[i]*v[0] + s2[i]*v[1] + s3[i]*v[2]) >> 12;
  117. }
  118. static unsigned int rescale_rms(unsigned int rms, unsigned int energy)
  119. {
  120. return (rms * energy) >> 10;
  121. }
  122. static unsigned int rms(const int *data)
  123. {
  124. int x;
  125. unsigned int res = 0x10000;
  126. int b = 0;
  127. for (x=0; x<10; x++) {
  128. res = (((0x1000000 - data[x]*data[x]) >> 12) * res) >> 12;
  129. if (res == 0)
  130. return 0;
  131. while (res <= 0x3fff) {
  132. b++;
  133. res <<= 2;
  134. }
  135. }
  136. res = t_sqrt(res);
  137. res >>= (b + 10);
  138. return res;
  139. }
  140. static void do_output_subblock(RA144Context *ractx, const uint16_t *lpc_coefs,
  141. int gval, GetBitContext *gb)
  142. {
  143. uint16_t buffer_a[40];
  144. uint16_t *block;
  145. int cba_idx = get_bits(gb, 7); // index of the adaptive CB, 0 if none
  146. int gain = get_bits(gb, 8);
  147. int cb1_idx = get_bits(gb, 7);
  148. int cb2_idx = get_bits(gb, 7);
  149. int m[3];
  150. if (cba_idx) {
  151. cba_idx += BLOCKSIZE/2 - 1;
  152. copy_and_dup(buffer_a, ractx->adapt_cb, cba_idx);
  153. m[0] = (irms(buffer_a) * gval) >> 12;
  154. } else {
  155. m[0] = 0;
  156. }
  157. m[1] = (cb1_base[cb1_idx] * gval) >> 8;
  158. m[2] = (cb2_base[cb2_idx] * gval) >> 8;
  159. memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE,
  160. (BUFFERSIZE - BLOCKSIZE) * sizeof(*ractx->adapt_cb));
  161. block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE;
  162. add_wav(block, gain, cba_idx, m, buffer_a,
  163. cb1_vects[cb1_idx], cb2_vects[cb2_idx]);
  164. memcpy(ractx->curr_sblock, ractx->curr_sblock + 40,
  165. 10*sizeof(*ractx->curr_sblock));
  166. memcpy(ractx->curr_sblock + 10, block,
  167. BLOCKSIZE*sizeof(*ractx->curr_sblock));
  168. if (ff_acelp_lp_synthesis_filter(
  169. ractx->curr_sblock + 10, lpc_coefs,
  170. ractx->curr_sblock + 10, BLOCKSIZE,
  171. 10, 1, 0xfff)
  172. )
  173. memset(ractx->curr_sblock, 0, 50*sizeof(*ractx->curr_sblock));
  174. }
  175. static void int_to_int16(int16_t *out, const int *inp)
  176. {
  177. int i;
  178. for (i=0; i<30; i++)
  179. *(out++) = *(inp++);
  180. }
  181. /**
  182. * Evaluate the reflection coefficients from the filter coefficients.
  183. * Does the inverse of the eval_coefs() function.
  184. *
  185. * @return 1 if one of the reflection coefficients is of magnitude greater than
  186. * 4095, 0 if not.
  187. */
  188. static int eval_refl(int *refl, const int16_t *coefs, RA144Context *ractx)
  189. {
  190. int retval = 0;
  191. int b, c, i;
  192. unsigned int u;
  193. int buffer1[10];
  194. int buffer2[10];
  195. int *bp1 = buffer1;
  196. int *bp2 = buffer2;
  197. for (i=0; i < 10; i++)
  198. buffer2[i] = coefs[i];
  199. u = refl[9] = bp2[9];
  200. if (u + 0x1000 > 0x1fff) {
  201. av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n");
  202. return 1;
  203. }
  204. for (c=8; c >= 0; c--) {
  205. if (u == 0x1000)
  206. u++;
  207. if (u == 0xfffff000)
  208. u--;
  209. b = 0x1000-((u * u) >> 12);
  210. if (b == 0)
  211. b++;
  212. for (u=0; u<=c; u++)
  213. bp1[u] = ((bp2[u] - ((refl[c+1] * bp2[c-u]) >> 12)) * (0x1000000 / b)) >> 12;
  214. refl[c] = u = bp1[c];
  215. if ((u + 0x1000) > 0x1fff)
  216. retval = 1;
  217. FFSWAP(int *, bp1, bp2);
  218. }
  219. return retval;
  220. }
  221. static int interp(RA144Context *ractx, int16_t *out, int block_num,
  222. int copyold, int energy)
  223. {
  224. int work[10];
  225. int a = block_num + 1;
  226. int b = NBLOCKS - a;
  227. int x;
  228. // Interpolate block coefficients from the this frame forth block and
  229. // last frame forth block
  230. for (x=0; x<30; x++)
  231. out[x] = (a * ractx->lpc_coef[0][x] + b * ractx->lpc_coef[1][x])>> 2;
  232. if (eval_refl(work, out, ractx)) {
  233. // The interpolated coefficients are unstable, copy either new or old
  234. // coefficients
  235. int_to_int16(out, ractx->lpc_coef[copyold]);
  236. return rescale_rms(ractx->lpc_refl_rms[copyold], energy);
  237. } else {
  238. return rescale_rms(rms(work), energy);
  239. }
  240. }
  241. /** Uncompress one block (20 bytes -> 160*2 bytes) */
  242. static int ra144_decode_frame(AVCodecContext * avctx, void *vdata,
  243. int *data_size, const uint8_t *buf, int buf_size)
  244. {
  245. static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
  246. unsigned int refl_rms[4]; // RMS of the reflection coefficients
  247. uint16_t block_coefs[4][30]; // LPC coefficients of each sub-block
  248. unsigned int lpc_refl[10]; // LPC reflection coefficients of the frame
  249. int i, c;
  250. int16_t *data = vdata;
  251. unsigned int energy;
  252. RA144Context *ractx = avctx->priv_data;
  253. GetBitContext gb;
  254. if(buf_size < 20) {
  255. av_log(avctx, AV_LOG_ERROR,
  256. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  257. *data_size = 0;
  258. return buf_size;
  259. }
  260. init_get_bits(&gb, buf, 20 * 8);
  261. for (i=0; i<10; i++)
  262. lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i])];
  263. eval_coefs(ractx->lpc_coef[0], lpc_refl);
  264. ractx->lpc_refl_rms[0] = rms(lpc_refl);
  265. energy = energy_tab[get_bits(&gb, 5)];
  266. refl_rms[0] = interp(ractx, block_coefs[0], 0, 1, ractx->old_energy);
  267. refl_rms[1] = interp(ractx, block_coefs[1], 1, energy <= ractx->old_energy,
  268. t_sqrt(energy*ractx->old_energy) >> 12);
  269. refl_rms[2] = interp(ractx, block_coefs[2], 2, 0, energy);
  270. refl_rms[3] = rescale_rms(ractx->lpc_refl_rms[0], energy);
  271. int_to_int16(block_coefs[3], ractx->lpc_coef[0]);
  272. for (c=0; c<4; c++) {
  273. do_output_subblock(ractx, block_coefs[c], refl_rms[c], &gb);
  274. for (i=0; i<BLOCKSIZE; i++)
  275. *data++ = av_clip_int16(ractx->curr_sblock[i + 10] << 2);
  276. }
  277. ractx->old_energy = energy;
  278. ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
  279. FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
  280. *data_size = 2*160;
  281. return 20;
  282. }
  283. AVCodec ra_144_decoder =
  284. {
  285. "real_144",
  286. CODEC_TYPE_AUDIO,
  287. CODEC_ID_RA_144,
  288. sizeof(RA144Context),
  289. ra144_decode_init,
  290. NULL,
  291. NULL,
  292. ra144_decode_frame,
  293. .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
  294. };