You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1183 lines
39KB

  1. /*
  2. * MLP decoder
  3. * Copyright (c) 2007-2008 Ian Caulfield
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file mlpdec.c
  23. * MLP decoder
  24. */
  25. #include <stdint.h>
  26. #include "avcodec.h"
  27. #include "libavutil/intreadwrite.h"
  28. #include "bitstream.h"
  29. #include "libavutil/crc.h"
  30. #include "parser.h"
  31. #include "mlp_parser.h"
  32. /** Maximum number of channels that can be decoded. */
  33. #define MAX_CHANNELS 16
  34. /** Maximum number of matrices used in decoding; most streams have one matrix
  35. * per output channel, but some rematrix a channel (usually 0) more than once.
  36. */
  37. #define MAX_MATRICES 15
  38. /** Maximum number of substreams that can be decoded. This could also be set
  39. * higher, but I haven't seen any examples with more than two. */
  40. #define MAX_SUBSTREAMS 2
  41. /** maximum sample frequency seen in files */
  42. #define MAX_SAMPLERATE 192000
  43. /** maximum number of audio samples within one access unit */
  44. #define MAX_BLOCKSIZE (40 * (MAX_SAMPLERATE / 48000))
  45. /** next power of two greater than MAX_BLOCKSIZE */
  46. #define MAX_BLOCKSIZE_POW2 (64 * (MAX_SAMPLERATE / 48000))
  47. /** number of allowed filters */
  48. #define NUM_FILTERS 2
  49. /** The maximum number of taps in either the IIR or FIR filter;
  50. * I believe MLP actually specifies the maximum order for IIR filters as four,
  51. * and that the sum of the orders of both filters must be <= 8. */
  52. #define MAX_FILTER_ORDER 8
  53. /** number of bits used for VLC lookup - longest Huffman code is 9 */
  54. #define VLC_BITS 9
  55. static const char* sample_message =
  56. "Please file a bug report following the instructions at "
  57. "http://ffmpeg.mplayerhq.hu/bugreports.html and include "
  58. "a sample of this file.";
  59. typedef struct SubStream {
  60. //! Set if a valid restart header has been read. Otherwise the substream cannot be decoded.
  61. uint8_t restart_seen;
  62. //@{
  63. /** restart header data */
  64. //! The type of noise to be used in the rematrix stage.
  65. uint16_t noise_type;
  66. //! The index of the first channel coded in this substream.
  67. uint8_t min_channel;
  68. //! The index of the last channel coded in this substream.
  69. uint8_t max_channel;
  70. //! The number of channels input into the rematrix stage.
  71. uint8_t max_matrix_channel;
  72. //! The left shift applied to random noise in 0x31ea substreams.
  73. uint8_t noise_shift;
  74. //! The current seed value for the pseudorandom noise generator(s).
  75. uint32_t noisegen_seed;
  76. //! Set if the substream contains extra info to check the size of VLC blocks.
  77. uint8_t data_check_present;
  78. //! Bitmask of which parameter sets are conveyed in a decoding parameter block.
  79. uint8_t param_presence_flags;
  80. #define PARAM_BLOCKSIZE (1 << 7)
  81. #define PARAM_MATRIX (1 << 6)
  82. #define PARAM_OUTSHIFT (1 << 5)
  83. #define PARAM_QUANTSTEP (1 << 4)
  84. #define PARAM_FIR (1 << 3)
  85. #define PARAM_IIR (1 << 2)
  86. #define PARAM_HUFFOFFSET (1 << 1)
  87. //@}
  88. //@{
  89. /** matrix data */
  90. //! Number of matrices to be applied.
  91. uint8_t num_primitive_matrices;
  92. //! matrix output channel
  93. uint8_t matrix_out_ch[MAX_MATRICES];
  94. //! Whether the LSBs of the matrix output are encoded in the bitstream.
  95. uint8_t lsb_bypass[MAX_MATRICES];
  96. //! Matrix coefficients, stored as 2.14 fixed point.
  97. int32_t matrix_coeff[MAX_MATRICES][MAX_CHANNELS+2];
  98. //! Left shift to apply to noise values in 0x31eb substreams.
  99. uint8_t matrix_noise_shift[MAX_MATRICES];
  100. //@}
  101. //! Left shift to apply to Huffman-decoded residuals.
  102. uint8_t quant_step_size[MAX_CHANNELS];
  103. //! number of PCM samples in current audio block
  104. uint16_t blocksize;
  105. //! Number of PCM samples decoded so far in this frame.
  106. uint16_t blockpos;
  107. //! Left shift to apply to decoded PCM values to get final 24-bit output.
  108. int8_t output_shift[MAX_CHANNELS];
  109. //! Running XOR of all output samples.
  110. int32_t lossless_check_data;
  111. } SubStream;
  112. typedef struct MLPDecodeContext {
  113. AVCodecContext *avctx;
  114. //! Set if a valid major sync block has been read. Otherwise no decoding is possible.
  115. uint8_t params_valid;
  116. //! Number of substreams contained within this stream.
  117. uint8_t num_substreams;
  118. //! Index of the last substream to decode - further substreams are skipped.
  119. uint8_t max_decoded_substream;
  120. //! number of PCM samples contained in each frame
  121. int access_unit_size;
  122. //! next power of two above the number of samples in each frame
  123. int access_unit_size_pow2;
  124. SubStream substream[MAX_SUBSTREAMS];
  125. //@{
  126. /** filter data */
  127. #define FIR 0
  128. #define IIR 1
  129. //! number of taps in filter
  130. uint8_t filter_order[MAX_CHANNELS][NUM_FILTERS];
  131. //! Right shift to apply to output of filter.
  132. uint8_t filter_shift[MAX_CHANNELS][NUM_FILTERS];
  133. int32_t filter_coeff[MAX_CHANNELS][NUM_FILTERS][MAX_FILTER_ORDER];
  134. int32_t filter_state[MAX_CHANNELS][NUM_FILTERS][MAX_FILTER_ORDER];
  135. //@}
  136. //@{
  137. /** sample data coding information */
  138. //! Offset to apply to residual values.
  139. int16_t huff_offset[MAX_CHANNELS];
  140. //! sign/rounding-corrected version of huff_offset
  141. int32_t sign_huff_offset[MAX_CHANNELS];
  142. //! Which VLC codebook to use to read residuals.
  143. uint8_t codebook[MAX_CHANNELS];
  144. //! Size of residual suffix not encoded using VLC.
  145. uint8_t huff_lsbs[MAX_CHANNELS];
  146. //@}
  147. int8_t noise_buffer[MAX_BLOCKSIZE_POW2];
  148. int8_t bypassed_lsbs[MAX_BLOCKSIZE][MAX_CHANNELS];
  149. int32_t sample_buffer[MAX_BLOCKSIZE][MAX_CHANNELS+2];
  150. } MLPDecodeContext;
  151. /** Tables defining the Huffman codes.
  152. * There are three entropy coding methods used in MLP (four if you count
  153. * "none" as a method). These use the same sequences for codes starting with
  154. * 00 or 01, but have different codes starting with 1. */
  155. static const uint8_t huffman_tables[3][18][2] = {
  156. { /* Huffman table 0, -7 - +10 */
  157. {0x01, 9}, {0x01, 8}, {0x01, 7}, {0x01, 6}, {0x01, 5}, {0x01, 4}, {0x01, 3},
  158. {0x04, 3}, {0x05, 3}, {0x06, 3}, {0x07, 3},
  159. {0x03, 3}, {0x05, 4}, {0x09, 5}, {0x11, 6}, {0x21, 7}, {0x41, 8}, {0x81, 9},
  160. }, { /* Huffman table 1, -7 - +8 */
  161. {0x01, 9}, {0x01, 8}, {0x01, 7}, {0x01, 6}, {0x01, 5}, {0x01, 4}, {0x01, 3},
  162. {0x02, 2}, {0x03, 2},
  163. {0x03, 3}, {0x05, 4}, {0x09, 5}, {0x11, 6}, {0x21, 7}, {0x41, 8}, {0x81, 9},
  164. }, { /* Huffman table 2, -7 - +7 */
  165. {0x01, 9}, {0x01, 8}, {0x01, 7}, {0x01, 6}, {0x01, 5}, {0x01, 4}, {0x01, 3},
  166. {0x01, 1},
  167. {0x03, 3}, {0x05, 4}, {0x09, 5}, {0x11, 6}, {0x21, 7}, {0x41, 8}, {0x81, 9},
  168. }
  169. };
  170. static VLC huff_vlc[3];
  171. static int crc_init = 0;
  172. static AVCRC crc_63[1024];
  173. static AVCRC crc_1D[1024];
  174. /** Initialize static data, constant between all invocations of the codec. */
  175. static av_cold void init_static()
  176. {
  177. INIT_VLC_STATIC(&huff_vlc[0], VLC_BITS, 18,
  178. &huffman_tables[0][0][1], 2, 1,
  179. &huffman_tables[0][0][0], 2, 1, 512);
  180. INIT_VLC_STATIC(&huff_vlc[1], VLC_BITS, 16,
  181. &huffman_tables[1][0][1], 2, 1,
  182. &huffman_tables[1][0][0], 2, 1, 512);
  183. INIT_VLC_STATIC(&huff_vlc[2], VLC_BITS, 15,
  184. &huffman_tables[2][0][1], 2, 1,
  185. &huffman_tables[2][0][0], 2, 1, 512);
  186. if (!crc_init) {
  187. av_crc_init(crc_63, 0, 8, 0x63, sizeof(crc_63));
  188. av_crc_init(crc_1D, 0, 8, 0x1D, sizeof(crc_1D));
  189. crc_init = 1;
  190. }
  191. }
  192. /** MLP uses checksums that seem to be based on the standard CRC algorithm, but
  193. * are not (in implementation terms, the table lookup and XOR are reversed).
  194. * We can implement this behavior using a standard av_crc on all but the
  195. * last element, then XOR that with the last element. */
  196. static uint8_t mlp_checksum8(const uint8_t *buf, unsigned int buf_size)
  197. {
  198. uint8_t checksum = av_crc(crc_63, 0x3c, buf, buf_size - 1); // crc_63[0xa2] == 0x3c
  199. checksum ^= buf[buf_size-1];
  200. return checksum;
  201. }
  202. /** Calculate an 8-bit checksum over a restart header -- a non-multiple-of-8
  203. * number of bits, starting two bits into the first byte of buf. */
  204. static uint8_t mlp_restart_checksum(const uint8_t *buf, unsigned int bit_size)
  205. {
  206. int i;
  207. int num_bytes = (bit_size + 2) / 8;
  208. int crc = crc_1D[buf[0] & 0x3f];
  209. crc = av_crc(crc_1D, crc, buf + 1, num_bytes - 2);
  210. crc ^= buf[num_bytes - 1];
  211. for (i = 0; i < ((bit_size + 2) & 7); i++) {
  212. crc <<= 1;
  213. if (crc & 0x100)
  214. crc ^= 0x11D;
  215. crc ^= (buf[num_bytes] >> (7 - i)) & 1;
  216. }
  217. return crc;
  218. }
  219. static inline int32_t calculate_sign_huff(MLPDecodeContext *m,
  220. unsigned int substr, unsigned int ch)
  221. {
  222. SubStream *s = &m->substream[substr];
  223. int lsb_bits = m->huff_lsbs[ch] - s->quant_step_size[ch];
  224. int sign_shift = lsb_bits + (m->codebook[ch] ? 2 - m->codebook[ch] : -1);
  225. int32_t sign_huff_offset = m->huff_offset[ch];
  226. if (m->codebook[ch] > 0)
  227. sign_huff_offset -= 7 << lsb_bits;
  228. if (sign_shift >= 0)
  229. sign_huff_offset -= 1 << sign_shift;
  230. return sign_huff_offset;
  231. }
  232. /** Read a sample, consisting of either, both or neither of entropy-coded MSBs
  233. * and plain LSBs. */
  234. static inline int read_huff_channels(MLPDecodeContext *m, GetBitContext *gbp,
  235. unsigned int substr, unsigned int pos)
  236. {
  237. SubStream *s = &m->substream[substr];
  238. unsigned int mat, channel;
  239. for (mat = 0; mat < s->num_primitive_matrices; mat++)
  240. if (s->lsb_bypass[mat])
  241. m->bypassed_lsbs[pos + s->blockpos][mat] = get_bits1(gbp);
  242. for (channel = s->min_channel; channel <= s->max_channel; channel++) {
  243. int codebook = m->codebook[channel];
  244. int quant_step_size = s->quant_step_size[channel];
  245. int lsb_bits = m->huff_lsbs[channel] - quant_step_size;
  246. int result = 0;
  247. if (codebook > 0)
  248. result = get_vlc2(gbp, huff_vlc[codebook-1].table,
  249. VLC_BITS, (9 + VLC_BITS - 1) / VLC_BITS);
  250. if (result < 0)
  251. return -1;
  252. if (lsb_bits > 0)
  253. result = (result << lsb_bits) + get_bits(gbp, lsb_bits);
  254. result += m->sign_huff_offset[channel];
  255. result <<= quant_step_size;
  256. m->sample_buffer[pos + s->blockpos][channel] = result;
  257. }
  258. return 0;
  259. }
  260. static av_cold int mlp_decode_init(AVCodecContext *avctx)
  261. {
  262. MLPDecodeContext *m = avctx->priv_data;
  263. int substr;
  264. init_static();
  265. m->avctx = avctx;
  266. for (substr = 0; substr < MAX_SUBSTREAMS; substr++)
  267. m->substream[substr].lossless_check_data = 0xffffffff;
  268. return 0;
  269. }
  270. /** Read a major sync info header - contains high level information about
  271. * the stream - sample rate, channel arrangement etc. Most of this
  272. * information is not actually necessary for decoding, only for playback.
  273. */
  274. static int read_major_sync(MLPDecodeContext *m, GetBitContext *gb)
  275. {
  276. MLPHeaderInfo mh;
  277. int substr;
  278. if (ff_mlp_read_major_sync(m->avctx, &mh, gb) != 0)
  279. return -1;
  280. if (mh.group1_bits == 0) {
  281. av_log(m->avctx, AV_LOG_ERROR, "invalid/unknown bits per sample\n");
  282. return -1;
  283. }
  284. if (mh.group2_bits > mh.group1_bits) {
  285. av_log(m->avctx, AV_LOG_ERROR,
  286. "Channel group 2 cannot have more bits per sample than group 1.\n");
  287. return -1;
  288. }
  289. if (mh.group2_samplerate && mh.group2_samplerate != mh.group1_samplerate) {
  290. av_log(m->avctx, AV_LOG_ERROR,
  291. "Channel groups with differing sample rates are not currently supported.\n");
  292. return -1;
  293. }
  294. if (mh.group1_samplerate == 0) {
  295. av_log(m->avctx, AV_LOG_ERROR, "invalid/unknown sampling rate\n");
  296. return -1;
  297. }
  298. if (mh.group1_samplerate > MAX_SAMPLERATE) {
  299. av_log(m->avctx, AV_LOG_ERROR,
  300. "Sampling rate %d is greater than the supported maximum (%d).\n",
  301. mh.group1_samplerate, MAX_SAMPLERATE);
  302. return -1;
  303. }
  304. if (mh.access_unit_size > MAX_BLOCKSIZE) {
  305. av_log(m->avctx, AV_LOG_ERROR,
  306. "Block size %d is greater than the supported maximum (%d).\n",
  307. mh.access_unit_size, MAX_BLOCKSIZE);
  308. return -1;
  309. }
  310. if (mh.access_unit_size_pow2 > MAX_BLOCKSIZE_POW2) {
  311. av_log(m->avctx, AV_LOG_ERROR,
  312. "Block size pow2 %d is greater than the supported maximum (%d).\n",
  313. mh.access_unit_size_pow2, MAX_BLOCKSIZE_POW2);
  314. return -1;
  315. }
  316. if (mh.num_substreams == 0)
  317. return -1;
  318. if (mh.num_substreams > MAX_SUBSTREAMS) {
  319. av_log(m->avctx, AV_LOG_ERROR,
  320. "Number of substreams %d is larger than the maximum supported "
  321. "by the decoder. %s\n", mh.num_substreams, sample_message);
  322. return -1;
  323. }
  324. m->access_unit_size = mh.access_unit_size;
  325. m->access_unit_size_pow2 = mh.access_unit_size_pow2;
  326. m->num_substreams = mh.num_substreams;
  327. m->max_decoded_substream = m->num_substreams - 1;
  328. m->avctx->sample_rate = mh.group1_samplerate;
  329. m->avctx->frame_size = mh.access_unit_size;
  330. #ifdef CONFIG_AUDIO_NONSHORT
  331. m->avctx->bits_per_sample = mh.group1_bits;
  332. if (mh.group1_bits > 16) {
  333. m->avctx->sample_fmt = SAMPLE_FMT_S32;
  334. }
  335. #endif
  336. m->params_valid = 1;
  337. for (substr = 0; substr < MAX_SUBSTREAMS; substr++)
  338. m->substream[substr].restart_seen = 0;
  339. return 0;
  340. }
  341. /** Read a restart header from a block in a substream. This contains parameters
  342. * required to decode the audio that do not change very often. Generally
  343. * (always) present only in blocks following a major sync. */
  344. static int read_restart_header(MLPDecodeContext *m, GetBitContext *gbp,
  345. const uint8_t *buf, unsigned int substr)
  346. {
  347. SubStream *s = &m->substream[substr];
  348. unsigned int ch;
  349. int sync_word, tmp;
  350. uint8_t checksum;
  351. uint8_t lossless_check;
  352. int start_count = get_bits_count(gbp);
  353. sync_word = get_bits(gbp, 13);
  354. if (sync_word != 0x31ea >> 1) {
  355. av_log(m->avctx, AV_LOG_ERROR,
  356. "restart header sync incorrect (got 0x%04x)\n", sync_word);
  357. return -1;
  358. }
  359. s->noise_type = get_bits1(gbp);
  360. skip_bits(gbp, 16); /* Output timestamp */
  361. s->min_channel = get_bits(gbp, 4);
  362. s->max_channel = get_bits(gbp, 4);
  363. s->max_matrix_channel = get_bits(gbp, 4);
  364. if (s->min_channel > s->max_channel) {
  365. av_log(m->avctx, AV_LOG_ERROR,
  366. "Substream min channel cannot be greater than max channel.\n");
  367. return -1;
  368. }
  369. if (m->avctx->request_channels > 0
  370. && s->max_channel + 1 >= m->avctx->request_channels
  371. && substr < m->max_decoded_substream) {
  372. av_log(m->avctx, AV_LOG_INFO,
  373. "Extracting %d channel downmix from substream %d. "
  374. "Further substreams will be skipped.\n",
  375. s->max_channel + 1, substr);
  376. m->max_decoded_substream = substr;
  377. }
  378. s->noise_shift = get_bits(gbp, 4);
  379. s->noisegen_seed = get_bits(gbp, 23);
  380. skip_bits(gbp, 19);
  381. s->data_check_present = get_bits1(gbp);
  382. lossless_check = get_bits(gbp, 8);
  383. if (substr == m->max_decoded_substream
  384. && s->lossless_check_data != 0xffffffff) {
  385. tmp = s->lossless_check_data;
  386. tmp ^= tmp >> 16;
  387. tmp ^= tmp >> 8;
  388. tmp &= 0xff;
  389. if (tmp != lossless_check)
  390. av_log(m->avctx, AV_LOG_WARNING,
  391. "Lossless check failed - expected %02x, calculated %02x.\n",
  392. lossless_check, tmp);
  393. else
  394. dprintf(m->avctx, "Lossless check passed for substream %d (%x).\n",
  395. substr, tmp);
  396. }
  397. skip_bits(gbp, 16);
  398. for (ch = 0; ch <= s->max_matrix_channel; ch++) {
  399. int ch_assign = get_bits(gbp, 6);
  400. dprintf(m->avctx, "ch_assign[%d][%d] = %d\n", substr, ch,
  401. ch_assign);
  402. if (ch_assign != ch) {
  403. av_log(m->avctx, AV_LOG_ERROR,
  404. "Non-1:1 channel assignments are used in this stream. %s\n",
  405. sample_message);
  406. return -1;
  407. }
  408. }
  409. checksum = mlp_restart_checksum(buf, get_bits_count(gbp) - start_count);
  410. if (checksum != get_bits(gbp, 8))
  411. av_log(m->avctx, AV_LOG_ERROR, "restart header checksum error\n");
  412. /* Set default decoding parameters. */
  413. s->param_presence_flags = 0xff;
  414. s->num_primitive_matrices = 0;
  415. s->blocksize = 8;
  416. s->lossless_check_data = 0;
  417. memset(s->output_shift , 0, sizeof(s->output_shift ));
  418. memset(s->quant_step_size, 0, sizeof(s->quant_step_size));
  419. for (ch = s->min_channel; ch <= s->max_channel; ch++) {
  420. m->filter_order[ch][FIR] = 0;
  421. m->filter_order[ch][IIR] = 0;
  422. m->filter_shift[ch][FIR] = 0;
  423. m->filter_shift[ch][IIR] = 0;
  424. /* Default audio coding is 24-bit raw PCM. */
  425. m->huff_offset [ch] = 0;
  426. m->sign_huff_offset[ch] = (-1) << 23;
  427. m->codebook [ch] = 0;
  428. m->huff_lsbs [ch] = 24;
  429. }
  430. if (substr == m->max_decoded_substream) {
  431. m->avctx->channels = s->max_channel + 1;
  432. }
  433. return 0;
  434. }
  435. /** Read parameters for one of the prediction filters. */
  436. static int read_filter_params(MLPDecodeContext *m, GetBitContext *gbp,
  437. unsigned int channel, unsigned int filter)
  438. {
  439. const char fchar = filter ? 'I' : 'F';
  440. int i, order;
  441. // Filter is 0 for FIR, 1 for IIR.
  442. assert(filter < 2);
  443. order = get_bits(gbp, 4);
  444. if (order > MAX_FILTER_ORDER) {
  445. av_log(m->avctx, AV_LOG_ERROR,
  446. "%cIR filter order %d is greater than maximum %d.\n",
  447. fchar, order, MAX_FILTER_ORDER);
  448. return -1;
  449. }
  450. m->filter_order[channel][filter] = order;
  451. if (order > 0) {
  452. int coeff_bits, coeff_shift;
  453. m->filter_shift[channel][filter] = get_bits(gbp, 4);
  454. coeff_bits = get_bits(gbp, 5);
  455. coeff_shift = get_bits(gbp, 3);
  456. if (coeff_bits < 1 || coeff_bits > 16) {
  457. av_log(m->avctx, AV_LOG_ERROR,
  458. "%cIR filter coeff_bits must be between 1 and 16.\n",
  459. fchar);
  460. return -1;
  461. }
  462. if (coeff_bits + coeff_shift > 16) {
  463. av_log(m->avctx, AV_LOG_ERROR,
  464. "Sum of coeff_bits and coeff_shift for %cIR filter must be 16 or less.\n",
  465. fchar);
  466. return -1;
  467. }
  468. for (i = 0; i < order; i++)
  469. m->filter_coeff[channel][filter][i] =
  470. get_sbits(gbp, coeff_bits) << coeff_shift;
  471. if (get_bits1(gbp)) {
  472. int state_bits, state_shift;
  473. if (filter == FIR) {
  474. av_log(m->avctx, AV_LOG_ERROR,
  475. "FIR filter has state data specified.\n");
  476. return -1;
  477. }
  478. state_bits = get_bits(gbp, 4);
  479. state_shift = get_bits(gbp, 4);
  480. /* TODO: Check validity of state data. */
  481. for (i = 0; i < order; i++)
  482. m->filter_state[channel][filter][i] =
  483. get_sbits(gbp, state_bits) << state_shift;
  484. }
  485. }
  486. return 0;
  487. }
  488. /** Read decoding parameters that change more often than those in the restart
  489. * header. */
  490. static int read_decoding_params(MLPDecodeContext *m, GetBitContext *gbp,
  491. unsigned int substr)
  492. {
  493. SubStream *s = &m->substream[substr];
  494. unsigned int mat, ch;
  495. if (get_bits1(gbp))
  496. s->param_presence_flags = get_bits(gbp, 8);
  497. if (s->param_presence_flags & PARAM_BLOCKSIZE)
  498. if (get_bits1(gbp)) {
  499. s->blocksize = get_bits(gbp, 9);
  500. if (s->blocksize > MAX_BLOCKSIZE) {
  501. av_log(m->avctx, AV_LOG_ERROR, "block size too large\n");
  502. s->blocksize = 0;
  503. return -1;
  504. }
  505. }
  506. if (s->param_presence_flags & PARAM_MATRIX)
  507. if (get_bits1(gbp)) {
  508. s->num_primitive_matrices = get_bits(gbp, 4);
  509. for (mat = 0; mat < s->num_primitive_matrices; mat++) {
  510. int frac_bits, max_chan;
  511. s->matrix_out_ch[mat] = get_bits(gbp, 4);
  512. frac_bits = get_bits(gbp, 4);
  513. s->lsb_bypass [mat] = get_bits1(gbp);
  514. if (s->matrix_out_ch[mat] > s->max_channel) {
  515. av_log(m->avctx, AV_LOG_ERROR,
  516. "Invalid channel %d specified as output from matrix.\n",
  517. s->matrix_out_ch[mat]);
  518. return -1;
  519. }
  520. if (frac_bits > 14) {
  521. av_log(m->avctx, AV_LOG_ERROR,
  522. "Too many fractional bits specified.\n");
  523. return -1;
  524. }
  525. max_chan = s->max_matrix_channel;
  526. if (!s->noise_type)
  527. max_chan+=2;
  528. for (ch = 0; ch <= max_chan; ch++) {
  529. int coeff_val = 0;
  530. if (get_bits1(gbp))
  531. coeff_val = get_sbits(gbp, frac_bits + 2);
  532. s->matrix_coeff[mat][ch] = coeff_val << (14 - frac_bits);
  533. }
  534. if (s->noise_type)
  535. s->matrix_noise_shift[mat] = get_bits(gbp, 4);
  536. else
  537. s->matrix_noise_shift[mat] = 0;
  538. }
  539. }
  540. if (s->param_presence_flags & PARAM_OUTSHIFT)
  541. if (get_bits1(gbp))
  542. for (ch = 0; ch <= s->max_matrix_channel; ch++) {
  543. s->output_shift[ch] = get_bits(gbp, 4);
  544. dprintf(m->avctx, "output shift[%d] = %d\n",
  545. ch, s->output_shift[ch]);
  546. /* TODO: validate */
  547. }
  548. if (s->param_presence_flags & PARAM_QUANTSTEP)
  549. if (get_bits1(gbp))
  550. for (ch = 0; ch <= s->max_channel; ch++) {
  551. s->quant_step_size[ch] = get_bits(gbp, 4);
  552. /* TODO: validate */
  553. m->sign_huff_offset[ch] = calculate_sign_huff(m, substr, ch);
  554. }
  555. for (ch = s->min_channel; ch <= s->max_channel; ch++)
  556. if (get_bits1(gbp)) {
  557. if (s->param_presence_flags & PARAM_FIR)
  558. if (get_bits1(gbp))
  559. if (read_filter_params(m, gbp, ch, FIR) < 0)
  560. return -1;
  561. if (s->param_presence_flags & PARAM_IIR)
  562. if (get_bits1(gbp))
  563. if (read_filter_params(m, gbp, ch, IIR) < 0)
  564. return -1;
  565. if (m->filter_order[ch][FIR] && m->filter_order[ch][IIR] &&
  566. m->filter_shift[ch][FIR] != m->filter_shift[ch][IIR]) {
  567. av_log(m->avctx, AV_LOG_ERROR,
  568. "FIR and IIR filters must use the same precision.\n");
  569. return -1;
  570. }
  571. /* The FIR and IIR filters must have the same precision.
  572. * To simplify the filtering code, only the precision of the
  573. * FIR filter is considered. If only the IIR filter is employed,
  574. * the FIR filter precision is set to that of the IIR filter, so
  575. * that the filtering code can use it. */
  576. if (!m->filter_order[ch][FIR] && m->filter_order[ch][IIR])
  577. m->filter_shift[ch][FIR] = m->filter_shift[ch][IIR];
  578. if (s->param_presence_flags & PARAM_HUFFOFFSET)
  579. if (get_bits1(gbp))
  580. m->huff_offset[ch] = get_sbits(gbp, 15);
  581. m->codebook [ch] = get_bits(gbp, 2);
  582. m->huff_lsbs[ch] = get_bits(gbp, 5);
  583. m->sign_huff_offset[ch] = calculate_sign_huff(m, substr, ch);
  584. /* TODO: validate */
  585. }
  586. return 0;
  587. }
  588. #define MSB_MASK(bits) (-1u << bits)
  589. /** Generate PCM samples using the prediction filters and residual values
  590. * read from the data stream, and update the filter state. */
  591. static void filter_channel(MLPDecodeContext *m, unsigned int substr,
  592. unsigned int channel)
  593. {
  594. SubStream *s = &m->substream[substr];
  595. int32_t filter_state_buffer[NUM_FILTERS][MAX_BLOCKSIZE + MAX_FILTER_ORDER];
  596. unsigned int filter_shift = m->filter_shift[channel][FIR];
  597. int32_t mask = MSB_MASK(s->quant_step_size[channel]);
  598. int index = MAX_BLOCKSIZE;
  599. int j, i;
  600. for (j = 0; j < NUM_FILTERS; j++) {
  601. memcpy(& filter_state_buffer [j][MAX_BLOCKSIZE],
  602. &m->filter_state[channel][j][0],
  603. MAX_FILTER_ORDER * sizeof(int32_t));
  604. }
  605. for (i = 0; i < s->blocksize; i++) {
  606. int32_t residual = m->sample_buffer[i + s->blockpos][channel];
  607. unsigned int order;
  608. int64_t accum = 0;
  609. int32_t result;
  610. /* TODO: Move this code to DSPContext? */
  611. for (j = 0; j < NUM_FILTERS; j++)
  612. for (order = 0; order < m->filter_order[channel][j]; order++)
  613. accum += (int64_t)filter_state_buffer[j][index + order] *
  614. m->filter_coeff[channel][j][order];
  615. accum = accum >> filter_shift;
  616. result = (accum + residual) & mask;
  617. --index;
  618. filter_state_buffer[FIR][index] = result;
  619. filter_state_buffer[IIR][index] = result - accum;
  620. m->sample_buffer[i + s->blockpos][channel] = result;
  621. }
  622. for (j = 0; j < NUM_FILTERS; j++) {
  623. memcpy(&m->filter_state[channel][j][0],
  624. & filter_state_buffer [j][index],
  625. MAX_FILTER_ORDER * sizeof(int32_t));
  626. }
  627. }
  628. /** Read a block of PCM residual data (or actual if no filtering active). */
  629. static int read_block_data(MLPDecodeContext *m, GetBitContext *gbp,
  630. unsigned int substr)
  631. {
  632. SubStream *s = &m->substream[substr];
  633. unsigned int i, ch, expected_stream_pos = 0;
  634. if (s->data_check_present) {
  635. expected_stream_pos = get_bits_count(gbp);
  636. expected_stream_pos += get_bits(gbp, 16);
  637. av_log(m->avctx, AV_LOG_WARNING, "This file contains some features "
  638. "we have not tested yet. %s\n", sample_message);
  639. }
  640. if (s->blockpos + s->blocksize > m->access_unit_size) {
  641. av_log(m->avctx, AV_LOG_ERROR, "too many audio samples in frame\n");
  642. return -1;
  643. }
  644. memset(&m->bypassed_lsbs[s->blockpos][0], 0,
  645. s->blocksize * sizeof(m->bypassed_lsbs[0]));
  646. for (i = 0; i < s->blocksize; i++) {
  647. if (read_huff_channels(m, gbp, substr, i) < 0)
  648. return -1;
  649. }
  650. for (ch = s->min_channel; ch <= s->max_channel; ch++) {
  651. filter_channel(m, substr, ch);
  652. }
  653. s->blockpos += s->blocksize;
  654. if (s->data_check_present) {
  655. if (get_bits_count(gbp) != expected_stream_pos)
  656. av_log(m->avctx, AV_LOG_ERROR, "block data length mismatch\n");
  657. skip_bits(gbp, 8);
  658. }
  659. return 0;
  660. }
  661. /** Data table used for TrueHD noise generation function. */
  662. static const int8_t noise_table[256] = {
  663. 30, 51, 22, 54, 3, 7, -4, 38, 14, 55, 46, 81, 22, 58, -3, 2,
  664. 52, 31, -7, 51, 15, 44, 74, 30, 85, -17, 10, 33, 18, 80, 28, 62,
  665. 10, 32, 23, 69, 72, 26, 35, 17, 73, 60, 8, 56, 2, 6, -2, -5,
  666. 51, 4, 11, 50, 66, 76, 21, 44, 33, 47, 1, 26, 64, 48, 57, 40,
  667. 38, 16, -10, -28, 92, 22, -18, 29, -10, 5, -13, 49, 19, 24, 70, 34,
  668. 61, 48, 30, 14, -6, 25, 58, 33, 42, 60, 67, 17, 54, 17, 22, 30,
  669. 67, 44, -9, 50, -11, 43, 40, 32, 59, 82, 13, 49, -14, 55, 60, 36,
  670. 48, 49, 31, 47, 15, 12, 4, 65, 1, 23, 29, 39, 45, -2, 84, 69,
  671. 0, 72, 37, 57, 27, 41, -15, -16, 35, 31, 14, 61, 24, 0, 27, 24,
  672. 16, 41, 55, 34, 53, 9, 56, 12, 25, 29, 53, 5, 20, -20, -8, 20,
  673. 13, 28, -3, 78, 38, 16, 11, 62, 46, 29, 21, 24, 46, 65, 43, -23,
  674. 89, 18, 74, 21, 38, -12, 19, 12, -19, 8, 15, 33, 4, 57, 9, -8,
  675. 36, 35, 26, 28, 7, 83, 63, 79, 75, 11, 3, 87, 37, 47, 34, 40,
  676. 39, 19, 20, 42, 27, 34, 39, 77, 13, 42, 59, 64, 45, -1, 32, 37,
  677. 45, -5, 53, -6, 7, 36, 50, 23, 6, 32, 9, -21, 18, 71, 27, 52,
  678. -25, 31, 35, 42, -1, 68, 63, 52, 26, 43, 66, 37, 41, 25, 40, 70,
  679. };
  680. /** Noise generation functions.
  681. * I'm not sure what these are for - they seem to be some kind of pseudorandom
  682. * sequence generators, used to generate noise data which is used when the
  683. * channels are rematrixed. I'm not sure if they provide a practical benefit
  684. * to compression, or just obfuscate the decoder. Are they for some kind of
  685. * dithering? */
  686. /** Generate two channels of noise, used in the matrix when
  687. * restart sync word == 0x31ea. */
  688. static void generate_2_noise_channels(MLPDecodeContext *m, unsigned int substr)
  689. {
  690. SubStream *s = &m->substream[substr];
  691. unsigned int i;
  692. uint32_t seed = s->noisegen_seed;
  693. unsigned int maxchan = s->max_matrix_channel;
  694. for (i = 0; i < s->blockpos; i++) {
  695. uint16_t seed_shr7 = seed >> 7;
  696. m->sample_buffer[i][maxchan+1] = ((int8_t)(seed >> 15)) << s->noise_shift;
  697. m->sample_buffer[i][maxchan+2] = ((int8_t) seed_shr7) << s->noise_shift;
  698. seed = (seed << 16) ^ seed_shr7 ^ (seed_shr7 << 5);
  699. }
  700. s->noisegen_seed = seed;
  701. }
  702. /** Generate a block of noise, used when restart sync word == 0x31eb. */
  703. static void fill_noise_buffer(MLPDecodeContext *m, unsigned int substr)
  704. {
  705. SubStream *s = &m->substream[substr];
  706. unsigned int i;
  707. uint32_t seed = s->noisegen_seed;
  708. for (i = 0; i < m->access_unit_size_pow2; i++) {
  709. uint8_t seed_shr15 = seed >> 15;
  710. m->noise_buffer[i] = noise_table[seed_shr15];
  711. seed = (seed << 8) ^ seed_shr15 ^ (seed_shr15 << 5);
  712. }
  713. s->noisegen_seed = seed;
  714. }
  715. /** Apply the channel matrices in turn to reconstruct the original audio
  716. * samples. */
  717. static void rematrix_channels(MLPDecodeContext *m, unsigned int substr)
  718. {
  719. SubStream *s = &m->substream[substr];
  720. unsigned int mat, src_ch, i;
  721. unsigned int maxchan;
  722. maxchan = s->max_matrix_channel;
  723. if (!s->noise_type) {
  724. generate_2_noise_channels(m, substr);
  725. maxchan += 2;
  726. } else {
  727. fill_noise_buffer(m, substr);
  728. }
  729. for (mat = 0; mat < s->num_primitive_matrices; mat++) {
  730. int matrix_noise_shift = s->matrix_noise_shift[mat];
  731. unsigned int dest_ch = s->matrix_out_ch[mat];
  732. int32_t mask = MSB_MASK(s->quant_step_size[dest_ch]);
  733. /* TODO: DSPContext? */
  734. for (i = 0; i < s->blockpos; i++) {
  735. int64_t accum = 0;
  736. for (src_ch = 0; src_ch <= maxchan; src_ch++) {
  737. accum += (int64_t)m->sample_buffer[i][src_ch]
  738. * s->matrix_coeff[mat][src_ch];
  739. }
  740. if (matrix_noise_shift) {
  741. uint32_t index = s->num_primitive_matrices - mat;
  742. index = (i * (index * 2 + 1) + index) & (m->access_unit_size_pow2 - 1);
  743. accum += m->noise_buffer[index] << (matrix_noise_shift + 7);
  744. }
  745. m->sample_buffer[i][dest_ch] = ((accum >> 14) & mask)
  746. + m->bypassed_lsbs[i][mat];
  747. }
  748. }
  749. }
  750. /** Write the audio data into the output buffer. */
  751. static int output_data_internal(MLPDecodeContext *m, unsigned int substr,
  752. uint8_t *data, unsigned int *data_size, int is32)
  753. {
  754. SubStream *s = &m->substream[substr];
  755. unsigned int i, ch = 0;
  756. int32_t *data_32 = (int32_t*) data;
  757. int16_t *data_16 = (int16_t*) data;
  758. if (*data_size < (s->max_channel + 1) * s->blockpos * (is32 ? 4 : 2))
  759. return -1;
  760. for (i = 0; i < s->blockpos; i++) {
  761. for (ch = 0; ch <= s->max_channel; ch++) {
  762. int32_t sample = m->sample_buffer[i][ch] << s->output_shift[ch];
  763. s->lossless_check_data ^= (sample & 0xffffff) << ch;
  764. if (is32) *data_32++ = sample << 8;
  765. else *data_16++ = sample >> 8;
  766. }
  767. }
  768. *data_size = i * ch * (is32 ? 4 : 2);
  769. return 0;
  770. }
  771. static int output_data(MLPDecodeContext *m, unsigned int substr,
  772. uint8_t *data, unsigned int *data_size)
  773. {
  774. if (m->avctx->sample_fmt == SAMPLE_FMT_S32)
  775. return output_data_internal(m, substr, data, data_size, 1);
  776. else
  777. return output_data_internal(m, substr, data, data_size, 0);
  778. }
  779. /** XOR together all the bytes of a buffer.
  780. * Does this belong in dspcontext? */
  781. static uint8_t calculate_parity(const uint8_t *buf, unsigned int buf_size)
  782. {
  783. uint32_t scratch = 0;
  784. const uint8_t *buf_end = buf + buf_size;
  785. for (; buf < buf_end - 3; buf += 4)
  786. scratch ^= *((const uint32_t*)buf);
  787. scratch ^= scratch >> 16;
  788. scratch ^= scratch >> 8;
  789. for (; buf < buf_end; buf++)
  790. scratch ^= *buf;
  791. return scratch;
  792. }
  793. /** Read an access unit from the stream.
  794. * Returns < 0 on error, 0 if not enough data is present in the input stream
  795. * otherwise returns the number of bytes consumed. */
  796. static int read_access_unit(AVCodecContext *avctx, void* data, int *data_size,
  797. const uint8_t *buf, int buf_size)
  798. {
  799. MLPDecodeContext *m = avctx->priv_data;
  800. GetBitContext gb;
  801. unsigned int length, substr;
  802. unsigned int substream_start;
  803. unsigned int header_size = 4;
  804. unsigned int substr_header_size = 0;
  805. uint8_t substream_parity_present[MAX_SUBSTREAMS];
  806. uint16_t substream_data_len[MAX_SUBSTREAMS];
  807. uint8_t parity_bits;
  808. if (buf_size < 4)
  809. return 0;
  810. length = (AV_RB16(buf) & 0xfff) * 2;
  811. if (length > buf_size)
  812. return -1;
  813. init_get_bits(&gb, (buf + 4), (length - 4) * 8);
  814. if (show_bits_long(&gb, 31) == (0xf8726fba >> 1)) {
  815. dprintf(m->avctx, "Found major sync.\n");
  816. if (read_major_sync(m, &gb) < 0)
  817. goto error;
  818. header_size += 28;
  819. }
  820. if (!m->params_valid) {
  821. av_log(m->avctx, AV_LOG_WARNING,
  822. "Stream parameters not seen; skipping frame.\n");
  823. *data_size = 0;
  824. return length;
  825. }
  826. substream_start = 0;
  827. for (substr = 0; substr < m->num_substreams; substr++) {
  828. int extraword_present, checkdata_present, end;
  829. extraword_present = get_bits1(&gb);
  830. skip_bits1(&gb);
  831. checkdata_present = get_bits1(&gb);
  832. skip_bits1(&gb);
  833. end = get_bits(&gb, 12) * 2;
  834. substr_header_size += 2;
  835. if (extraword_present) {
  836. skip_bits(&gb, 16);
  837. substr_header_size += 2;
  838. }
  839. if (end + header_size + substr_header_size > length) {
  840. av_log(m->avctx, AV_LOG_ERROR,
  841. "Indicated length of substream %d data goes off end of "
  842. "packet.\n", substr);
  843. end = length - header_size - substr_header_size;
  844. }
  845. if (end < substream_start) {
  846. av_log(avctx, AV_LOG_ERROR,
  847. "Indicated end offset of substream %d data "
  848. "is smaller than calculated start offset.\n",
  849. substr);
  850. goto error;
  851. }
  852. if (substr > m->max_decoded_substream)
  853. continue;
  854. substream_parity_present[substr] = checkdata_present;
  855. substream_data_len[substr] = end - substream_start;
  856. substream_start = end;
  857. }
  858. parity_bits = calculate_parity(buf, 4);
  859. parity_bits ^= calculate_parity(buf + header_size, substr_header_size);
  860. if ((((parity_bits >> 4) ^ parity_bits) & 0xF) != 0xF) {
  861. av_log(avctx, AV_LOG_ERROR, "Parity check failed.\n");
  862. goto error;
  863. }
  864. buf += header_size + substr_header_size;
  865. for (substr = 0; substr <= m->max_decoded_substream; substr++) {
  866. SubStream *s = &m->substream[substr];
  867. init_get_bits(&gb, buf, substream_data_len[substr] * 8);
  868. s->blockpos = 0;
  869. do {
  870. if (get_bits1(&gb)) {
  871. if (get_bits1(&gb)) {
  872. /* A restart header should be present. */
  873. if (read_restart_header(m, &gb, buf, substr) < 0)
  874. goto next_substr;
  875. s->restart_seen = 1;
  876. }
  877. if (!s->restart_seen) {
  878. av_log(m->avctx, AV_LOG_ERROR,
  879. "No restart header present in substream %d.\n",
  880. substr);
  881. goto next_substr;
  882. }
  883. if (read_decoding_params(m, &gb, substr) < 0)
  884. goto next_substr;
  885. }
  886. if (!s->restart_seen) {
  887. av_log(m->avctx, AV_LOG_ERROR,
  888. "No restart header present in substream %d.\n",
  889. substr);
  890. goto next_substr;
  891. }
  892. if (read_block_data(m, &gb, substr) < 0)
  893. return -1;
  894. } while ((get_bits_count(&gb) < substream_data_len[substr] * 8)
  895. && get_bits1(&gb) == 0);
  896. skip_bits(&gb, (-get_bits_count(&gb)) & 15);
  897. if (substream_data_len[substr] * 8 - get_bits_count(&gb) >= 48 &&
  898. (show_bits_long(&gb, 32) == 0xd234d234 ||
  899. show_bits_long(&gb, 20) == 0xd234e)) {
  900. skip_bits(&gb, 18);
  901. if (substr == m->max_decoded_substream)
  902. av_log(m->avctx, AV_LOG_INFO, "End of stream indicated.\n");
  903. if (get_bits1(&gb)) {
  904. int shorten_by = get_bits(&gb, 13);
  905. shorten_by = FFMIN(shorten_by, s->blockpos);
  906. s->blockpos -= shorten_by;
  907. } else
  908. skip_bits(&gb, 13);
  909. }
  910. if (substream_parity_present[substr]) {
  911. uint8_t parity, checksum;
  912. parity = calculate_parity(buf, substream_data_len[substr] - 2);
  913. if ((parity ^ get_bits(&gb, 8)) != 0xa9)
  914. av_log(m->avctx, AV_LOG_ERROR,
  915. "Substream %d parity check failed.\n", substr);
  916. checksum = mlp_checksum8(buf, substream_data_len[substr] - 2);
  917. if (checksum != get_bits(&gb, 8))
  918. av_log(m->avctx, AV_LOG_ERROR, "Substream %d checksum failed.\n",
  919. substr);
  920. }
  921. if (substream_data_len[substr] * 8 != get_bits_count(&gb)) {
  922. av_log(m->avctx, AV_LOG_ERROR, "substream %d length mismatch\n",
  923. substr);
  924. return -1;
  925. }
  926. next_substr:
  927. buf += substream_data_len[substr];
  928. }
  929. rematrix_channels(m, m->max_decoded_substream);
  930. if (output_data(m, m->max_decoded_substream, data, data_size) < 0)
  931. return -1;
  932. return length;
  933. error:
  934. m->params_valid = 0;
  935. return -1;
  936. }
  937. AVCodec mlp_decoder = {
  938. "mlp",
  939. CODEC_TYPE_AUDIO,
  940. CODEC_ID_MLP,
  941. sizeof(MLPDecodeContext),
  942. mlp_decode_init,
  943. NULL,
  944. NULL,
  945. read_access_unit,
  946. .long_name = NULL_IF_CONFIG_SMALL("Meridian Lossless Packing"),
  947. };