You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1199 lines
38KB

  1. /*
  2. * COOK compatible decoder
  3. * Copyright (c) 2003 Sascha Sommer
  4. * Copyright (c) 2005 Benjamin Larsson
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file cook.c
  24. * Cook compatible decoder. Bastardization of the G.722.1 standard.
  25. * This decoder handles RealNetworks, RealAudio G2 data.
  26. * Cook is identified by the codec name cook in RM files.
  27. *
  28. * To use this decoder, a calling application must supply the extradata
  29. * bytes provided from the RM container; 8+ bytes for mono streams and
  30. * 16+ for stereo streams (maybe more).
  31. *
  32. * Codec technicalities (all this assume a buffer length of 1024):
  33. * Cook works with several different techniques to achieve its compression.
  34. * In the timedomain the buffer is divided into 8 pieces and quantized. If
  35. * two neighboring pieces have different quantization index a smooth
  36. * quantization curve is used to get a smooth overlap between the different
  37. * pieces.
  38. * To get to the transformdomain Cook uses a modulated lapped transform.
  39. * The transform domain has 50 subbands with 20 elements each. This
  40. * means only a maximum of 50*20=1000 coefficients are used out of the 1024
  41. * available.
  42. */
  43. #include <math.h>
  44. #include <stddef.h>
  45. #include <stdio.h>
  46. #include "libavutil/random.h"
  47. #include "avcodec.h"
  48. #include "bitstream.h"
  49. #include "dsputil.h"
  50. #include "bytestream.h"
  51. #include "cookdata.h"
  52. /* the different Cook versions */
  53. #define MONO 0x1000001
  54. #define STEREO 0x1000002
  55. #define JOINT_STEREO 0x1000003
  56. #define MC_COOK 0x2000000 //multichannel Cook, not supported
  57. #define SUBBAND_SIZE 20
  58. //#define COOKDEBUG
  59. typedef struct {
  60. int *now;
  61. int *previous;
  62. } cook_gains;
  63. typedef struct cook {
  64. /*
  65. * The following 5 functions provide the lowlevel arithmetic on
  66. * the internal audio buffers.
  67. */
  68. void (* scalar_dequant)(struct cook *q, int index, int quant_index,
  69. int* subband_coef_index, int* subband_coef_sign,
  70. float* mlt_p);
  71. void (* decouple) (struct cook *q,
  72. int subband,
  73. float f1, float f2,
  74. float *decode_buffer,
  75. float *mlt_buffer1, float *mlt_buffer2);
  76. void (* imlt_window) (struct cook *q, float *buffer1,
  77. cook_gains *gains_ptr, float *previous_buffer);
  78. void (* interpolate) (struct cook *q, float* buffer,
  79. int gain_index, int gain_index_next);
  80. void (* saturate_output) (struct cook *q, int chan, int16_t *out);
  81. GetBitContext gb;
  82. /* stream data */
  83. int nb_channels;
  84. int joint_stereo;
  85. int bit_rate;
  86. int sample_rate;
  87. int samples_per_channel;
  88. int samples_per_frame;
  89. int subbands;
  90. int log2_numvector_size;
  91. int numvector_size; //1 << log2_numvector_size;
  92. int js_subband_start;
  93. int total_subbands;
  94. int num_vectors;
  95. int bits_per_subpacket;
  96. int cookversion;
  97. /* states */
  98. AVRandomState random_state;
  99. /* transform data */
  100. MDCTContext mdct_ctx;
  101. DECLARE_ALIGNED_16(FFTSample, mdct_tmp[1024]); /* temporary storage for imlt */
  102. float* mlt_window;
  103. /* gain buffers */
  104. cook_gains gains1;
  105. cook_gains gains2;
  106. int gain_1[9];
  107. int gain_2[9];
  108. int gain_3[9];
  109. int gain_4[9];
  110. /* VLC data */
  111. int js_vlc_bits;
  112. VLC envelope_quant_index[13];
  113. VLC sqvh[7]; //scalar quantization
  114. VLC ccpl; //channel coupling
  115. /* generatable tables and related variables */
  116. int gain_size_factor;
  117. float gain_table[23];
  118. /* data buffers */
  119. uint8_t* decoded_bytes_buffer;
  120. DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
  121. float mono_previous_buffer1[1024];
  122. float mono_previous_buffer2[1024];
  123. float decode_buffer_1[1024];
  124. float decode_buffer_2[1024];
  125. float decode_buffer_0[1060]; /* static allocation for joint decode */
  126. const float *cplscales[5];
  127. } COOKContext;
  128. static float pow2tab[127];
  129. static float rootpow2tab[127];
  130. /* debug functions */
  131. #ifdef COOKDEBUG
  132. static void dump_float_table(float* table, int size, int delimiter) {
  133. int i=0;
  134. av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
  135. for (i=0 ; i<size ; i++) {
  136. av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
  137. if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
  138. }
  139. }
  140. static void dump_int_table(int* table, int size, int delimiter) {
  141. int i=0;
  142. av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
  143. for (i=0 ; i<size ; i++) {
  144. av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
  145. if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
  146. }
  147. }
  148. static void dump_short_table(short* table, int size, int delimiter) {
  149. int i=0;
  150. av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
  151. for (i=0 ; i<size ; i++) {
  152. av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
  153. if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
  154. }
  155. }
  156. #endif
  157. /*************** init functions ***************/
  158. /* table generator */
  159. static void init_pow2table(void){
  160. int i;
  161. for (i=-63 ; i<64 ; i++){
  162. pow2tab[63+i]= pow(2, i);
  163. rootpow2tab[63+i]=sqrt(pow(2, i));
  164. }
  165. }
  166. /* table generator */
  167. static void init_gain_table(COOKContext *q) {
  168. int i;
  169. q->gain_size_factor = q->samples_per_channel/8;
  170. for (i=0 ; i<23 ; i++) {
  171. q->gain_table[i] = pow(pow2tab[i+52] ,
  172. (1.0/(double)q->gain_size_factor));
  173. }
  174. }
  175. static int init_cook_vlc_tables(COOKContext *q) {
  176. int i, result;
  177. result = 0;
  178. for (i=0 ; i<13 ; i++) {
  179. result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
  180. envelope_quant_index_huffbits[i], 1, 1,
  181. envelope_quant_index_huffcodes[i], 2, 2, 0);
  182. }
  183. av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
  184. for (i=0 ; i<7 ; i++) {
  185. result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
  186. cvh_huffbits[i], 1, 1,
  187. cvh_huffcodes[i], 2, 2, 0);
  188. }
  189. if (q->nb_channels==2 && q->joint_stereo==1){
  190. result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
  191. ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
  192. ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
  193. av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
  194. }
  195. av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
  196. return result;
  197. }
  198. static int init_cook_mlt(COOKContext *q) {
  199. int j;
  200. int mlt_size = q->samples_per_channel;
  201. if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
  202. return -1;
  203. /* Initialize the MLT window: simple sine window. */
  204. ff_sine_window_init(q->mlt_window, mlt_size);
  205. for(j=0 ; j<mlt_size ; j++)
  206. q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
  207. /* Initialize the MDCT. */
  208. if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
  209. av_free(q->mlt_window);
  210. return -1;
  211. }
  212. av_log(NULL,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
  213. av_log2(mlt_size)+1);
  214. return 0;
  215. }
  216. static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
  217. {
  218. if (1)
  219. return ptr;
  220. }
  221. static void init_cplscales_table (COOKContext *q) {
  222. int i;
  223. for (i=0;i<5;i++)
  224. q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
  225. }
  226. /*************** init functions end ***********/
  227. /**
  228. * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
  229. * Why? No idea, some checksum/error detection method maybe.
  230. *
  231. * Out buffer size: extra bytes are needed to cope with
  232. * padding/misalignment.
  233. * Subpackets passed to the decoder can contain two, consecutive
  234. * half-subpackets, of identical but arbitrary size.
  235. * 1234 1234 1234 1234 extraA extraB
  236. * Case 1: AAAA BBBB 0 0
  237. * Case 2: AAAA ABBB BB-- 3 3
  238. * Case 3: AAAA AABB BBBB 2 2
  239. * Case 4: AAAA AAAB BBBB BB-- 1 5
  240. *
  241. * Nice way to waste CPU cycles.
  242. *
  243. * @param inbuffer pointer to byte array of indata
  244. * @param out pointer to byte array of outdata
  245. * @param bytes number of bytes
  246. */
  247. #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
  248. #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
  249. static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
  250. int i, off;
  251. uint32_t c;
  252. const uint32_t* buf;
  253. uint32_t* obuf = (uint32_t*) out;
  254. /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
  255. * I'm too lazy though, should be something like
  256. * for(i=0 ; i<bitamount/64 ; i++)
  257. * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
  258. * Buffer alignment needs to be checked. */
  259. off = (int)((long)inbuffer & 3);
  260. buf = (const uint32_t*) (inbuffer - off);
  261. c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
  262. bytes += 3 + off;
  263. for (i = 0; i < bytes/4; i++)
  264. obuf[i] = c ^ buf[i];
  265. return off;
  266. }
  267. /**
  268. * Cook uninit
  269. */
  270. static int cook_decode_close(AVCodecContext *avctx)
  271. {
  272. int i;
  273. COOKContext *q = avctx->priv_data;
  274. av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
  275. /* Free allocated memory buffers. */
  276. av_free(q->mlt_window);
  277. av_free(q->decoded_bytes_buffer);
  278. /* Free the transform. */
  279. ff_mdct_end(&q->mdct_ctx);
  280. /* Free the VLC tables. */
  281. for (i=0 ; i<13 ; i++) {
  282. free_vlc(&q->envelope_quant_index[i]);
  283. }
  284. for (i=0 ; i<7 ; i++) {
  285. free_vlc(&q->sqvh[i]);
  286. }
  287. if(q->nb_channels==2 && q->joint_stereo==1 ){
  288. free_vlc(&q->ccpl);
  289. }
  290. av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
  291. return 0;
  292. }
  293. /**
  294. * Fill the gain array for the timedomain quantization.
  295. *
  296. * @param q pointer to the COOKContext
  297. * @param gaininfo[9] array of gain indexes
  298. */
  299. static void decode_gain_info(GetBitContext *gb, int *gaininfo)
  300. {
  301. int i, n;
  302. while (get_bits1(gb)) {}
  303. n = get_bits_count(gb) - 1; //amount of elements*2 to update
  304. i = 0;
  305. while (n--) {
  306. int index = get_bits(gb, 3);
  307. int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
  308. while (i <= index) gaininfo[i++] = gain;
  309. }
  310. while (i <= 8) gaininfo[i++] = 0;
  311. }
  312. /**
  313. * Create the quant index table needed for the envelope.
  314. *
  315. * @param q pointer to the COOKContext
  316. * @param quant_index_table pointer to the array
  317. */
  318. static void decode_envelope(COOKContext *q, int* quant_index_table) {
  319. int i,j, vlc_index;
  320. quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
  321. for (i=1 ; i < q->total_subbands ; i++){
  322. vlc_index=i;
  323. if (i >= q->js_subband_start * 2) {
  324. vlc_index-=q->js_subband_start;
  325. } else {
  326. vlc_index/=2;
  327. if(vlc_index < 1) vlc_index = 1;
  328. }
  329. if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
  330. j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
  331. q->envelope_quant_index[vlc_index-1].bits,2);
  332. quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
  333. }
  334. }
  335. /**
  336. * Calculate the category and category_index vector.
  337. *
  338. * @param q pointer to the COOKContext
  339. * @param quant_index_table pointer to the array
  340. * @param category pointer to the category array
  341. * @param category_index pointer to the category_index array
  342. */
  343. static void categorize(COOKContext *q, int* quant_index_table,
  344. int* category, int* category_index){
  345. int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
  346. int exp_index2[102];
  347. int exp_index1[102];
  348. int tmp_categorize_array[128*2];
  349. int tmp_categorize_array1_idx=q->numvector_size;
  350. int tmp_categorize_array2_idx=q->numvector_size;
  351. bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
  352. if(bits_left > q->samples_per_channel) {
  353. bits_left = q->samples_per_channel +
  354. ((bits_left - q->samples_per_channel)*5)/8;
  355. //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
  356. }
  357. memset(&exp_index1,0,102*sizeof(int));
  358. memset(&exp_index2,0,102*sizeof(int));
  359. memset(&tmp_categorize_array,0,128*2*sizeof(int));
  360. bias=-32;
  361. /* Estimate bias. */
  362. for (i=32 ; i>0 ; i=i/2){
  363. num_bits = 0;
  364. index = 0;
  365. for (j=q->total_subbands ; j>0 ; j--){
  366. exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
  367. index++;
  368. num_bits+=expbits_tab[exp_idx];
  369. }
  370. if(num_bits >= bits_left - 32){
  371. bias+=i;
  372. }
  373. }
  374. /* Calculate total number of bits. */
  375. num_bits=0;
  376. for (i=0 ; i<q->total_subbands ; i++) {
  377. exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
  378. num_bits += expbits_tab[exp_idx];
  379. exp_index1[i] = exp_idx;
  380. exp_index2[i] = exp_idx;
  381. }
  382. tmpbias1 = tmpbias2 = num_bits;
  383. for (j = 1 ; j < q->numvector_size ; j++) {
  384. if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
  385. int max = -999999;
  386. index=-1;
  387. for (i=0 ; i<q->total_subbands ; i++){
  388. if (exp_index1[i] < 7) {
  389. v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
  390. if ( v >= max) {
  391. max = v;
  392. index = i;
  393. }
  394. }
  395. }
  396. if(index==-1)break;
  397. tmp_categorize_array[tmp_categorize_array1_idx++] = index;
  398. tmpbias1 -= expbits_tab[exp_index1[index]] -
  399. expbits_tab[exp_index1[index]+1];
  400. ++exp_index1[index];
  401. } else { /* <--- */
  402. int min = 999999;
  403. index=-1;
  404. for (i=0 ; i<q->total_subbands ; i++){
  405. if(exp_index2[i] > 0){
  406. v = (-2*exp_index2[i])-quant_index_table[i]+bias;
  407. if ( v < min) {
  408. min = v;
  409. index = i;
  410. }
  411. }
  412. }
  413. if(index == -1)break;
  414. tmp_categorize_array[--tmp_categorize_array2_idx] = index;
  415. tmpbias2 -= expbits_tab[exp_index2[index]] -
  416. expbits_tab[exp_index2[index]-1];
  417. --exp_index2[index];
  418. }
  419. }
  420. for(i=0 ; i<q->total_subbands ; i++)
  421. category[i] = exp_index2[i];
  422. for(i=0 ; i<q->numvector_size-1 ; i++)
  423. category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
  424. }
  425. /**
  426. * Expand the category vector.
  427. *
  428. * @param q pointer to the COOKContext
  429. * @param category pointer to the category array
  430. * @param category_index pointer to the category_index array
  431. */
  432. static inline void expand_category(COOKContext *q, int* category,
  433. int* category_index){
  434. int i;
  435. for(i=0 ; i<q->num_vectors ; i++){
  436. ++category[category_index[i]];
  437. }
  438. }
  439. /**
  440. * The real requantization of the mltcoefs
  441. *
  442. * @param q pointer to the COOKContext
  443. * @param index index
  444. * @param quant_index quantisation index
  445. * @param subband_coef_index array of indexes to quant_centroid_tab
  446. * @param subband_coef_sign signs of coefficients
  447. * @param mlt_p pointer into the mlt buffer
  448. */
  449. static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
  450. int* subband_coef_index, int* subband_coef_sign,
  451. float* mlt_p){
  452. int i;
  453. float f1;
  454. for(i=0 ; i<SUBBAND_SIZE ; i++) {
  455. if (subband_coef_index[i]) {
  456. f1 = quant_centroid_tab[index][subband_coef_index[i]];
  457. if (subband_coef_sign[i]) f1 = -f1;
  458. } else {
  459. /* noise coding if subband_coef_index[i] == 0 */
  460. f1 = dither_tab[index];
  461. if (av_random(&q->random_state) < 0x80000000) f1 = -f1;
  462. }
  463. mlt_p[i] = f1 * rootpow2tab[quant_index+63];
  464. }
  465. }
  466. /**
  467. * Unpack the subband_coef_index and subband_coef_sign vectors.
  468. *
  469. * @param q pointer to the COOKContext
  470. * @param category pointer to the category array
  471. * @param subband_coef_index array of indexes to quant_centroid_tab
  472. * @param subband_coef_sign signs of coefficients
  473. */
  474. static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
  475. int* subband_coef_sign) {
  476. int i,j;
  477. int vlc, vd ,tmp, result;
  478. vd = vd_tab[category];
  479. result = 0;
  480. for(i=0 ; i<vpr_tab[category] ; i++){
  481. vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
  482. if (q->bits_per_subpacket < get_bits_count(&q->gb)){
  483. vlc = 0;
  484. result = 1;
  485. }
  486. for(j=vd-1 ; j>=0 ; j--){
  487. tmp = (vlc * invradix_tab[category])/0x100000;
  488. subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
  489. vlc = tmp;
  490. }
  491. for(j=0 ; j<vd ; j++){
  492. if (subband_coef_index[i*vd + j]) {
  493. if(get_bits_count(&q->gb) < q->bits_per_subpacket){
  494. subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
  495. } else {
  496. result=1;
  497. subband_coef_sign[i*vd+j]=0;
  498. }
  499. } else {
  500. subband_coef_sign[i*vd+j]=0;
  501. }
  502. }
  503. }
  504. return result;
  505. }
  506. /**
  507. * Fill the mlt_buffer with mlt coefficients.
  508. *
  509. * @param q pointer to the COOKContext
  510. * @param category pointer to the category array
  511. * @param quant_index_table pointer to the array
  512. * @param mlt_buffer pointer to mlt coefficients
  513. */
  514. static void decode_vectors(COOKContext* q, int* category,
  515. int *quant_index_table, float* mlt_buffer){
  516. /* A zero in this table means that the subband coefficient is
  517. random noise coded. */
  518. int subband_coef_index[SUBBAND_SIZE];
  519. /* A zero in this table means that the subband coefficient is a
  520. positive multiplicator. */
  521. int subband_coef_sign[SUBBAND_SIZE];
  522. int band, j;
  523. int index=0;
  524. for(band=0 ; band<q->total_subbands ; band++){
  525. index = category[band];
  526. if(category[band] < 7){
  527. if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
  528. index=7;
  529. for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
  530. }
  531. }
  532. if(index==7) {
  533. memset(subband_coef_index, 0, sizeof(subband_coef_index));
  534. memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
  535. }
  536. q->scalar_dequant(q, index, quant_index_table[band],
  537. subband_coef_index, subband_coef_sign,
  538. &mlt_buffer[band * SUBBAND_SIZE]);
  539. }
  540. if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
  541. return;
  542. } /* FIXME: should this be removed, or moved into loop above? */
  543. }
  544. /**
  545. * function for decoding mono data
  546. *
  547. * @param q pointer to the COOKContext
  548. * @param mlt_buffer pointer to mlt coefficients
  549. */
  550. static void mono_decode(COOKContext *q, float* mlt_buffer) {
  551. int category_index[128];
  552. int quant_index_table[102];
  553. int category[128];
  554. memset(&category, 0, 128*sizeof(int));
  555. memset(&category_index, 0, 128*sizeof(int));
  556. decode_envelope(q, quant_index_table);
  557. q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
  558. categorize(q, quant_index_table, category, category_index);
  559. expand_category(q, category, category_index);
  560. decode_vectors(q, category, quant_index_table, mlt_buffer);
  561. }
  562. /**
  563. * the actual requantization of the timedomain samples
  564. *
  565. * @param q pointer to the COOKContext
  566. * @param buffer pointer to the timedomain buffer
  567. * @param gain_index index for the block multiplier
  568. * @param gain_index_next index for the next block multiplier
  569. */
  570. static void interpolate_float(COOKContext *q, float* buffer,
  571. int gain_index, int gain_index_next){
  572. int i;
  573. float fc1, fc2;
  574. fc1 = pow2tab[gain_index+63];
  575. if(gain_index == gain_index_next){ //static gain
  576. for(i=0 ; i<q->gain_size_factor ; i++){
  577. buffer[i]*=fc1;
  578. }
  579. return;
  580. } else { //smooth gain
  581. fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
  582. for(i=0 ; i<q->gain_size_factor ; i++){
  583. buffer[i]*=fc1;
  584. fc1*=fc2;
  585. }
  586. return;
  587. }
  588. }
  589. /**
  590. * Apply transform window, overlap buffers.
  591. *
  592. * @param q pointer to the COOKContext
  593. * @param inbuffer pointer to the mltcoefficients
  594. * @param gains_ptr current and previous gains
  595. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  596. */
  597. static void imlt_window_float (COOKContext *q, float *buffer1,
  598. cook_gains *gains_ptr, float *previous_buffer)
  599. {
  600. const float fc = pow2tab[gains_ptr->previous[0] + 63];
  601. int i;
  602. /* The weird thing here, is that the two halves of the time domain
  603. * buffer are swapped. Also, the newest data, that we save away for
  604. * next frame, has the wrong sign. Hence the subtraction below.
  605. * Almost sounds like a complex conjugate/reverse data/FFT effect.
  606. */
  607. /* Apply window and overlap */
  608. for(i = 0; i < q->samples_per_channel; i++){
  609. buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
  610. previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
  611. }
  612. }
  613. /**
  614. * The modulated lapped transform, this takes transform coefficients
  615. * and transforms them into timedomain samples.
  616. * Apply transform window, overlap buffers, apply gain profile
  617. * and buffer management.
  618. *
  619. * @param q pointer to the COOKContext
  620. * @param inbuffer pointer to the mltcoefficients
  621. * @param gains_ptr current and previous gains
  622. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  623. */
  624. static void imlt_gain(COOKContext *q, float *inbuffer,
  625. cook_gains *gains_ptr, float* previous_buffer)
  626. {
  627. float *buffer0 = q->mono_mdct_output;
  628. float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
  629. int i;
  630. /* Inverse modified discrete cosine transform */
  631. q->mdct_ctx.fft.imdct_calc(&q->mdct_ctx, q->mono_mdct_output,
  632. inbuffer, q->mdct_tmp);
  633. q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
  634. /* Apply gain profile */
  635. for (i = 0; i < 8; i++) {
  636. if (gains_ptr->now[i] || gains_ptr->now[i + 1])
  637. q->interpolate(q, &buffer1[q->gain_size_factor * i],
  638. gains_ptr->now[i], gains_ptr->now[i + 1]);
  639. }
  640. /* Save away the current to be previous block. */
  641. memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
  642. }
  643. /**
  644. * function for getting the jointstereo coupling information
  645. *
  646. * @param q pointer to the COOKContext
  647. * @param decouple_tab decoupling array
  648. *
  649. */
  650. static void decouple_info(COOKContext *q, int* decouple_tab){
  651. int length, i;
  652. if(get_bits1(&q->gb)) {
  653. if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
  654. length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
  655. for (i=0 ; i<length ; i++) {
  656. decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
  657. }
  658. return;
  659. }
  660. if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
  661. length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
  662. for (i=0 ; i<length ; i++) {
  663. decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
  664. }
  665. return;
  666. }
  667. /*
  668. * function decouples a pair of signals from a single signal via multiplication.
  669. *
  670. * @param q pointer to the COOKContext
  671. * @param subband index of the current subband
  672. * @param f1 multiplier for channel 1 extraction
  673. * @param f2 multiplier for channel 2 extraction
  674. * @param decode_buffer input buffer
  675. * @param mlt_buffer1 pointer to left channel mlt coefficients
  676. * @param mlt_buffer2 pointer to right channel mlt coefficients
  677. */
  678. static void decouple_float (COOKContext *q,
  679. int subband,
  680. float f1, float f2,
  681. float *decode_buffer,
  682. float *mlt_buffer1, float *mlt_buffer2)
  683. {
  684. int j, tmp_idx;
  685. for (j=0 ; j<SUBBAND_SIZE ; j++) {
  686. tmp_idx = ((q->js_subband_start + subband)*SUBBAND_SIZE)+j;
  687. mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
  688. mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
  689. }
  690. }
  691. /**
  692. * function for decoding joint stereo data
  693. *
  694. * @param q pointer to the COOKContext
  695. * @param mlt_buffer1 pointer to left channel mlt coefficients
  696. * @param mlt_buffer2 pointer to right channel mlt coefficients
  697. */
  698. static void joint_decode(COOKContext *q, float* mlt_buffer1,
  699. float* mlt_buffer2) {
  700. int i,j;
  701. int decouple_tab[SUBBAND_SIZE];
  702. float *decode_buffer = q->decode_buffer_0;
  703. int idx, cpl_tmp;
  704. float f1,f2;
  705. const float* cplscale;
  706. memset(decouple_tab, 0, sizeof(decouple_tab));
  707. memset(decode_buffer, 0, sizeof(decode_buffer));
  708. /* Make sure the buffers are zeroed out. */
  709. memset(mlt_buffer1,0, 1024*sizeof(float));
  710. memset(mlt_buffer2,0, 1024*sizeof(float));
  711. decouple_info(q, decouple_tab);
  712. mono_decode(q, decode_buffer);
  713. /* The two channels are stored interleaved in decode_buffer. */
  714. for (i=0 ; i<q->js_subband_start ; i++) {
  715. for (j=0 ; j<SUBBAND_SIZE ; j++) {
  716. mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
  717. mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
  718. }
  719. }
  720. /* When we reach js_subband_start (the higher frequencies)
  721. the coefficients are stored in a coupling scheme. */
  722. idx = (1 << q->js_vlc_bits) - 1;
  723. for (i=q->js_subband_start ; i<q->subbands ; i++) {
  724. cpl_tmp = cplband[i];
  725. idx -=decouple_tab[cpl_tmp];
  726. cplscale = q->cplscales[q->js_vlc_bits-2]; //choose decoupler table
  727. f1 = cplscale[decouple_tab[cpl_tmp]];
  728. f2 = cplscale[idx-1];
  729. q->decouple (q, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
  730. idx = (1 << q->js_vlc_bits) - 1;
  731. }
  732. }
  733. /**
  734. * First part of subpacket decoding:
  735. * decode raw stream bytes and read gain info.
  736. *
  737. * @param q pointer to the COOKContext
  738. * @param inbuffer pointer to raw stream data
  739. * @param gain_ptr array of current/prev gain pointers
  740. */
  741. static inline void
  742. decode_bytes_and_gain(COOKContext *q, const uint8_t *inbuffer,
  743. cook_gains *gains_ptr)
  744. {
  745. int offset;
  746. offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
  747. q->bits_per_subpacket/8);
  748. init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
  749. q->bits_per_subpacket);
  750. decode_gain_info(&q->gb, gains_ptr->now);
  751. /* Swap current and previous gains */
  752. FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
  753. }
  754. /**
  755. * Saturate the output signal to signed 16bit integers.
  756. *
  757. * @param q pointer to the COOKContext
  758. * @param chan channel to saturate
  759. * @param out pointer to the output vector
  760. */
  761. static void
  762. saturate_output_float (COOKContext *q, int chan, int16_t *out)
  763. {
  764. int j;
  765. float *output = q->mono_mdct_output + q->samples_per_channel;
  766. /* Clip and convert floats to 16 bits.
  767. */
  768. for (j = 0; j < q->samples_per_channel; j++) {
  769. out[chan + q->nb_channels * j] =
  770. av_clip_int16(lrintf(output[j]));
  771. }
  772. }
  773. /**
  774. * Final part of subpacket decoding:
  775. * Apply modulated lapped transform, gain compensation,
  776. * clip and convert to integer.
  777. *
  778. * @param q pointer to the COOKContext
  779. * @param decode_buffer pointer to the mlt coefficients
  780. * @param gain_ptr array of current/prev gain pointers
  781. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  782. * @param out pointer to the output buffer
  783. * @param chan 0: left or single channel, 1: right channel
  784. */
  785. static inline void
  786. mlt_compensate_output(COOKContext *q, float *decode_buffer,
  787. cook_gains *gains, float *previous_buffer,
  788. int16_t *out, int chan)
  789. {
  790. imlt_gain(q, decode_buffer, gains, previous_buffer);
  791. q->saturate_output (q, chan, out);
  792. }
  793. /**
  794. * Cook subpacket decoding. This function returns one decoded subpacket,
  795. * usually 1024 samples per channel.
  796. *
  797. * @param q pointer to the COOKContext
  798. * @param inbuffer pointer to the inbuffer
  799. * @param sub_packet_size subpacket size
  800. * @param outbuffer pointer to the outbuffer
  801. */
  802. static int decode_subpacket(COOKContext *q, const uint8_t *inbuffer,
  803. int sub_packet_size, int16_t *outbuffer) {
  804. /* packet dump */
  805. // for (i=0 ; i<sub_packet_size ; i++) {
  806. // av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
  807. // }
  808. // av_log(NULL, AV_LOG_ERROR, "\n");
  809. decode_bytes_and_gain(q, inbuffer, &q->gains1);
  810. if (q->joint_stereo) {
  811. joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
  812. } else {
  813. mono_decode(q, q->decode_buffer_1);
  814. if (q->nb_channels == 2) {
  815. decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
  816. mono_decode(q, q->decode_buffer_2);
  817. }
  818. }
  819. mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
  820. q->mono_previous_buffer1, outbuffer, 0);
  821. if (q->nb_channels == 2) {
  822. if (q->joint_stereo) {
  823. mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
  824. q->mono_previous_buffer2, outbuffer, 1);
  825. } else {
  826. mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
  827. q->mono_previous_buffer2, outbuffer, 1);
  828. }
  829. }
  830. return q->samples_per_frame * sizeof(int16_t);
  831. }
  832. /**
  833. * Cook frame decoding
  834. *
  835. * @param avctx pointer to the AVCodecContext
  836. */
  837. static int cook_decode_frame(AVCodecContext *avctx,
  838. void *data, int *data_size,
  839. const uint8_t *buf, int buf_size) {
  840. COOKContext *q = avctx->priv_data;
  841. if (buf_size < avctx->block_align)
  842. return buf_size;
  843. *data_size = decode_subpacket(q, buf, avctx->block_align, data);
  844. /* Discard the first two frames: no valid audio. */
  845. if (avctx->frame_number < 2) *data_size = 0;
  846. return avctx->block_align;
  847. }
  848. #ifdef COOKDEBUG
  849. static void dump_cook_context(COOKContext *q)
  850. {
  851. //int i=0;
  852. #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
  853. av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
  854. av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
  855. if (q->cookversion > STEREO) {
  856. PRINT("js_subband_start",q->js_subband_start);
  857. PRINT("js_vlc_bits",q->js_vlc_bits);
  858. }
  859. av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
  860. PRINT("nb_channels",q->nb_channels);
  861. PRINT("bit_rate",q->bit_rate);
  862. PRINT("sample_rate",q->sample_rate);
  863. PRINT("samples_per_channel",q->samples_per_channel);
  864. PRINT("samples_per_frame",q->samples_per_frame);
  865. PRINT("subbands",q->subbands);
  866. PRINT("random_state",q->random_state);
  867. PRINT("js_subband_start",q->js_subband_start);
  868. PRINT("log2_numvector_size",q->log2_numvector_size);
  869. PRINT("numvector_size",q->numvector_size);
  870. PRINT("total_subbands",q->total_subbands);
  871. }
  872. #endif
  873. /**
  874. * Cook initialization
  875. *
  876. * @param avctx pointer to the AVCodecContext
  877. */
  878. static int cook_decode_init(AVCodecContext *avctx)
  879. {
  880. COOKContext *q = avctx->priv_data;
  881. const uint8_t *edata_ptr = avctx->extradata;
  882. /* Take care of the codec specific extradata. */
  883. if (avctx->extradata_size <= 0) {
  884. av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
  885. return -1;
  886. } else {
  887. /* 8 for mono, 16 for stereo, ? for multichannel
  888. Swap to right endianness so we don't need to care later on. */
  889. av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
  890. if (avctx->extradata_size >= 8){
  891. q->cookversion = bytestream_get_be32(&edata_ptr);
  892. q->samples_per_frame = bytestream_get_be16(&edata_ptr);
  893. q->subbands = bytestream_get_be16(&edata_ptr);
  894. }
  895. if (avctx->extradata_size >= 16){
  896. bytestream_get_be32(&edata_ptr); //Unknown unused
  897. q->js_subband_start = bytestream_get_be16(&edata_ptr);
  898. q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
  899. }
  900. }
  901. /* Take data from the AVCodecContext (RM container). */
  902. q->sample_rate = avctx->sample_rate;
  903. q->nb_channels = avctx->channels;
  904. q->bit_rate = avctx->bit_rate;
  905. /* Initialize RNG. */
  906. av_init_random(1, &q->random_state);
  907. /* Initialize extradata related variables. */
  908. q->samples_per_channel = q->samples_per_frame / q->nb_channels;
  909. q->bits_per_subpacket = avctx->block_align * 8;
  910. /* Initialize default data states. */
  911. q->log2_numvector_size = 5;
  912. q->total_subbands = q->subbands;
  913. /* Initialize version-dependent variables */
  914. av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
  915. q->joint_stereo = 0;
  916. switch (q->cookversion) {
  917. case MONO:
  918. if (q->nb_channels != 1) {
  919. av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
  920. return -1;
  921. }
  922. av_log(avctx,AV_LOG_DEBUG,"MONO\n");
  923. break;
  924. case STEREO:
  925. if (q->nb_channels != 1) {
  926. q->bits_per_subpacket = q->bits_per_subpacket/2;
  927. }
  928. av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
  929. break;
  930. case JOINT_STEREO:
  931. if (q->nb_channels != 2) {
  932. av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
  933. return -1;
  934. }
  935. av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
  936. if (avctx->extradata_size >= 16){
  937. q->total_subbands = q->subbands + q->js_subband_start;
  938. q->joint_stereo = 1;
  939. }
  940. if (q->samples_per_channel > 256) {
  941. q->log2_numvector_size = 6;
  942. }
  943. if (q->samples_per_channel > 512) {
  944. q->log2_numvector_size = 7;
  945. }
  946. break;
  947. case MC_COOK:
  948. av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
  949. return -1;
  950. break;
  951. default:
  952. av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
  953. return -1;
  954. break;
  955. }
  956. /* Initialize variable relations */
  957. q->numvector_size = (1 << q->log2_numvector_size);
  958. /* Generate tables */
  959. init_pow2table();
  960. init_gain_table(q);
  961. init_cplscales_table(q);
  962. if (init_cook_vlc_tables(q) != 0)
  963. return -1;
  964. if(avctx->block_align >= UINT_MAX/2)
  965. return -1;
  966. /* Pad the databuffer with:
  967. DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
  968. FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
  969. if (q->nb_channels==2 && q->joint_stereo==0) {
  970. q->decoded_bytes_buffer =
  971. av_mallocz(avctx->block_align/2
  972. + DECODE_BYTES_PAD2(avctx->block_align/2)
  973. + FF_INPUT_BUFFER_PADDING_SIZE);
  974. } else {
  975. q->decoded_bytes_buffer =
  976. av_mallocz(avctx->block_align
  977. + DECODE_BYTES_PAD1(avctx->block_align)
  978. + FF_INPUT_BUFFER_PADDING_SIZE);
  979. }
  980. if (q->decoded_bytes_buffer == NULL)
  981. return -1;
  982. q->gains1.now = q->gain_1;
  983. q->gains1.previous = q->gain_2;
  984. q->gains2.now = q->gain_3;
  985. q->gains2.previous = q->gain_4;
  986. /* Initialize transform. */
  987. if ( init_cook_mlt(q) != 0 )
  988. return -1;
  989. /* Initialize COOK signal arithmetic handling */
  990. if (1) {
  991. q->scalar_dequant = scalar_dequant_float;
  992. q->decouple = decouple_float;
  993. q->imlt_window = imlt_window_float;
  994. q->interpolate = interpolate_float;
  995. q->saturate_output = saturate_output_float;
  996. }
  997. /* Try to catch some obviously faulty streams, othervise it might be exploitable */
  998. if (q->total_subbands > 53) {
  999. av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
  1000. return -1;
  1001. }
  1002. if (q->subbands > 50) {
  1003. av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
  1004. return -1;
  1005. }
  1006. if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
  1007. } else {
  1008. av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
  1009. return -1;
  1010. }
  1011. if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
  1012. av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
  1013. return -1;
  1014. }
  1015. #ifdef COOKDEBUG
  1016. dump_cook_context(q);
  1017. #endif
  1018. return 0;
  1019. }
  1020. AVCodec cook_decoder =
  1021. {
  1022. .name = "cook",
  1023. .type = CODEC_TYPE_AUDIO,
  1024. .id = CODEC_ID_COOK,
  1025. .priv_data_size = sizeof(COOKContext),
  1026. .init = cook_decode_init,
  1027. .close = cook_decode_close,
  1028. .decode = cook_decode_frame,
  1029. .long_name = NULL_IF_CONFIG_SMALL("COOK"),
  1030. };