You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

916 lines
30KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file ratecontrol.c
  22. * Rate control for video encoders.
  23. */
  24. #include "avcodec.h"
  25. #include "dsputil.h"
  26. #include "mpegvideo.h"
  27. #undef NDEBUG // allways check asserts, the speed effect is far too small to disable them
  28. #include <assert.h>
  29. #ifndef M_E
  30. #define M_E 2.718281828
  31. #endif
  32. static int init_pass2(MpegEncContext *s);
  33. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  34. void ff_write_pass1_stats(MpegEncContext *s){
  35. snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  36. s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type,
  37. s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  38. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
  39. }
  40. int ff_rate_control_init(MpegEncContext *s)
  41. {
  42. RateControlContext *rcc= &s->rc_context;
  43. int i;
  44. emms_c();
  45. for(i=0; i<5; i++){
  46. rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
  47. rcc->pred[i].count= 1.0;
  48. rcc->pred[i].decay= 0.4;
  49. rcc->i_cplx_sum [i]=
  50. rcc->p_cplx_sum [i]=
  51. rcc->mv_bits_sum[i]=
  52. rcc->qscale_sum [i]=
  53. rcc->frame_count[i]= 1; // 1 is better cuz of 1/0 and such
  54. rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
  55. }
  56. rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
  57. if(s->flags&CODEC_FLAG_PASS2){
  58. int i;
  59. char *p;
  60. /* find number of pics */
  61. p= s->avctx->stats_in;
  62. for(i=-1; p; i++){
  63. p= strchr(p+1, ';');
  64. }
  65. i+= s->max_b_frames;
  66. if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
  67. return -1;
  68. rcc->entry = (RateControlEntry*)av_mallocz(i*sizeof(RateControlEntry));
  69. rcc->num_entries= i;
  70. /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  71. for(i=0; i<rcc->num_entries; i++){
  72. RateControlEntry *rce= &rcc->entry[i];
  73. rce->pict_type= rce->new_pict_type=P_TYPE;
  74. rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
  75. rce->misc_bits= s->mb_num + 10;
  76. rce->mb_var_sum= s->mb_num*100;
  77. }
  78. /* read stats */
  79. p= s->avctx->stats_in;
  80. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  81. RateControlEntry *rce;
  82. int picture_number;
  83. int e;
  84. char *next;
  85. next= strchr(p, ';');
  86. if(next){
  87. (*next)=0; //sscanf in unbelieavle slow on looong strings //FIXME copy / dont write
  88. next++;
  89. }
  90. e= sscanf(p, " in:%d ", &picture_number);
  91. assert(picture_number >= 0);
  92. assert(picture_number < rcc->num_entries);
  93. rce= &rcc->entry[picture_number];
  94. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  95. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  96. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
  97. if(e!=14){
  98. av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
  99. return -1;
  100. }
  101. p= next;
  102. }
  103. #ifdef CONFIG_XVID
  104. //FIXME maybe move to end
  105. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  106. return ff_xvid_rate_control_init(s);
  107. #endif
  108. if(init_pass2(s) < 0) return -1;
  109. }
  110. if(!(s->flags&CODEC_FLAG_PASS2)){
  111. rcc->short_term_qsum=0.001;
  112. rcc->short_term_qcount=0.001;
  113. rcc->pass1_rc_eq_output_sum= 0.001;
  114. rcc->pass1_wanted_bits=0.001;
  115. /* init stuff with the user specified complexity */
  116. if(s->avctx->rc_initial_cplx){
  117. for(i=0; i<60*30; i++){
  118. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  119. RateControlEntry rce;
  120. double q;
  121. if (i%((s->gop_size+3)/4)==0) rce.pict_type= I_TYPE;
  122. else if(i%(s->max_b_frames+1)) rce.pict_type= B_TYPE;
  123. else rce.pict_type= P_TYPE;
  124. rce.new_pict_type= rce.pict_type;
  125. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  126. rce.mb_var_sum = s->mb_num;
  127. rce.qscale = FF_QP2LAMBDA * 2;
  128. rce.f_code = 2;
  129. rce.b_code = 1;
  130. rce.misc_bits= 1;
  131. if(s->pict_type== I_TYPE){
  132. rce.i_count = s->mb_num;
  133. rce.i_tex_bits= bits;
  134. rce.p_tex_bits= 0;
  135. rce.mv_bits= 0;
  136. }else{
  137. rce.i_count = 0; //FIXME we do know this approx
  138. rce.i_tex_bits= 0;
  139. rce.p_tex_bits= bits*0.9;
  140. rce.mv_bits= bits*0.1;
  141. }
  142. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  143. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  144. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  145. rcc->frame_count[rce.pict_type] ++;
  146. bits= rce.i_tex_bits + rce.p_tex_bits;
  147. q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  148. rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME missbehaves a little for variable fps
  149. }
  150. }
  151. }
  152. return 0;
  153. }
  154. void ff_rate_control_uninit(MpegEncContext *s)
  155. {
  156. RateControlContext *rcc= &s->rc_context;
  157. emms_c();
  158. av_freep(&rcc->entry);
  159. #ifdef CONFIG_XVID
  160. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  161. ff_xvid_rate_control_uninit(s);
  162. #endif
  163. }
  164. static inline double qp2bits(RateControlEntry *rce, double qp){
  165. if(qp<=0.0){
  166. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  167. }
  168. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  169. }
  170. static inline double bits2qp(RateControlEntry *rce, double bits){
  171. if(bits<0.9){
  172. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  173. }
  174. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  175. }
  176. int ff_vbv_update(MpegEncContext *s, int frame_size){
  177. RateControlContext *rcc= &s->rc_context;
  178. const double fps= 1/av_q2d(s->avctx->time_base);
  179. const int buffer_size= s->avctx->rc_buffer_size;
  180. const double min_rate= s->avctx->rc_min_rate/fps;
  181. const double max_rate= s->avctx->rc_max_rate/fps;
  182. //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  183. if(buffer_size){
  184. int left;
  185. rcc->buffer_index-= frame_size;
  186. if(rcc->buffer_index < 0){
  187. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  188. rcc->buffer_index= 0;
  189. }
  190. left= buffer_size - rcc->buffer_index - 1;
  191. rcc->buffer_index += clip(left, min_rate, max_rate);
  192. if(rcc->buffer_index > buffer_size){
  193. int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
  194. if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4)
  195. stuffing=4;
  196. rcc->buffer_index -= 8*stuffing;
  197. if(s->avctx->debug & FF_DEBUG_RC)
  198. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  199. return stuffing;
  200. }
  201. }
  202. return 0;
  203. }
  204. /**
  205. * modifies the bitrate curve from pass1 for one frame
  206. */
  207. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  208. RateControlContext *rcc= &s->rc_context;
  209. AVCodecContext *a= s->avctx;
  210. double q, bits;
  211. const int pict_type= rce->new_pict_type;
  212. const double mb_num= s->mb_num;
  213. int i;
  214. double const_values[]={
  215. M_PI,
  216. M_E,
  217. rce->i_tex_bits*rce->qscale,
  218. rce->p_tex_bits*rce->qscale,
  219. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  220. rce->mv_bits/mb_num,
  221. rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  222. rce->i_count/mb_num,
  223. rce->mc_mb_var_sum/mb_num,
  224. rce->mb_var_sum/mb_num,
  225. rce->pict_type == I_TYPE,
  226. rce->pict_type == P_TYPE,
  227. rce->pict_type == B_TYPE,
  228. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  229. a->qcompress,
  230. /* rcc->last_qscale_for[I_TYPE],
  231. rcc->last_qscale_for[P_TYPE],
  232. rcc->last_qscale_for[B_TYPE],
  233. rcc->next_non_b_qscale,*/
  234. rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE],
  235. rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  236. rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  237. rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE],
  238. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  239. 0
  240. };
  241. static const char *const_names[]={
  242. "PI",
  243. "E",
  244. "iTex",
  245. "pTex",
  246. "tex",
  247. "mv",
  248. "fCode",
  249. "iCount",
  250. "mcVar",
  251. "var",
  252. "isI",
  253. "isP",
  254. "isB",
  255. "avgQP",
  256. "qComp",
  257. /* "lastIQP",
  258. "lastPQP",
  259. "lastBQP",
  260. "nextNonBQP",*/
  261. "avgIITex",
  262. "avgPITex",
  263. "avgPPTex",
  264. "avgBPTex",
  265. "avgTex",
  266. NULL
  267. };
  268. static double (*func1[])(void *, double)={
  269. (void *)bits2qp,
  270. (void *)qp2bits,
  271. NULL
  272. };
  273. static const char *func1_names[]={
  274. "bits2qp",
  275. "qp2bits",
  276. NULL
  277. };
  278. bits= ff_eval(s->avctx->rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce);
  279. rcc->pass1_rc_eq_output_sum+= bits;
  280. bits*=rate_factor;
  281. if(bits<0.0) bits=0.0;
  282. bits+= 1.0; //avoid 1/0 issues
  283. /* user override */
  284. for(i=0; i<s->avctx->rc_override_count; i++){
  285. RcOverride *rco= s->avctx->rc_override;
  286. if(rco[i].start_frame > frame_num) continue;
  287. if(rco[i].end_frame < frame_num) continue;
  288. if(rco[i].qscale)
  289. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  290. else
  291. bits*= rco[i].quality_factor;
  292. }
  293. q= bits2qp(rce, bits);
  294. /* I/B difference */
  295. if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0)
  296. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  297. else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0)
  298. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  299. return q;
  300. }
  301. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  302. RateControlContext *rcc= &s->rc_context;
  303. AVCodecContext *a= s->avctx;
  304. const int pict_type= rce->new_pict_type;
  305. const double last_p_q = rcc->last_qscale_for[P_TYPE];
  306. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  307. if (pict_type==I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==P_TYPE))
  308. q= last_p_q *ABS(a->i_quant_factor) + a->i_quant_offset;
  309. else if(pict_type==B_TYPE && a->b_quant_factor>0.0)
  310. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  311. /* last qscale / qdiff stuff */
  312. if(rcc->last_non_b_pict_type==pict_type || pict_type!=I_TYPE){
  313. double last_q= rcc->last_qscale_for[pict_type];
  314. const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
  315. if (q > last_q + maxdiff) q= last_q + maxdiff;
  316. else if(q < last_q - maxdiff) q= last_q - maxdiff;
  317. }
  318. rcc->last_qscale_for[pict_type]= q; //Note we cant do that after blurring
  319. if(pict_type!=B_TYPE)
  320. rcc->last_non_b_pict_type= pict_type;
  321. return q;
  322. }
  323. /**
  324. * gets the qmin & qmax for pict_type
  325. */
  326. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  327. int qmin= s->avctx->lmin;
  328. int qmax= s->avctx->lmax;
  329. assert(qmin <= qmax);
  330. if(pict_type==B_TYPE){
  331. qmin= (int)(qmin*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  332. qmax= (int)(qmax*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  333. }else if(pict_type==I_TYPE){
  334. qmin= (int)(qmin*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  335. qmax= (int)(qmax*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  336. }
  337. qmin= clip(qmin, 1, FF_LAMBDA_MAX);
  338. qmax= clip(qmax, 1, FF_LAMBDA_MAX);
  339. if(qmax<qmin) qmax= qmin;
  340. *qmin_ret= qmin;
  341. *qmax_ret= qmax;
  342. }
  343. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  344. RateControlContext *rcc= &s->rc_context;
  345. int qmin, qmax;
  346. double bits;
  347. const int pict_type= rce->new_pict_type;
  348. const double buffer_size= s->avctx->rc_buffer_size;
  349. const double fps= 1/av_q2d(s->avctx->time_base);
  350. const double min_rate= s->avctx->rc_min_rate / fps;
  351. const double max_rate= s->avctx->rc_max_rate / fps;
  352. get_qminmax(&qmin, &qmax, s, pict_type);
  353. /* modulation */
  354. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE)
  355. q*= s->avctx->rc_qmod_amp;
  356. bits= qp2bits(rce, q);
  357. //printf("q:%f\n", q);
  358. /* buffer overflow/underflow protection */
  359. if(buffer_size){
  360. double expected_size= rcc->buffer_index;
  361. double q_limit;
  362. if(min_rate){
  363. double d= 2*(buffer_size - expected_size)/buffer_size;
  364. if(d>1.0) d=1.0;
  365. else if(d<0.0001) d=0.0001;
  366. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  367. q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index)*3, 1));
  368. if(q > q_limit){
  369. if(s->avctx->debug&FF_DEBUG_RC){
  370. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  371. }
  372. q= q_limit;
  373. }
  374. }
  375. if(max_rate){
  376. double d= 2*expected_size/buffer_size;
  377. if(d>1.0) d=1.0;
  378. else if(d<0.0001) d=0.0001;
  379. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  380. q_limit= bits2qp(rce, FFMAX(rcc->buffer_index/3, 1));
  381. if(q < q_limit){
  382. if(s->avctx->debug&FF_DEBUG_RC){
  383. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  384. }
  385. q= q_limit;
  386. }
  387. }
  388. }
  389. //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
  390. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  391. if (q<qmin) q=qmin;
  392. else if(q>qmax) q=qmax;
  393. }else{
  394. double min2= log(qmin);
  395. double max2= log(qmax);
  396. q= log(q);
  397. q= (q - min2)/(max2-min2) - 0.5;
  398. q*= -4.0;
  399. q= 1.0/(1.0 + exp(q));
  400. q= q*(max2-min2) + min2;
  401. q= exp(q);
  402. }
  403. return q;
  404. }
  405. //----------------------------------
  406. // 1 Pass Code
  407. static double predict_size(Predictor *p, double q, double var)
  408. {
  409. return p->coeff*var / (q*p->count);
  410. }
  411. /*
  412. static double predict_qp(Predictor *p, double size, double var)
  413. {
  414. //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
  415. return p->coeff*var / (size*p->count);
  416. }
  417. */
  418. static void update_predictor(Predictor *p, double q, double var, double size)
  419. {
  420. double new_coeff= size*q / (var + 1);
  421. if(var<10) return;
  422. p->count*= p->decay;
  423. p->coeff*= p->decay;
  424. p->count++;
  425. p->coeff+= new_coeff;
  426. }
  427. static void adaptive_quantization(MpegEncContext *s, double q){
  428. int i;
  429. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  430. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  431. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  432. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  433. const float p_masking = s->avctx->p_masking;
  434. const float border_masking = s->avctx->border_masking;
  435. float bits_sum= 0.0;
  436. float cplx_sum= 0.0;
  437. float cplx_tab[s->mb_num];
  438. float bits_tab[s->mb_num];
  439. const int qmin= s->avctx->mb_lmin;
  440. const int qmax= s->avctx->mb_lmax;
  441. Picture * const pic= &s->current_picture;
  442. const int mb_width = s->mb_width;
  443. const int mb_height = s->mb_height;
  444. for(i=0; i<s->mb_num; i++){
  445. const int mb_xy= s->mb_index2xy[i];
  446. float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
  447. float spat_cplx= sqrt(pic->mb_var[mb_xy]);
  448. const int lumi= pic->mb_mean[mb_xy];
  449. float bits, cplx, factor;
  450. int mb_x = mb_xy % s->mb_stride;
  451. int mb_y = mb_xy / s->mb_stride;
  452. int mb_distance;
  453. float mb_factor = 0.0;
  454. #if 0
  455. if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
  456. if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
  457. #endif
  458. if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
  459. if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
  460. if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
  461. cplx= spat_cplx;
  462. factor= 1.0 + p_masking;
  463. }else{
  464. cplx= temp_cplx;
  465. factor= pow(temp_cplx, - temp_cplx_masking);
  466. }
  467. factor*=pow(spat_cplx, - spatial_cplx_masking);
  468. if(lumi>127)
  469. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  470. else
  471. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  472. if(mb_x < mb_width/5){
  473. mb_distance = mb_width/5 - mb_x;
  474. mb_factor = (float)mb_distance / (float)(mb_width/5);
  475. }else if(mb_x > 4*mb_width/5){
  476. mb_distance = mb_x - 4*mb_width/5;
  477. mb_factor = (float)mb_distance / (float)(mb_width/5);
  478. }
  479. if(mb_y < mb_height/5){
  480. mb_distance = mb_height/5 - mb_y;
  481. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  482. }else if(mb_y > 4*mb_height/5){
  483. mb_distance = mb_y - 4*mb_height/5;
  484. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  485. }
  486. factor*= 1.0 - border_masking*mb_factor;
  487. if(factor<0.00001) factor= 0.00001;
  488. bits= cplx*factor;
  489. cplx_sum+= cplx;
  490. bits_sum+= bits;
  491. cplx_tab[i]= cplx;
  492. bits_tab[i]= bits;
  493. }
  494. /* handle qmin/qmax cliping */
  495. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  496. float factor= bits_sum/cplx_sum;
  497. for(i=0; i<s->mb_num; i++){
  498. float newq= q*cplx_tab[i]/bits_tab[i];
  499. newq*= factor;
  500. if (newq > qmax){
  501. bits_sum -= bits_tab[i];
  502. cplx_sum -= cplx_tab[i]*q/qmax;
  503. }
  504. else if(newq < qmin){
  505. bits_sum -= bits_tab[i];
  506. cplx_sum -= cplx_tab[i]*q/qmin;
  507. }
  508. }
  509. if(bits_sum < 0.001) bits_sum= 0.001;
  510. if(cplx_sum < 0.001) cplx_sum= 0.001;
  511. }
  512. for(i=0; i<s->mb_num; i++){
  513. const int mb_xy= s->mb_index2xy[i];
  514. float newq= q*cplx_tab[i]/bits_tab[i];
  515. int intq;
  516. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  517. newq*= bits_sum/cplx_sum;
  518. }
  519. intq= (int)(newq + 0.5);
  520. if (intq > qmax) intq= qmax;
  521. else if(intq < qmin) intq= qmin;
  522. //if(i%s->mb_width==0) printf("\n");
  523. //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
  524. s->lambda_table[mb_xy]= intq;
  525. }
  526. }
  527. void ff_get_2pass_fcode(MpegEncContext *s){
  528. RateControlContext *rcc= &s->rc_context;
  529. int picture_number= s->picture_number;
  530. RateControlEntry *rce;
  531. rce= &rcc->entry[picture_number];
  532. s->f_code= rce->f_code;
  533. s->b_code= rce->b_code;
  534. }
  535. //FIXME rd or at least approx for dquant
  536. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  537. {
  538. float q;
  539. int qmin, qmax;
  540. float br_compensation;
  541. double diff;
  542. double short_term_q;
  543. double fps;
  544. int picture_number= s->picture_number;
  545. int64_t wanted_bits;
  546. RateControlContext *rcc= &s->rc_context;
  547. AVCodecContext *a= s->avctx;
  548. RateControlEntry local_rce, *rce;
  549. double bits;
  550. double rate_factor;
  551. int var;
  552. const int pict_type= s->pict_type;
  553. Picture * const pic= &s->current_picture;
  554. emms_c();
  555. #ifdef CONFIG_XVID
  556. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  557. return ff_xvid_rate_estimate_qscale(s, dry_run);
  558. #endif
  559. get_qminmax(&qmin, &qmax, s, pict_type);
  560. fps= 1/av_q2d(s->avctx->time_base);
  561. //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
  562. /* update predictors */
  563. if(picture_number>2 && !dry_run){
  564. const int last_var= s->last_pict_type == I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  565. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  566. }
  567. if(s->flags&CODEC_FLAG_PASS2){
  568. assert(picture_number>=0);
  569. assert(picture_number<rcc->num_entries);
  570. rce= &rcc->entry[picture_number];
  571. wanted_bits= rce->expected_bits;
  572. }else{
  573. rce= &local_rce;
  574. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  575. }
  576. diff= s->total_bits - wanted_bits;
  577. br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
  578. if(br_compensation<=0.0) br_compensation=0.001;
  579. var= pict_type == I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
  580. short_term_q = 0; /* avoid warning */
  581. if(s->flags&CODEC_FLAG_PASS2){
  582. if(pict_type!=I_TYPE)
  583. assert(pict_type == rce->new_pict_type);
  584. q= rce->new_qscale / br_compensation;
  585. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  586. }else{
  587. rce->pict_type=
  588. rce->new_pict_type= pict_type;
  589. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  590. rce->mb_var_sum = pic-> mb_var_sum;
  591. rce->qscale = FF_QP2LAMBDA * 2;
  592. rce->f_code = s->f_code;
  593. rce->b_code = s->b_code;
  594. rce->misc_bits= 1;
  595. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  596. if(pict_type== I_TYPE){
  597. rce->i_count = s->mb_num;
  598. rce->i_tex_bits= bits;
  599. rce->p_tex_bits= 0;
  600. rce->mv_bits= 0;
  601. }else{
  602. rce->i_count = 0; //FIXME we do know this approx
  603. rce->i_tex_bits= 0;
  604. rce->p_tex_bits= bits*0.9;
  605. rce->mv_bits= bits*0.1;
  606. }
  607. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  608. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  609. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  610. rcc->frame_count[pict_type] ++;
  611. bits= rce->i_tex_bits + rce->p_tex_bits;
  612. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  613. q= get_qscale(s, rce, rate_factor, picture_number);
  614. assert(q>0.0);
  615. //printf("%f ", q);
  616. q= get_diff_limited_q(s, rce, q);
  617. //printf("%f ", q);
  618. assert(q>0.0);
  619. if(pict_type==P_TYPE || s->intra_only){ //FIXME type dependant blur like in 2-pass
  620. rcc->short_term_qsum*=a->qblur;
  621. rcc->short_term_qcount*=a->qblur;
  622. rcc->short_term_qsum+= q;
  623. rcc->short_term_qcount++;
  624. //printf("%f ", q);
  625. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  626. //printf("%f ", q);
  627. }
  628. assert(q>0.0);
  629. q= modify_qscale(s, rce, q, picture_number);
  630. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  631. assert(q>0.0);
  632. }
  633. if(s->avctx->debug&FF_DEBUG_RC){
  634. av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  635. av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  636. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  637. );
  638. }
  639. if (q<qmin) q=qmin;
  640. else if(q>qmax) q=qmax;
  641. if(s->adaptive_quant)
  642. adaptive_quantization(s, q);
  643. else
  644. q= (int)(q + 0.5);
  645. if(!dry_run){
  646. rcc->last_qscale= q;
  647. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  648. rcc->last_mb_var_sum= pic->mb_var_sum;
  649. }
  650. #if 0
  651. {
  652. static int mvsum=0, texsum=0;
  653. mvsum += s->mv_bits;
  654. texsum += s->i_tex_bits + s->p_tex_bits;
  655. printf("%d %d//\n\n", mvsum, texsum);
  656. }
  657. #endif
  658. return q;
  659. }
  660. //----------------------------------------------
  661. // 2-Pass code
  662. static int init_pass2(MpegEncContext *s)
  663. {
  664. RateControlContext *rcc= &s->rc_context;
  665. AVCodecContext *a= s->avctx;
  666. int i;
  667. double fps= 1/av_q2d(s->avctx->time_base);
  668. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  669. double avg_quantizer[5];
  670. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits
  671. uint64_t available_bits[5];
  672. uint64_t all_const_bits;
  673. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  674. double rate_factor=0;
  675. double step;
  676. //int last_i_frame=-10000000;
  677. const int filter_size= (int)(a->qblur*4) | 1;
  678. double expected_bits;
  679. double *qscale, *blured_qscale;
  680. /* find complexity & const_bits & decide the pict_types */
  681. for(i=0; i<rcc->num_entries; i++){
  682. RateControlEntry *rce= &rcc->entry[i];
  683. rce->new_pict_type= rce->pict_type;
  684. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  685. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  686. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  687. rcc->frame_count[rce->pict_type] ++;
  688. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  689. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  690. }
  691. all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE];
  692. if(all_available_bits < all_const_bits){
  693. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is to low\n");
  694. return -1;
  695. }
  696. /* find average quantizers */
  697. avg_quantizer[P_TYPE]=0;
  698. for(step=256*256; step>0.0000001; step*=0.5){
  699. double expected_bits=0;
  700. avg_quantizer[P_TYPE]+= step;
  701. avg_quantizer[I_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset;
  702. avg_quantizer[B_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset;
  703. expected_bits=
  704. + all_const_bits
  705. + complexity[I_TYPE]/avg_quantizer[I_TYPE]
  706. + complexity[P_TYPE]/avg_quantizer[P_TYPE]
  707. + complexity[B_TYPE]/avg_quantizer[B_TYPE];
  708. if(expected_bits < all_available_bits) avg_quantizer[P_TYPE]-= step;
  709. //printf("%f %lld %f\n", expected_bits, all_available_bits, avg_quantizer[P_TYPE]);
  710. }
  711. //printf("qp_i:%f, qp_p:%f, qp_b:%f\n", avg_quantizer[I_TYPE],avg_quantizer[P_TYPE],avg_quantizer[B_TYPE]);
  712. for(i=0; i<5; i++){
  713. available_bits[i]= const_bits[i] + complexity[i]/avg_quantizer[i];
  714. }
  715. //printf("%lld %lld %lld %lld\n", available_bits[I_TYPE], available_bits[P_TYPE], available_bits[B_TYPE], all_available_bits);
  716. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  717. blured_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  718. for(step=256*256; step>0.0000001; step*=0.5){
  719. expected_bits=0;
  720. rate_factor+= step;
  721. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  722. /* find qscale */
  723. for(i=0; i<rcc->num_entries; i++){
  724. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  725. }
  726. assert(filter_size%2==1);
  727. /* fixed I/B QP relative to P mode */
  728. for(i=rcc->num_entries-1; i>=0; i--){
  729. RateControlEntry *rce= &rcc->entry[i];
  730. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  731. }
  732. /* smooth curve */
  733. for(i=0; i<rcc->num_entries; i++){
  734. RateControlEntry *rce= &rcc->entry[i];
  735. const int pict_type= rce->new_pict_type;
  736. int j;
  737. double q=0.0, sum=0.0;
  738. for(j=0; j<filter_size; j++){
  739. int index= i+j-filter_size/2;
  740. double d= index-i;
  741. double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
  742. if(index < 0 || index >= rcc->num_entries) continue;
  743. if(pict_type != rcc->entry[index].new_pict_type) continue;
  744. q+= qscale[index] * coeff;
  745. sum+= coeff;
  746. }
  747. blured_qscale[i]= q/sum;
  748. }
  749. /* find expected bits */
  750. for(i=0; i<rcc->num_entries; i++){
  751. RateControlEntry *rce= &rcc->entry[i];
  752. double bits;
  753. rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i);
  754. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  755. //printf("%d %f\n", rce->new_bits, blured_qscale[i]);
  756. bits += 8*ff_vbv_update(s, bits);
  757. rce->expected_bits= expected_bits;
  758. expected_bits += bits;
  759. }
  760. // printf("%f %d %f\n", expected_bits, (int)all_available_bits, rate_factor);
  761. if(expected_bits > all_available_bits) rate_factor-= step;
  762. }
  763. av_free(qscale);
  764. av_free(blured_qscale);
  765. if(abs(expected_bits/all_available_bits - 1.0) > 0.01 ){
  766. av_log(s->avctx, AV_LOG_ERROR, "Error: 2pass curve failed to converge\n");
  767. return -1;
  768. }
  769. return 0;
  770. }