You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

931 lines
31KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/intmath.h"
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "ratecontrol.h"
  30. #include "mpegvideo.h"
  31. #include "libavutil/eval.h"
  32. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  33. #include <assert.h>
  34. #ifndef M_E
  35. #define M_E 2.718281828
  36. #endif
  37. static int init_pass2(MpegEncContext *s);
  38. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  39. void ff_write_pass1_stats(MpegEncContext *s){
  40. snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  41. s->current_picture_ptr->f.display_picture_number, s->current_picture_ptr->f.coded_picture_number, s->pict_type,
  42. s->current_picture.f.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  43. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
  44. }
  45. static inline double qp2bits(RateControlEntry *rce, double qp){
  46. if(qp<=0.0){
  47. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  48. }
  49. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  50. }
  51. static inline double bits2qp(RateControlEntry *rce, double bits){
  52. if(bits<0.9){
  53. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  54. }
  55. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  56. }
  57. int ff_rate_control_init(MpegEncContext *s)
  58. {
  59. RateControlContext *rcc= &s->rc_context;
  60. int i, res;
  61. static const char * const const_names[]={
  62. "PI",
  63. "E",
  64. "iTex",
  65. "pTex",
  66. "tex",
  67. "mv",
  68. "fCode",
  69. "iCount",
  70. "mcVar",
  71. "var",
  72. "isI",
  73. "isP",
  74. "isB",
  75. "avgQP",
  76. "qComp",
  77. /* "lastIQP",
  78. "lastPQP",
  79. "lastBQP",
  80. "nextNonBQP",*/
  81. "avgIITex",
  82. "avgPITex",
  83. "avgPPTex",
  84. "avgBPTex",
  85. "avgTex",
  86. NULL
  87. };
  88. static double (* const func1[])(void *, double)={
  89. (void *)bits2qp,
  90. (void *)qp2bits,
  91. NULL
  92. };
  93. static const char * const func1_names[]={
  94. "bits2qp",
  95. "qp2bits",
  96. NULL
  97. };
  98. emms_c();
  99. res = av_expr_parse(&rcc->rc_eq_eval, s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp", const_names, func1_names, func1, NULL, NULL, 0, s->avctx);
  100. if (res < 0) {
  101. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq);
  102. return res;
  103. }
  104. for(i=0; i<5; i++){
  105. rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
  106. rcc->pred[i].count= 1.0;
  107. rcc->pred[i].decay= 0.4;
  108. rcc->i_cplx_sum [i]=
  109. rcc->p_cplx_sum [i]=
  110. rcc->mv_bits_sum[i]=
  111. rcc->qscale_sum [i]=
  112. rcc->frame_count[i]= 1; // 1 is better because of 1/0 and such
  113. rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
  114. }
  115. rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
  116. if(s->flags&CODEC_FLAG_PASS2){
  117. int i;
  118. char *p;
  119. /* find number of pics */
  120. p= s->avctx->stats_in;
  121. for(i=-1; p; i++){
  122. p= strchr(p+1, ';');
  123. }
  124. i+= s->max_b_frames;
  125. if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
  126. return -1;
  127. rcc->entry = av_mallocz(i*sizeof(RateControlEntry));
  128. rcc->num_entries= i;
  129. /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  130. for(i=0; i<rcc->num_entries; i++){
  131. RateControlEntry *rce= &rcc->entry[i];
  132. rce->pict_type= rce->new_pict_type=AV_PICTURE_TYPE_P;
  133. rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
  134. rce->misc_bits= s->mb_num + 10;
  135. rce->mb_var_sum= s->mb_num*100;
  136. }
  137. /* read stats */
  138. p= s->avctx->stats_in;
  139. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  140. RateControlEntry *rce;
  141. int picture_number;
  142. int e;
  143. char *next;
  144. next= strchr(p, ';');
  145. if(next){
  146. (*next)=0; //sscanf in unbelievably slow on looong strings //FIXME copy / do not write
  147. next++;
  148. }
  149. e= sscanf(p, " in:%d ", &picture_number);
  150. assert(picture_number >= 0);
  151. assert(picture_number < rcc->num_entries);
  152. rce= &rcc->entry[picture_number];
  153. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  154. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  155. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
  156. if(e!=14){
  157. av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
  158. return -1;
  159. }
  160. p= next;
  161. }
  162. if(init_pass2(s) < 0) return -1;
  163. //FIXME maybe move to end
  164. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  165. #if CONFIG_LIBXVID
  166. return ff_xvid_rate_control_init(s);
  167. #else
  168. av_log(s->avctx, AV_LOG_ERROR, "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  169. return -1;
  170. #endif
  171. }
  172. }
  173. if(!(s->flags&CODEC_FLAG_PASS2)){
  174. rcc->short_term_qsum=0.001;
  175. rcc->short_term_qcount=0.001;
  176. rcc->pass1_rc_eq_output_sum= 0.001;
  177. rcc->pass1_wanted_bits=0.001;
  178. if(s->avctx->qblur > 1.0){
  179. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  180. return -1;
  181. }
  182. /* init stuff with the user specified complexity */
  183. if(s->avctx->rc_initial_cplx){
  184. for(i=0; i<60*30; i++){
  185. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  186. RateControlEntry rce;
  187. if (i%((s->gop_size+3)/4)==0) rce.pict_type= AV_PICTURE_TYPE_I;
  188. else if(i%(s->max_b_frames+1)) rce.pict_type= AV_PICTURE_TYPE_B;
  189. else rce.pict_type= AV_PICTURE_TYPE_P;
  190. rce.new_pict_type= rce.pict_type;
  191. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  192. rce.mb_var_sum = s->mb_num;
  193. rce.qscale = FF_QP2LAMBDA * 2;
  194. rce.f_code = 2;
  195. rce.b_code = 1;
  196. rce.misc_bits= 1;
  197. if(s->pict_type== AV_PICTURE_TYPE_I){
  198. rce.i_count = s->mb_num;
  199. rce.i_tex_bits= bits;
  200. rce.p_tex_bits= 0;
  201. rce.mv_bits= 0;
  202. }else{
  203. rce.i_count = 0; //FIXME we do know this approx
  204. rce.i_tex_bits= 0;
  205. rce.p_tex_bits= bits*0.9;
  206. rce.mv_bits= bits*0.1;
  207. }
  208. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  209. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  210. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  211. rcc->frame_count[rce.pict_type] ++;
  212. get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  213. rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME misbehaves a little for variable fps
  214. }
  215. }
  216. }
  217. return 0;
  218. }
  219. void ff_rate_control_uninit(MpegEncContext *s)
  220. {
  221. RateControlContext *rcc= &s->rc_context;
  222. emms_c();
  223. av_expr_free(rcc->rc_eq_eval);
  224. av_freep(&rcc->entry);
  225. #if CONFIG_LIBXVID
  226. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  227. ff_xvid_rate_control_uninit(s);
  228. #endif
  229. }
  230. int ff_vbv_update(MpegEncContext *s, int frame_size){
  231. RateControlContext *rcc= &s->rc_context;
  232. const double fps= 1/av_q2d(s->avctx->time_base);
  233. const int buffer_size= s->avctx->rc_buffer_size;
  234. const double min_rate= s->avctx->rc_min_rate/fps;
  235. const double max_rate= s->avctx->rc_max_rate/fps;
  236. //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  237. if(buffer_size){
  238. int left;
  239. rcc->buffer_index-= frame_size;
  240. if(rcc->buffer_index < 0){
  241. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  242. rcc->buffer_index= 0;
  243. }
  244. left= buffer_size - rcc->buffer_index - 1;
  245. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  246. if(rcc->buffer_index > buffer_size){
  247. int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
  248. if(stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  249. stuffing=4;
  250. rcc->buffer_index -= 8*stuffing;
  251. if(s->avctx->debug & FF_DEBUG_RC)
  252. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  253. return stuffing;
  254. }
  255. }
  256. return 0;
  257. }
  258. /**
  259. * Modify the bitrate curve from pass1 for one frame.
  260. */
  261. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  262. RateControlContext *rcc= &s->rc_context;
  263. AVCodecContext *a= s->avctx;
  264. double q, bits;
  265. const int pict_type= rce->new_pict_type;
  266. const double mb_num= s->mb_num;
  267. int i;
  268. double const_values[]={
  269. M_PI,
  270. M_E,
  271. rce->i_tex_bits*rce->qscale,
  272. rce->p_tex_bits*rce->qscale,
  273. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  274. rce->mv_bits/mb_num,
  275. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  276. rce->i_count/mb_num,
  277. rce->mc_mb_var_sum/mb_num,
  278. rce->mb_var_sum/mb_num,
  279. rce->pict_type == AV_PICTURE_TYPE_I,
  280. rce->pict_type == AV_PICTURE_TYPE_P,
  281. rce->pict_type == AV_PICTURE_TYPE_B,
  282. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  283. a->qcompress,
  284. /* rcc->last_qscale_for[AV_PICTURE_TYPE_I],
  285. rcc->last_qscale_for[AV_PICTURE_TYPE_P],
  286. rcc->last_qscale_for[AV_PICTURE_TYPE_B],
  287. rcc->next_non_b_qscale,*/
  288. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  289. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  290. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  291. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  292. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  293. 0
  294. };
  295. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  296. if (isnan(bits)) {
  297. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
  298. return -1;
  299. }
  300. rcc->pass1_rc_eq_output_sum+= bits;
  301. bits*=rate_factor;
  302. if(bits<0.0) bits=0.0;
  303. bits+= 1.0; //avoid 1/0 issues
  304. /* user override */
  305. for(i=0; i<s->avctx->rc_override_count; i++){
  306. RcOverride *rco= s->avctx->rc_override;
  307. if(rco[i].start_frame > frame_num) continue;
  308. if(rco[i].end_frame < frame_num) continue;
  309. if(rco[i].qscale)
  310. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  311. else
  312. bits*= rco[i].quality_factor;
  313. }
  314. q= bits2qp(rce, bits);
  315. /* I/B difference */
  316. if (pict_type==AV_PICTURE_TYPE_I && s->avctx->i_quant_factor<0.0)
  317. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  318. else if(pict_type==AV_PICTURE_TYPE_B && s->avctx->b_quant_factor<0.0)
  319. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  320. if(q<1) q=1;
  321. return q;
  322. }
  323. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  324. RateControlContext *rcc= &s->rc_context;
  325. AVCodecContext *a= s->avctx;
  326. const int pict_type= rce->new_pict_type;
  327. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  328. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  329. if (pict_type==AV_PICTURE_TYPE_I && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==AV_PICTURE_TYPE_P))
  330. q= last_p_q *FFABS(a->i_quant_factor) + a->i_quant_offset;
  331. else if(pict_type==AV_PICTURE_TYPE_B && a->b_quant_factor>0.0)
  332. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  333. if(q<1) q=1;
  334. /* last qscale / qdiff stuff */
  335. if(rcc->last_non_b_pict_type==pict_type || pict_type!=AV_PICTURE_TYPE_I){
  336. double last_q= rcc->last_qscale_for[pict_type];
  337. const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
  338. if (q > last_q + maxdiff) q= last_q + maxdiff;
  339. else if(q < last_q - maxdiff) q= last_q - maxdiff;
  340. }
  341. rcc->last_qscale_for[pict_type]= q; //Note we cannot do that after blurring
  342. if(pict_type!=AV_PICTURE_TYPE_B)
  343. rcc->last_non_b_pict_type= pict_type;
  344. return q;
  345. }
  346. /**
  347. * Get the qmin & qmax for pict_type.
  348. */
  349. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  350. int qmin= s->avctx->lmin;
  351. int qmax= s->avctx->lmax;
  352. assert(qmin <= qmax);
  353. if(pict_type==AV_PICTURE_TYPE_B){
  354. qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  355. qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  356. }else if(pict_type==AV_PICTURE_TYPE_I){
  357. qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  358. qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  359. }
  360. qmin= av_clip(qmin, 1, FF_LAMBDA_MAX);
  361. qmax= av_clip(qmax, 1, FF_LAMBDA_MAX);
  362. if(qmax<qmin) qmax= qmin;
  363. *qmin_ret= qmin;
  364. *qmax_ret= qmax;
  365. }
  366. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  367. RateControlContext *rcc= &s->rc_context;
  368. int qmin, qmax;
  369. const int pict_type= rce->new_pict_type;
  370. const double buffer_size= s->avctx->rc_buffer_size;
  371. const double fps= 1/av_q2d(s->avctx->time_base);
  372. const double min_rate= s->avctx->rc_min_rate / fps;
  373. const double max_rate= s->avctx->rc_max_rate / fps;
  374. get_qminmax(&qmin, &qmax, s, pict_type);
  375. /* modulation */
  376. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==AV_PICTURE_TYPE_P)
  377. q*= s->avctx->rc_qmod_amp;
  378. /* buffer overflow/underflow protection */
  379. if(buffer_size){
  380. double expected_size= rcc->buffer_index;
  381. double q_limit;
  382. if(min_rate){
  383. double d= 2*(buffer_size - expected_size)/buffer_size;
  384. if(d>1.0) d=1.0;
  385. else if(d<0.0001) d=0.0001;
  386. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  387. q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1));
  388. if(q > q_limit){
  389. if(s->avctx->debug&FF_DEBUG_RC){
  390. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  391. }
  392. q= q_limit;
  393. }
  394. }
  395. if(max_rate){
  396. double d= 2*expected_size/buffer_size;
  397. if(d>1.0) d=1.0;
  398. else if(d<0.0001) d=0.0001;
  399. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  400. q_limit= bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1));
  401. if(q < q_limit){
  402. if(s->avctx->debug&FF_DEBUG_RC){
  403. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  404. }
  405. q= q_limit;
  406. }
  407. }
  408. }
  409. //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
  410. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  411. if (q<qmin) q=qmin;
  412. else if(q>qmax) q=qmax;
  413. }else{
  414. double min2= log(qmin);
  415. double max2= log(qmax);
  416. q= log(q);
  417. q= (q - min2)/(max2-min2) - 0.5;
  418. q*= -4.0;
  419. q= 1.0/(1.0 + exp(q));
  420. q= q*(max2-min2) + min2;
  421. q= exp(q);
  422. }
  423. return q;
  424. }
  425. //----------------------------------
  426. // 1 Pass Code
  427. static double predict_size(Predictor *p, double q, double var)
  428. {
  429. return p->coeff*var / (q*p->count);
  430. }
  431. static void update_predictor(Predictor *p, double q, double var, double size)
  432. {
  433. double new_coeff= size*q / (var + 1);
  434. if(var<10) return;
  435. p->count*= p->decay;
  436. p->coeff*= p->decay;
  437. p->count++;
  438. p->coeff+= new_coeff;
  439. }
  440. static void adaptive_quantization(MpegEncContext *s, double q){
  441. int i;
  442. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  443. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  444. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  445. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  446. const float p_masking = s->avctx->p_masking;
  447. const float border_masking = s->avctx->border_masking;
  448. float bits_sum= 0.0;
  449. float cplx_sum= 0.0;
  450. float *cplx_tab = s->cplx_tab;
  451. float *bits_tab = s->bits_tab;
  452. const int qmin= s->avctx->mb_lmin;
  453. const int qmax= s->avctx->mb_lmax;
  454. Picture * const pic= &s->current_picture;
  455. const int mb_width = s->mb_width;
  456. const int mb_height = s->mb_height;
  457. for(i=0; i<s->mb_num; i++){
  458. const int mb_xy= s->mb_index2xy[i];
  459. float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
  460. float spat_cplx= sqrt(pic->mb_var[mb_xy]);
  461. const int lumi= pic->mb_mean[mb_xy];
  462. float bits, cplx, factor;
  463. int mb_x = mb_xy % s->mb_stride;
  464. int mb_y = mb_xy / s->mb_stride;
  465. int mb_distance;
  466. float mb_factor = 0.0;
  467. if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
  468. if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
  469. if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
  470. cplx= spat_cplx;
  471. factor= 1.0 + p_masking;
  472. }else{
  473. cplx= temp_cplx;
  474. factor= pow(temp_cplx, - temp_cplx_masking);
  475. }
  476. factor*=pow(spat_cplx, - spatial_cplx_masking);
  477. if(lumi>127)
  478. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  479. else
  480. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  481. if(mb_x < mb_width/5){
  482. mb_distance = mb_width/5 - mb_x;
  483. mb_factor = (float)mb_distance / (float)(mb_width/5);
  484. }else if(mb_x > 4*mb_width/5){
  485. mb_distance = mb_x - 4*mb_width/5;
  486. mb_factor = (float)mb_distance / (float)(mb_width/5);
  487. }
  488. if(mb_y < mb_height/5){
  489. mb_distance = mb_height/5 - mb_y;
  490. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  491. }else if(mb_y > 4*mb_height/5){
  492. mb_distance = mb_y - 4*mb_height/5;
  493. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  494. }
  495. factor*= 1.0 - border_masking*mb_factor;
  496. if(factor<0.00001) factor= 0.00001;
  497. bits= cplx*factor;
  498. cplx_sum+= cplx;
  499. bits_sum+= bits;
  500. cplx_tab[i]= cplx;
  501. bits_tab[i]= bits;
  502. }
  503. /* handle qmin/qmax clipping */
  504. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  505. float factor= bits_sum/cplx_sum;
  506. for(i=0; i<s->mb_num; i++){
  507. float newq= q*cplx_tab[i]/bits_tab[i];
  508. newq*= factor;
  509. if (newq > qmax){
  510. bits_sum -= bits_tab[i];
  511. cplx_sum -= cplx_tab[i]*q/qmax;
  512. }
  513. else if(newq < qmin){
  514. bits_sum -= bits_tab[i];
  515. cplx_sum -= cplx_tab[i]*q/qmin;
  516. }
  517. }
  518. if(bits_sum < 0.001) bits_sum= 0.001;
  519. if(cplx_sum < 0.001) cplx_sum= 0.001;
  520. }
  521. for(i=0; i<s->mb_num; i++){
  522. const int mb_xy= s->mb_index2xy[i];
  523. float newq= q*cplx_tab[i]/bits_tab[i];
  524. int intq;
  525. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  526. newq*= bits_sum/cplx_sum;
  527. }
  528. intq= (int)(newq + 0.5);
  529. if (intq > qmax) intq= qmax;
  530. else if(intq < qmin) intq= qmin;
  531. s->lambda_table[mb_xy]= intq;
  532. }
  533. }
  534. void ff_get_2pass_fcode(MpegEncContext *s){
  535. RateControlContext *rcc= &s->rc_context;
  536. int picture_number= s->picture_number;
  537. RateControlEntry *rce;
  538. rce= &rcc->entry[picture_number];
  539. s->f_code= rce->f_code;
  540. s->b_code= rce->b_code;
  541. }
  542. //FIXME rd or at least approx for dquant
  543. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  544. {
  545. float q;
  546. int qmin, qmax;
  547. float br_compensation;
  548. double diff;
  549. double short_term_q;
  550. double fps;
  551. int picture_number= s->picture_number;
  552. int64_t wanted_bits;
  553. RateControlContext *rcc= &s->rc_context;
  554. AVCodecContext *a= s->avctx;
  555. RateControlEntry local_rce, *rce;
  556. double bits;
  557. double rate_factor;
  558. int var;
  559. const int pict_type= s->pict_type;
  560. Picture * const pic= &s->current_picture;
  561. emms_c();
  562. #if CONFIG_LIBXVID
  563. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  564. return ff_xvid_rate_estimate_qscale(s, dry_run);
  565. #endif
  566. get_qminmax(&qmin, &qmax, s, pict_type);
  567. fps= 1/av_q2d(s->avctx->time_base);
  568. /* update predictors */
  569. if(picture_number>2 && !dry_run){
  570. const int last_var= s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  571. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  572. }
  573. if(s->flags&CODEC_FLAG_PASS2){
  574. assert(picture_number>=0);
  575. assert(picture_number<rcc->num_entries);
  576. rce= &rcc->entry[picture_number];
  577. wanted_bits= rce->expected_bits;
  578. }else{
  579. Picture *dts_pic;
  580. rce= &local_rce;
  581. //FIXME add a dts field to AVFrame and ensure its set and use it here instead of reordering
  582. //but the reordering is simpler for now until h.264 b pyramid must be handeld
  583. if(s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  584. dts_pic= s->current_picture_ptr;
  585. else
  586. dts_pic= s->last_picture_ptr;
  587. if (!dts_pic || dts_pic->f.pts == AV_NOPTS_VALUE)
  588. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  589. else
  590. wanted_bits = (uint64_t)(s->bit_rate*(double)dts_pic->f.pts / fps);
  591. }
  592. diff= s->total_bits - wanted_bits;
  593. br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
  594. if(br_compensation<=0.0) br_compensation=0.001;
  595. var= pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  596. short_term_q = 0; /* avoid warning */
  597. if(s->flags&CODEC_FLAG_PASS2){
  598. if(pict_type!=AV_PICTURE_TYPE_I)
  599. assert(pict_type == rce->new_pict_type);
  600. q= rce->new_qscale / br_compensation;
  601. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  602. }else{
  603. rce->pict_type=
  604. rce->new_pict_type= pict_type;
  605. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  606. rce->mb_var_sum = pic-> mb_var_sum;
  607. rce->qscale = FF_QP2LAMBDA * 2;
  608. rce->f_code = s->f_code;
  609. rce->b_code = s->b_code;
  610. rce->misc_bits= 1;
  611. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  612. if(pict_type== AV_PICTURE_TYPE_I){
  613. rce->i_count = s->mb_num;
  614. rce->i_tex_bits= bits;
  615. rce->p_tex_bits= 0;
  616. rce->mv_bits= 0;
  617. }else{
  618. rce->i_count = 0; //FIXME we do know this approx
  619. rce->i_tex_bits= 0;
  620. rce->p_tex_bits= bits*0.9;
  621. rce->mv_bits= bits*0.1;
  622. }
  623. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  624. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  625. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  626. rcc->frame_count[pict_type] ++;
  627. bits= rce->i_tex_bits + rce->p_tex_bits;
  628. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  629. q= get_qscale(s, rce, rate_factor, picture_number);
  630. if (q < 0)
  631. return -1;
  632. assert(q>0.0);
  633. q= get_diff_limited_q(s, rce, q);
  634. assert(q>0.0);
  635. if(pict_type==AV_PICTURE_TYPE_P || s->intra_only){ //FIXME type dependent blur like in 2-pass
  636. rcc->short_term_qsum*=a->qblur;
  637. rcc->short_term_qcount*=a->qblur;
  638. rcc->short_term_qsum+= q;
  639. rcc->short_term_qcount++;
  640. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  641. }
  642. assert(q>0.0);
  643. q= modify_qscale(s, rce, q, picture_number);
  644. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  645. assert(q>0.0);
  646. }
  647. if(s->avctx->debug&FF_DEBUG_RC){
  648. av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  649. av_get_picture_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  650. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  651. );
  652. }
  653. if (q<qmin) q=qmin;
  654. else if(q>qmax) q=qmax;
  655. if(s->adaptive_quant)
  656. adaptive_quantization(s, q);
  657. else
  658. q= (int)(q + 0.5);
  659. if(!dry_run){
  660. rcc->last_qscale= q;
  661. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  662. rcc->last_mb_var_sum= pic->mb_var_sum;
  663. }
  664. return q;
  665. }
  666. //----------------------------------------------
  667. // 2-Pass code
  668. static int init_pass2(MpegEncContext *s)
  669. {
  670. RateControlContext *rcc= &s->rc_context;
  671. AVCodecContext *a= s->avctx;
  672. int i, toobig;
  673. double fps= 1/av_q2d(s->avctx->time_base);
  674. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  675. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits
  676. uint64_t all_const_bits;
  677. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  678. double rate_factor=0;
  679. double step;
  680. //int last_i_frame=-10000000;
  681. const int filter_size= (int)(a->qblur*4) | 1;
  682. double expected_bits;
  683. double *qscale, *blurred_qscale, qscale_sum;
  684. /* find complexity & const_bits & decide the pict_types */
  685. for(i=0; i<rcc->num_entries; i++){
  686. RateControlEntry *rce= &rcc->entry[i];
  687. rce->new_pict_type= rce->pict_type;
  688. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  689. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  690. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  691. rcc->frame_count[rce->pict_type] ++;
  692. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  693. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  694. }
  695. all_const_bits= const_bits[AV_PICTURE_TYPE_I] + const_bits[AV_PICTURE_TYPE_P] + const_bits[AV_PICTURE_TYPE_B];
  696. if(all_available_bits < all_const_bits){
  697. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  698. return -1;
  699. }
  700. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  701. blurred_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  702. toobig = 0;
  703. for(step=256*256; step>0.0000001; step*=0.5){
  704. expected_bits=0;
  705. rate_factor+= step;
  706. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  707. /* find qscale */
  708. for(i=0; i<rcc->num_entries; i++){
  709. RateControlEntry *rce= &rcc->entry[i];
  710. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  711. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  712. }
  713. assert(filter_size%2==1);
  714. /* fixed I/B QP relative to P mode */
  715. for(i=rcc->num_entries-1; i>=0; i--){
  716. RateControlEntry *rce= &rcc->entry[i];
  717. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  718. }
  719. /* smooth curve */
  720. for(i=0; i<rcc->num_entries; i++){
  721. RateControlEntry *rce= &rcc->entry[i];
  722. const int pict_type= rce->new_pict_type;
  723. int j;
  724. double q=0.0, sum=0.0;
  725. for(j=0; j<filter_size; j++){
  726. int index= i+j-filter_size/2;
  727. double d= index-i;
  728. double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
  729. if(index < 0 || index >= rcc->num_entries) continue;
  730. if(pict_type != rcc->entry[index].new_pict_type) continue;
  731. q+= qscale[index] * coeff;
  732. sum+= coeff;
  733. }
  734. blurred_qscale[i]= q/sum;
  735. }
  736. /* find expected bits */
  737. for(i=0; i<rcc->num_entries; i++){
  738. RateControlEntry *rce= &rcc->entry[i];
  739. double bits;
  740. rce->new_qscale= modify_qscale(s, rce, blurred_qscale[i], i);
  741. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  742. bits += 8*ff_vbv_update(s, bits);
  743. rce->expected_bits= expected_bits;
  744. expected_bits += bits;
  745. }
  746. /*
  747. av_log(s->avctx, AV_LOG_INFO,
  748. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  749. expected_bits, (int)all_available_bits, rate_factor);
  750. */
  751. if(expected_bits > all_available_bits) {
  752. rate_factor-= step;
  753. ++toobig;
  754. }
  755. }
  756. av_free(qscale);
  757. av_free(blurred_qscale);
  758. /* check bitrate calculations and print info */
  759. qscale_sum = 0.0;
  760. for(i=0; i<rcc->num_entries; i++){
  761. /* av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  762. i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); */
  763. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
  764. }
  765. assert(toobig <= 40);
  766. av_log(s->avctx, AV_LOG_DEBUG,
  767. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  768. s->bit_rate,
  769. (int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
  770. av_log(s->avctx, AV_LOG_DEBUG,
  771. "[lavc rc] estimated target average qp: %.3f\n",
  772. (float)qscale_sum / rcc->num_entries);
  773. if (toobig == 0) {
  774. av_log(s->avctx, AV_LOG_INFO,
  775. "[lavc rc] Using all of requested bitrate is not "
  776. "necessary for this video with these parameters.\n");
  777. } else if (toobig == 40) {
  778. av_log(s->avctx, AV_LOG_ERROR,
  779. "[lavc rc] Error: bitrate too low for this video "
  780. "with these parameters.\n");
  781. return -1;
  782. } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
  783. av_log(s->avctx, AV_LOG_ERROR,
  784. "[lavc rc] Error: 2pass curve failed to converge\n");
  785. return -1;
  786. }
  787. return 0;
  788. }