You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2093 lines
68KB

  1. /*
  2. * FFV1 codec for libavcodec
  3. *
  4. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec)
  25. */
  26. #include "avcodec.h"
  27. #include "internal.h"
  28. #include "get_bits.h"
  29. #include "put_bits.h"
  30. #include "dsputil.h"
  31. #include "rangecoder.h"
  32. #include "golomb.h"
  33. #include "mathops.h"
  34. #include "libavutil/pixdesc.h"
  35. #include "libavutil/avassert.h"
  36. #include "libavutil/crc.h"
  37. #include "libavutil/opt.h"
  38. #ifdef __INTEL_COMPILER
  39. #undef av_flatten
  40. #define av_flatten
  41. #endif
  42. #define MAX_PLANES 4
  43. #define CONTEXT_SIZE 32
  44. #define MAX_QUANT_TABLES 8
  45. #define MAX_CONTEXT_INPUTS 5
  46. extern const uint8_t ff_log2_run[41];
  47. static const int8_t quant5_10bit[256]={
  48. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  49. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  50. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  51. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  52. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  53. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  54. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  55. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  56. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  57. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  58. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  59. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  60. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,
  61. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  62. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  63. -1,-1,-1,-1,-1,-1,-0,-0,-0,-0,-0,-0,-0,-0,-0,-0,
  64. };
  65. static const int8_t quant5[256]={
  66. 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  67. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  68. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  69. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  70. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  71. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  72. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  73. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  74. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  75. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  76. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  77. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  78. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  79. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  80. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  81. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
  82. };
  83. static const int8_t quant9_10bit[256]={
  84. 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  85. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
  86. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  87. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  88. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  89. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  90. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  91. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  92. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  93. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  94. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  95. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  96. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,
  97. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  98. -3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  99. -2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-0,-0,-0,-0,
  100. };
  101. static const int8_t quant11[256]={
  102. 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
  103. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  104. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  105. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  106. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  107. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  108. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  109. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  110. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  111. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  112. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  113. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  114. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  115. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
  116. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  117. -4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
  118. };
  119. static const uint8_t ver2_state[256]= {
  120. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
  121. 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
  122. 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
  123. 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
  124. 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
  125. 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
  126. 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
  127. 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
  128. 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
  129. 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
  130. 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
  131. 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
  132. 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
  133. 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
  134. 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
  135. 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
  136. };
  137. typedef struct VlcState{
  138. int16_t drift;
  139. uint16_t error_sum;
  140. int8_t bias;
  141. uint8_t count;
  142. } VlcState;
  143. typedef struct PlaneContext{
  144. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  145. int quant_table_index;
  146. int context_count;
  147. uint8_t (*state)[CONTEXT_SIZE];
  148. VlcState *vlc_state;
  149. uint8_t interlace_bit_state[2];
  150. } PlaneContext;
  151. #define MAX_SLICES 256
  152. typedef struct FFV1Context{
  153. AVClass *class;
  154. AVCodecContext *avctx;
  155. RangeCoder c;
  156. GetBitContext gb;
  157. PutBitContext pb;
  158. uint64_t rc_stat[256][2];
  159. uint64_t (*rc_stat2[MAX_QUANT_TABLES])[32][2];
  160. int version;
  161. int minor_version;
  162. int width, height;
  163. int chroma_h_shift, chroma_v_shift;
  164. int chroma_planes;
  165. int transparency;
  166. int flags;
  167. int picture_number;
  168. AVFrame picture;
  169. int plane_count;
  170. int ac; ///< 1=range coder <-> 0=golomb rice
  171. int ac_byte_count; ///< number of bytes used for AC coding
  172. PlaneContext plane[MAX_PLANES];
  173. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  174. int16_t quant_tables[MAX_QUANT_TABLES][MAX_CONTEXT_INPUTS][256];
  175. int context_count[MAX_QUANT_TABLES];
  176. uint8_t state_transition[256];
  177. uint8_t (*initial_states[MAX_QUANT_TABLES])[32];
  178. int run_index;
  179. int colorspace;
  180. int16_t *sample_buffer;
  181. int gob_count;
  182. int packed_at_lsb;
  183. int ec;
  184. int key_frame_ok;
  185. int quant_table_count;
  186. DSPContext dsp;
  187. struct FFV1Context *slice_context[MAX_SLICES];
  188. int slice_count;
  189. int num_v_slices;
  190. int num_h_slices;
  191. int slice_width;
  192. int slice_height;
  193. int slice_x;
  194. int slice_y;
  195. int bits_per_raw_sample;
  196. }FFV1Context;
  197. static av_always_inline int fold(int diff, int bits){
  198. if(bits==8)
  199. diff= (int8_t)diff;
  200. else{
  201. diff+= 1<<(bits-1);
  202. diff&=(1<<bits)-1;
  203. diff-= 1<<(bits-1);
  204. }
  205. return diff;
  206. }
  207. static inline int predict(int16_t *src, int16_t *last)
  208. {
  209. const int LT= last[-1];
  210. const int T= last[ 0];
  211. const int L = src[-1];
  212. return mid_pred(L, L + T - LT, T);
  213. }
  214. static inline int get_context(PlaneContext *p, int16_t *src,
  215. int16_t *last, int16_t *last2)
  216. {
  217. const int LT= last[-1];
  218. const int T= last[ 0];
  219. const int RT= last[ 1];
  220. const int L = src[-1];
  221. if(p->quant_table[3][127]){
  222. const int TT= last2[0];
  223. const int LL= src[-2];
  224. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF]
  225. +p->quant_table[3][(LL-L) & 0xFF] + p->quant_table[4][(TT-T) & 0xFF];
  226. }else
  227. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF];
  228. }
  229. static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256]){
  230. int i,j,k,m;
  231. double l2tab[256];
  232. for(i=1; i<256; i++)
  233. l2tab[i]= log2(i/256.0);
  234. for(i=0; i<256; i++){
  235. double best_len[256];
  236. double p= i/256.0;
  237. for(j=0; j<256; j++)
  238. best_len[j]= 1<<30;
  239. for(j=FFMAX(i-10,1); j<FFMIN(i+11,256); j++){
  240. double occ[256]={0};
  241. double len=0;
  242. occ[j]=1.0;
  243. for(k=0; k<256; k++){
  244. double newocc[256]={0};
  245. for(m=0; m<256; m++){
  246. if(occ[m]){
  247. len -=occ[m]*( p *l2tab[ m]
  248. + (1-p)*l2tab[256-m]);
  249. }
  250. }
  251. if(len < best_len[k]){
  252. best_len[k]= len;
  253. best_state[i][k]= j;
  254. }
  255. for(m=0; m<256; m++){
  256. if(occ[m]){
  257. newocc[ one_state[ m]] += occ[m]* p ;
  258. newocc[256-one_state[256-m]] += occ[m]*(1-p);
  259. }
  260. }
  261. memcpy(occ, newocc, sizeof(occ));
  262. }
  263. }
  264. }
  265. }
  266. static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){
  267. int i;
  268. #define put_rac(C,S,B) \
  269. do{\
  270. if(rc_stat){\
  271. rc_stat[*(S)][B]++;\
  272. rc_stat2[(S)-state][B]++;\
  273. }\
  274. put_rac(C,S,B);\
  275. }while(0)
  276. if(v){
  277. const int a= FFABS(v);
  278. const int e= av_log2(a);
  279. put_rac(c, state+0, 0);
  280. if(e<=9){
  281. for(i=0; i<e; i++){
  282. put_rac(c, state+1+i, 1); //1..10
  283. }
  284. put_rac(c, state+1+i, 0);
  285. for(i=e-1; i>=0; i--){
  286. put_rac(c, state+22+i, (a>>i)&1); //22..31
  287. }
  288. if(is_signed)
  289. put_rac(c, state+11 + e, v < 0); //11..21
  290. }else{
  291. for(i=0; i<e; i++){
  292. put_rac(c, state+1+FFMIN(i,9), 1); //1..10
  293. }
  294. put_rac(c, state+1+9, 0);
  295. for(i=e-1; i>=0; i--){
  296. put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
  297. }
  298. if(is_signed)
  299. put_rac(c, state+11 + 10, v < 0); //11..21
  300. }
  301. }else{
  302. put_rac(c, state+0, 1);
  303. }
  304. #undef put_rac
  305. }
  306. static av_noinline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
  307. put_symbol_inline(c, state, v, is_signed, NULL, NULL);
  308. }
  309. static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed){
  310. if(get_rac(c, state+0))
  311. return 0;
  312. else{
  313. int i, e, a;
  314. e= 0;
  315. while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
  316. e++;
  317. }
  318. a= 1;
  319. for(i=e-1; i>=0; i--){
  320. a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
  321. }
  322. e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
  323. return (a^e)-e;
  324. }
  325. }
  326. static av_noinline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
  327. return get_symbol_inline(c, state, is_signed);
  328. }
  329. static inline void update_vlc_state(VlcState * const state, const int v){
  330. int drift= state->drift;
  331. int count= state->count;
  332. state->error_sum += FFABS(v);
  333. drift += v;
  334. if(count == 128){ //FIXME variable
  335. count >>= 1;
  336. drift >>= 1;
  337. state->error_sum >>= 1;
  338. }
  339. count++;
  340. if(drift <= -count){
  341. if(state->bias > -128) state->bias--;
  342. drift += count;
  343. if(drift <= -count)
  344. drift= -count + 1;
  345. }else if(drift > 0){
  346. if(state->bias < 127) state->bias++;
  347. drift -= count;
  348. if(drift > 0)
  349. drift= 0;
  350. }
  351. state->drift= drift;
  352. state->count= count;
  353. }
  354. static inline void put_vlc_symbol(PutBitContext *pb, VlcState * const state, int v, int bits){
  355. int i, k, code;
  356. //printf("final: %d ", v);
  357. v = fold(v - state->bias, bits);
  358. i= state->count;
  359. k=0;
  360. while(i < state->error_sum){ //FIXME optimize
  361. k++;
  362. i += i;
  363. }
  364. assert(k<=8);
  365. #if 0 // JPEG LS
  366. if(k==0 && 2*state->drift <= - state->count) code= v ^ (-1);
  367. else code= v;
  368. #else
  369. code= v ^ ((2*state->drift + state->count)>>31);
  370. #endif
  371. //printf("v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code, state->bias, state->error_sum, state->drift, state->count, k);
  372. set_sr_golomb(pb, code, k, 12, bits);
  373. update_vlc_state(state, v);
  374. }
  375. static inline int get_vlc_symbol(GetBitContext *gb, VlcState * const state, int bits){
  376. int k, i, v, ret;
  377. i= state->count;
  378. k=0;
  379. while(i < state->error_sum){ //FIXME optimize
  380. k++;
  381. i += i;
  382. }
  383. assert(k<=8);
  384. v= get_sr_golomb(gb, k, 12, bits);
  385. //printf("v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k);
  386. #if 0 // JPEG LS
  387. if(k==0 && 2*state->drift <= - state->count) v ^= (-1);
  388. #else
  389. v ^= ((2*state->drift + state->count)>>31);
  390. #endif
  391. ret= fold(v + state->bias, bits);
  392. update_vlc_state(state, v);
  393. //printf("final: %d\n", ret);
  394. return ret;
  395. }
  396. #if CONFIG_FFV1_ENCODER
  397. static av_always_inline int encode_line(FFV1Context *s, int w,
  398. int16_t *sample[3],
  399. int plane_index, int bits)
  400. {
  401. PlaneContext * const p= &s->plane[plane_index];
  402. RangeCoder * const c= &s->c;
  403. int x;
  404. int run_index= s->run_index;
  405. int run_count=0;
  406. int run_mode=0;
  407. if(s->ac){
  408. if(c->bytestream_end - c->bytestream < w*20){
  409. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  410. return -1;
  411. }
  412. }else{
  413. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < w*4){
  414. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  415. return -1;
  416. }
  417. }
  418. for(x=0; x<w; x++){
  419. int diff, context;
  420. context= get_context(p, sample[0]+x, sample[1]+x, sample[2]+x);
  421. diff= sample[0][x] - predict(sample[0]+x, sample[1]+x);
  422. if(context < 0){
  423. context = -context;
  424. diff= -diff;
  425. }
  426. diff= fold(diff, bits);
  427. if(s->ac){
  428. if(s->flags & CODEC_FLAG_PASS1){
  429. put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat, s->rc_stat2[p->quant_table_index][context]);
  430. }else{
  431. put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
  432. }
  433. }else{
  434. if(context == 0) run_mode=1;
  435. if(run_mode){
  436. if(diff){
  437. while(run_count >= 1<<ff_log2_run[run_index]){
  438. run_count -= 1<<ff_log2_run[run_index];
  439. run_index++;
  440. put_bits(&s->pb, 1, 1);
  441. }
  442. put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
  443. if(run_index) run_index--;
  444. run_count=0;
  445. run_mode=0;
  446. if(diff>0) diff--;
  447. }else{
  448. run_count++;
  449. }
  450. }
  451. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, (int)put_bits_count(&s->pb));
  452. if(run_mode == 0)
  453. put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
  454. }
  455. }
  456. if(run_mode){
  457. while(run_count >= 1<<ff_log2_run[run_index]){
  458. run_count -= 1<<ff_log2_run[run_index];
  459. run_index++;
  460. put_bits(&s->pb, 1, 1);
  461. }
  462. if(run_count)
  463. put_bits(&s->pb, 1, 1);
  464. }
  465. s->run_index= run_index;
  466. return 0;
  467. }
  468. static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  469. int x,y,i;
  470. const int ring_size= s->avctx->context_model ? 3 : 2;
  471. int16_t *sample[3];
  472. s->run_index=0;
  473. memset(s->sample_buffer, 0, ring_size*(w+6)*sizeof(*s->sample_buffer));
  474. for(y=0; y<h; y++){
  475. for(i=0; i<ring_size; i++)
  476. sample[i]= s->sample_buffer + (w+6)*((h+i-y)%ring_size) + 3;
  477. sample[0][-1]= sample[1][0 ];
  478. sample[1][ w]= sample[1][w-1];
  479. //{START_TIMER
  480. if(s->bits_per_raw_sample<=8){
  481. for(x=0; x<w; x++){
  482. sample[0][x]= src[x + stride*y];
  483. }
  484. encode_line(s, w, sample, plane_index, 8);
  485. }else{
  486. if(s->packed_at_lsb){
  487. for(x=0; x<w; x++){
  488. sample[0][x]= ((uint16_t*)(src + stride*y))[x];
  489. }
  490. }else{
  491. for(x=0; x<w; x++){
  492. sample[0][x]= ((uint16_t*)(src + stride*y))[x] >> (16 - s->bits_per_raw_sample);
  493. }
  494. }
  495. encode_line(s, w, sample, plane_index, s->bits_per_raw_sample);
  496. }
  497. //STOP_TIMER("encode line")}
  498. }
  499. }
  500. static void encode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  501. int x, y, p, i;
  502. const int ring_size= s->avctx->context_model ? 3 : 2;
  503. int16_t *sample[4][3];
  504. s->run_index=0;
  505. memset(s->sample_buffer, 0, ring_size*4*(w+6)*sizeof(*s->sample_buffer));
  506. for(y=0; y<h; y++){
  507. for(i=0; i<ring_size; i++)
  508. for(p=0; p<4; p++)
  509. sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
  510. for(x=0; x<w; x++){
  511. unsigned v= src[x + stride*y];
  512. int b= v&0xFF;
  513. int g= (v>>8)&0xFF;
  514. int r= (v>>16)&0xFF;
  515. int a= v>>24;
  516. b -= g;
  517. r -= g;
  518. g += (b + r)>>2;
  519. b += 0x100;
  520. r += 0x100;
  521. // assert(g>=0 && b>=0 && r>=0);
  522. // assert(g<256 && b<512 && r<512);
  523. sample[0][0][x]= g;
  524. sample[1][0][x]= b;
  525. sample[2][0][x]= r;
  526. sample[3][0][x]= a;
  527. }
  528. for(p=0; p<3 + s->transparency; p++){
  529. sample[p][0][-1]= sample[p][1][0 ];
  530. sample[p][1][ w]= sample[p][1][w-1];
  531. encode_line(s, w, sample[p], (p+1)/2, 9);
  532. }
  533. }
  534. }
  535. static void write_quant_table(RangeCoder *c, int16_t *quant_table){
  536. int last=0;
  537. int i;
  538. uint8_t state[CONTEXT_SIZE];
  539. memset(state, 128, sizeof(state));
  540. for(i=1; i<128 ; i++){
  541. if(quant_table[i] != quant_table[i-1]){
  542. put_symbol(c, state, i-last-1, 0);
  543. last= i;
  544. }
  545. }
  546. put_symbol(c, state, i-last-1, 0);
  547. }
  548. static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  549. int i;
  550. for(i=0; i<5; i++)
  551. write_quant_table(c, quant_table[i]);
  552. }
  553. static void write_header(FFV1Context *f){
  554. uint8_t state[CONTEXT_SIZE];
  555. int i, j;
  556. RangeCoder * const c= &f->slice_context[0]->c;
  557. memset(state, 128, sizeof(state));
  558. if(f->version < 2){
  559. put_symbol(c, state, f->version, 0);
  560. put_symbol(c, state, f->ac, 0);
  561. if(f->ac>1){
  562. for(i=1; i<256; i++){
  563. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  564. }
  565. }
  566. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  567. if(f->version>0)
  568. put_symbol(c, state, f->bits_per_raw_sample, 0);
  569. put_rac(c, state, f->chroma_planes);
  570. put_symbol(c, state, f->chroma_h_shift, 0);
  571. put_symbol(c, state, f->chroma_v_shift, 0);
  572. put_rac(c, state, f->transparency);
  573. write_quant_tables(c, f->quant_table);
  574. }else if(f->version < 3){
  575. put_symbol(c, state, f->slice_count, 0);
  576. for(i=0; i<f->slice_count; i++){
  577. FFV1Context *fs= f->slice_context[i];
  578. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  579. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  580. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  581. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  582. for(j=0; j<f->plane_count; j++){
  583. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  584. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  585. }
  586. }
  587. }
  588. }
  589. #endif /* CONFIG_FFV1_ENCODER */
  590. static av_cold int common_init(AVCodecContext *avctx){
  591. FFV1Context *s = avctx->priv_data;
  592. s->avctx= avctx;
  593. s->flags= avctx->flags;
  594. avcodec_get_frame_defaults(&s->picture);
  595. ff_dsputil_init(&s->dsp, avctx);
  596. s->width = avctx->width;
  597. s->height= avctx->height;
  598. assert(s->width && s->height);
  599. //defaults
  600. s->num_h_slices=1;
  601. s->num_v_slices=1;
  602. return 0;
  603. }
  604. static int init_slice_state(FFV1Context *f, FFV1Context *fs){
  605. int j;
  606. fs->plane_count= f->plane_count;
  607. fs->transparency= f->transparency;
  608. for(j=0; j<f->plane_count; j++){
  609. PlaneContext * const p= &fs->plane[j];
  610. if(fs->ac){
  611. if(!p-> state) p-> state= av_malloc(CONTEXT_SIZE*p->context_count*sizeof(uint8_t));
  612. if(!p-> state)
  613. return AVERROR(ENOMEM);
  614. }else{
  615. if(!p->vlc_state) p->vlc_state= av_malloc(p->context_count*sizeof(VlcState));
  616. if(!p->vlc_state)
  617. return AVERROR(ENOMEM);
  618. }
  619. }
  620. if (fs->ac>1){
  621. //FIXME only redo if state_transition changed
  622. for(j=1; j<256; j++){
  623. fs->c.one_state [ j]= f->state_transition[j];
  624. fs->c.zero_state[256-j]= 256-fs->c.one_state [j];
  625. }
  626. }
  627. return 0;
  628. }
  629. static int init_slices_state(FFV1Context *f){
  630. int i;
  631. for(i=0; i<f->slice_count; i++){
  632. FFV1Context *fs= f->slice_context[i];
  633. if(init_slice_state(f, fs) < 0)
  634. return -1;
  635. }
  636. return 0;
  637. }
  638. static av_cold int init_slice_contexts(FFV1Context *f){
  639. int i;
  640. f->slice_count= f->num_h_slices * f->num_v_slices;
  641. for(i=0; i<f->slice_count; i++){
  642. FFV1Context *fs= av_mallocz(sizeof(*fs));
  643. int sx= i % f->num_h_slices;
  644. int sy= i / f->num_h_slices;
  645. int sxs= f->avctx->width * sx / f->num_h_slices;
  646. int sxe= f->avctx->width *(sx+1) / f->num_h_slices;
  647. int sys= f->avctx->height* sy / f->num_v_slices;
  648. int sye= f->avctx->height*(sy+1) / f->num_v_slices;
  649. f->slice_context[i]= fs;
  650. memcpy(fs, f, sizeof(*fs));
  651. memset(fs->rc_stat2, 0, sizeof(fs->rc_stat2));
  652. fs->slice_width = sxe - sxs;
  653. fs->slice_height= sye - sys;
  654. fs->slice_x = sxs;
  655. fs->slice_y = sys;
  656. fs->sample_buffer = av_malloc(3*4 * (fs->width+6) * sizeof(*fs->sample_buffer));
  657. if (!fs->sample_buffer)
  658. return AVERROR(ENOMEM);
  659. }
  660. return 0;
  661. }
  662. static int allocate_initial_states(FFV1Context *f){
  663. int i;
  664. for(i=0; i<f->quant_table_count; i++){
  665. f->initial_states[i]= av_malloc(f->context_count[i]*sizeof(*f->initial_states[i]));
  666. if(!f->initial_states[i])
  667. return AVERROR(ENOMEM);
  668. memset(f->initial_states[i], 128, f->context_count[i]*sizeof(*f->initial_states[i]));
  669. }
  670. return 0;
  671. }
  672. #if CONFIG_FFV1_ENCODER
  673. static int write_extra_header(FFV1Context *f){
  674. RangeCoder * const c= &f->c;
  675. uint8_t state[CONTEXT_SIZE];
  676. int i, j, k;
  677. uint8_t state2[32][CONTEXT_SIZE];
  678. unsigned v;
  679. memset(state2, 128, sizeof(state2));
  680. memset(state, 128, sizeof(state));
  681. f->avctx->extradata= av_malloc(f->avctx->extradata_size= 10000 + (11*11*5*5*5+11*11*11)*32);
  682. ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
  683. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  684. put_symbol(c, state, f->version, 0);
  685. if(f->version > 2)
  686. put_symbol(c, state, f->minor_version, 0);
  687. put_symbol(c, state, f->ac, 0);
  688. if(f->ac>1){
  689. for(i=1; i<256; i++){
  690. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  691. }
  692. }
  693. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  694. put_symbol(c, state, f->bits_per_raw_sample, 0);
  695. put_rac(c, state, f->chroma_planes);
  696. put_symbol(c, state, f->chroma_h_shift, 0);
  697. put_symbol(c, state, f->chroma_v_shift, 0);
  698. put_rac(c, state, f->transparency);
  699. put_symbol(c, state, f->num_h_slices-1, 0);
  700. put_symbol(c, state, f->num_v_slices-1, 0);
  701. put_symbol(c, state, f->quant_table_count, 0);
  702. for(i=0; i<f->quant_table_count; i++)
  703. write_quant_tables(c, f->quant_tables[i]);
  704. for(i=0; i<f->quant_table_count; i++){
  705. for(j=0; j<f->context_count[i]*CONTEXT_SIZE; j++)
  706. if(f->initial_states[i] && f->initial_states[i][0][j] != 128)
  707. break;
  708. if(j<f->context_count[i]*CONTEXT_SIZE){
  709. put_rac(c, state, 1);
  710. for(j=0; j<f->context_count[i]; j++){
  711. for(k=0; k<CONTEXT_SIZE; k++){
  712. int pred= j ? f->initial_states[i][j-1][k] : 128;
  713. put_symbol(c, state2[k], (int8_t)(f->initial_states[i][j][k]-pred), 1);
  714. }
  715. }
  716. }else{
  717. put_rac(c, state, 0);
  718. }
  719. }
  720. if(f->version > 2){
  721. put_symbol(c, state, f->ec, 0);
  722. }
  723. f->avctx->extradata_size= ff_rac_terminate(c);
  724. v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, f->avctx->extradata, f->avctx->extradata_size);
  725. AV_WL32(f->avctx->extradata + f->avctx->extradata_size, v);
  726. f->avctx->extradata_size += 4;
  727. return 0;
  728. }
  729. static int sort_stt(FFV1Context *s, uint8_t stt[256]){
  730. int i,i2,changed,print=0;
  731. do{
  732. changed=0;
  733. for(i=12; i<244; i++){
  734. for(i2=i+1; i2<245 && i2<i+4; i2++){
  735. #define COST(old, new) \
  736. s->rc_stat[old][0]*-log2((256-(new))/256.0)\
  737. +s->rc_stat[old][1]*-log2( (new) /256.0)
  738. #define COST2(old, new) \
  739. COST(old, new)\
  740. +COST(256-(old), 256-(new))
  741. double size0= COST2(i, i ) + COST2(i2, i2);
  742. double sizeX= COST2(i, i2) + COST2(i2, i );
  743. if(sizeX < size0 && i!=128 && i2!=128){
  744. int j;
  745. FFSWAP(int, stt[ i], stt[ i2]);
  746. FFSWAP(int, s->rc_stat[i ][0],s->rc_stat[ i2][0]);
  747. FFSWAP(int, s->rc_stat[i ][1],s->rc_stat[ i2][1]);
  748. if(i != 256-i2){
  749. FFSWAP(int, stt[256-i], stt[256-i2]);
  750. FFSWAP(int, s->rc_stat[256-i][0],s->rc_stat[256-i2][0]);
  751. FFSWAP(int, s->rc_stat[256-i][1],s->rc_stat[256-i2][1]);
  752. }
  753. for(j=1; j<256; j++){
  754. if (stt[j] == i ) stt[j] = i2;
  755. else if(stt[j] == i2) stt[j] = i ;
  756. if(i != 256-i2){
  757. if (stt[256-j] == 256-i ) stt[256-j] = 256-i2;
  758. else if(stt[256-j] == 256-i2) stt[256-j] = 256-i ;
  759. }
  760. }
  761. print=changed=1;
  762. }
  763. }
  764. }
  765. }while(changed);
  766. return print;
  767. }
  768. static av_cold int encode_init(AVCodecContext *avctx)
  769. {
  770. FFV1Context *s = avctx->priv_data;
  771. int i, j, k, m;
  772. common_init(avctx);
  773. s->version=0;
  774. if((avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) || avctx->slices>1)
  775. s->version = FFMAX(s->version, 2);
  776. if(avctx->level == 3){
  777. s->version = 3;
  778. }
  779. if(s->ec < 0){
  780. s->ec = (s->version >= 3);
  781. }
  782. if(s->version >= 2 && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
  783. av_log(avctx, AV_LOG_ERROR, "Version 2 needed for requested features but version 2 is experimental and not enabled\n");
  784. return AVERROR_INVALIDDATA;
  785. }
  786. s->ac= avctx->coder_type > 0 ? 2 : 0;
  787. s->plane_count=3;
  788. switch(avctx->pix_fmt){
  789. case PIX_FMT_YUV444P9:
  790. case PIX_FMT_YUV422P9:
  791. case PIX_FMT_YUV420P9:
  792. if (!avctx->bits_per_raw_sample)
  793. s->bits_per_raw_sample = 9;
  794. case PIX_FMT_YUV444P10:
  795. case PIX_FMT_YUV420P10:
  796. case PIX_FMT_YUV422P10:
  797. s->packed_at_lsb = 1;
  798. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  799. s->bits_per_raw_sample = 10;
  800. case PIX_FMT_GRAY16:
  801. case PIX_FMT_YUV444P16:
  802. case PIX_FMT_YUV422P16:
  803. case PIX_FMT_YUV420P16:
  804. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
  805. s->bits_per_raw_sample = 16;
  806. } else if (!s->bits_per_raw_sample){
  807. s->bits_per_raw_sample = avctx->bits_per_raw_sample;
  808. }
  809. if(s->bits_per_raw_sample <=8){
  810. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  811. return AVERROR_INVALIDDATA;
  812. }
  813. if(!s->ac && avctx->coder_type == -1) {
  814. av_log(avctx, AV_LOG_INFO, "bits_per_raw_sample > 8, forcing coder 1\n");
  815. s->ac = 2;
  816. }
  817. if(!s->ac){
  818. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
  819. return AVERROR_INVALIDDATA;
  820. }
  821. s->version= FFMAX(s->version, 1);
  822. case PIX_FMT_GRAY8:
  823. case PIX_FMT_YUV444P:
  824. case PIX_FMT_YUV440P:
  825. case PIX_FMT_YUV422P:
  826. case PIX_FMT_YUV420P:
  827. case PIX_FMT_YUV411P:
  828. case PIX_FMT_YUV410P:
  829. s->chroma_planes= av_pix_fmt_descriptors[avctx->pix_fmt].nb_components < 3 ? 0 : 1;
  830. s->colorspace= 0;
  831. break;
  832. case PIX_FMT_YUVA444P:
  833. case PIX_FMT_YUVA422P:
  834. case PIX_FMT_YUVA420P:
  835. s->chroma_planes= 1;
  836. s->colorspace= 0;
  837. s->transparency= 1;
  838. break;
  839. case PIX_FMT_RGB32:
  840. s->colorspace= 1;
  841. s->transparency= 1;
  842. break;
  843. case PIX_FMT_0RGB32:
  844. s->colorspace= 1;
  845. break;
  846. default:
  847. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  848. return AVERROR_INVALIDDATA;
  849. }
  850. if (s->transparency) {
  851. av_log(avctx, AV_LOG_WARNING, "Storing alpha plane, this will require a recent FFV1 decoder to playback!\n");
  852. }
  853. if (avctx->context_model > 1U) {
  854. av_log(avctx, AV_LOG_ERROR, "Invalid context model %d, valid values are 0 and 1\n", avctx->context_model);
  855. return AVERROR(EINVAL);
  856. }
  857. if(s->ac>1)
  858. for(i=1; i<256; i++)
  859. s->state_transition[i]=ver2_state[i];
  860. for(i=0; i<256; i++){
  861. s->quant_table_count=2;
  862. if(s->bits_per_raw_sample <=8){
  863. s->quant_tables[0][0][i]= quant11[i];
  864. s->quant_tables[0][1][i]= 11*quant11[i];
  865. s->quant_tables[0][2][i]= 11*11*quant11[i];
  866. s->quant_tables[1][0][i]= quant11[i];
  867. s->quant_tables[1][1][i]= 11*quant11[i];
  868. s->quant_tables[1][2][i]= 11*11*quant5 [i];
  869. s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
  870. s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
  871. }else{
  872. s->quant_tables[0][0][i]= quant9_10bit[i];
  873. s->quant_tables[0][1][i]= 11*quant9_10bit[i];
  874. s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
  875. s->quant_tables[1][0][i]= quant9_10bit[i];
  876. s->quant_tables[1][1][i]= 11*quant9_10bit[i];
  877. s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
  878. s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
  879. s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
  880. }
  881. }
  882. s->context_count[0]= (11*11*11+1)/2;
  883. s->context_count[1]= (11*11*5*5*5+1)/2;
  884. memcpy(s->quant_table, s->quant_tables[avctx->context_model], sizeof(s->quant_table));
  885. for(i=0; i<s->plane_count; i++){
  886. PlaneContext * const p= &s->plane[i];
  887. memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
  888. p->quant_table_index= avctx->context_model;
  889. p->context_count= s->context_count[p->quant_table_index];
  890. }
  891. if(allocate_initial_states(s) < 0)
  892. return AVERROR(ENOMEM);
  893. avctx->coded_frame= &s->picture;
  894. if(!s->transparency)
  895. s->plane_count= 2;
  896. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
  897. s->picture_number=0;
  898. if(avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  899. for(i=0; i<s->quant_table_count; i++){
  900. s->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*s->rc_stat2[i]));
  901. if(!s->rc_stat2[i])
  902. return AVERROR(ENOMEM);
  903. }
  904. }
  905. if(avctx->stats_in){
  906. char *p= avctx->stats_in;
  907. uint8_t best_state[256][256];
  908. int gob_count=0;
  909. char *next;
  910. av_assert0(s->version>=2);
  911. for(;;){
  912. for(j=0; j<256; j++){
  913. for(i=0; i<2; i++){
  914. s->rc_stat[j][i]= strtol(p, &next, 0);
  915. if(next==p){
  916. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d [%s]\n", j,i,p);
  917. return -1;
  918. }
  919. p=next;
  920. }
  921. }
  922. for(i=0; i<s->quant_table_count; i++){
  923. for(j=0; j<s->context_count[i]; j++){
  924. for(k=0; k<32; k++){
  925. for(m=0; m<2; m++){
  926. s->rc_stat2[i][j][k][m]= strtol(p, &next, 0);
  927. if(next==p){
  928. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d %d %d [%s]\n", i,j,k,m,p);
  929. return AVERROR_INVALIDDATA;
  930. }
  931. p=next;
  932. }
  933. }
  934. }
  935. }
  936. gob_count= strtol(p, &next, 0);
  937. if(next==p || gob_count <0){
  938. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
  939. return AVERROR_INVALIDDATA;
  940. }
  941. p=next;
  942. while(*p=='\n' || *p==' ') p++;
  943. if(p[0]==0) break;
  944. }
  945. sort_stt(s, s->state_transition);
  946. find_best_state(best_state, s->state_transition);
  947. for(i=0; i<s->quant_table_count; i++){
  948. for(j=0; j<s->context_count[i]; j++){
  949. for(k=0; k<32; k++){
  950. double p= 128;
  951. if(s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]){
  952. p=256.0*s->rc_stat2[i][j][k][1] / (s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]);
  953. }
  954. s->initial_states[i][j][k]= best_state[av_clip(round(p), 1, 255)][av_clip((s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1])/gob_count, 0, 255)];
  955. }
  956. }
  957. }
  958. }
  959. if(s->version>1){
  960. for(s->num_v_slices=2; s->num_v_slices<9; s->num_v_slices++){
  961. for(s->num_h_slices=s->num_v_slices; s->num_h_slices<2*s->num_v_slices; s->num_h_slices++){
  962. if(avctx->slices == s->num_h_slices * s->num_v_slices && avctx->slices <= 64)
  963. goto slices_ok;
  964. }
  965. }
  966. av_log(avctx, AV_LOG_ERROR, "Unsupported number %d of slices requested, please specify a supported number with -slices (ex:4,6,9,12,16, ...)\n", avctx->slices);
  967. return -1;
  968. slices_ok:
  969. write_extra_header(s);
  970. }
  971. if(init_slice_contexts(s) < 0)
  972. return -1;
  973. if(init_slices_state(s) < 0)
  974. return -1;
  975. #define STATS_OUT_SIZE 1024*1024*6
  976. if(avctx->flags & CODEC_FLAG_PASS1){
  977. avctx->stats_out= av_mallocz(STATS_OUT_SIZE);
  978. for(i=0; i<s->quant_table_count; i++){
  979. for(j=0; j<s->slice_count; j++){
  980. FFV1Context *sf= s->slice_context[j];
  981. av_assert0(!sf->rc_stat2[i]);
  982. sf->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*sf->rc_stat2[i]));
  983. if(!sf->rc_stat2[i])
  984. return AVERROR(ENOMEM);
  985. }
  986. }
  987. }
  988. return 0;
  989. }
  990. #endif /* CONFIG_FFV1_ENCODER */
  991. static void clear_slice_state(FFV1Context *f, FFV1Context *fs){
  992. int i, j;
  993. for(i=0; i<f->plane_count; i++){
  994. PlaneContext *p= &fs->plane[i];
  995. p->interlace_bit_state[0]= 128;
  996. p->interlace_bit_state[1]= 128;
  997. if(fs->ac){
  998. if(f->initial_states[p->quant_table_index]){
  999. memcpy(p->state, f->initial_states[p->quant_table_index], CONTEXT_SIZE*p->context_count);
  1000. }else
  1001. memset(p->state, 128, CONTEXT_SIZE*p->context_count);
  1002. }else{
  1003. for(j=0; j<p->context_count; j++){
  1004. p->vlc_state[j].drift= 0;
  1005. p->vlc_state[j].error_sum= 4; //FFMAX((RANGE + 32)/64, 2);
  1006. p->vlc_state[j].bias= 0;
  1007. p->vlc_state[j].count= 1;
  1008. }
  1009. }
  1010. }
  1011. }
  1012. #if CONFIG_FFV1_ENCODER
  1013. static void encode_slice_header(FFV1Context *f, FFV1Context *fs){
  1014. RangeCoder *c = &fs->c;
  1015. uint8_t state[CONTEXT_SIZE];
  1016. int j;
  1017. memset(state, 128, sizeof(state));
  1018. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  1019. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  1020. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  1021. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  1022. for(j=0; j<f->plane_count; j++){
  1023. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  1024. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  1025. }
  1026. if(!f->picture.interlaced_frame) put_symbol(c, state, 3, 0);
  1027. else put_symbol(c, state, 1 + !f->picture.top_field_first, 0);
  1028. put_symbol(c, state, f->picture.sample_aspect_ratio.num, 0);
  1029. put_symbol(c, state, f->picture.sample_aspect_ratio.den, 0);
  1030. }
  1031. static int encode_slice(AVCodecContext *c, void *arg){
  1032. FFV1Context *fs= *(void**)arg;
  1033. FFV1Context *f= fs->avctx->priv_data;
  1034. int width = fs->slice_width;
  1035. int height= fs->slice_height;
  1036. int x= fs->slice_x;
  1037. int y= fs->slice_y;
  1038. AVFrame * const p= &f->picture;
  1039. const int ps= (f->bits_per_raw_sample>8)+1;
  1040. if(p->key_frame)
  1041. clear_slice_state(f, fs);
  1042. if(f->version > 2){
  1043. encode_slice_header(f, fs);
  1044. }
  1045. if(!fs->ac){
  1046. fs->ac_byte_count = f->version > 2 || (!x&&!y) ? ff_rac_terminate(&fs->c) : 0;
  1047. init_put_bits(&fs->pb, fs->c.bytestream_start + fs->ac_byte_count, fs->c.bytestream_end - fs->c.bytestream_start - fs->ac_byte_count);
  1048. }
  1049. if(f->colorspace==0){
  1050. const int chroma_width = -((-width )>>f->chroma_h_shift);
  1051. const int chroma_height= -((-height)>>f->chroma_v_shift);
  1052. const int cx= x>>f->chroma_h_shift;
  1053. const int cy= y>>f->chroma_v_shift;
  1054. encode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
  1055. if (f->chroma_planes){
  1056. encode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  1057. encode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  1058. }
  1059. if (fs->transparency)
  1060. encode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2);
  1061. }else{
  1062. encode_rgb_frame(fs, (uint32_t*)(p->data[0]) + ps*x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  1063. }
  1064. emms_c();
  1065. return 0;
  1066. }
  1067. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  1068. const AVFrame *pict, int *got_packet)
  1069. {
  1070. FFV1Context *f = avctx->priv_data;
  1071. RangeCoder * const c= &f->slice_context[0]->c;
  1072. AVFrame * const p= &f->picture;
  1073. int used_count= 0;
  1074. uint8_t keystate=128;
  1075. uint8_t *buf_p;
  1076. int i, ret;
  1077. if ((ret = ff_alloc_packet2(avctx, pkt, avctx->width*avctx->height*((8*2+1+1)*4)/8
  1078. + FF_MIN_BUFFER_SIZE)) < 0)
  1079. return ret;
  1080. ff_init_range_encoder(c, pkt->data, pkt->size);
  1081. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1082. *p = *pict;
  1083. p->pict_type= AV_PICTURE_TYPE_I;
  1084. if(avctx->gop_size==0 || f->picture_number % avctx->gop_size == 0){
  1085. put_rac(c, &keystate, 1);
  1086. p->key_frame= 1;
  1087. f->gob_count++;
  1088. write_header(f);
  1089. }else{
  1090. put_rac(c, &keystate, 0);
  1091. p->key_frame= 0;
  1092. }
  1093. if (f->ac>1){
  1094. int i;
  1095. for(i=1; i<256; i++){
  1096. c->one_state[i]= f->state_transition[i];
  1097. c->zero_state[256-i]= 256-c->one_state[i];
  1098. }
  1099. }
  1100. for(i=1; i<f->slice_count; i++){
  1101. FFV1Context *fs= f->slice_context[i];
  1102. uint8_t *start = pkt->data + (pkt->size-used_count)*i/f->slice_count;
  1103. int len = pkt->size/f->slice_count;
  1104. ff_init_range_encoder(&fs->c, start, len);
  1105. }
  1106. avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1107. buf_p = pkt->data;
  1108. for(i=0; i<f->slice_count; i++){
  1109. FFV1Context *fs= f->slice_context[i];
  1110. int bytes;
  1111. if(fs->ac){
  1112. uint8_t state=128;
  1113. put_rac(&fs->c, &state, 0);
  1114. bytes= ff_rac_terminate(&fs->c);
  1115. }else{
  1116. flush_put_bits(&fs->pb); //nicer padding FIXME
  1117. bytes= fs->ac_byte_count + (put_bits_count(&fs->pb)+7)/8;
  1118. }
  1119. if(i>0 || f->version>2){
  1120. av_assert0(bytes < pkt->size/f->slice_count);
  1121. memmove(buf_p, fs->c.bytestream_start, bytes);
  1122. av_assert0(bytes < (1<<24));
  1123. AV_WB24(buf_p+bytes, bytes);
  1124. bytes+=3;
  1125. }
  1126. if(f->ec){
  1127. unsigned v;
  1128. buf_p[bytes++] = 0;
  1129. v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, bytes);
  1130. AV_WL32(buf_p + bytes, v); bytes += 4;
  1131. }
  1132. buf_p += bytes;
  1133. }
  1134. if((avctx->flags&CODEC_FLAG_PASS1) && (f->picture_number&31)==0){
  1135. int j, k, m;
  1136. char *p= avctx->stats_out;
  1137. char *end= p + STATS_OUT_SIZE;
  1138. memset(f->rc_stat, 0, sizeof(f->rc_stat));
  1139. for(i=0; i<f->quant_table_count; i++)
  1140. memset(f->rc_stat2[i], 0, f->context_count[i]*sizeof(*f->rc_stat2[i]));
  1141. for(j=0; j<f->slice_count; j++){
  1142. FFV1Context *fs= f->slice_context[j];
  1143. for(i=0; i<256; i++){
  1144. f->rc_stat[i][0] += fs->rc_stat[i][0];
  1145. f->rc_stat[i][1] += fs->rc_stat[i][1];
  1146. }
  1147. for(i=0; i<f->quant_table_count; i++){
  1148. for(k=0; k<f->context_count[i]; k++){
  1149. for(m=0; m<32; m++){
  1150. f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
  1151. f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
  1152. }
  1153. }
  1154. }
  1155. }
  1156. for(j=0; j<256; j++){
  1157. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat[j][0], f->rc_stat[j][1]);
  1158. p+= strlen(p);
  1159. }
  1160. snprintf(p, end-p, "\n");
  1161. for(i=0; i<f->quant_table_count; i++){
  1162. for(j=0; j<f->context_count[i]; j++){
  1163. for(m=0; m<32; m++){
  1164. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
  1165. p+= strlen(p);
  1166. }
  1167. }
  1168. }
  1169. snprintf(p, end-p, "%d\n", f->gob_count);
  1170. } else if(avctx->flags&CODEC_FLAG_PASS1)
  1171. avctx->stats_out[0] = '\0';
  1172. f->picture_number++;
  1173. pkt->size = buf_p - pkt->data;
  1174. pkt->flags |= AV_PKT_FLAG_KEY*p->key_frame;
  1175. *got_packet = 1;
  1176. return 0;
  1177. }
  1178. #endif /* CONFIG_FFV1_ENCODER */
  1179. static av_cold int common_end(AVCodecContext *avctx){
  1180. FFV1Context *s = avctx->priv_data;
  1181. int i, j;
  1182. if (avctx->codec->decode && s->picture.data[0])
  1183. avctx->release_buffer(avctx, &s->picture);
  1184. for(j=0; j<s->slice_count; j++){
  1185. FFV1Context *fs= s->slice_context[j];
  1186. for(i=0; i<s->plane_count; i++){
  1187. PlaneContext *p= &fs->plane[i];
  1188. av_freep(&p->state);
  1189. av_freep(&p->vlc_state);
  1190. }
  1191. av_freep(&fs->sample_buffer);
  1192. }
  1193. av_freep(&avctx->stats_out);
  1194. for(j=0; j<s->quant_table_count; j++){
  1195. av_freep(&s->initial_states[j]);
  1196. for(i=0; i<s->slice_count; i++){
  1197. FFV1Context *sf= s->slice_context[i];
  1198. av_freep(&sf->rc_stat2[j]);
  1199. }
  1200. av_freep(&s->rc_stat2[j]);
  1201. }
  1202. for(i=0; i<s->slice_count; i++){
  1203. av_freep(&s->slice_context[i]);
  1204. }
  1205. return 0;
  1206. }
  1207. static av_always_inline void decode_line(FFV1Context *s, int w,
  1208. int16_t *sample[2],
  1209. int plane_index, int bits)
  1210. {
  1211. PlaneContext * const p= &s->plane[plane_index];
  1212. RangeCoder * const c= &s->c;
  1213. int x;
  1214. int run_count=0;
  1215. int run_mode=0;
  1216. int run_index= s->run_index;
  1217. for(x=0; x<w; x++){
  1218. int diff, context, sign;
  1219. context= get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
  1220. if(context < 0){
  1221. context= -context;
  1222. sign=1;
  1223. }else
  1224. sign=0;
  1225. av_assert2(context < p->context_count);
  1226. if(s->ac){
  1227. diff= get_symbol_inline(c, p->state[context], 1);
  1228. }else{
  1229. if(context == 0 && run_mode==0) run_mode=1;
  1230. if(run_mode){
  1231. if(run_count==0 && run_mode==1){
  1232. if(get_bits1(&s->gb)){
  1233. run_count = 1<<ff_log2_run[run_index];
  1234. if(x + run_count <= w) run_index++;
  1235. }else{
  1236. if(ff_log2_run[run_index]) run_count = get_bits(&s->gb, ff_log2_run[run_index]);
  1237. else run_count=0;
  1238. if(run_index) run_index--;
  1239. run_mode=2;
  1240. }
  1241. }
  1242. run_count--;
  1243. if(run_count < 0){
  1244. run_mode=0;
  1245. run_count=0;
  1246. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1247. if(diff>=0) diff++;
  1248. }else
  1249. diff=0;
  1250. }else
  1251. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1252. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, get_bits_count(&s->gb));
  1253. }
  1254. if(sign) diff= -diff;
  1255. sample[1][x]= (predict(sample[1] + x, sample[0] + x) + diff) & ((1<<bits)-1);
  1256. }
  1257. s->run_index= run_index;
  1258. }
  1259. static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  1260. int x, y;
  1261. int16_t *sample[2];
  1262. sample[0]=s->sample_buffer +3;
  1263. sample[1]=s->sample_buffer+w+6+3;
  1264. s->run_index=0;
  1265. memset(s->sample_buffer, 0, 2*(w+6)*sizeof(*s->sample_buffer));
  1266. for(y=0; y<h; y++){
  1267. int16_t *temp = sample[0]; //FIXME try a normal buffer
  1268. sample[0]= sample[1];
  1269. sample[1]= temp;
  1270. sample[1][-1]= sample[0][0 ];
  1271. sample[0][ w]= sample[0][w-1];
  1272. //{START_TIMER
  1273. if(s->avctx->bits_per_raw_sample <= 8){
  1274. decode_line(s, w, sample, plane_index, 8);
  1275. for(x=0; x<w; x++){
  1276. src[x + stride*y]= sample[1][x];
  1277. }
  1278. }else{
  1279. decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  1280. if(s->packed_at_lsb){
  1281. for(x=0; x<w; x++){
  1282. ((uint16_t*)(src + stride*y))[x]= sample[1][x];
  1283. }
  1284. }else{
  1285. for(x=0; x<w; x++){
  1286. ((uint16_t*)(src + stride*y))[x]= sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
  1287. }
  1288. }
  1289. }
  1290. //STOP_TIMER("decode-line")}
  1291. }
  1292. }
  1293. static void decode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  1294. int x, y, p;
  1295. int16_t *sample[4][2];
  1296. for(x=0; x<4; x++){
  1297. sample[x][0] = s->sample_buffer + x*2 *(w+6) + 3;
  1298. sample[x][1] = s->sample_buffer + (x*2+1)*(w+6) + 3;
  1299. }
  1300. s->run_index=0;
  1301. memset(s->sample_buffer, 0, 8*(w+6)*sizeof(*s->sample_buffer));
  1302. for(y=0; y<h; y++){
  1303. for(p=0; p<3 + s->transparency; p++){
  1304. int16_t *temp = sample[p][0]; //FIXME try a normal buffer
  1305. sample[p][0]= sample[p][1];
  1306. sample[p][1]= temp;
  1307. sample[p][1][-1]= sample[p][0][0 ];
  1308. sample[p][0][ w]= sample[p][0][w-1];
  1309. decode_line(s, w, sample[p], (p+1)/2, 9);
  1310. }
  1311. for(x=0; x<w; x++){
  1312. int g= sample[0][1][x];
  1313. int b= sample[1][1][x];
  1314. int r= sample[2][1][x];
  1315. int a= sample[3][1][x];
  1316. // assert(g>=0 && b>=0 && r>=0);
  1317. // assert(g<256 && b<512 && r<512);
  1318. b -= 0x100;
  1319. r -= 0x100;
  1320. g -= (b + r)>>2;
  1321. b += g;
  1322. r += g;
  1323. src[x + stride*y]= b + (g<<8) + (r<<16) + (a<<24);
  1324. }
  1325. }
  1326. }
  1327. static int decode_slice_header(FFV1Context *f, FFV1Context *fs){
  1328. RangeCoder *c = &fs->c;
  1329. uint8_t state[CONTEXT_SIZE];
  1330. unsigned ps, i, context_count;
  1331. memset(state, 128, sizeof(state));
  1332. av_assert0(f->version > 2);
  1333. fs->slice_x = get_symbol(c, state, 0) *f->width ;
  1334. fs->slice_y = get_symbol(c, state, 0) *f->height;
  1335. fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x;
  1336. fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y;
  1337. fs->slice_x /= f->num_h_slices;
  1338. fs->slice_y /= f->num_v_slices;
  1339. fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
  1340. fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
  1341. if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
  1342. return -1;
  1343. if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
  1344. || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
  1345. return -1;
  1346. for(i=0; i<f->plane_count; i++){
  1347. PlaneContext * const p= &fs->plane[i];
  1348. int idx=get_symbol(c, state, 0);
  1349. if(idx > (unsigned)f->quant_table_count){
  1350. av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
  1351. return -1;
  1352. }
  1353. p->quant_table_index= idx;
  1354. memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
  1355. context_count= f->context_count[idx];
  1356. if(p->context_count < context_count){
  1357. av_freep(&p->state);
  1358. av_freep(&p->vlc_state);
  1359. }
  1360. p->context_count= context_count;
  1361. }
  1362. ps = get_symbol(c, state, 0);
  1363. if(ps==1){
  1364. f->picture.interlaced_frame = 1;
  1365. f->picture.top_field_first = 1;
  1366. } else if(ps==2){
  1367. f->picture.interlaced_frame = 1;
  1368. f->picture.top_field_first = 0;
  1369. } else if(ps==3){
  1370. f->picture.interlaced_frame = 0;
  1371. }
  1372. f->picture.sample_aspect_ratio.num = get_symbol(c, state, 0);
  1373. f->picture.sample_aspect_ratio.den = get_symbol(c, state, 0);
  1374. return 0;
  1375. }
  1376. static int decode_slice(AVCodecContext *c, void *arg){
  1377. FFV1Context *fs= *(void**)arg;
  1378. FFV1Context *f= fs->avctx->priv_data;
  1379. int width, height, x, y;
  1380. const int ps= (c->bits_per_raw_sample>8)+1;
  1381. AVFrame * const p= &f->picture;
  1382. if(f->version > 2){
  1383. if(init_slice_state(f, fs) < 0)
  1384. return AVERROR(ENOMEM);
  1385. if(decode_slice_header(f, fs) < 0)
  1386. return AVERROR_INVALIDDATA;
  1387. }
  1388. if(init_slice_state(f, fs) < 0)
  1389. return AVERROR(ENOMEM);
  1390. if(f->picture.key_frame)
  1391. clear_slice_state(f, fs);
  1392. width = fs->slice_width;
  1393. height= fs->slice_height;
  1394. x= fs->slice_x;
  1395. y= fs->slice_y;
  1396. if(!fs->ac){
  1397. fs->ac_byte_count = f->version > 2 || (!x&&!y) ? fs->c.bytestream - fs->c.bytestream_start - 1 : 0;
  1398. init_get_bits(&fs->gb,
  1399. fs->c.bytestream_start + fs->ac_byte_count,
  1400. (fs->c.bytestream_end - fs->c.bytestream_start - fs->ac_byte_count) * 8);
  1401. }
  1402. av_assert1(width && height);
  1403. if(f->colorspace==0){
  1404. const int chroma_width = -((-width )>>f->chroma_h_shift);
  1405. const int chroma_height= -((-height)>>f->chroma_v_shift);
  1406. const int cx= x>>f->chroma_h_shift;
  1407. const int cy= y>>f->chroma_v_shift;
  1408. decode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
  1409. if (f->chroma_planes){
  1410. decode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  1411. decode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  1412. }
  1413. if (fs->transparency)
  1414. decode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2);
  1415. }else{
  1416. decode_rgb_frame(fs, (uint32_t*)p->data[0] + ps*x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  1417. }
  1418. emms_c();
  1419. return 0;
  1420. }
  1421. static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale){
  1422. int v;
  1423. int i=0;
  1424. uint8_t state[CONTEXT_SIZE];
  1425. memset(state, 128, sizeof(state));
  1426. for(v=0; i<128 ; v++){
  1427. unsigned len= get_symbol(c, state, 0) + 1;
  1428. if(len > 128 - i) return -1;
  1429. while(len--){
  1430. quant_table[i] = scale*v;
  1431. i++;
  1432. //printf("%2d ",v);
  1433. //if(i%16==0) printf("\n");
  1434. }
  1435. }
  1436. for(i=1; i<128; i++){
  1437. quant_table[256-i]= -quant_table[i];
  1438. }
  1439. quant_table[128]= -quant_table[127];
  1440. return 2*v - 1;
  1441. }
  1442. static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  1443. int i;
  1444. int context_count=1;
  1445. for(i=0; i<5; i++){
  1446. context_count*= read_quant_table(c, quant_table[i], context_count);
  1447. if(context_count > 32768U){
  1448. return -1;
  1449. }
  1450. }
  1451. return (context_count+1)/2;
  1452. }
  1453. static int read_extra_header(FFV1Context *f){
  1454. RangeCoder * const c= &f->c;
  1455. uint8_t state[CONTEXT_SIZE];
  1456. int i, j, k;
  1457. uint8_t state2[32][CONTEXT_SIZE];
  1458. memset(state2, 128, sizeof(state2));
  1459. memset(state, 128, sizeof(state));
  1460. ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
  1461. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1462. f->version= get_symbol(c, state, 0);
  1463. if(f->version > 2) {
  1464. c->bytestream_end -= 4;
  1465. f->minor_version= get_symbol(c, state, 0);
  1466. }
  1467. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1468. if(f->ac>1){
  1469. for(i=1; i<256; i++){
  1470. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1471. }
  1472. }
  1473. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1474. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1475. f->chroma_planes= get_rac(c, state);
  1476. f->chroma_h_shift= get_symbol(c, state, 0);
  1477. f->chroma_v_shift= get_symbol(c, state, 0);
  1478. f->transparency= get_rac(c, state);
  1479. f->plane_count= 2 + f->transparency;
  1480. f->num_h_slices= 1 + get_symbol(c, state, 0);
  1481. f->num_v_slices= 1 + get_symbol(c, state, 0);
  1482. if(f->num_h_slices > (unsigned)f->width || f->num_v_slices > (unsigned)f->height){
  1483. av_log(f->avctx, AV_LOG_ERROR, "too many slices\n");
  1484. return -1;
  1485. }
  1486. f->quant_table_count= get_symbol(c, state, 0);
  1487. if(f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
  1488. return -1;
  1489. for(i=0; i<f->quant_table_count; i++){
  1490. if((f->context_count[i]= read_quant_tables(c, f->quant_tables[i])) < 0){
  1491. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1492. return -1;
  1493. }
  1494. }
  1495. if(allocate_initial_states(f) < 0)
  1496. return AVERROR(ENOMEM);
  1497. for(i=0; i<f->quant_table_count; i++){
  1498. if(get_rac(c, state)){
  1499. for(j=0; j<f->context_count[i]; j++){
  1500. for(k=0; k<CONTEXT_SIZE; k++){
  1501. int pred= j ? f->initial_states[i][j-1][k] : 128;
  1502. f->initial_states[i][j][k]= (pred+get_symbol(c, state2[k], 1))&0xFF;
  1503. }
  1504. }
  1505. }
  1506. }
  1507. if(f->version > 2){
  1508. f->ec = get_symbol(c, state, 0);
  1509. }
  1510. if(f->version > 2){
  1511. unsigned v;
  1512. v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, f->avctx->extradata, f->avctx->extradata_size);
  1513. if(v){
  1514. av_log(f->avctx, AV_LOG_ERROR, "CRC mismatch %X!\n", v);
  1515. return AVERROR_INVALIDDATA;
  1516. }
  1517. }
  1518. return 0;
  1519. }
  1520. static int read_header(FFV1Context *f){
  1521. uint8_t state[CONTEXT_SIZE];
  1522. int i, j, context_count;
  1523. RangeCoder * const c= &f->slice_context[0]->c;
  1524. memset(state, 128, sizeof(state));
  1525. if(f->version < 2){
  1526. unsigned v= get_symbol(c, state, 0);
  1527. if(v >= 2){
  1528. av_log(f->avctx, AV_LOG_ERROR, "invalid version %d in ver01 header\n", v);
  1529. return AVERROR_INVALIDDATA;
  1530. }
  1531. f->version = v;
  1532. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1533. if(f->ac>1){
  1534. for(i=1; i<256; i++){
  1535. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1536. }
  1537. }
  1538. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1539. if(f->version>0)
  1540. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1541. f->chroma_planes= get_rac(c, state);
  1542. f->chroma_h_shift= get_symbol(c, state, 0);
  1543. f->chroma_v_shift= get_symbol(c, state, 0);
  1544. f->transparency= get_rac(c, state);
  1545. f->plane_count= 2 + f->transparency;
  1546. }
  1547. if(f->colorspace==0){
  1548. if(!f->transparency && !f->chroma_planes){
  1549. if (f->avctx->bits_per_raw_sample<=8)
  1550. f->avctx->pix_fmt= PIX_FMT_GRAY8;
  1551. else
  1552. f->avctx->pix_fmt= PIX_FMT_GRAY16;
  1553. }else if(f->avctx->bits_per_raw_sample<=8 && !f->transparency){
  1554. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1555. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P; break;
  1556. case 0x01: f->avctx->pix_fmt= PIX_FMT_YUV440P; break;
  1557. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P; break;
  1558. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P; break;
  1559. case 0x20: f->avctx->pix_fmt= PIX_FMT_YUV411P; break;
  1560. case 0x22: f->avctx->pix_fmt= PIX_FMT_YUV410P; break;
  1561. default:
  1562. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1563. return -1;
  1564. }
  1565. }else if(f->avctx->bits_per_raw_sample<=8 && f->transparency){
  1566. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1567. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUVA444P; break;
  1568. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUVA422P; break;
  1569. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUVA420P; break;
  1570. default:
  1571. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1572. return -1;
  1573. }
  1574. }else if(f->avctx->bits_per_raw_sample==9) {
  1575. f->packed_at_lsb=1;
  1576. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1577. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P9; break;
  1578. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P9; break;
  1579. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P9; break;
  1580. default:
  1581. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1582. return -1;
  1583. }
  1584. }else if(f->avctx->bits_per_raw_sample==10) {
  1585. f->packed_at_lsb=1;
  1586. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1587. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P10; break;
  1588. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P10; break;
  1589. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P10; break;
  1590. default:
  1591. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1592. return -1;
  1593. }
  1594. }else {
  1595. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1596. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1597. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
  1598. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P16; break;
  1599. default:
  1600. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1601. return -1;
  1602. }
  1603. }
  1604. }else if(f->colorspace==1){
  1605. if(f->chroma_h_shift || f->chroma_v_shift){
  1606. av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n");
  1607. return -1;
  1608. }
  1609. if(f->transparency) f->avctx->pix_fmt= PIX_FMT_RGB32;
  1610. else f->avctx->pix_fmt= PIX_FMT_0RGB32;
  1611. }else{
  1612. av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
  1613. return -1;
  1614. }
  1615. //printf("%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift,f->avctx->pix_fmt);
  1616. if(f->version < 2){
  1617. context_count= read_quant_tables(c, f->quant_table);
  1618. if(context_count < 0){
  1619. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1620. return -1;
  1621. }
  1622. }else if(f->version < 3){
  1623. f->slice_count= get_symbol(c, state, 0);
  1624. }else{
  1625. const uint8_t *p= c->bytestream_end;
  1626. for(f->slice_count = 0; f->slice_count < MAX_SLICES && 3 < p - c->bytestream_start; f->slice_count++){
  1627. int trailer = 3 + 5*!!f->ec;
  1628. int size = AV_RB24(p-trailer);
  1629. if(size + trailer > p - c->bytestream_start)
  1630. break;
  1631. p -= size + trailer;
  1632. }
  1633. }
  1634. if(f->slice_count > (unsigned)MAX_SLICES || f->slice_count <= 0){
  1635. av_log(f->avctx, AV_LOG_ERROR, "slice count %d is invalid\n", f->slice_count);
  1636. return -1;
  1637. }
  1638. for(j=0; j<f->slice_count; j++){
  1639. FFV1Context *fs= f->slice_context[j];
  1640. fs->ac= f->ac;
  1641. fs->packed_at_lsb= f->packed_at_lsb;
  1642. if(f->version == 2){
  1643. fs->slice_x = get_symbol(c, state, 0) *f->width ;
  1644. fs->slice_y = get_symbol(c, state, 0) *f->height;
  1645. fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x;
  1646. fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y;
  1647. fs->slice_x /= f->num_h_slices;
  1648. fs->slice_y /= f->num_v_slices;
  1649. fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
  1650. fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
  1651. if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
  1652. return -1;
  1653. if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
  1654. || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
  1655. return -1;
  1656. }
  1657. for(i=0; i<f->plane_count; i++){
  1658. PlaneContext * const p= &fs->plane[i];
  1659. if(f->version == 2){
  1660. int idx=get_symbol(c, state, 0);
  1661. if(idx > (unsigned)f->quant_table_count){
  1662. av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
  1663. return -1;
  1664. }
  1665. p->quant_table_index= idx;
  1666. memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
  1667. context_count= f->context_count[idx];
  1668. }else{
  1669. memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
  1670. }
  1671. if(f->version <= 2){
  1672. if(p->context_count < context_count){
  1673. av_freep(&p->state);
  1674. av_freep(&p->vlc_state);
  1675. }
  1676. p->context_count= context_count;
  1677. }
  1678. }
  1679. }
  1680. return 0;
  1681. }
  1682. static av_cold int decode_init(AVCodecContext *avctx)
  1683. {
  1684. FFV1Context *f = avctx->priv_data;
  1685. common_init(avctx);
  1686. if(avctx->extradata && read_extra_header(f) < 0)
  1687. return -1;
  1688. if(init_slice_contexts(f) < 0)
  1689. return -1;
  1690. return 0;
  1691. }
  1692. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  1693. const uint8_t *buf = avpkt->data;
  1694. int buf_size = avpkt->size;
  1695. FFV1Context *f = avctx->priv_data;
  1696. RangeCoder * const c= &f->slice_context[0]->c;
  1697. AVFrame * const p= &f->picture;
  1698. int i;
  1699. uint8_t keystate= 128;
  1700. const uint8_t *buf_p;
  1701. AVFrame *picture = data;
  1702. /* release previously stored data */
  1703. if (p->data[0])
  1704. avctx->release_buffer(avctx, p);
  1705. ff_init_range_decoder(c, buf, buf_size);
  1706. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1707. p->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
  1708. if(get_rac(c, &keystate)){
  1709. p->key_frame= 1;
  1710. f->key_frame_ok = 0;
  1711. if(read_header(f) < 0)
  1712. return -1;
  1713. f->key_frame_ok = 1;
  1714. }else{
  1715. if (!f->key_frame_ok) {
  1716. av_log(avctx, AV_LOG_ERROR, "Cant decode non keyframe without valid keyframe\n");
  1717. return AVERROR_INVALIDDATA;
  1718. }
  1719. p->key_frame= 0;
  1720. }
  1721. p->reference= 0;
  1722. if(avctx->get_buffer(avctx, p) < 0){
  1723. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1724. return -1;
  1725. }
  1726. if(avctx->debug&FF_DEBUG_PICT_INFO)
  1727. av_log(avctx, AV_LOG_DEBUG, "ver:%d keyframe:%d coder:%d ec:%d slices:%d\n",
  1728. f->version, p->key_frame, f->ac, f->ec, f->slice_count);
  1729. buf_p= buf + buf_size;
  1730. for(i=f->slice_count-1; i>=0; i--){
  1731. FFV1Context *fs= f->slice_context[i];
  1732. int trailer = 3 + 5*!!f->ec;
  1733. int v;
  1734. if(i || f->version>2) v = AV_RB24(buf_p-trailer)+trailer;
  1735. else v = buf_p - c->bytestream_start;
  1736. if(buf_p - c->bytestream_start < v){
  1737. av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
  1738. return -1;
  1739. }
  1740. buf_p -= v;
  1741. if(f->ec){
  1742. unsigned crc = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, v);
  1743. if(crc){
  1744. av_log(f->avctx, AV_LOG_ERROR, "CRC mismatch %X!\n", crc);
  1745. }
  1746. }
  1747. if(i){
  1748. ff_init_range_decoder(&fs->c, buf_p, v);
  1749. }
  1750. }
  1751. avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1752. f->picture_number++;
  1753. *picture= *p;
  1754. *data_size = sizeof(AVFrame);
  1755. return buf_size;
  1756. }
  1757. AVCodec ff_ffv1_decoder = {
  1758. .name = "ffv1",
  1759. .type = AVMEDIA_TYPE_VIDEO,
  1760. .id = CODEC_ID_FFV1,
  1761. .priv_data_size = sizeof(FFV1Context),
  1762. .init = decode_init,
  1763. .close = common_end,
  1764. .decode = decode_frame,
  1765. .capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/ |
  1766. CODEC_CAP_SLICE_THREADS,
  1767. .long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1768. };
  1769. #if CONFIG_FFV1_ENCODER
  1770. #define OFFSET(x) offsetof(FFV1Context, x)
  1771. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  1772. static const AVOption options[] = {
  1773. { "slicecrc", "Protect slices with CRCs", OFFSET(ec), AV_OPT_TYPE_INT, {-1}, -1, 1, VE},
  1774. {NULL}
  1775. };
  1776. static const AVClass class = {
  1777. .class_name = "ffv1 encoder",
  1778. .item_name = av_default_item_name,
  1779. .option = options,
  1780. .version = LIBAVUTIL_VERSION_INT,
  1781. };
  1782. static const AVCodecDefault ffv1_defaults[] = {
  1783. { "coder", "-1" },
  1784. { NULL },
  1785. };
  1786. AVCodec ff_ffv1_encoder = {
  1787. .name = "ffv1",
  1788. .type = AVMEDIA_TYPE_VIDEO,
  1789. .id = CODEC_ID_FFV1,
  1790. .priv_data_size = sizeof(FFV1Context),
  1791. .init = encode_init,
  1792. .encode2 = encode_frame,
  1793. .close = common_end,
  1794. .capabilities = CODEC_CAP_SLICE_THREADS,
  1795. .defaults = ffv1_defaults,
  1796. .pix_fmts = (const enum PixelFormat[]){
  1797. PIX_FMT_YUV420P, PIX_FMT_YUVA420P, PIX_FMT_YUVA422P, PIX_FMT_YUV444P,
  1798. PIX_FMT_YUVA444P, PIX_FMT_YUV440P, PIX_FMT_YUV422P, PIX_FMT_YUV411P,
  1799. PIX_FMT_YUV410P, PIX_FMT_0RGB32, PIX_FMT_RGB32, PIX_FMT_YUV420P16,
  1800. PIX_FMT_YUV422P16, PIX_FMT_YUV444P16, PIX_FMT_YUV444P9, PIX_FMT_YUV422P9,
  1801. PIX_FMT_YUV420P9, PIX_FMT_YUV420P10, PIX_FMT_YUV422P10, PIX_FMT_YUV444P10,
  1802. PIX_FMT_GRAY16, PIX_FMT_GRAY8,
  1803. PIX_FMT_NONE
  1804. },
  1805. .long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1806. .priv_class = &class,
  1807. };
  1808. #endif