You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

246 lines
6.2KB

  1. /*
  2. * Sample rate convertion for both audio and video
  3. * Copyright (c) 2000 Gerard Lantau.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <stdlib.h>
  20. #include <stdio.h>
  21. #include <string.h>
  22. #include <netinet/in.h>
  23. #include <math.h>
  24. #include "avcodec.h"
  25. #define NDEBUG
  26. #include <assert.h>
  27. #define FRAC_BITS 16
  28. #define FRAC (1 << FRAC_BITS)
  29. static void init_mono_resample(ReSampleChannelContext *s, float ratio)
  30. {
  31. ratio = 1.0 / ratio;
  32. s->iratio = (int)floor(ratio);
  33. if (s->iratio == 0)
  34. s->iratio = 1;
  35. s->incr = (int)((ratio / s->iratio) * FRAC);
  36. s->frac = 0;
  37. s->last_sample = 0;
  38. s->icount = s->iratio;
  39. s->isum = 0;
  40. s->inv = (FRAC / s->iratio);
  41. }
  42. /* fractional audio resampling */
  43. static int fractional_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  44. {
  45. unsigned int frac, incr;
  46. int l0, l1;
  47. short *q, *p, *pend;
  48. l0 = s->last_sample;
  49. incr = s->incr;
  50. frac = s->frac;
  51. p = input;
  52. pend = input + nb_samples;
  53. q = output;
  54. l1 = *p++;
  55. for(;;) {
  56. /* interpolate */
  57. *q++ = (l0 * (FRAC - frac) + l1 * frac) >> FRAC_BITS;
  58. frac = frac + s->incr;
  59. while (frac >= FRAC) {
  60. if (p >= pend)
  61. goto the_end;
  62. frac -= FRAC;
  63. l0 = l1;
  64. l1 = *p++;
  65. }
  66. }
  67. the_end:
  68. s->last_sample = l1;
  69. s->frac = frac;
  70. return q - output;
  71. }
  72. static int integer_downsample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  73. {
  74. short *q, *p, *pend;
  75. int c, sum;
  76. p = input;
  77. pend = input + nb_samples;
  78. q = output;
  79. c = s->icount;
  80. sum = s->isum;
  81. for(;;) {
  82. sum += *p++;
  83. if (--c == 0) {
  84. *q++ = (sum * s->inv) >> FRAC_BITS;
  85. c = s->iratio;
  86. sum = 0;
  87. }
  88. if (p >= pend)
  89. break;
  90. }
  91. s->isum = sum;
  92. s->icount = c;
  93. return q - output;
  94. }
  95. /* n1: number of samples */
  96. static void stereo_to_mono(short *output, short *input, int n1)
  97. {
  98. short *p, *q;
  99. int n = n1;
  100. p = input;
  101. q = output;
  102. while (n >= 4) {
  103. q[0] = (p[0] + p[1]) >> 1;
  104. q[1] = (p[2] + p[3]) >> 1;
  105. q[2] = (p[4] + p[5]) >> 1;
  106. q[3] = (p[6] + p[7]) >> 1;
  107. q += 4;
  108. p += 8;
  109. n -= 4;
  110. }
  111. while (n > 0) {
  112. q[0] = (p[0] + p[1]) >> 1;
  113. q++;
  114. p += 2;
  115. n--;
  116. }
  117. }
  118. /* XXX: should use more abstract 'N' channels system */
  119. static void stereo_split(short *output1, short *output2, short *input, int n)
  120. {
  121. int i;
  122. for(i=0;i<n;i++) {
  123. *output1++ = *input++;
  124. *output2++ = *input++;
  125. }
  126. }
  127. static void stereo_mux(short *output, short *input1, short *input2, int n)
  128. {
  129. int i;
  130. for(i=0;i<n;i++) {
  131. *output++ = *input1++;
  132. *output++ = *input2++;
  133. }
  134. }
  135. static int mono_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
  136. {
  137. short buf1[nb_samples];
  138. short *buftmp;
  139. /* first downsample by an integer factor with averaging filter */
  140. if (s->iratio > 1) {
  141. buftmp = buf1;
  142. nb_samples = integer_downsample(s, buftmp, input, nb_samples);
  143. } else {
  144. buftmp = input;
  145. }
  146. /* then do a fractional resampling with linear interpolation */
  147. if (s->incr != FRAC) {
  148. nb_samples = fractional_resample(s, output, buftmp, nb_samples);
  149. } else {
  150. memcpy(output, buftmp, nb_samples * sizeof(short));
  151. }
  152. return nb_samples;
  153. }
  154. /* ratio = output_rate / input_rate */
  155. int audio_resample_init(ReSampleContext *s,
  156. int output_channels, int input_channels,
  157. int output_rate, int input_rate)
  158. {
  159. int i;
  160. s->ratio = (float)output_rate / (float)input_rate;
  161. if (output_channels > 2 || input_channels > 2)
  162. return -1;
  163. s->input_channels = input_channels;
  164. s->output_channels = output_channels;
  165. for(i=0;i<output_channels;i++) {
  166. init_mono_resample(&s->channel_ctx[i], s->ratio);
  167. }
  168. return 0;
  169. }
  170. /* resample audio. 'nb_samples' is the number of input samples */
  171. /* XXX: optimize it ! */
  172. /* XXX: do it with polyphase filters, since the quality here is
  173. HORRIBLE. Return the number of samples available in output */
  174. int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples)
  175. {
  176. int i, nb_samples1;
  177. short buf[5][nb_samples];
  178. short *buftmp1, *buftmp2[2], *buftmp3[2];
  179. if (s->input_channels == s->output_channels && s->ratio == 1.0) {
  180. /* nothing to do */
  181. memcpy(output, input, nb_samples * s->input_channels * sizeof(short));
  182. return nb_samples;
  183. }
  184. if (s->input_channels == 2 &&
  185. s->output_channels == 1) {
  186. buftmp1 = buf[0];
  187. stereo_to_mono(buftmp1, input, nb_samples);
  188. } else if (s->input_channels == 1 &&
  189. s->output_channels == 2) {
  190. /* XXX: do it */
  191. abort();
  192. } else {
  193. buftmp1 = input;
  194. }
  195. if (s->output_channels == 2) {
  196. buftmp2[0] = buf[1];
  197. buftmp2[1] = buf[2];
  198. buftmp3[0] = buf[3];
  199. buftmp3[1] = buf[4];
  200. stereo_split(buftmp2[0], buftmp2[1], buftmp1, nb_samples);
  201. } else {
  202. buftmp2[0] = buftmp1;
  203. buftmp3[0] = output;
  204. }
  205. /* resample each channel */
  206. nb_samples1 = 0; /* avoid warning */
  207. for(i=0;i<s->output_channels;i++) {
  208. nb_samples1 = mono_resample(&s->channel_ctx[i], buftmp3[i], buftmp2[i], nb_samples);
  209. }
  210. if (s->output_channels == 2) {
  211. stereo_mux(output, buftmp3[0], buftmp3[1], nb_samples1);
  212. }
  213. return nb_samples1;
  214. }