You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1314 lines
46KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "libavutil/intreadwrite.h"
  29. #include "dsputil.h"
  30. #include "cabac.h"
  31. #include "mpegvideo.h"
  32. #include "h264dsp.h"
  33. #include "h264pred.h"
  34. #include "rectangle.h"
  35. #define interlaced_dct interlaced_dct_is_a_bad_name
  36. #define mb_intra mb_intra_is_not_initialized_see_mb_type
  37. #define LUMA_DC_BLOCK_INDEX 24
  38. #define CHROMA_DC_BLOCK_INDEX 25
  39. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  40. #define COEFF_TOKEN_VLC_BITS 8
  41. #define TOTAL_ZEROS_VLC_BITS 9
  42. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  43. #define RUN_VLC_BITS 3
  44. #define RUN7_VLC_BITS 6
  45. #define MAX_SPS_COUNT 32
  46. #define MAX_PPS_COUNT 256
  47. #define MAX_MMCO_COUNT 66
  48. #define MAX_DELAYED_PIC_COUNT 16
  49. /* Compiling in interlaced support reduces the speed
  50. * of progressive decoding by about 2%. */
  51. #define ALLOW_INTERLACE
  52. #define ALLOW_NOCHROMA
  53. #define FMO 0
  54. /**
  55. * The maximum number of slices supported by the decoder.
  56. * must be a power of 2
  57. */
  58. #define MAX_SLICES 16
  59. #ifdef ALLOW_INTERLACE
  60. #define MB_MBAFF h->mb_mbaff
  61. #define MB_FIELD h->mb_field_decoding_flag
  62. #define FRAME_MBAFF h->mb_aff_frame
  63. #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
  64. #else
  65. #define MB_MBAFF 0
  66. #define MB_FIELD 0
  67. #define FRAME_MBAFF 0
  68. #define FIELD_PICTURE 0
  69. #undef IS_INTERLACED
  70. #define IS_INTERLACED(mb_type) 0
  71. #endif
  72. #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
  73. #ifdef ALLOW_NOCHROMA
  74. #define CHROMA h->sps.chroma_format_idc
  75. #else
  76. #define CHROMA 1
  77. #endif
  78. #ifndef CABAC
  79. #define CABAC h->pps.cabac
  80. #endif
  81. #define EXTENDED_SAR 255
  82. #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
  83. #define MB_TYPE_8x8DCT 0x01000000
  84. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  85. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  86. /**
  87. * Value of Picture.reference when Picture is not a reference picture, but
  88. * is held for delayed output.
  89. */
  90. #define DELAYED_PIC_REF 4
  91. #define QP_MAX_NUM (51 + 2*6) // The maximum supported qp
  92. /* NAL unit types */
  93. enum {
  94. NAL_SLICE=1,
  95. NAL_DPA,
  96. NAL_DPB,
  97. NAL_DPC,
  98. NAL_IDR_SLICE,
  99. NAL_SEI,
  100. NAL_SPS,
  101. NAL_PPS,
  102. NAL_AUD,
  103. NAL_END_SEQUENCE,
  104. NAL_END_STREAM,
  105. NAL_FILLER_DATA,
  106. NAL_SPS_EXT,
  107. NAL_AUXILIARY_SLICE=19
  108. };
  109. /**
  110. * SEI message types
  111. */
  112. typedef enum {
  113. SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  114. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  115. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  116. SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
  117. } SEI_Type;
  118. /**
  119. * pic_struct in picture timing SEI message
  120. */
  121. typedef enum {
  122. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  123. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  124. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  125. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  126. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  127. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  128. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  129. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  130. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  131. } SEI_PicStructType;
  132. /**
  133. * Sequence parameter set
  134. */
  135. typedef struct SPS{
  136. int profile_idc;
  137. int level_idc;
  138. int chroma_format_idc;
  139. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  140. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  141. int poc_type; ///< pic_order_cnt_type
  142. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  143. int delta_pic_order_always_zero_flag;
  144. int offset_for_non_ref_pic;
  145. int offset_for_top_to_bottom_field;
  146. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  147. int ref_frame_count; ///< num_ref_frames
  148. int gaps_in_frame_num_allowed_flag;
  149. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  150. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  151. int frame_mbs_only_flag;
  152. int mb_aff; ///<mb_adaptive_frame_field_flag
  153. int direct_8x8_inference_flag;
  154. int crop; ///< frame_cropping_flag
  155. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  156. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  157. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  158. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  159. int vui_parameters_present_flag;
  160. AVRational sar;
  161. int video_signal_type_present_flag;
  162. int full_range;
  163. int colour_description_present_flag;
  164. enum AVColorPrimaries color_primaries;
  165. enum AVColorTransferCharacteristic color_trc;
  166. enum AVColorSpace colorspace;
  167. int timing_info_present_flag;
  168. uint32_t num_units_in_tick;
  169. uint32_t time_scale;
  170. int fixed_frame_rate_flag;
  171. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  172. int bitstream_restriction_flag;
  173. int num_reorder_frames;
  174. int scaling_matrix_present;
  175. uint8_t scaling_matrix4[6][16];
  176. uint8_t scaling_matrix8[2][64];
  177. int nal_hrd_parameters_present_flag;
  178. int vcl_hrd_parameters_present_flag;
  179. int pic_struct_present_flag;
  180. int time_offset_length;
  181. int cpb_cnt; ///< See H.264 E.1.2
  182. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
  183. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  184. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  185. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  186. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  187. int residual_color_transform_flag; ///< residual_colour_transform_flag
  188. int constraint_set_flags; ///< constraint_set[0-3]_flag
  189. }SPS;
  190. /**
  191. * Picture parameter set
  192. */
  193. typedef struct PPS{
  194. unsigned int sps_id;
  195. int cabac; ///< entropy_coding_mode_flag
  196. int pic_order_present; ///< pic_order_present_flag
  197. int slice_group_count; ///< num_slice_groups_minus1 + 1
  198. int mb_slice_group_map_type;
  199. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  200. int weighted_pred; ///< weighted_pred_flag
  201. int weighted_bipred_idc;
  202. int init_qp; ///< pic_init_qp_minus26 + 26
  203. int init_qs; ///< pic_init_qs_minus26 + 26
  204. int chroma_qp_index_offset[2];
  205. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  206. int constrained_intra_pred; ///< constrained_intra_pred_flag
  207. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  208. int transform_8x8_mode; ///< transform_8x8_mode_flag
  209. uint8_t scaling_matrix4[6][16];
  210. uint8_t scaling_matrix8[2][64];
  211. uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  212. int chroma_qp_diff;
  213. }PPS;
  214. /**
  215. * Memory management control operation opcode.
  216. */
  217. typedef enum MMCOOpcode{
  218. MMCO_END=0,
  219. MMCO_SHORT2UNUSED,
  220. MMCO_LONG2UNUSED,
  221. MMCO_SHORT2LONG,
  222. MMCO_SET_MAX_LONG,
  223. MMCO_RESET,
  224. MMCO_LONG,
  225. } MMCOOpcode;
  226. /**
  227. * Memory management control operation.
  228. */
  229. typedef struct MMCO{
  230. MMCOOpcode opcode;
  231. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  232. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  233. } MMCO;
  234. /**
  235. * H264Context
  236. */
  237. typedef struct H264Context{
  238. MpegEncContext s;
  239. H264DSPContext h264dsp;
  240. int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
  241. int chroma_qp[2]; //QPc
  242. int qp_thresh; ///< QP threshold to skip loopfilter
  243. int prev_mb_skipped;
  244. int next_mb_skipped;
  245. //prediction stuff
  246. int chroma_pred_mode;
  247. int intra16x16_pred_mode;
  248. int topleft_mb_xy;
  249. int top_mb_xy;
  250. int topright_mb_xy;
  251. int left_mb_xy[2];
  252. int topleft_type;
  253. int top_type;
  254. int topright_type;
  255. int left_type[2];
  256. const uint8_t * left_block;
  257. int topleft_partition;
  258. int8_t intra4x4_pred_mode_cache[5*8];
  259. int8_t (*intra4x4_pred_mode);
  260. H264PredContext hpc;
  261. unsigned int topleft_samples_available;
  262. unsigned int top_samples_available;
  263. unsigned int topright_samples_available;
  264. unsigned int left_samples_available;
  265. uint8_t (*top_borders[2])[(16+2*8)*2];
  266. /**
  267. * non zero coeff count cache.
  268. * is 64 if not available.
  269. */
  270. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[6*8];
  271. /*
  272. .UU.YYYY
  273. .UU.YYYY
  274. .vv.YYYY
  275. .VV.YYYY
  276. */
  277. uint8_t (*non_zero_count)[32];
  278. /**
  279. * Motion vector cache.
  280. */
  281. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2];
  282. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8];
  283. #define LIST_NOT_USED -1 //FIXME rename?
  284. #define PART_NOT_AVAILABLE -2
  285. /**
  286. * is 1 if the specific list MV&references are set to 0,0,-2.
  287. */
  288. int mv_cache_clean[2];
  289. /**
  290. * number of neighbors (top and/or left) that used 8x8 dct
  291. */
  292. int neighbor_transform_size;
  293. /**
  294. * block_offset[ 0..23] for frame macroblocks
  295. * block_offset[24..47] for field macroblocks
  296. */
  297. int block_offset[2*(16+8)];
  298. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  299. uint32_t *mb2br_xy;
  300. int b_stride; //FIXME use s->b4_stride
  301. int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
  302. int mb_uvlinesize;
  303. int emu_edge_width;
  304. int emu_edge_height;
  305. SPS sps; ///< current sps
  306. /**
  307. * current pps
  308. */
  309. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  310. uint32_t dequant4_buffer[6][QP_MAX_NUM+1][16]; //FIXME should these be moved down?
  311. uint32_t dequant8_buffer[2][QP_MAX_NUM+1][64];
  312. uint32_t (*dequant4_coeff[6])[16];
  313. uint32_t (*dequant8_coeff[2])[64];
  314. int slice_num;
  315. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  316. int slice_type;
  317. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  318. int slice_type_fixed;
  319. //interlacing specific flags
  320. int mb_aff_frame;
  321. int mb_field_decoding_flag;
  322. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  323. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  324. //Weighted pred stuff
  325. int use_weight;
  326. int use_weight_chroma;
  327. int luma_log2_weight_denom;
  328. int chroma_log2_weight_denom;
  329. //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
  330. int luma_weight[48][2][2];
  331. int chroma_weight[48][2][2][2];
  332. int implicit_weight[48][48][2];
  333. int direct_spatial_mv_pred;
  334. int col_parity;
  335. int col_fieldoff;
  336. int dist_scale_factor[16];
  337. int dist_scale_factor_field[2][32];
  338. int map_col_to_list0[2][16+32];
  339. int map_col_to_list0_field[2][2][16+32];
  340. /**
  341. * num_ref_idx_l0/1_active_minus1 + 1
  342. */
  343. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  344. unsigned int list_count;
  345. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  346. Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  347. Reordered version of default_ref_list
  348. according to picture reordering in slice header */
  349. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  350. //data partitioning
  351. GetBitContext intra_gb;
  352. GetBitContext inter_gb;
  353. GetBitContext *intra_gb_ptr;
  354. GetBitContext *inter_gb_ptr;
  355. DECLARE_ALIGNED(16, DCTELEM, mb)[16*24*2]; ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space.
  356. DECLARE_ALIGNED(16, DCTELEM, mb_luma_dc)[16*2];
  357. DCTELEM mb_padding[256*2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
  358. /**
  359. * Cabac
  360. */
  361. CABACContext cabac;
  362. uint8_t cabac_state[460];
  363. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  364. uint16_t *cbp_table;
  365. int cbp;
  366. int top_cbp;
  367. int left_cbp;
  368. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  369. uint8_t *chroma_pred_mode_table;
  370. int last_qscale_diff;
  371. uint8_t (*mvd_table[2])[2];
  372. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2];
  373. uint8_t *direct_table;
  374. uint8_t direct_cache[5*8];
  375. uint8_t zigzag_scan[16];
  376. uint8_t zigzag_scan8x8[64];
  377. uint8_t zigzag_scan8x8_cavlc[64];
  378. uint8_t field_scan[16];
  379. uint8_t field_scan8x8[64];
  380. uint8_t field_scan8x8_cavlc[64];
  381. const uint8_t *zigzag_scan_q0;
  382. const uint8_t *zigzag_scan8x8_q0;
  383. const uint8_t *zigzag_scan8x8_cavlc_q0;
  384. const uint8_t *field_scan_q0;
  385. const uint8_t *field_scan8x8_q0;
  386. const uint8_t *field_scan8x8_cavlc_q0;
  387. int x264_build;
  388. int mb_xy;
  389. int is_complex;
  390. //deblock
  391. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  392. int slice_alpha_c0_offset;
  393. int slice_beta_offset;
  394. //=============================================================
  395. //Things below are not used in the MB or more inner code
  396. int nal_ref_idc;
  397. int nal_unit_type;
  398. uint8_t *rbsp_buffer[2];
  399. unsigned int rbsp_buffer_size[2];
  400. /**
  401. * Used to parse AVC variant of h264
  402. */
  403. int is_avc; ///< this flag is != 0 if codec is avc1
  404. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  405. int got_first; ///< this flag is != 0 if we've parsed a frame
  406. SPS *sps_buffers[MAX_SPS_COUNT];
  407. PPS *pps_buffers[MAX_PPS_COUNT];
  408. int dequant_coeff_pps; ///< reinit tables when pps changes
  409. uint16_t *slice_table_base;
  410. //POC stuff
  411. int poc_lsb;
  412. int poc_msb;
  413. int delta_poc_bottom;
  414. int delta_poc[2];
  415. int frame_num;
  416. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  417. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  418. int frame_num_offset; ///< for POC type 2
  419. int prev_frame_num_offset; ///< for POC type 2
  420. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  421. /**
  422. * frame_num for frames or 2*frame_num+1 for field pics.
  423. */
  424. int curr_pic_num;
  425. /**
  426. * max_frame_num or 2*max_frame_num for field pics.
  427. */
  428. int max_pic_num;
  429. int redundant_pic_count;
  430. Picture *short_ref[32];
  431. Picture *long_ref[32];
  432. Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  433. Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
  434. int outputed_poc;
  435. /**
  436. * memory management control operations buffer.
  437. */
  438. MMCO mmco[MAX_MMCO_COUNT];
  439. int mmco_index;
  440. int long_ref_count; ///< number of actual long term references
  441. int short_ref_count; ///< number of actual short term references
  442. int cabac_init_idc;
  443. /**
  444. * @defgroup multithreading Members for slice based multithreading
  445. * @{
  446. */
  447. struct H264Context *thread_context[MAX_THREADS];
  448. /**
  449. * current slice number, used to initalize slice_num of each thread/context
  450. */
  451. int current_slice;
  452. /**
  453. * Max number of threads / contexts.
  454. * This is equal to AVCodecContext.thread_count unless
  455. * multithreaded decoding is impossible, in which case it is
  456. * reduced to 1.
  457. */
  458. int max_contexts;
  459. /**
  460. * 1 if the single thread fallback warning has already been
  461. * displayed, 0 otherwise.
  462. */
  463. int single_decode_warning;
  464. int last_slice_type;
  465. /** @} */
  466. /**
  467. * pic_struct in picture timing SEI message
  468. */
  469. SEI_PicStructType sei_pic_struct;
  470. /**
  471. * Complement sei_pic_struct
  472. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  473. * However, soft telecined frames may have these values.
  474. * This is used in an attempt to flag soft telecine progressive.
  475. */
  476. int prev_interlaced_frame;
  477. /**
  478. * Bit set of clock types for fields/frames in picture timing SEI message.
  479. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  480. * interlaced).
  481. */
  482. int sei_ct_type;
  483. /**
  484. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  485. */
  486. int sei_dpb_output_delay;
  487. /**
  488. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  489. */
  490. int sei_cpb_removal_delay;
  491. /**
  492. * recovery_frame_cnt from SEI message
  493. *
  494. * Set to -1 if no recovery point SEI message found or to number of frames
  495. * before playback synchronizes. Frames having recovery point are key
  496. * frames.
  497. */
  498. int sei_recovery_frame_cnt;
  499. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  500. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  501. // Timestamp stuff
  502. int sei_buffering_period_present; ///< Buffering period SEI flag
  503. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  504. //SVQ3 specific fields
  505. int halfpel_flag;
  506. int thirdpel_flag;
  507. int unknown_svq3_flag;
  508. int next_slice_index;
  509. uint32_t svq3_watermark_key;
  510. }H264Context;
  511. extern const uint8_t ff_h264_chroma_qp[3][QP_MAX_NUM+1]; ///< One chroma qp table for each supported bit depth (8, 9, 10).
  512. /**
  513. * Decode SEI
  514. */
  515. int ff_h264_decode_sei(H264Context *h);
  516. /**
  517. * Decode SPS
  518. */
  519. int ff_h264_decode_seq_parameter_set(H264Context *h);
  520. /**
  521. * compute profile from sps
  522. */
  523. int ff_h264_get_profile(SPS *sps);
  524. /**
  525. * Decode PPS
  526. */
  527. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  528. /**
  529. * Decode a network abstraction layer unit.
  530. * @param consumed is the number of bytes used as input
  531. * @param length is the length of the array
  532. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  533. * @return decoded bytes, might be src+1 if no escapes
  534. */
  535. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
  536. /**
  537. * Free any data that may have been allocated in the H264 context like SPS, PPS etc.
  538. */
  539. av_cold void ff_h264_free_context(H264Context *h);
  540. /**
  541. * Reconstruct bitstream slice_type.
  542. */
  543. int ff_h264_get_slice_type(const H264Context *h);
  544. /**
  545. * Allocate tables.
  546. * needs width/height
  547. */
  548. int ff_h264_alloc_tables(H264Context *h);
  549. /**
  550. * Fill the default_ref_list.
  551. */
  552. int ff_h264_fill_default_ref_list(H264Context *h);
  553. int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
  554. void ff_h264_fill_mbaff_ref_list(H264Context *h);
  555. void ff_h264_remove_all_refs(H264Context *h);
  556. /**
  557. * Execute the reference picture marking (memory management control operations).
  558. */
  559. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  560. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
  561. void ff_generate_sliding_window_mmcos(H264Context *h);
  562. /**
  563. * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
  564. */
  565. int ff_h264_check_intra4x4_pred_mode(H264Context *h);
  566. /**
  567. * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
  568. */
  569. int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
  570. void ff_h264_write_back_intra_pred_mode(H264Context *h);
  571. void ff_h264_hl_decode_mb(H264Context *h);
  572. int ff_h264_frame_start(H264Context *h);
  573. int ff_h264_decode_extradata(H264Context *h);
  574. av_cold int ff_h264_decode_init(AVCodecContext *avctx);
  575. av_cold int ff_h264_decode_end(AVCodecContext *avctx);
  576. av_cold void ff_h264_decode_init_vlc(void);
  577. /**
  578. * Decode a macroblock
  579. * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  580. */
  581. int ff_h264_decode_mb_cavlc(H264Context *h);
  582. /**
  583. * Decode a CABAC coded macroblock
  584. * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  585. */
  586. int ff_h264_decode_mb_cabac(H264Context *h);
  587. void ff_h264_init_cabac_states(H264Context *h);
  588. void ff_h264_direct_dist_scale_factor(H264Context * const h);
  589. void ff_h264_direct_ref_list_init(H264Context * const h);
  590. void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
  591. void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  592. void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  593. /**
  594. * Reset SEI values at the beginning of the frame.
  595. *
  596. * @param h H.264 context.
  597. */
  598. void ff_h264_reset_sei(H264Context *h);
  599. /*
  600. o-o o-o
  601. / / /
  602. o-o o-o
  603. ,---'
  604. o-o o-o
  605. / / /
  606. o-o o-o
  607. */
  608. /* Scan8 organization:
  609. * 0 1 2 3 4 5 6 7
  610. * 0 u u y y y y y
  611. * 1 u U U y Y Y Y Y
  612. * 2 u U U y Y Y Y Y
  613. * 3 v v y Y Y Y Y
  614. * 4 v V V y Y Y Y Y
  615. * 5 v V V DYDUDV
  616. * DY/DU/DV are for luma/chroma DC.
  617. */
  618. //This table must be here because scan8[constant] must be known at compiletime
  619. static const uint8_t scan8[16 + 2*4 + 3]={
  620. 4+1*8, 5+1*8, 4+2*8, 5+2*8,
  621. 6+1*8, 7+1*8, 6+2*8, 7+2*8,
  622. 4+3*8, 5+3*8, 4+4*8, 5+4*8,
  623. 6+3*8, 7+3*8, 6+4*8, 7+4*8,
  624. 1+1*8, 2+1*8,
  625. 1+2*8, 2+2*8,
  626. 1+4*8, 2+4*8,
  627. 1+5*8, 2+5*8,
  628. 4+5*8, 5+5*8, 6+5*8
  629. };
  630. static av_always_inline uint32_t pack16to32(int a, int b){
  631. #if HAVE_BIGENDIAN
  632. return (b&0xFFFF) + (a<<16);
  633. #else
  634. return (a&0xFFFF) + (b<<16);
  635. #endif
  636. }
  637. static av_always_inline uint16_t pack8to16(int a, int b){
  638. #if HAVE_BIGENDIAN
  639. return (b&0xFF) + (a<<8);
  640. #else
  641. return (a&0xFF) + (b<<8);
  642. #endif
  643. }
  644. /**
  645. * gets the chroma qp.
  646. */
  647. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  648. return h->pps.chroma_qp_table[t][qscale];
  649. }
  650. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
  651. static void fill_decode_neighbors(H264Context *h, int mb_type){
  652. MpegEncContext * const s = &h->s;
  653. const int mb_xy= h->mb_xy;
  654. int topleft_xy, top_xy, topright_xy, left_xy[2];
  655. static const uint8_t left_block_options[4][16]={
  656. {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
  657. {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
  658. {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
  659. {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
  660. };
  661. h->topleft_partition= -1;
  662. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  663. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  664. * stuff, I can't imagine that these complex rules are worth it. */
  665. topleft_xy = top_xy - 1;
  666. topright_xy= top_xy + 1;
  667. left_xy[1] = left_xy[0] = mb_xy-1;
  668. h->left_block = left_block_options[0];
  669. if(FRAME_MBAFF){
  670. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  671. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  672. if(s->mb_y&1){
  673. if (left_mb_field_flag != curr_mb_field_flag) {
  674. left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
  675. if (curr_mb_field_flag) {
  676. left_xy[1] += s->mb_stride;
  677. h->left_block = left_block_options[3];
  678. } else {
  679. topleft_xy += s->mb_stride;
  680. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  681. h->topleft_partition = 0;
  682. h->left_block = left_block_options[1];
  683. }
  684. }
  685. }else{
  686. if(curr_mb_field_flag){
  687. topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
  688. topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
  689. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  690. }
  691. if (left_mb_field_flag != curr_mb_field_flag) {
  692. if (curr_mb_field_flag) {
  693. left_xy[1] += s->mb_stride;
  694. h->left_block = left_block_options[3];
  695. } else {
  696. h->left_block = left_block_options[2];
  697. }
  698. }
  699. }
  700. }
  701. h->topleft_mb_xy = topleft_xy;
  702. h->top_mb_xy = top_xy;
  703. h->topright_mb_xy= topright_xy;
  704. h->left_mb_xy[0] = left_xy[0];
  705. h->left_mb_xy[1] = left_xy[1];
  706. //FIXME do we need all in the context?
  707. h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
  708. h->top_type = s->current_picture.mb_type[top_xy] ;
  709. h->topright_type= s->current_picture.mb_type[topright_xy];
  710. h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ;
  711. h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ;
  712. if(FMO){
  713. if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
  714. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  715. if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
  716. }else{
  717. if(h->slice_table[topleft_xy ] != h->slice_num){
  718. h->topleft_type = 0;
  719. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  720. if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
  721. }
  722. }
  723. if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
  724. }
  725. static void fill_decode_caches(H264Context *h, int mb_type){
  726. MpegEncContext * const s = &h->s;
  727. int topleft_xy, top_xy, topright_xy, left_xy[2];
  728. int topleft_type, top_type, topright_type, left_type[2];
  729. const uint8_t * left_block= h->left_block;
  730. int i;
  731. topleft_xy = h->topleft_mb_xy ;
  732. top_xy = h->top_mb_xy ;
  733. topright_xy = h->topright_mb_xy;
  734. left_xy[0] = h->left_mb_xy[0] ;
  735. left_xy[1] = h->left_mb_xy[1] ;
  736. topleft_type = h->topleft_type ;
  737. top_type = h->top_type ;
  738. topright_type= h->topright_type ;
  739. left_type[0] = h->left_type[0] ;
  740. left_type[1] = h->left_type[1] ;
  741. if(!IS_SKIP(mb_type)){
  742. if(IS_INTRA(mb_type)){
  743. int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
  744. h->topleft_samples_available=
  745. h->top_samples_available=
  746. h->left_samples_available= 0xFFFF;
  747. h->topright_samples_available= 0xEEEA;
  748. if(!(top_type & type_mask)){
  749. h->topleft_samples_available= 0xB3FF;
  750. h->top_samples_available= 0x33FF;
  751. h->topright_samples_available= 0x26EA;
  752. }
  753. if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
  754. if(IS_INTERLACED(mb_type)){
  755. if(!(left_type[0] & type_mask)){
  756. h->topleft_samples_available&= 0xDFFF;
  757. h->left_samples_available&= 0x5FFF;
  758. }
  759. if(!(left_type[1] & type_mask)){
  760. h->topleft_samples_available&= 0xFF5F;
  761. h->left_samples_available&= 0xFF5F;
  762. }
  763. }else{
  764. int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride];
  765. assert(left_xy[0] == left_xy[1]);
  766. if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
  767. h->topleft_samples_available&= 0xDF5F;
  768. h->left_samples_available&= 0x5F5F;
  769. }
  770. }
  771. }else{
  772. if(!(left_type[0] & type_mask)){
  773. h->topleft_samples_available&= 0xDF5F;
  774. h->left_samples_available&= 0x5F5F;
  775. }
  776. }
  777. if(!(topleft_type & type_mask))
  778. h->topleft_samples_available&= 0x7FFF;
  779. if(!(topright_type & type_mask))
  780. h->topright_samples_available&= 0xFBFF;
  781. if(IS_INTRA4x4(mb_type)){
  782. if(IS_INTRA4x4(top_type)){
  783. AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
  784. }else{
  785. h->intra4x4_pred_mode_cache[4+8*0]=
  786. h->intra4x4_pred_mode_cache[5+8*0]=
  787. h->intra4x4_pred_mode_cache[6+8*0]=
  788. h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
  789. }
  790. for(i=0; i<2; i++){
  791. if(IS_INTRA4x4(left_type[i])){
  792. int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]];
  793. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
  794. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
  795. }else{
  796. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  797. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask);
  798. }
  799. }
  800. }
  801. }
  802. /*
  803. 0 . T T. T T T T
  804. 1 L . .L . . . .
  805. 2 L . .L . . . .
  806. 3 . T TL . . . .
  807. 4 L . .L . . . .
  808. 5 L . .. . . . .
  809. */
  810. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  811. if(top_type){
  812. AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
  813. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
  814. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
  815. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
  816. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
  817. }else {
  818. h->non_zero_count_cache[1+8*0]=
  819. h->non_zero_count_cache[2+8*0]=
  820. h->non_zero_count_cache[1+8*3]=
  821. h->non_zero_count_cache[2+8*3]=
  822. AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040);
  823. }
  824. for (i=0; i<2; i++) {
  825. if(left_type[i]){
  826. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
  827. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
  828. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
  829. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
  830. }else{
  831. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  832. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  833. h->non_zero_count_cache[0+8*1 + 8*i]=
  834. h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
  835. }
  836. }
  837. if( CABAC ) {
  838. // top_cbp
  839. if(top_type) {
  840. h->top_cbp = h->cbp_table[top_xy];
  841. } else {
  842. h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
  843. }
  844. // left_cbp
  845. if (left_type[0]) {
  846. h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0)
  847. | ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2)
  848. | (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2);
  849. } else {
  850. h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
  851. }
  852. }
  853. }
  854. if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
  855. int list;
  856. for(list=0; list<h->list_count; list++){
  857. if(!USES_LIST(mb_type, list)){
  858. /*if(!h->mv_cache_clean[list]){
  859. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  860. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  861. h->mv_cache_clean[list]= 1;
  862. }*/
  863. continue;
  864. }
  865. assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
  866. h->mv_cache_clean[list]= 0;
  867. if(USES_LIST(top_type, list)){
  868. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  869. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  870. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  871. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2];
  872. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  873. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3];
  874. }else{
  875. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  876. AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
  877. }
  878. if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
  879. for(i=0; i<2; i++){
  880. int cache_idx = scan8[0] - 1 + i*2*8;
  881. if(USES_LIST(left_type[i], list)){
  882. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  883. const int b8_xy= 4*left_xy[i] + 1;
  884. AV_COPY32(h->mv_cache[list][cache_idx ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
  885. AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
  886. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)];
  887. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)];
  888. }else{
  889. AV_ZERO32(h->mv_cache [list][cache_idx ]);
  890. AV_ZERO32(h->mv_cache [list][cache_idx+8]);
  891. h->ref_cache[list][cache_idx ]=
  892. h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  893. }
  894. }
  895. }else{
  896. if(USES_LIST(left_type[0], list)){
  897. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  898. const int b8_xy= 4*left_xy[0] + 1;
  899. AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]);
  900. h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)];
  901. }else{
  902. AV_ZERO32(h->mv_cache [list][scan8[0] - 1]);
  903. h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  904. }
  905. }
  906. if(USES_LIST(topright_type, list)){
  907. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  908. AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
  909. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2];
  910. }else{
  911. AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
  912. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  913. }
  914. if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){
  915. if(USES_LIST(topleft_type, list)){
  916. const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
  917. const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
  918. AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
  919. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  920. }else{
  921. AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
  922. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  923. }
  924. }
  925. if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
  926. continue;
  927. if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
  928. h->ref_cache[list][scan8[4 ]] =
  929. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  930. AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
  931. AV_ZERO32(h->mv_cache [list][scan8[12]]);
  932. if( CABAC ) {
  933. /* XXX beurk, Load mvd */
  934. if(USES_LIST(top_type, list)){
  935. const int b_xy= h->mb2br_xy[top_xy];
  936. AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
  937. }else{
  938. AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
  939. }
  940. if(USES_LIST(left_type[0], list)){
  941. const int b_xy= h->mb2br_xy[left_xy[0]] + 6;
  942. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]);
  943. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]);
  944. }else{
  945. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
  946. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
  947. }
  948. if(USES_LIST(left_type[1], list)){
  949. const int b_xy= h->mb2br_xy[left_xy[1]] + 6;
  950. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]);
  951. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]);
  952. }else{
  953. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
  954. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
  955. }
  956. AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
  957. AV_ZERO16(h->mvd_cache [list][scan8[12]]);
  958. if(h->slice_type_nos == AV_PICTURE_TYPE_B){
  959. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
  960. if(IS_DIRECT(top_type)){
  961. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1));
  962. }else if(IS_8X8(top_type)){
  963. int b8_xy = 4*top_xy;
  964. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2];
  965. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3];
  966. }else{
  967. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
  968. }
  969. if(IS_DIRECT(left_type[0]))
  970. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
  971. else if(IS_8X8(left_type[0]))
  972. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)];
  973. else
  974. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
  975. if(IS_DIRECT(left_type[1]))
  976. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
  977. else if(IS_8X8(left_type[1]))
  978. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)];
  979. else
  980. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
  981. }
  982. }
  983. }
  984. if(FRAME_MBAFF){
  985. #define MAP_MVS\
  986. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  987. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  988. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  989. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  990. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  991. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  992. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  993. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  994. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  995. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  996. if(MB_FIELD){
  997. #define MAP_F2F(idx, mb_type)\
  998. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  999. h->ref_cache[list][idx] <<= 1;\
  1000. h->mv_cache[list][idx][1] /= 2;\
  1001. h->mvd_cache[list][idx][1] >>=1;\
  1002. }
  1003. MAP_MVS
  1004. #undef MAP_F2F
  1005. }else{
  1006. #define MAP_F2F(idx, mb_type)\
  1007. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  1008. h->ref_cache[list][idx] >>= 1;\
  1009. h->mv_cache[list][idx][1] <<= 1;\
  1010. h->mvd_cache[list][idx][1] <<= 1;\
  1011. }
  1012. MAP_MVS
  1013. #undef MAP_F2F
  1014. }
  1015. }
  1016. }
  1017. }
  1018. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  1019. }
  1020. /**
  1021. * gets the predicted intra4x4 prediction mode.
  1022. */
  1023. static inline int pred_intra_mode(H264Context *h, int n){
  1024. const int index8= scan8[n];
  1025. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  1026. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  1027. const int min= FFMIN(left, top);
  1028. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  1029. if(min<0) return DC_PRED;
  1030. else return min;
  1031. }
  1032. static inline void write_back_non_zero_count(H264Context *h){
  1033. const int mb_xy= h->mb_xy;
  1034. AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
  1035. AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
  1036. AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]);
  1037. AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]);
  1038. AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
  1039. }
  1040. static inline void write_back_motion(H264Context *h, int mb_type){
  1041. MpegEncContext * const s = &h->s;
  1042. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
  1043. const int b8_xy= 4*h->mb_xy;
  1044. int list;
  1045. if(!USES_LIST(mb_type, 0))
  1046. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  1047. for(list=0; list<h->list_count; list++){
  1048. int y, b_stride;
  1049. int16_t (*mv_dst)[2];
  1050. int16_t (*mv_src)[2];
  1051. if(!USES_LIST(mb_type, list))
  1052. continue;
  1053. b_stride = h->b_stride;
  1054. mv_dst = &s->current_picture.motion_val[list][b_xy];
  1055. mv_src = &h->mv_cache[list][scan8[0]];
  1056. for(y=0; y<4; y++){
  1057. AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
  1058. }
  1059. if( CABAC ) {
  1060. uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
  1061. uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
  1062. if(IS_SKIP(mb_type))
  1063. AV_ZERO128(mvd_dst);
  1064. else{
  1065. AV_COPY64(mvd_dst, mvd_src + 8*3);
  1066. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
  1067. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
  1068. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
  1069. }
  1070. }
  1071. {
  1072. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1073. ref_index[0+0*2]= h->ref_cache[list][scan8[0]];
  1074. ref_index[1+0*2]= h->ref_cache[list][scan8[4]];
  1075. ref_index[0+1*2]= h->ref_cache[list][scan8[8]];
  1076. ref_index[1+1*2]= h->ref_cache[list][scan8[12]];
  1077. }
  1078. }
  1079. if(h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC){
  1080. if(IS_8X8(mb_type)){
  1081. uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
  1082. direct_table[1] = h->sub_mb_type[1]>>1;
  1083. direct_table[2] = h->sub_mb_type[2]>>1;
  1084. direct_table[3] = h->sub_mb_type[3]>>1;
  1085. }
  1086. }
  1087. }
  1088. static inline int get_dct8x8_allowed(H264Context *h){
  1089. if(h->sps.direct_8x8_inference_flag)
  1090. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
  1091. else
  1092. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
  1093. }
  1094. /**
  1095. * decodes a P_SKIP or B_SKIP macroblock
  1096. */
  1097. static void av_unused decode_mb_skip(H264Context *h){
  1098. MpegEncContext * const s = &h->s;
  1099. const int mb_xy= h->mb_xy;
  1100. int mb_type=0;
  1101. memset(h->non_zero_count[mb_xy], 0, 32);
  1102. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  1103. if(MB_FIELD)
  1104. mb_type|= MB_TYPE_INTERLACED;
  1105. if( h->slice_type_nos == AV_PICTURE_TYPE_B )
  1106. {
  1107. // just for fill_caches. pred_direct_motion will set the real mb_type
  1108. mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  1109. if(h->direct_spatial_mv_pred){
  1110. fill_decode_neighbors(h, mb_type);
  1111. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1112. }
  1113. ff_h264_pred_direct_motion(h, &mb_type);
  1114. mb_type|= MB_TYPE_SKIP;
  1115. }
  1116. else
  1117. {
  1118. int mx, my;
  1119. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  1120. fill_decode_neighbors(h, mb_type);
  1121. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1122. pred_pskip_motion(h, &mx, &my);
  1123. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  1124. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  1125. }
  1126. write_back_motion(h, mb_type);
  1127. s->current_picture.mb_type[mb_xy]= mb_type;
  1128. s->current_picture.qscale_table[mb_xy]= s->qscale;
  1129. h->slice_table[ mb_xy ]= h->slice_num;
  1130. h->prev_mb_skipped= 1;
  1131. }
  1132. #include "h264_mvpred.h" //For pred_pskip_motion()
  1133. #endif /* AVCODEC_H264_H */