You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1174 lines
42KB

  1. /*
  2. * Copyright (c) 2003 The Libav Project
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /*
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * http://samples.libav.org/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. */
  41. #include "internal.h"
  42. #include "dsputil.h"
  43. #include "avcodec.h"
  44. #include "mpegvideo.h"
  45. #include "h264.h"
  46. #include "h264data.h" // FIXME FIXME FIXME
  47. #include "h264_mvpred.h"
  48. #include "golomb.h"
  49. #include "rectangle.h"
  50. #include "vdpau_internal.h"
  51. #if CONFIG_ZLIB
  52. #include <zlib.h>
  53. #endif
  54. #include "svq1.h"
  55. /**
  56. * @file
  57. * svq3 decoder.
  58. */
  59. typedef struct {
  60. H264Context h;
  61. int halfpel_flag;
  62. int thirdpel_flag;
  63. int unknown_flag;
  64. int next_slice_index;
  65. uint32_t watermark_key;
  66. } SVQ3Context;
  67. #define FULLPEL_MODE 1
  68. #define HALFPEL_MODE 2
  69. #define THIRDPEL_MODE 3
  70. #define PREDICT_MODE 4
  71. /* dual scan (from some older h264 draft)
  72. * o-->o-->o o
  73. * | /|
  74. * o o o / o
  75. * | / | |/ |
  76. * o o o o
  77. * /
  78. * o-->o-->o-->o
  79. */
  80. static const uint8_t svq3_scan[16] = {
  81. 0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4,
  82. 2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4,
  83. 0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4,
  84. 0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4,
  85. };
  86. static const uint8_t svq3_pred_0[25][2] = {
  87. { 0, 0 },
  88. { 1, 0 }, { 0, 1 },
  89. { 0, 2 }, { 1, 1 }, { 2, 0 },
  90. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  91. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  92. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  93. { 2, 4 }, { 3, 3 }, { 4, 2 },
  94. { 4, 3 }, { 3, 4 },
  95. { 4, 4 }
  96. };
  97. static const int8_t svq3_pred_1[6][6][5] = {
  98. { { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 },
  99. { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } },
  100. { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  101. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  102. { { 2, 0, -1, -1, -1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  103. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  104. { { 2, 0, -1, -1, -1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  105. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  106. { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  107. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  108. { { 0, 2, -1, -1, -1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  109. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  110. };
  111. static const struct {
  112. uint8_t run;
  113. uint8_t level;
  114. } svq3_dct_tables[2][16] = {
  115. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  116. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  117. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  118. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  119. };
  120. static const uint32_t svq3_dequant_coeff[32] = {
  121. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  122. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  123. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  124. 61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533
  125. };
  126. void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *output, DCTELEM *input, int qp)
  127. {
  128. const int qmul = svq3_dequant_coeff[qp];
  129. #define stride 16
  130. int i;
  131. int temp[16];
  132. static const uint8_t x_offset[4] = { 0, 1 * stride, 4 * stride, 5 * stride };
  133. for (i = 0; i < 4; i++) {
  134. const int z0 = 13 * (input[4 * i + 0] + input[4 * i + 2]);
  135. const int z1 = 13 * (input[4 * i + 0] - input[4 * i + 2]);
  136. const int z2 = 7 * input[4 * i + 1] - 17 * input[4 * i + 3];
  137. const int z3 = 17 * input[4 * i + 1] + 7 * input[4 * i + 3];
  138. temp[4 * i + 0] = z0 + z3;
  139. temp[4 * i + 1] = z1 + z2;
  140. temp[4 * i + 2] = z1 - z2;
  141. temp[4 * i + 3] = z0 - z3;
  142. }
  143. for (i = 0; i < 4; i++) {
  144. const int offset = x_offset[i];
  145. const int z0 = 13 * (temp[4 * 0 + i] + temp[4 * 2 + i]);
  146. const int z1 = 13 * (temp[4 * 0 + i] - temp[4 * 2 + i]);
  147. const int z2 = 7 * temp[4 * 1 + i] - 17 * temp[4 * 3 + i];
  148. const int z3 = 17 * temp[4 * 1 + i] + 7 * temp[4 * 3 + i];
  149. output[stride * 0 + offset] = (z0 + z3) * qmul + 0x80000 >> 20;
  150. output[stride * 2 + offset] = (z1 + z2) * qmul + 0x80000 >> 20;
  151. output[stride * 8 + offset] = (z1 - z2) * qmul + 0x80000 >> 20;
  152. output[stride * 10 + offset] = (z0 - z3) * qmul + 0x80000 >> 20;
  153. }
  154. }
  155. #undef stride
  156. void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block,
  157. int stride, int qp, int dc)
  158. {
  159. const int qmul = svq3_dequant_coeff[qp];
  160. int i;
  161. if (dc) {
  162. dc = 13 * 13 * (dc == 1 ? 1538 * block[0]
  163. : qmul * (block[0] >> 3) / 2);
  164. block[0] = 0;
  165. }
  166. for (i = 0; i < 4; i++) {
  167. const int z0 = 13 * (block[0 + 4 * i] + block[2 + 4 * i]);
  168. const int z1 = 13 * (block[0 + 4 * i] - block[2 + 4 * i]);
  169. const int z2 = 7 * block[1 + 4 * i] - 17 * block[3 + 4 * i];
  170. const int z3 = 17 * block[1 + 4 * i] + 7 * block[3 + 4 * i];
  171. block[0 + 4 * i] = z0 + z3;
  172. block[1 + 4 * i] = z1 + z2;
  173. block[2 + 4 * i] = z1 - z2;
  174. block[3 + 4 * i] = z0 - z3;
  175. }
  176. for (i = 0; i < 4; i++) {
  177. const int z0 = 13 * (block[i + 4 * 0] + block[i + 4 * 2]);
  178. const int z1 = 13 * (block[i + 4 * 0] - block[i + 4 * 2]);
  179. const int z2 = 7 * block[i + 4 * 1] - 17 * block[i + 4 * 3];
  180. const int z3 = 17 * block[i + 4 * 1] + 7 * block[i + 4 * 3];
  181. const int rr = (dc + 0x80000);
  182. dst[i + stride * 0] = av_clip_uint8(dst[i + stride * 0] + ((z0 + z3) * qmul + rr >> 20));
  183. dst[i + stride * 1] = av_clip_uint8(dst[i + stride * 1] + ((z1 + z2) * qmul + rr >> 20));
  184. dst[i + stride * 2] = av_clip_uint8(dst[i + stride * 2] + ((z1 - z2) * qmul + rr >> 20));
  185. dst[i + stride * 3] = av_clip_uint8(dst[i + stride * 3] + ((z0 - z3) * qmul + rr >> 20));
  186. }
  187. }
  188. static inline int svq3_decode_block(GetBitContext *gb, DCTELEM *block,
  189. int index, const int type)
  190. {
  191. static const uint8_t *const scan_patterns[4] =
  192. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  193. int run, level, limit;
  194. unsigned vlc;
  195. const int intra = 3 * type >> 2;
  196. const uint8_t *const scan = scan_patterns[type];
  197. for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
  198. for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) {
  199. int sign = (vlc & 1) ? 0 : -1;
  200. vlc = vlc + 1 >> 1;
  201. if (type == 3) {
  202. if (vlc < 3) {
  203. run = 0;
  204. level = vlc;
  205. } else if (vlc < 4) {
  206. run = 1;
  207. level = 1;
  208. } else {
  209. run = vlc & 0x3;
  210. level = (vlc + 9 >> 2) - run;
  211. }
  212. } else {
  213. if (vlc < 16) {
  214. run = svq3_dct_tables[intra][vlc].run;
  215. level = svq3_dct_tables[intra][vlc].level;
  216. } else if (intra) {
  217. run = vlc & 0x7;
  218. level = (vlc >> 3) +
  219. ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  220. } else {
  221. run = vlc & 0xF;
  222. level = (vlc >> 4) +
  223. ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  224. }
  225. }
  226. if ((index += run) >= limit)
  227. return -1;
  228. block[scan[index]] = (level ^ sign) - sign;
  229. }
  230. if (type != 2) {
  231. break;
  232. }
  233. }
  234. return 0;
  235. }
  236. static inline void svq3_mc_dir_part(MpegEncContext *s,
  237. int x, int y, int width, int height,
  238. int mx, int my, int dxy,
  239. int thirdpel, int dir, int avg)
  240. {
  241. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  242. uint8_t *src, *dest;
  243. int i, emu = 0;
  244. int blocksize = 2 - (width >> 3); // 16->0, 8->1, 4->2
  245. mx += x;
  246. my += y;
  247. if (mx < 0 || mx >= s->h_edge_pos - width - 1 ||
  248. my < 0 || my >= s->v_edge_pos - height - 1) {
  249. if ((s->flags & CODEC_FLAG_EMU_EDGE))
  250. emu = 1;
  251. mx = av_clip(mx, -16, s->h_edge_pos - width + 15);
  252. my = av_clip(my, -16, s->v_edge_pos - height + 15);
  253. }
  254. /* form component predictions */
  255. dest = s->current_picture.f.data[0] + x + y * s->linesize;
  256. src = pic->f.data[0] + mx + my * s->linesize;
  257. if (emu) {
  258. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src, s->linesize,
  259. width + 1, height + 1,
  260. mx, my, s->h_edge_pos, s->v_edge_pos);
  261. src = s->edge_emu_buffer;
  262. }
  263. if (thirdpel)
  264. (avg ? s->dsp.avg_tpel_pixels_tab
  265. : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize,
  266. width, height);
  267. else
  268. (avg ? s->dsp.avg_pixels_tab
  269. : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize,
  270. height);
  271. if (!(s->flags & CODEC_FLAG_GRAY)) {
  272. mx = mx + (mx < (int) x) >> 1;
  273. my = my + (my < (int) y) >> 1;
  274. width = width >> 1;
  275. height = height >> 1;
  276. blocksize++;
  277. for (i = 1; i < 3; i++) {
  278. dest = s->current_picture.f.data[i] + (x >> 1) + (y >> 1) * s->uvlinesize;
  279. src = pic->f.data[i] + mx + my * s->uvlinesize;
  280. if (emu) {
  281. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src, s->uvlinesize,
  282. width + 1, height + 1,
  283. mx, my, (s->h_edge_pos >> 1),
  284. s->v_edge_pos >> 1);
  285. src = s->edge_emu_buffer;
  286. }
  287. if (thirdpel)
  288. (avg ? s->dsp.avg_tpel_pixels_tab
  289. : s->dsp.put_tpel_pixels_tab)[dxy](dest, src,
  290. s->uvlinesize,
  291. width, height);
  292. else
  293. (avg ? s->dsp.avg_pixels_tab
  294. : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src,
  295. s->uvlinesize,
  296. height);
  297. }
  298. }
  299. }
  300. static inline int svq3_mc_dir(H264Context *h, int size, int mode,
  301. int dir, int avg)
  302. {
  303. int i, j, k, mx, my, dx, dy, x, y;
  304. MpegEncContext *const s = (MpegEncContext *)h;
  305. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  306. const int part_height = 16 >> ((unsigned)(size + 1) / 3);
  307. const int extra_width = (mode == PREDICT_MODE) ? -16 * 6 : 0;
  308. const int h_edge_pos = 6 * (s->h_edge_pos - part_width) - extra_width;
  309. const int v_edge_pos = 6 * (s->v_edge_pos - part_height) - extra_width;
  310. for (i = 0; i < 16; i += part_height)
  311. for (j = 0; j < 16; j += part_width) {
  312. const int b_xy = (4 * s->mb_x + (j >> 2)) +
  313. (4 * s->mb_y + (i >> 2)) * h->b_stride;
  314. int dxy;
  315. x = 16 * s->mb_x + j;
  316. y = 16 * s->mb_y + i;
  317. k = (j >> 2 & 1) + (i >> 1 & 2) +
  318. (j >> 1 & 4) + (i & 8);
  319. if (mode != PREDICT_MODE) {
  320. pred_motion(h, k, part_width >> 2, dir, 1, &mx, &my);
  321. } else {
  322. mx = s->next_picture.f.motion_val[0][b_xy][0] << 1;
  323. my = s->next_picture.f.motion_val[0][b_xy][1] << 1;
  324. if (dir == 0) {
  325. mx = mx * h->frame_num_offset /
  326. h->prev_frame_num_offset + 1 >> 1;
  327. my = my * h->frame_num_offset /
  328. h->prev_frame_num_offset + 1 >> 1;
  329. } else {
  330. mx = mx * (h->frame_num_offset - h->prev_frame_num_offset) /
  331. h->prev_frame_num_offset + 1 >> 1;
  332. my = my * (h->frame_num_offset - h->prev_frame_num_offset) /
  333. h->prev_frame_num_offset + 1 >> 1;
  334. }
  335. }
  336. /* clip motion vector prediction to frame border */
  337. mx = av_clip(mx, extra_width - 6 * x, h_edge_pos - 6 * x);
  338. my = av_clip(my, extra_width - 6 * y, v_edge_pos - 6 * y);
  339. /* get (optional) motion vector differential */
  340. if (mode == PREDICT_MODE) {
  341. dx = dy = 0;
  342. } else {
  343. dy = svq3_get_se_golomb(&s->gb);
  344. dx = svq3_get_se_golomb(&s->gb);
  345. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  346. av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  347. return -1;
  348. }
  349. }
  350. /* compute motion vector */
  351. if (mode == THIRDPEL_MODE) {
  352. int fx, fy;
  353. mx = (mx + 1 >> 1) + dx;
  354. my = (my + 1 >> 1) + dy;
  355. fx = (unsigned)(mx + 0x3000) / 3 - 0x1000;
  356. fy = (unsigned)(my + 0x3000) / 3 - 0x1000;
  357. dxy = (mx - 3 * fx) + 4 * (my - 3 * fy);
  358. svq3_mc_dir_part(s, x, y, part_width, part_height,
  359. fx, fy, dxy, 1, dir, avg);
  360. mx += mx;
  361. my += my;
  362. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  363. mx = (unsigned)(mx + 1 + 0x3000) / 3 + dx - 0x1000;
  364. my = (unsigned)(my + 1 + 0x3000) / 3 + dy - 0x1000;
  365. dxy = (mx & 1) + 2 * (my & 1);
  366. svq3_mc_dir_part(s, x, y, part_width, part_height,
  367. mx >> 1, my >> 1, dxy, 0, dir, avg);
  368. mx *= 3;
  369. my *= 3;
  370. } else {
  371. mx = (unsigned)(mx + 3 + 0x6000) / 6 + dx - 0x1000;
  372. my = (unsigned)(my + 3 + 0x6000) / 6 + dy - 0x1000;
  373. svq3_mc_dir_part(s, x, y, part_width, part_height,
  374. mx, my, 0, 0, dir, avg);
  375. mx *= 6;
  376. my *= 6;
  377. }
  378. /* update mv_cache */
  379. if (mode != PREDICT_MODE) {
  380. int32_t mv = pack16to32(mx, my);
  381. if (part_height == 8 && i < 8) {
  382. AV_WN32A(h->mv_cache[dir][scan8[k] + 1 * 8], mv);
  383. if (part_width == 8 && j < 8)
  384. AV_WN32A(h->mv_cache[dir][scan8[k] + 1 + 1 * 8], mv);
  385. }
  386. if (part_width == 8 && j < 8)
  387. AV_WN32A(h->mv_cache[dir][scan8[k] + 1], mv);
  388. if (part_width == 4 || part_height == 4)
  389. AV_WN32A(h->mv_cache[dir][scan8[k]], mv);
  390. }
  391. /* write back motion vectors */
  392. fill_rectangle(s->current_picture.f.motion_val[dir][b_xy],
  393. part_width >> 2, part_height >> 2, h->b_stride,
  394. pack16to32(mx, my), 4);
  395. }
  396. return 0;
  397. }
  398. static int svq3_decode_mb(SVQ3Context *svq3, unsigned int mb_type)
  399. {
  400. H264Context *h = &svq3->h;
  401. int i, j, k, m, dir, mode;
  402. int cbp = 0;
  403. uint32_t vlc;
  404. int8_t *top, *left;
  405. MpegEncContext *const s = (MpegEncContext *)h;
  406. const int mb_xy = h->mb_xy;
  407. const int b_xy = 4 * s->mb_x + 4 * s->mb_y * h->b_stride;
  408. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  409. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  410. h->topright_samples_available = 0xFFFF;
  411. if (mb_type == 0) { /* SKIP */
  412. if (s->pict_type == AV_PICTURE_TYPE_P ||
  413. s->next_picture.f.mb_type[mb_xy] == -1) {
  414. svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16,
  415. 0, 0, 0, 0, 0, 0);
  416. if (s->pict_type == AV_PICTURE_TYPE_B)
  417. svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16,
  418. 0, 0, 0, 0, 1, 1);
  419. mb_type = MB_TYPE_SKIP;
  420. } else {
  421. mb_type = FFMIN(s->next_picture.f.mb_type[mb_xy], 6);
  422. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 0, 0) < 0)
  423. return -1;
  424. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 1, 1) < 0)
  425. return -1;
  426. mb_type = MB_TYPE_16x16;
  427. }
  428. } else if (mb_type < 8) { /* INTER */
  429. if (svq3->thirdpel_flag && svq3->halfpel_flag == !get_bits1(&s->gb))
  430. mode = THIRDPEL_MODE;
  431. else if (svq3->halfpel_flag &&
  432. svq3->thirdpel_flag == !get_bits1(&s->gb))
  433. mode = HALFPEL_MODE;
  434. else
  435. mode = FULLPEL_MODE;
  436. /* fill caches */
  437. /* note ref_cache should contain here:
  438. * ????????
  439. * ???11111
  440. * N??11111
  441. * N??11111
  442. * N??11111
  443. */
  444. for (m = 0; m < 2; m++) {
  445. if (s->mb_x > 0 && h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1] + 6] != -1) {
  446. for (i = 0; i < 4; i++)
  447. AV_COPY32(h->mv_cache[m][scan8[0] - 1 + i * 8],
  448. s->current_picture.f.motion_val[m][b_xy - 1 + i * h->b_stride]);
  449. } else {
  450. for (i = 0; i < 4; i++)
  451. AV_ZERO32(h->mv_cache[m][scan8[0] - 1 + i * 8]);
  452. }
  453. if (s->mb_y > 0) {
  454. memcpy(h->mv_cache[m][scan8[0] - 1 * 8],
  455. s->current_picture.f.motion_val[m][b_xy - h->b_stride],
  456. 4 * 2 * sizeof(int16_t));
  457. memset(&h->ref_cache[m][scan8[0] - 1 * 8],
  458. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  459. if (s->mb_x < s->mb_width - 1) {
  460. AV_COPY32(h->mv_cache[m][scan8[0] + 4 - 1 * 8],
  461. s->current_picture.f.motion_val[m][b_xy - h->b_stride + 4]);
  462. h->ref_cache[m][scan8[0] + 4 - 1 * 8] =
  463. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride + 1] + 6] == -1 ||
  464. h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1;
  465. } else
  466. h->ref_cache[m][scan8[0] + 4 - 1 * 8] = PART_NOT_AVAILABLE;
  467. if (s->mb_x > 0) {
  468. AV_COPY32(h->mv_cache[m][scan8[0] - 1 - 1 * 8],
  469. s->current_picture.f.motion_val[m][b_xy - h->b_stride - 1]);
  470. h->ref_cache[m][scan8[0] - 1 - 1 * 8] =
  471. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] == -1) ? PART_NOT_AVAILABLE : 1;
  472. } else
  473. h->ref_cache[m][scan8[0] - 1 - 1 * 8] = PART_NOT_AVAILABLE;
  474. } else
  475. memset(&h->ref_cache[m][scan8[0] - 1 * 8 - 1],
  476. PART_NOT_AVAILABLE, 8);
  477. if (s->pict_type != AV_PICTURE_TYPE_B)
  478. break;
  479. }
  480. /* decode motion vector(s) and form prediction(s) */
  481. if (s->pict_type == AV_PICTURE_TYPE_P) {
  482. if (svq3_mc_dir(h, mb_type - 1, mode, 0, 0) < 0)
  483. return -1;
  484. } else { /* AV_PICTURE_TYPE_B */
  485. if (mb_type != 2)
  486. if (svq3_mc_dir(h, 0, mode, 0, 0) < 0)
  487. return -1;
  488. else
  489. for (i = 0; i < 4; i++)
  490. memset(s->current_picture.f.motion_val[0][b_xy + i * h->b_stride],
  491. 0, 4 * 2 * sizeof(int16_t));
  492. if (mb_type != 1)
  493. if (svq3_mc_dir(h, 0, mode, 1, mb_type == 3) < 0)
  494. return -1;
  495. else
  496. for (i = 0; i < 4; i++)
  497. memset(s->current_picture.f.motion_val[1][b_xy + i * h->b_stride],
  498. 0, 4 * 2 * sizeof(int16_t));
  499. }
  500. mb_type = MB_TYPE_16x16;
  501. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  502. memset(h->intra4x4_pred_mode_cache, -1, 8 * 5 * sizeof(int8_t));
  503. if (mb_type == 8) {
  504. if (s->mb_x > 0) {
  505. for (i = 0; i < 4; i++)
  506. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i * 8] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1] + 6 - i];
  507. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1)
  508. h->left_samples_available = 0x5F5F;
  509. }
  510. if (s->mb_y > 0) {
  511. h->intra4x4_pred_mode_cache[4 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 0];
  512. h->intra4x4_pred_mode_cache[5 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 1];
  513. h->intra4x4_pred_mode_cache[6 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 2];
  514. h->intra4x4_pred_mode_cache[7 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 3];
  515. if (h->intra4x4_pred_mode_cache[4 + 8 * 0] == -1)
  516. h->top_samples_available = 0x33FF;
  517. }
  518. /* decode prediction codes for luma blocks */
  519. for (i = 0; i < 16; i += 2) {
  520. vlc = svq3_get_ue_golomb(&s->gb);
  521. if (vlc >= 25) {
  522. av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
  523. return -1;
  524. }
  525. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  526. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  527. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  528. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  529. if (left[1] == -1 || left[2] == -1) {
  530. av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
  531. return -1;
  532. }
  533. }
  534. } else { /* mb_type == 33, DC_128_PRED block type */
  535. for (i = 0; i < 4; i++)
  536. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_PRED, 4);
  537. }
  538. write_back_intra_pred_mode(h);
  539. if (mb_type == 8) {
  540. ff_h264_check_intra4x4_pred_mode(h);
  541. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  542. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  543. } else {
  544. for (i = 0; i < 4; i++)
  545. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_128_PRED, 4);
  546. h->top_samples_available = 0x33FF;
  547. h->left_samples_available = 0x5F5F;
  548. }
  549. mb_type = MB_TYPE_INTRA4x4;
  550. } else { /* INTRA16x16 */
  551. dir = i_mb_type_info[mb_type - 8].pred_mode;
  552. dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1;
  553. if ((h->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(h, dir, 0)) == -1) {
  554. av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
  555. return -1;
  556. }
  557. cbp = i_mb_type_info[mb_type - 8].cbp;
  558. mb_type = MB_TYPE_INTRA16x16;
  559. }
  560. if (!IS_INTER(mb_type) && s->pict_type != AV_PICTURE_TYPE_I) {
  561. for (i = 0; i < 4; i++)
  562. memset(s->current_picture.f.motion_val[0][b_xy + i * h->b_stride],
  563. 0, 4 * 2 * sizeof(int16_t));
  564. if (s->pict_type == AV_PICTURE_TYPE_B) {
  565. for (i = 0; i < 4; i++)
  566. memset(s->current_picture.f.motion_val[1][b_xy + i * h->b_stride],
  567. 0, 4 * 2 * sizeof(int16_t));
  568. }
  569. }
  570. if (!IS_INTRA4x4(mb_type)) {
  571. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy], DC_PRED, 8);
  572. }
  573. if (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B) {
  574. memset(h->non_zero_count_cache + 8, 0, 14 * 8 * sizeof(uint8_t));
  575. s->dsp.clear_blocks(h->mb + 0);
  576. s->dsp.clear_blocks(h->mb + 384);
  577. }
  578. if (!IS_INTRA16x16(mb_type) &&
  579. (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B)) {
  580. if ((vlc = svq3_get_ue_golomb(&s->gb)) >= 48) {
  581. av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
  582. return -1;
  583. }
  584. cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc]
  585. : golomb_to_inter_cbp[vlc];
  586. }
  587. if (IS_INTRA16x16(mb_type) ||
  588. (s->pict_type != AV_PICTURE_TYPE_I && s->adaptive_quant && cbp)) {
  589. s->qscale += svq3_get_se_golomb(&s->gb);
  590. if (s->qscale > 31u) {
  591. av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  592. return -1;
  593. }
  594. }
  595. if (IS_INTRA16x16(mb_type)) {
  596. AV_ZERO128(h->mb_luma_dc[0] + 0);
  597. AV_ZERO128(h->mb_luma_dc[0] + 8);
  598. if (svq3_decode_block(&s->gb, h->mb_luma_dc[0], 0, 1)) {
  599. av_log(h->s.avctx, AV_LOG_ERROR,
  600. "error while decoding intra luma dc\n");
  601. return -1;
  602. }
  603. }
  604. if (cbp) {
  605. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  606. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  607. for (i = 0; i < 4; i++)
  608. if ((cbp & (1 << i))) {
  609. for (j = 0; j < 4; j++) {
  610. k = index ? (1 * (j & 1) + 2 * (i & 1) +
  611. 2 * (j & 2) + 4 * (i & 2))
  612. : (4 * i + j);
  613. h->non_zero_count_cache[scan8[k]] = 1;
  614. if (svq3_decode_block(&s->gb, &h->mb[16 * k], index, type)) {
  615. av_log(h->s.avctx, AV_LOG_ERROR,
  616. "error while decoding block\n");
  617. return -1;
  618. }
  619. }
  620. }
  621. if ((cbp & 0x30)) {
  622. for (i = 1; i < 3; ++i)
  623. if (svq3_decode_block(&s->gb, &h->mb[16 * 16 * i], 0, 3)) {
  624. av_log(h->s.avctx, AV_LOG_ERROR,
  625. "error while decoding chroma dc block\n");
  626. return -1;
  627. }
  628. if ((cbp & 0x20)) {
  629. for (i = 1; i < 3; i++) {
  630. for (j = 0; j < 4; j++) {
  631. k = 16 * i + j;
  632. h->non_zero_count_cache[scan8[k]] = 1;
  633. if (svq3_decode_block(&s->gb, &h->mb[16 * k], 1, 1)) {
  634. av_log(h->s.avctx, AV_LOG_ERROR,
  635. "error while decoding chroma ac block\n");
  636. return -1;
  637. }
  638. }
  639. }
  640. }
  641. }
  642. }
  643. h->cbp = cbp;
  644. s->current_picture.f.mb_type[mb_xy] = mb_type;
  645. if (IS_INTRA(mb_type))
  646. h->chroma_pred_mode = ff_h264_check_intra_pred_mode(h, DC_PRED8x8, 1);
  647. return 0;
  648. }
  649. static int svq3_decode_slice_header(AVCodecContext *avctx)
  650. {
  651. SVQ3Context *svq3 = avctx->priv_data;
  652. H264Context *h = &svq3->h;
  653. MpegEncContext *s = &h->s;
  654. const int mb_xy = h->mb_xy;
  655. int i, header;
  656. header = get_bits(&s->gb, 8);
  657. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  658. /* TODO: what? */
  659. av_log(avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  660. return -1;
  661. } else {
  662. int length = header >> 5 & 3;
  663. svq3->next_slice_index = get_bits_count(&s->gb) +
  664. 8 * show_bits(&s->gb, 8 * length) +
  665. 8 * length;
  666. if (svq3->next_slice_index > s->gb.size_in_bits) {
  667. av_log(avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  668. return -1;
  669. }
  670. s->gb.size_in_bits = svq3->next_slice_index - 8 * (length - 1);
  671. skip_bits(&s->gb, 8);
  672. if (svq3->watermark_key) {
  673. uint32_t header = AV_RL32(&s->gb.buffer[(get_bits_count(&s->gb) >> 3) + 1]);
  674. AV_WL32(&s->gb.buffer[(get_bits_count(&s->gb) >> 3) + 1],
  675. header ^ svq3->watermark_key);
  676. }
  677. if (length > 0) {
  678. memcpy((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
  679. &s->gb.buffer[s->gb.size_in_bits >> 3], length - 1);
  680. }
  681. skip_bits_long(&s->gb, 0);
  682. }
  683. if ((i = svq3_get_ue_golomb(&s->gb)) >= 3) {
  684. av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", i);
  685. return -1;
  686. }
  687. h->slice_type = golomb_to_pict_type[i];
  688. if ((header & 0x9F) == 2) {
  689. i = (s->mb_num < 64) ? 6 : (1 + av_log2(s->mb_num - 1));
  690. s->mb_skip_run = get_bits(&s->gb, i) -
  691. (s->mb_y * s->mb_width + s->mb_x);
  692. } else {
  693. skip_bits1(&s->gb);
  694. s->mb_skip_run = 0;
  695. }
  696. h->slice_num = get_bits(&s->gb, 8);
  697. s->qscale = get_bits(&s->gb, 5);
  698. s->adaptive_quant = get_bits1(&s->gb);
  699. /* unknown fields */
  700. skip_bits1(&s->gb);
  701. if (svq3->unknown_flag)
  702. skip_bits1(&s->gb);
  703. skip_bits1(&s->gb);
  704. skip_bits(&s->gb, 2);
  705. while (get_bits1(&s->gb))
  706. skip_bits(&s->gb, 8);
  707. /* reset intra predictors and invalidate motion vector references */
  708. if (s->mb_x > 0) {
  709. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - 1] + 3,
  710. -1, 4 * sizeof(int8_t));
  711. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - s->mb_x],
  712. -1, 8 * sizeof(int8_t) * s->mb_x);
  713. }
  714. if (s->mb_y > 0) {
  715. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - s->mb_stride],
  716. -1, 8 * sizeof(int8_t) * (s->mb_width - s->mb_x));
  717. if (s->mb_x > 0)
  718. h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] = -1;
  719. }
  720. return 0;
  721. }
  722. static av_cold int svq3_decode_init(AVCodecContext *avctx)
  723. {
  724. SVQ3Context *svq3 = avctx->priv_data;
  725. H264Context *h = &svq3->h;
  726. MpegEncContext *s = &h->s;
  727. int m;
  728. unsigned char *extradata;
  729. unsigned char *extradata_end;
  730. unsigned int size;
  731. int marker_found = 0;
  732. if (ff_h264_decode_init(avctx) < 0)
  733. return -1;
  734. s->flags = avctx->flags;
  735. s->flags2 = avctx->flags2;
  736. s->unrestricted_mv = 1;
  737. h->is_complex = 1;
  738. avctx->pix_fmt = avctx->codec->pix_fmts[0];
  739. if (!s->context_initialized) {
  740. h->chroma_qp[0] = h->chroma_qp[1] = 4;
  741. svq3->halfpel_flag = 1;
  742. svq3->thirdpel_flag = 1;
  743. svq3->unknown_flag = 0;
  744. /* prowl for the "SEQH" marker in the extradata */
  745. extradata = (unsigned char *)avctx->extradata;
  746. extradata_end = avctx->extradata + avctx->extradata_size;
  747. if (extradata) {
  748. for (m = 0; m + 8 < avctx->extradata_size; m++) {
  749. if (!memcmp(extradata, "SEQH", 4)) {
  750. marker_found = 1;
  751. break;
  752. }
  753. extradata++;
  754. }
  755. }
  756. /* if a match was found, parse the extra data */
  757. if (marker_found) {
  758. GetBitContext gb;
  759. int frame_size_code;
  760. size = AV_RB32(&extradata[4]);
  761. if (size > extradata_end - extradata - 8)
  762. return AVERROR_INVALIDDATA;
  763. init_get_bits(&gb, extradata + 8, size * 8);
  764. /* 'frame size code' and optional 'width, height' */
  765. frame_size_code = get_bits(&gb, 3);
  766. switch (frame_size_code) {
  767. case 0:
  768. avctx->width = 160;
  769. avctx->height = 120;
  770. break;
  771. case 1:
  772. avctx->width = 128;
  773. avctx->height = 96;
  774. break;
  775. case 2:
  776. avctx->width = 176;
  777. avctx->height = 144;
  778. break;
  779. case 3:
  780. avctx->width = 352;
  781. avctx->height = 288;
  782. break;
  783. case 4:
  784. avctx->width = 704;
  785. avctx->height = 576;
  786. break;
  787. case 5:
  788. avctx->width = 240;
  789. avctx->height = 180;
  790. break;
  791. case 6:
  792. avctx->width = 320;
  793. avctx->height = 240;
  794. break;
  795. case 7:
  796. avctx->width = get_bits(&gb, 12);
  797. avctx->height = get_bits(&gb, 12);
  798. break;
  799. }
  800. svq3->halfpel_flag = get_bits1(&gb);
  801. svq3->thirdpel_flag = get_bits1(&gb);
  802. /* unknown fields */
  803. skip_bits1(&gb);
  804. skip_bits1(&gb);
  805. skip_bits1(&gb);
  806. skip_bits1(&gb);
  807. s->low_delay = get_bits1(&gb);
  808. /* unknown field */
  809. skip_bits1(&gb);
  810. while (get_bits1(&gb))
  811. skip_bits(&gb, 8);
  812. svq3->unknown_flag = get_bits1(&gb);
  813. avctx->has_b_frames = !s->low_delay;
  814. if (svq3->unknown_flag) {
  815. #if CONFIG_ZLIB
  816. unsigned watermark_width = svq3_get_ue_golomb(&gb);
  817. unsigned watermark_height = svq3_get_ue_golomb(&gb);
  818. int u1 = svq3_get_ue_golomb(&gb);
  819. int u2 = get_bits(&gb, 8);
  820. int u3 = get_bits(&gb, 2);
  821. int u4 = svq3_get_ue_golomb(&gb);
  822. unsigned long buf_len = watermark_width *
  823. watermark_height * 4;
  824. int offset = get_bits_count(&gb) + 7 >> 3;
  825. uint8_t *buf;
  826. if ((uint64_t)watermark_width * 4 > UINT_MAX / watermark_height)
  827. return -1;
  828. buf = av_malloc(buf_len);
  829. av_log(avctx, AV_LOG_DEBUG, "watermark size: %dx%d\n",
  830. watermark_width, watermark_height);
  831. av_log(avctx, AV_LOG_DEBUG,
  832. "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n",
  833. u1, u2, u3, u4, offset);
  834. if (uncompress(buf, &buf_len, extradata + 8 + offset,
  835. size - offset) != Z_OK) {
  836. av_log(avctx, AV_LOG_ERROR,
  837. "could not uncompress watermark logo\n");
  838. av_free(buf);
  839. return -1;
  840. }
  841. svq3->watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
  842. svq3->watermark_key = svq3->watermark_key << 16 |
  843. svq3->watermark_key;
  844. av_log(avctx, AV_LOG_DEBUG,
  845. "watermark key %#x\n", svq3->watermark_key);
  846. av_free(buf);
  847. #else
  848. av_log(avctx, AV_LOG_ERROR,
  849. "this svq3 file contains watermark which need zlib support compiled in\n");
  850. return -1;
  851. #endif
  852. }
  853. }
  854. s->width = avctx->width;
  855. s->height = avctx->height;
  856. if (ff_MPV_common_init(s) < 0)
  857. return -1;
  858. h->b_stride = 4 * s->mb_width;
  859. if (ff_h264_alloc_tables(h) < 0) {
  860. av_log(avctx, AV_LOG_ERROR, "svq3 memory allocation failed\n");
  861. return AVERROR(ENOMEM);
  862. }
  863. }
  864. return 0;
  865. }
  866. static int svq3_decode_frame(AVCodecContext *avctx, void *data,
  867. int *got_frame, AVPacket *avpkt)
  868. {
  869. const uint8_t *buf = avpkt->data;
  870. SVQ3Context *svq3 = avctx->priv_data;
  871. H264Context *h = &svq3->h;
  872. MpegEncContext *s = &h->s;
  873. int buf_size = avpkt->size;
  874. int m;
  875. /* special case for last picture */
  876. if (buf_size == 0) {
  877. if (s->next_picture_ptr && !s->low_delay) {
  878. *(AVFrame *) data = s->next_picture.f;
  879. s->next_picture_ptr = NULL;
  880. *got_frame = 1;
  881. }
  882. return 0;
  883. }
  884. init_get_bits(&s->gb, buf, 8 * buf_size);
  885. s->mb_x = s->mb_y = h->mb_xy = 0;
  886. if (svq3_decode_slice_header(avctx))
  887. return -1;
  888. s->pict_type = h->slice_type;
  889. s->picture_number = h->slice_num;
  890. if (avctx->debug & FF_DEBUG_PICT_INFO)
  891. av_log(h->s.avctx, AV_LOG_DEBUG,
  892. "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
  893. av_get_picture_type_char(s->pict_type),
  894. svq3->halfpel_flag, svq3->thirdpel_flag,
  895. s->adaptive_quant, s->qscale, h->slice_num);
  896. /* for skipping the frame */
  897. s->current_picture.f.pict_type = s->pict_type;
  898. s->current_picture.f.key_frame = (s->pict_type == AV_PICTURE_TYPE_I);
  899. /* Skip B-frames if we do not have reference frames. */
  900. if (s->last_picture_ptr == NULL && s->pict_type == AV_PICTURE_TYPE_B)
  901. return 0;
  902. if (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B ||
  903. avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I ||
  904. avctx->skip_frame >= AVDISCARD_ALL)
  905. return 0;
  906. if (s->next_p_frame_damaged) {
  907. if (s->pict_type == AV_PICTURE_TYPE_B)
  908. return 0;
  909. else
  910. s->next_p_frame_damaged = 0;
  911. }
  912. if (ff_h264_frame_start(h) < 0)
  913. return -1;
  914. if (s->pict_type == AV_PICTURE_TYPE_B) {
  915. h->frame_num_offset = h->slice_num - h->prev_frame_num;
  916. if (h->frame_num_offset < 0)
  917. h->frame_num_offset += 256;
  918. if (h->frame_num_offset == 0 ||
  919. h->frame_num_offset >= h->prev_frame_num_offset) {
  920. av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  921. return -1;
  922. }
  923. } else {
  924. h->prev_frame_num = h->frame_num;
  925. h->frame_num = h->slice_num;
  926. h->prev_frame_num_offset = h->frame_num - h->prev_frame_num;
  927. if (h->prev_frame_num_offset < 0)
  928. h->prev_frame_num_offset += 256;
  929. }
  930. for (m = 0; m < 2; m++) {
  931. int i;
  932. for (i = 0; i < 4; i++) {
  933. int j;
  934. for (j = -1; j < 4; j++)
  935. h->ref_cache[m][scan8[0] + 8 * i + j] = 1;
  936. if (i < 3)
  937. h->ref_cache[m][scan8[0] + 8 * i + j] = PART_NOT_AVAILABLE;
  938. }
  939. }
  940. for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  941. for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  942. unsigned mb_type;
  943. h->mb_xy = s->mb_x + s->mb_y * s->mb_stride;
  944. if ((get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
  945. ((get_bits_count(&s->gb) & 7) == 0 ||
  946. show_bits(&s->gb, -get_bits_count(&s->gb) & 7) == 0)) {
  947. skip_bits(&s->gb, svq3->next_slice_index - get_bits_count(&s->gb));
  948. s->gb.size_in_bits = 8 * buf_size;
  949. if (svq3_decode_slice_header(avctx))
  950. return -1;
  951. /* TODO: support s->mb_skip_run */
  952. }
  953. mb_type = svq3_get_ue_golomb(&s->gb);
  954. if (s->pict_type == AV_PICTURE_TYPE_I)
  955. mb_type += 8;
  956. else if (s->pict_type == AV_PICTURE_TYPE_B && mb_type >= 4)
  957. mb_type += 4;
  958. if (mb_type > 33 || svq3_decode_mb(svq3, mb_type)) {
  959. av_log(h->s.avctx, AV_LOG_ERROR,
  960. "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  961. return -1;
  962. }
  963. if (mb_type != 0)
  964. ff_h264_hl_decode_mb(h);
  965. if (s->pict_type != AV_PICTURE_TYPE_B && !s->low_delay)
  966. s->current_picture.f.mb_type[s->mb_x + s->mb_y * s->mb_stride] =
  967. (s->pict_type == AV_PICTURE_TYPE_P && mb_type < 8) ? (mb_type - 1) : -1;
  968. }
  969. ff_draw_horiz_band(s, 16 * s->mb_y, 16);
  970. }
  971. ff_MPV_frame_end(s);
  972. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  973. *(AVFrame *)data = s->current_picture.f;
  974. else
  975. *(AVFrame *)data = s->last_picture.f;
  976. /* Do not output the last pic after seeking. */
  977. if (s->last_picture_ptr || s->low_delay)
  978. *got_frame = 1;
  979. return buf_size;
  980. }
  981. static int svq3_decode_end(AVCodecContext *avctx)
  982. {
  983. SVQ3Context *svq3 = avctx->priv_data;
  984. H264Context *h = &svq3->h;
  985. MpegEncContext *s = &h->s;
  986. ff_h264_free_context(h);
  987. ff_MPV_common_end(s);
  988. return 0;
  989. }
  990. AVCodec ff_svq3_decoder = {
  991. .name = "svq3",
  992. .type = AVMEDIA_TYPE_VIDEO,
  993. .id = AV_CODEC_ID_SVQ3,
  994. .priv_data_size = sizeof(SVQ3Context),
  995. .init = svq3_decode_init,
  996. .close = svq3_decode_end,
  997. .decode = svq3_decode_frame,
  998. .capabilities = CODEC_CAP_DRAW_HORIZ_BAND |
  999. CODEC_CAP_DR1 |
  1000. CODEC_CAP_DELAY,
  1001. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
  1002. .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUVJ420P,
  1003. AV_PIX_FMT_NONE},
  1004. };