You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1125 lines
43KB

  1. /*
  2. * AAC coefficients encoder
  3. * Copyright (C) 2008-2009 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AAC coefficients encoder
  24. */
  25. /***********************************
  26. * TODOs:
  27. * speedup quantizer selection
  28. * add sane pulse detection
  29. ***********************************/
  30. #include "libavutil/libm.h" // brought forward to work around cygwin header breakage
  31. #include <float.h>
  32. #include <math.h>
  33. #include "avcodec.h"
  34. #include "put_bits.h"
  35. #include "aac.h"
  36. #include "aacenc.h"
  37. #include "aactab.h"
  38. /** bits needed to code codebook run value for long windows */
  39. static const uint8_t run_value_bits_long[64] = {
  40. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  41. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
  42. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
  43. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
  44. };
  45. /** bits needed to code codebook run value for short windows */
  46. static const uint8_t run_value_bits_short[16] = {
  47. 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
  48. };
  49. static const uint8_t *run_value_bits[2] = {
  50. run_value_bits_long, run_value_bits_short
  51. };
  52. /**
  53. * Quantize one coefficient.
  54. * @return absolute value of the quantized coefficient
  55. * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
  56. */
  57. static av_always_inline int quant(float coef, const float Q)
  58. {
  59. float a = coef * Q;
  60. return sqrtf(a * sqrtf(a)) + 0.4054;
  61. }
  62. static void quantize_bands(int *out, const float *in, const float *scaled,
  63. int size, float Q34, int is_signed, int maxval)
  64. {
  65. int i;
  66. double qc;
  67. for (i = 0; i < size; i++) {
  68. qc = scaled[i] * Q34;
  69. out[i] = (int)FFMIN(qc + 0.4054, (double)maxval);
  70. if (is_signed && in[i] < 0.0f) {
  71. out[i] = -out[i];
  72. }
  73. }
  74. }
  75. static void abs_pow34_v(float *out, const float *in, const int size)
  76. {
  77. #ifndef USE_REALLY_FULL_SEARCH
  78. int i;
  79. for (i = 0; i < size; i++) {
  80. float a = fabsf(in[i]);
  81. out[i] = sqrtf(a * sqrtf(a));
  82. }
  83. #endif /* USE_REALLY_FULL_SEARCH */
  84. }
  85. static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
  86. static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
  87. /**
  88. * Calculate rate distortion cost for quantizing with given codebook
  89. *
  90. * @return quantization distortion
  91. */
  92. static av_always_inline float quantize_and_encode_band_cost_template(
  93. struct AACEncContext *s,
  94. PutBitContext *pb, const float *in,
  95. const float *scaled, int size, int scale_idx,
  96. int cb, const float lambda, const float uplim,
  97. int *bits, int BT_ZERO, int BT_UNSIGNED,
  98. int BT_PAIR, int BT_ESC)
  99. {
  100. const float IQ = ff_aac_pow2sf_tab[POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
  101. const float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
  102. const float CLIPPED_ESCAPE = 165140.0f*IQ;
  103. int i, j;
  104. float cost = 0;
  105. const int dim = BT_PAIR ? 2 : 4;
  106. int resbits = 0;
  107. const float Q34 = sqrtf(Q * sqrtf(Q));
  108. const int range = aac_cb_range[cb];
  109. const int maxval = aac_cb_maxval[cb];
  110. int off;
  111. if (BT_ZERO) {
  112. for (i = 0; i < size; i++)
  113. cost += in[i]*in[i];
  114. if (bits)
  115. *bits = 0;
  116. return cost * lambda;
  117. }
  118. if (!scaled) {
  119. abs_pow34_v(s->scoefs, in, size);
  120. scaled = s->scoefs;
  121. }
  122. quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval);
  123. if (BT_UNSIGNED) {
  124. off = 0;
  125. } else {
  126. off = maxval;
  127. }
  128. for (i = 0; i < size; i += dim) {
  129. const float *vec;
  130. int *quants = s->qcoefs + i;
  131. int curidx = 0;
  132. int curbits;
  133. float rd = 0.0f;
  134. for (j = 0; j < dim; j++) {
  135. curidx *= range;
  136. curidx += quants[j] + off;
  137. }
  138. curbits = ff_aac_spectral_bits[cb-1][curidx];
  139. vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
  140. if (BT_UNSIGNED) {
  141. for (j = 0; j < dim; j++) {
  142. float t = fabsf(in[i+j]);
  143. float di;
  144. if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow
  145. if (t >= CLIPPED_ESCAPE) {
  146. di = t - CLIPPED_ESCAPE;
  147. curbits += 21;
  148. } else {
  149. int c = av_clip(quant(t, Q), 0, 8191);
  150. di = t - c*cbrtf(c)*IQ;
  151. curbits += av_log2(c)*2 - 4 + 1;
  152. }
  153. } else {
  154. di = t - vec[j]*IQ;
  155. }
  156. if (vec[j] != 0.0f)
  157. curbits++;
  158. rd += di*di;
  159. }
  160. } else {
  161. for (j = 0; j < dim; j++) {
  162. float di = in[i+j] - vec[j]*IQ;
  163. rd += di*di;
  164. }
  165. }
  166. cost += rd * lambda + curbits;
  167. resbits += curbits;
  168. if (cost >= uplim)
  169. return uplim;
  170. if (pb) {
  171. put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
  172. if (BT_UNSIGNED)
  173. for (j = 0; j < dim; j++)
  174. if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
  175. put_bits(pb, 1, in[i+j] < 0.0f);
  176. if (BT_ESC) {
  177. for (j = 0; j < 2; j++) {
  178. if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
  179. int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
  180. int len = av_log2(coef);
  181. put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
  182. put_bits(pb, len, coef & ((1 << len) - 1));
  183. }
  184. }
  185. }
  186. }
  187. }
  188. if (bits)
  189. *bits = resbits;
  190. return cost;
  191. }
  192. #define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \
  193. static float quantize_and_encode_band_cost_ ## NAME( \
  194. struct AACEncContext *s, \
  195. PutBitContext *pb, const float *in, \
  196. const float *scaled, int size, int scale_idx, \
  197. int cb, const float lambda, const float uplim, \
  198. int *bits) { \
  199. return quantize_and_encode_band_cost_template( \
  200. s, pb, in, scaled, size, scale_idx, \
  201. BT_ESC ? ESC_BT : cb, lambda, uplim, bits, \
  202. BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC); \
  203. }
  204. QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO, 1, 0, 0, 0)
  205. QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0)
  206. QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0)
  207. QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0)
  208. QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0)
  209. QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC, 0, 1, 1, 1)
  210. static float (*const quantize_and_encode_band_cost_arr[])(
  211. struct AACEncContext *s,
  212. PutBitContext *pb, const float *in,
  213. const float *scaled, int size, int scale_idx,
  214. int cb, const float lambda, const float uplim,
  215. int *bits) = {
  216. quantize_and_encode_band_cost_ZERO,
  217. quantize_and_encode_band_cost_SQUAD,
  218. quantize_and_encode_band_cost_SQUAD,
  219. quantize_and_encode_band_cost_UQUAD,
  220. quantize_and_encode_band_cost_UQUAD,
  221. quantize_and_encode_band_cost_SPAIR,
  222. quantize_and_encode_band_cost_SPAIR,
  223. quantize_and_encode_band_cost_UPAIR,
  224. quantize_and_encode_band_cost_UPAIR,
  225. quantize_and_encode_band_cost_UPAIR,
  226. quantize_and_encode_band_cost_UPAIR,
  227. quantize_and_encode_band_cost_ESC,
  228. };
  229. #define quantize_and_encode_band_cost( \
  230. s, pb, in, scaled, size, scale_idx, cb, \
  231. lambda, uplim, bits) \
  232. quantize_and_encode_band_cost_arr[cb]( \
  233. s, pb, in, scaled, size, scale_idx, cb, \
  234. lambda, uplim, bits)
  235. static float quantize_band_cost(struct AACEncContext *s, const float *in,
  236. const float *scaled, int size, int scale_idx,
  237. int cb, const float lambda, const float uplim,
  238. int *bits)
  239. {
  240. return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
  241. cb, lambda, uplim, bits);
  242. }
  243. static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
  244. const float *in, int size, int scale_idx,
  245. int cb, const float lambda)
  246. {
  247. quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
  248. INFINITY, NULL);
  249. }
  250. static float find_max_val(int group_len, int swb_size, const float *scaled) {
  251. float maxval = 0.0f;
  252. int w2, i;
  253. for (w2 = 0; w2 < group_len; w2++) {
  254. for (i = 0; i < swb_size; i++) {
  255. maxval = FFMAX(maxval, scaled[w2*128+i]);
  256. }
  257. }
  258. return maxval;
  259. }
  260. static int find_min_book(float maxval, int sf) {
  261. float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
  262. float Q34 = sqrtf(Q * sqrtf(Q));
  263. int qmaxval, cb;
  264. qmaxval = maxval * Q34 + 0.4054f;
  265. if (qmaxval == 0) cb = 0;
  266. else if (qmaxval == 1) cb = 1;
  267. else if (qmaxval == 2) cb = 3;
  268. else if (qmaxval <= 4) cb = 5;
  269. else if (qmaxval <= 7) cb = 7;
  270. else if (qmaxval <= 12) cb = 9;
  271. else cb = 11;
  272. return cb;
  273. }
  274. /**
  275. * structure used in optimal codebook search
  276. */
  277. typedef struct BandCodingPath {
  278. int prev_idx; ///< pointer to the previous path point
  279. float cost; ///< path cost
  280. int run;
  281. } BandCodingPath;
  282. /**
  283. * Encode band info for single window group bands.
  284. */
  285. static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
  286. int win, int group_len, const float lambda)
  287. {
  288. BandCodingPath path[120][12];
  289. int w, swb, cb, start, size;
  290. int i, j;
  291. const int max_sfb = sce->ics.max_sfb;
  292. const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
  293. const int run_esc = (1 << run_bits) - 1;
  294. int idx, ppos, count;
  295. int stackrun[120], stackcb[120], stack_len;
  296. float next_minrd = INFINITY;
  297. int next_mincb = 0;
  298. abs_pow34_v(s->scoefs, sce->coeffs, 1024);
  299. start = win*128;
  300. for (cb = 0; cb < 12; cb++) {
  301. path[0][cb].cost = 0.0f;
  302. path[0][cb].prev_idx = -1;
  303. path[0][cb].run = 0;
  304. }
  305. for (swb = 0; swb < max_sfb; swb++) {
  306. size = sce->ics.swb_sizes[swb];
  307. if (sce->zeroes[win*16 + swb]) {
  308. for (cb = 0; cb < 12; cb++) {
  309. path[swb+1][cb].prev_idx = cb;
  310. path[swb+1][cb].cost = path[swb][cb].cost;
  311. path[swb+1][cb].run = path[swb][cb].run + 1;
  312. }
  313. } else {
  314. float minrd = next_minrd;
  315. int mincb = next_mincb;
  316. next_minrd = INFINITY;
  317. next_mincb = 0;
  318. for (cb = 0; cb < 12; cb++) {
  319. float cost_stay_here, cost_get_here;
  320. float rd = 0.0f;
  321. for (w = 0; w < group_len; w++) {
  322. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
  323. rd += quantize_band_cost(s, sce->coeffs + start + w*128,
  324. s->scoefs + start + w*128, size,
  325. sce->sf_idx[(win+w)*16+swb], cb,
  326. lambda / band->threshold, INFINITY, NULL);
  327. }
  328. cost_stay_here = path[swb][cb].cost + rd;
  329. cost_get_here = minrd + rd + run_bits + 4;
  330. if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
  331. != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
  332. cost_stay_here += run_bits;
  333. if (cost_get_here < cost_stay_here) {
  334. path[swb+1][cb].prev_idx = mincb;
  335. path[swb+1][cb].cost = cost_get_here;
  336. path[swb+1][cb].run = 1;
  337. } else {
  338. path[swb+1][cb].prev_idx = cb;
  339. path[swb+1][cb].cost = cost_stay_here;
  340. path[swb+1][cb].run = path[swb][cb].run + 1;
  341. }
  342. if (path[swb+1][cb].cost < next_minrd) {
  343. next_minrd = path[swb+1][cb].cost;
  344. next_mincb = cb;
  345. }
  346. }
  347. }
  348. start += sce->ics.swb_sizes[swb];
  349. }
  350. //convert resulting path from backward-linked list
  351. stack_len = 0;
  352. idx = 0;
  353. for (cb = 1; cb < 12; cb++)
  354. if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
  355. idx = cb;
  356. ppos = max_sfb;
  357. while (ppos > 0) {
  358. cb = idx;
  359. stackrun[stack_len] = path[ppos][cb].run;
  360. stackcb [stack_len] = cb;
  361. idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
  362. ppos -= path[ppos][cb].run;
  363. stack_len++;
  364. }
  365. //perform actual band info encoding
  366. start = 0;
  367. for (i = stack_len - 1; i >= 0; i--) {
  368. put_bits(&s->pb, 4, stackcb[i]);
  369. count = stackrun[i];
  370. memset(sce->zeroes + win*16 + start, !stackcb[i], count);
  371. //XXX: memset when band_type is also uint8_t
  372. for (j = 0; j < count; j++) {
  373. sce->band_type[win*16 + start] = stackcb[i];
  374. start++;
  375. }
  376. while (count >= run_esc) {
  377. put_bits(&s->pb, run_bits, run_esc);
  378. count -= run_esc;
  379. }
  380. put_bits(&s->pb, run_bits, count);
  381. }
  382. }
  383. static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
  384. int win, int group_len, const float lambda)
  385. {
  386. BandCodingPath path[120][12];
  387. int w, swb, cb, start, size;
  388. int i, j;
  389. const int max_sfb = sce->ics.max_sfb;
  390. const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
  391. const int run_esc = (1 << run_bits) - 1;
  392. int idx, ppos, count;
  393. int stackrun[120], stackcb[120], stack_len;
  394. float next_minrd = INFINITY;
  395. int next_mincb = 0;
  396. abs_pow34_v(s->scoefs, sce->coeffs, 1024);
  397. start = win*128;
  398. for (cb = 0; cb < 12; cb++) {
  399. path[0][cb].cost = run_bits+4;
  400. path[0][cb].prev_idx = -1;
  401. path[0][cb].run = 0;
  402. }
  403. for (swb = 0; swb < max_sfb; swb++) {
  404. size = sce->ics.swb_sizes[swb];
  405. if (sce->zeroes[win*16 + swb]) {
  406. for (cb = 0; cb < 12; cb++) {
  407. path[swb+1][cb].prev_idx = cb;
  408. path[swb+1][cb].cost = path[swb][cb].cost;
  409. path[swb+1][cb].run = path[swb][cb].run + 1;
  410. }
  411. } else {
  412. float minrd = next_minrd;
  413. int mincb = next_mincb;
  414. int startcb = sce->band_type[win*16+swb];
  415. next_minrd = INFINITY;
  416. next_mincb = 0;
  417. for (cb = 0; cb < startcb; cb++) {
  418. path[swb+1][cb].cost = 61450;
  419. path[swb+1][cb].prev_idx = -1;
  420. path[swb+1][cb].run = 0;
  421. }
  422. for (cb = startcb; cb < 12; cb++) {
  423. float cost_stay_here, cost_get_here;
  424. float rd = 0.0f;
  425. for (w = 0; w < group_len; w++) {
  426. rd += quantize_band_cost(s, sce->coeffs + start + w*128,
  427. s->scoefs + start + w*128, size,
  428. sce->sf_idx[(win+w)*16+swb], cb,
  429. 0, INFINITY, NULL);
  430. }
  431. cost_stay_here = path[swb][cb].cost + rd;
  432. cost_get_here = minrd + rd + run_bits + 4;
  433. if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
  434. != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
  435. cost_stay_here += run_bits;
  436. if (cost_get_here < cost_stay_here) {
  437. path[swb+1][cb].prev_idx = mincb;
  438. path[swb+1][cb].cost = cost_get_here;
  439. path[swb+1][cb].run = 1;
  440. } else {
  441. path[swb+1][cb].prev_idx = cb;
  442. path[swb+1][cb].cost = cost_stay_here;
  443. path[swb+1][cb].run = path[swb][cb].run + 1;
  444. }
  445. if (path[swb+1][cb].cost < next_minrd) {
  446. next_minrd = path[swb+1][cb].cost;
  447. next_mincb = cb;
  448. }
  449. }
  450. }
  451. start += sce->ics.swb_sizes[swb];
  452. }
  453. //convert resulting path from backward-linked list
  454. stack_len = 0;
  455. idx = 0;
  456. for (cb = 1; cb < 12; cb++)
  457. if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
  458. idx = cb;
  459. ppos = max_sfb;
  460. while (ppos > 0) {
  461. assert(idx >= 0);
  462. cb = idx;
  463. stackrun[stack_len] = path[ppos][cb].run;
  464. stackcb [stack_len] = cb;
  465. idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
  466. ppos -= path[ppos][cb].run;
  467. stack_len++;
  468. }
  469. //perform actual band info encoding
  470. start = 0;
  471. for (i = stack_len - 1; i >= 0; i--) {
  472. put_bits(&s->pb, 4, stackcb[i]);
  473. count = stackrun[i];
  474. memset(sce->zeroes + win*16 + start, !stackcb[i], count);
  475. //XXX: memset when band_type is also uint8_t
  476. for (j = 0; j < count; j++) {
  477. sce->band_type[win*16 + start] = stackcb[i];
  478. start++;
  479. }
  480. while (count >= run_esc) {
  481. put_bits(&s->pb, run_bits, run_esc);
  482. count -= run_esc;
  483. }
  484. put_bits(&s->pb, run_bits, count);
  485. }
  486. }
  487. /** Return the minimum scalefactor where the quantized coef does not clip. */
  488. static av_always_inline uint8_t coef2minsf(float coef) {
  489. return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
  490. }
  491. /** Return the maximum scalefactor where the quantized coef is not zero. */
  492. static av_always_inline uint8_t coef2maxsf(float coef) {
  493. return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
  494. }
  495. typedef struct TrellisPath {
  496. float cost;
  497. int prev;
  498. } TrellisPath;
  499. #define TRELLIS_STAGES 121
  500. #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
  501. static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
  502. SingleChannelElement *sce,
  503. const float lambda)
  504. {
  505. int q, w, w2, g, start = 0;
  506. int i, j;
  507. int idx;
  508. TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
  509. int bandaddr[TRELLIS_STAGES];
  510. int minq;
  511. float mincost;
  512. float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
  513. int q0, q1, qcnt = 0;
  514. for (i = 0; i < 1024; i++) {
  515. float t = fabsf(sce->coeffs[i]);
  516. if (t > 0.0f) {
  517. q0f = FFMIN(q0f, t);
  518. q1f = FFMAX(q1f, t);
  519. qnrgf += t*t;
  520. qcnt++;
  521. }
  522. }
  523. if (!qcnt) {
  524. memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
  525. memset(sce->zeroes, 1, sizeof(sce->zeroes));
  526. return;
  527. }
  528. //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
  529. q0 = coef2minsf(q0f);
  530. //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
  531. q1 = coef2maxsf(q1f);
  532. //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
  533. if (q1 - q0 > 60) {
  534. int q0low = q0;
  535. int q1high = q1;
  536. //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
  537. int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
  538. q1 = qnrg + 30;
  539. q0 = qnrg - 30;
  540. //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
  541. if (q0 < q0low) {
  542. q1 += q0low - q0;
  543. q0 = q0low;
  544. } else if (q1 > q1high) {
  545. q0 -= q1 - q1high;
  546. q1 = q1high;
  547. }
  548. }
  549. //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
  550. for (i = 0; i < TRELLIS_STATES; i++) {
  551. paths[0][i].cost = 0.0f;
  552. paths[0][i].prev = -1;
  553. }
  554. for (j = 1; j < TRELLIS_STAGES; j++) {
  555. for (i = 0; i < TRELLIS_STATES; i++) {
  556. paths[j][i].cost = INFINITY;
  557. paths[j][i].prev = -2;
  558. }
  559. }
  560. idx = 1;
  561. abs_pow34_v(s->scoefs, sce->coeffs, 1024);
  562. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  563. start = w*128;
  564. for (g = 0; g < sce->ics.num_swb; g++) {
  565. const float *coefs = sce->coeffs + start;
  566. float qmin, qmax;
  567. int nz = 0;
  568. bandaddr[idx] = w * 16 + g;
  569. qmin = INT_MAX;
  570. qmax = 0.0f;
  571. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  572. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
  573. if (band->energy <= band->threshold || band->threshold == 0.0f) {
  574. sce->zeroes[(w+w2)*16+g] = 1;
  575. continue;
  576. }
  577. sce->zeroes[(w+w2)*16+g] = 0;
  578. nz = 1;
  579. for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
  580. float t = fabsf(coefs[w2*128+i]);
  581. if (t > 0.0f)
  582. qmin = FFMIN(qmin, t);
  583. qmax = FFMAX(qmax, t);
  584. }
  585. }
  586. if (nz) {
  587. int minscale, maxscale;
  588. float minrd = INFINITY;
  589. float maxval;
  590. //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
  591. minscale = coef2minsf(qmin);
  592. //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
  593. maxscale = coef2maxsf(qmax);
  594. minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
  595. maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
  596. maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
  597. for (q = minscale; q < maxscale; q++) {
  598. float dist = 0;
  599. int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
  600. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  601. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
  602. dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
  603. q + q0, cb, lambda / band->threshold, INFINITY, NULL);
  604. }
  605. minrd = FFMIN(minrd, dist);
  606. for (i = 0; i < q1 - q0; i++) {
  607. float cost;
  608. cost = paths[idx - 1][i].cost + dist
  609. + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
  610. if (cost < paths[idx][q].cost) {
  611. paths[idx][q].cost = cost;
  612. paths[idx][q].prev = i;
  613. }
  614. }
  615. }
  616. } else {
  617. for (q = 0; q < q1 - q0; q++) {
  618. paths[idx][q].cost = paths[idx - 1][q].cost + 1;
  619. paths[idx][q].prev = q;
  620. }
  621. }
  622. sce->zeroes[w*16+g] = !nz;
  623. start += sce->ics.swb_sizes[g];
  624. idx++;
  625. }
  626. }
  627. idx--;
  628. mincost = paths[idx][0].cost;
  629. minq = 0;
  630. for (i = 1; i < TRELLIS_STATES; i++) {
  631. if (paths[idx][i].cost < mincost) {
  632. mincost = paths[idx][i].cost;
  633. minq = i;
  634. }
  635. }
  636. while (idx) {
  637. sce->sf_idx[bandaddr[idx]] = minq + q0;
  638. minq = paths[idx][minq].prev;
  639. idx--;
  640. }
  641. //set the same quantizers inside window groups
  642. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
  643. for (g = 0; g < sce->ics.num_swb; g++)
  644. for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
  645. sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
  646. }
  647. /**
  648. * two-loop quantizers search taken from ISO 13818-7 Appendix C
  649. */
  650. static void search_for_quantizers_twoloop(AVCodecContext *avctx,
  651. AACEncContext *s,
  652. SingleChannelElement *sce,
  653. const float lambda)
  654. {
  655. int start = 0, i, w, w2, g;
  656. int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
  657. float dists[128], uplims[128];
  658. float maxvals[128];
  659. int fflag, minscaler;
  660. int its = 0;
  661. int allz = 0;
  662. float minthr = INFINITY;
  663. //XXX: some heuristic to determine initial quantizers will reduce search time
  664. memset(dists, 0, sizeof(dists));
  665. //determine zero bands and upper limits
  666. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  667. for (g = 0; g < sce->ics.num_swb; g++) {
  668. int nz = 0;
  669. float uplim = 0.0f;
  670. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  671. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
  672. uplim += band->threshold;
  673. if (band->energy <= band->threshold || band->threshold == 0.0f) {
  674. sce->zeroes[(w+w2)*16+g] = 1;
  675. continue;
  676. }
  677. nz = 1;
  678. }
  679. uplims[w*16+g] = uplim *512;
  680. sce->zeroes[w*16+g] = !nz;
  681. if (nz)
  682. minthr = FFMIN(minthr, uplim);
  683. allz |= nz;
  684. }
  685. }
  686. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  687. for (g = 0; g < sce->ics.num_swb; g++) {
  688. if (sce->zeroes[w*16+g]) {
  689. sce->sf_idx[w*16+g] = SCALE_ONE_POS;
  690. continue;
  691. }
  692. sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
  693. }
  694. }
  695. if (!allz)
  696. return;
  697. abs_pow34_v(s->scoefs, sce->coeffs, 1024);
  698. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  699. start = w*128;
  700. for (g = 0; g < sce->ics.num_swb; g++) {
  701. const float *scaled = s->scoefs + start;
  702. maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
  703. start += sce->ics.swb_sizes[g];
  704. }
  705. }
  706. //perform two-loop search
  707. //outer loop - improve quality
  708. do {
  709. int tbits, qstep;
  710. minscaler = sce->sf_idx[0];
  711. //inner loop - quantize spectrum to fit into given number of bits
  712. qstep = its ? 1 : 32;
  713. do {
  714. int prev = -1;
  715. tbits = 0;
  716. fflag = 0;
  717. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  718. start = w*128;
  719. for (g = 0; g < sce->ics.num_swb; g++) {
  720. const float *coefs = sce->coeffs + start;
  721. const float *scaled = s->scoefs + start;
  722. int bits = 0;
  723. int cb;
  724. float dist = 0.0f;
  725. if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
  726. start += sce->ics.swb_sizes[g];
  727. continue;
  728. }
  729. minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
  730. cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
  731. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  732. int b;
  733. dist += quantize_band_cost(s, coefs + w2*128,
  734. scaled + w2*128,
  735. sce->ics.swb_sizes[g],
  736. sce->sf_idx[w*16+g],
  737. cb,
  738. 1.0f,
  739. INFINITY,
  740. &b);
  741. bits += b;
  742. }
  743. dists[w*16+g] = dist - bits;
  744. if (prev != -1) {
  745. bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
  746. }
  747. tbits += bits;
  748. start += sce->ics.swb_sizes[g];
  749. prev = sce->sf_idx[w*16+g];
  750. }
  751. }
  752. if (tbits > destbits) {
  753. for (i = 0; i < 128; i++)
  754. if (sce->sf_idx[i] < 218 - qstep)
  755. sce->sf_idx[i] += qstep;
  756. } else {
  757. for (i = 0; i < 128; i++)
  758. if (sce->sf_idx[i] > 60 - qstep)
  759. sce->sf_idx[i] -= qstep;
  760. }
  761. qstep >>= 1;
  762. if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
  763. qstep = 1;
  764. } while (qstep);
  765. fflag = 0;
  766. minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
  767. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  768. for (g = 0; g < sce->ics.num_swb; g++) {
  769. int prevsc = sce->sf_idx[w*16+g];
  770. if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
  771. if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
  772. sce->sf_idx[w*16+g]--;
  773. else //Try to make sure there is some energy in every band
  774. sce->sf_idx[w*16+g]-=2;
  775. }
  776. sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
  777. sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
  778. if (sce->sf_idx[w*16+g] != prevsc)
  779. fflag = 1;
  780. sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
  781. }
  782. }
  783. its++;
  784. } while (fflag && its < 10);
  785. }
  786. static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
  787. SingleChannelElement *sce,
  788. const float lambda)
  789. {
  790. int start = 0, i, w, w2, g;
  791. float uplim[128], maxq[128];
  792. int minq, maxsf;
  793. float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
  794. int last = 0, lastband = 0, curband = 0;
  795. float avg_energy = 0.0;
  796. if (sce->ics.num_windows == 1) {
  797. start = 0;
  798. for (i = 0; i < 1024; i++) {
  799. if (i - start >= sce->ics.swb_sizes[curband]) {
  800. start += sce->ics.swb_sizes[curband];
  801. curband++;
  802. }
  803. if (sce->coeffs[i]) {
  804. avg_energy += sce->coeffs[i] * sce->coeffs[i];
  805. last = i;
  806. lastband = curband;
  807. }
  808. }
  809. } else {
  810. for (w = 0; w < 8; w++) {
  811. const float *coeffs = sce->coeffs + w*128;
  812. start = 0;
  813. for (i = 0; i < 128; i++) {
  814. if (i - start >= sce->ics.swb_sizes[curband]) {
  815. start += sce->ics.swb_sizes[curband];
  816. curband++;
  817. }
  818. if (coeffs[i]) {
  819. avg_energy += coeffs[i] * coeffs[i];
  820. last = FFMAX(last, i);
  821. lastband = FFMAX(lastband, curband);
  822. }
  823. }
  824. }
  825. }
  826. last++;
  827. avg_energy /= last;
  828. if (avg_energy == 0.0f) {
  829. for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
  830. sce->sf_idx[i] = SCALE_ONE_POS;
  831. return;
  832. }
  833. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  834. start = w*128;
  835. for (g = 0; g < sce->ics.num_swb; g++) {
  836. float *coefs = sce->coeffs + start;
  837. const int size = sce->ics.swb_sizes[g];
  838. int start2 = start, end2 = start + size, peakpos = start;
  839. float maxval = -1, thr = 0.0f, t;
  840. maxq[w*16+g] = 0.0f;
  841. if (g > lastband) {
  842. maxq[w*16+g] = 0.0f;
  843. start += size;
  844. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
  845. memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
  846. continue;
  847. }
  848. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  849. for (i = 0; i < size; i++) {
  850. float t = coefs[w2*128+i]*coefs[w2*128+i];
  851. maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
  852. thr += t;
  853. if (sce->ics.num_windows == 1 && maxval < t) {
  854. maxval = t;
  855. peakpos = start+i;
  856. }
  857. }
  858. }
  859. if (sce->ics.num_windows == 1) {
  860. start2 = FFMAX(peakpos - 2, start2);
  861. end2 = FFMIN(peakpos + 3, end2);
  862. } else {
  863. start2 -= start;
  864. end2 -= start;
  865. }
  866. start += size;
  867. thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
  868. t = 1.0 - (1.0 * start2 / last);
  869. uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
  870. }
  871. }
  872. memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
  873. abs_pow34_v(s->scoefs, sce->coeffs, 1024);
  874. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  875. start = w*128;
  876. for (g = 0; g < sce->ics.num_swb; g++) {
  877. const float *coefs = sce->coeffs + start;
  878. const float *scaled = s->scoefs + start;
  879. const int size = sce->ics.swb_sizes[g];
  880. int scf, prev_scf, step;
  881. int min_scf = -1, max_scf = 256;
  882. float curdiff;
  883. if (maxq[w*16+g] < 21.544) {
  884. sce->zeroes[w*16+g] = 1;
  885. start += size;
  886. continue;
  887. }
  888. sce->zeroes[w*16+g] = 0;
  889. scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
  890. step = 16;
  891. for (;;) {
  892. float dist = 0.0f;
  893. int quant_max;
  894. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  895. int b;
  896. dist += quantize_band_cost(s, coefs + w2*128,
  897. scaled + w2*128,
  898. sce->ics.swb_sizes[g],
  899. scf,
  900. ESC_BT,
  901. lambda,
  902. INFINITY,
  903. &b);
  904. dist -= b;
  905. }
  906. dist *= 1.0f / 512.0f / lambda;
  907. quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512]);
  908. if (quant_max >= 8191) { // too much, return to the previous quantizer
  909. sce->sf_idx[w*16+g] = prev_scf;
  910. break;
  911. }
  912. prev_scf = scf;
  913. curdiff = fabsf(dist - uplim[w*16+g]);
  914. if (curdiff <= 1.0f)
  915. step = 0;
  916. else
  917. step = log2f(curdiff);
  918. if (dist > uplim[w*16+g])
  919. step = -step;
  920. scf += step;
  921. scf = av_clip_uint8(scf);
  922. step = scf - prev_scf;
  923. if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
  924. sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
  925. break;
  926. }
  927. if (step > 0)
  928. min_scf = prev_scf;
  929. else
  930. max_scf = prev_scf;
  931. }
  932. start += size;
  933. }
  934. }
  935. minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
  936. for (i = 1; i < 128; i++) {
  937. if (!sce->sf_idx[i])
  938. sce->sf_idx[i] = sce->sf_idx[i-1];
  939. else
  940. minq = FFMIN(minq, sce->sf_idx[i]);
  941. }
  942. if (minq == INT_MAX)
  943. minq = 0;
  944. minq = FFMIN(minq, SCALE_MAX_POS);
  945. maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
  946. for (i = 126; i >= 0; i--) {
  947. if (!sce->sf_idx[i])
  948. sce->sf_idx[i] = sce->sf_idx[i+1];
  949. sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
  950. }
  951. }
  952. static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
  953. SingleChannelElement *sce,
  954. const float lambda)
  955. {
  956. int i, w, w2, g;
  957. int minq = 255;
  958. memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
  959. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  960. for (g = 0; g < sce->ics.num_swb; g++) {
  961. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  962. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
  963. if (band->energy <= band->threshold) {
  964. sce->sf_idx[(w+w2)*16+g] = 218;
  965. sce->zeroes[(w+w2)*16+g] = 1;
  966. } else {
  967. sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
  968. sce->zeroes[(w+w2)*16+g] = 0;
  969. }
  970. minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
  971. }
  972. }
  973. }
  974. for (i = 0; i < 128; i++) {
  975. sce->sf_idx[i] = 140;
  976. //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
  977. }
  978. //set the same quantizers inside window groups
  979. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
  980. for (g = 0; g < sce->ics.num_swb; g++)
  981. for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
  982. sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
  983. }
  984. static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
  985. const float lambda)
  986. {
  987. int start = 0, i, w, w2, g;
  988. float M[128], S[128];
  989. float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
  990. SingleChannelElement *sce0 = &cpe->ch[0];
  991. SingleChannelElement *sce1 = &cpe->ch[1];
  992. if (!cpe->common_window)
  993. return;
  994. for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
  995. for (g = 0; g < sce0->ics.num_swb; g++) {
  996. if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
  997. float dist1 = 0.0f, dist2 = 0.0f;
  998. for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
  999. FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
  1000. FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
  1001. float minthr = FFMIN(band0->threshold, band1->threshold);
  1002. float maxthr = FFMAX(band0->threshold, band1->threshold);
  1003. for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
  1004. M[i] = (sce0->coeffs[start+w2*128+i]
  1005. + sce1->coeffs[start+w2*128+i]) * 0.5;
  1006. S[i] = M[i]
  1007. - sce1->coeffs[start+w2*128+i];
  1008. }
  1009. abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
  1010. abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
  1011. abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
  1012. abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
  1013. dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
  1014. L34,
  1015. sce0->ics.swb_sizes[g],
  1016. sce0->sf_idx[(w+w2)*16+g],
  1017. sce0->band_type[(w+w2)*16+g],
  1018. lambda / band0->threshold, INFINITY, NULL);
  1019. dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
  1020. R34,
  1021. sce1->ics.swb_sizes[g],
  1022. sce1->sf_idx[(w+w2)*16+g],
  1023. sce1->band_type[(w+w2)*16+g],
  1024. lambda / band1->threshold, INFINITY, NULL);
  1025. dist2 += quantize_band_cost(s, M,
  1026. M34,
  1027. sce0->ics.swb_sizes[g],
  1028. sce0->sf_idx[(w+w2)*16+g],
  1029. sce0->band_type[(w+w2)*16+g],
  1030. lambda / maxthr, INFINITY, NULL);
  1031. dist2 += quantize_band_cost(s, S,
  1032. S34,
  1033. sce1->ics.swb_sizes[g],
  1034. sce1->sf_idx[(w+w2)*16+g],
  1035. sce1->band_type[(w+w2)*16+g],
  1036. lambda / minthr, INFINITY, NULL);
  1037. }
  1038. cpe->ms_mask[w*16+g] = dist2 < dist1;
  1039. }
  1040. start += sce0->ics.swb_sizes[g];
  1041. }
  1042. }
  1043. }
  1044. AACCoefficientsEncoder ff_aac_coders[] = {
  1045. {
  1046. search_for_quantizers_faac,
  1047. encode_window_bands_info,
  1048. quantize_and_encode_band,
  1049. search_for_ms,
  1050. },
  1051. {
  1052. search_for_quantizers_anmr,
  1053. encode_window_bands_info,
  1054. quantize_and_encode_band,
  1055. search_for_ms,
  1056. },
  1057. {
  1058. search_for_quantizers_twoloop,
  1059. codebook_trellis_rate,
  1060. quantize_and_encode_band,
  1061. search_for_ms,
  1062. },
  1063. {
  1064. search_for_quantizers_fast,
  1065. encode_window_bands_info,
  1066. quantize_and_encode_band,
  1067. search_for_ms,
  1068. },
  1069. };