You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

892 lines
34KB

  1. /*
  2. * DSP utils
  3. * Copyright (c) 2000, 2001, 2002 Fabrice Bellard
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/dsputil.h
  24. * DSP utils.
  25. * note, many functions in here may use MMX which trashes the FPU state, it is
  26. * absolutely necessary to call emms_c() between dsp & float/double code
  27. */
  28. #ifndef AVCODEC_DSPUTIL_H
  29. #define AVCODEC_DSPUTIL_H
  30. #include "libavutil/intreadwrite.h"
  31. #include "avcodec.h"
  32. //#define DEBUG
  33. /* dct code */
  34. typedef short DCTELEM;
  35. typedef int DWTELEM;
  36. typedef short IDWTELEM;
  37. void fdct_ifast (DCTELEM *data);
  38. void fdct_ifast248 (DCTELEM *data);
  39. void ff_jpeg_fdct_islow (DCTELEM *data);
  40. void ff_fdct248_islow (DCTELEM *data);
  41. void j_rev_dct (DCTELEM *data);
  42. void j_rev_dct4 (DCTELEM *data);
  43. void j_rev_dct2 (DCTELEM *data);
  44. void j_rev_dct1 (DCTELEM *data);
  45. void ff_wmv2_idct_c(DCTELEM *data);
  46. void ff_fdct_mmx(DCTELEM *block);
  47. void ff_fdct_mmx2(DCTELEM *block);
  48. void ff_fdct_sse2(DCTELEM *block);
  49. void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
  50. void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
  51. void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
  52. void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
  53. void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
  54. void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
  55. void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  56. void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  57. void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  58. void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  59. void ff_vector_fmul_add_add_c(float *dst, const float *src0, const float *src1,
  60. const float *src2, int src3, int blocksize, int step);
  61. void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1,
  62. const float *win, float add_bias, int len);
  63. void ff_float_to_int16_c(int16_t *dst, const float *src, long len);
  64. void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels);
  65. /* encoding scans */
  66. extern const uint8_t ff_alternate_horizontal_scan[64];
  67. extern const uint8_t ff_alternate_vertical_scan[64];
  68. extern const uint8_t ff_zigzag_direct[64];
  69. extern const uint8_t ff_zigzag248_direct[64];
  70. /* pixel operations */
  71. #define MAX_NEG_CROP 1024
  72. /* temporary */
  73. extern uint32_t ff_squareTbl[512];
  74. extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
  75. /* VP3 DSP functions */
  76. void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
  77. void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  78. void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  79. void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
  80. void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
  81. /* 1/2^n downscaling functions from imgconvert.c */
  82. void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  83. void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  84. void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  85. void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  86. void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
  87. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  88. /* minimum alignment rules ;)
  89. If you notice errors in the align stuff, need more alignment for some ASM code
  90. for some CPU or need to use a function with less aligned data then send a mail
  91. to the ffmpeg-devel mailing list, ...
  92. !warning These alignments might not match reality, (missing attribute((align))
  93. stuff somewhere possible).
  94. I (Michael) did not check them, these are just the alignments which I think
  95. could be reached easily ...
  96. !future video codecs might need functions with less strict alignment
  97. */
  98. /*
  99. void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
  100. void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
  101. void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  102. void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  103. void clear_blocks_c(DCTELEM *blocks);
  104. */
  105. /* add and put pixel (decoding) */
  106. // blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
  107. //h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
  108. typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
  109. typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
  110. typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  111. typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
  112. typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset);
  113. typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset);
  114. #define DEF_OLD_QPEL(name)\
  115. void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  116. void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  117. void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  118. DEF_OLD_QPEL(qpel16_mc11_old_c)
  119. DEF_OLD_QPEL(qpel16_mc31_old_c)
  120. DEF_OLD_QPEL(qpel16_mc12_old_c)
  121. DEF_OLD_QPEL(qpel16_mc32_old_c)
  122. DEF_OLD_QPEL(qpel16_mc13_old_c)
  123. DEF_OLD_QPEL(qpel16_mc33_old_c)
  124. DEF_OLD_QPEL(qpel8_mc11_old_c)
  125. DEF_OLD_QPEL(qpel8_mc31_old_c)
  126. DEF_OLD_QPEL(qpel8_mc12_old_c)
  127. DEF_OLD_QPEL(qpel8_mc32_old_c)
  128. DEF_OLD_QPEL(qpel8_mc13_old_c)
  129. DEF_OLD_QPEL(qpel8_mc33_old_c)
  130. #define CALL_2X_PIXELS(a, b, n)\
  131. static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
  132. b(block , pixels , line_size, h);\
  133. b(block+n, pixels+n, line_size, h);\
  134. }
  135. /* motion estimation */
  136. // h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
  137. // although currently h<4 is not used as functions with width <8 are neither used nor implemented
  138. typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
  139. // for snow slices
  140. typedef struct slice_buffer_s slice_buffer;
  141. /**
  142. * Scantable.
  143. */
  144. typedef struct ScanTable{
  145. const uint8_t *scantable;
  146. uint8_t permutated[64];
  147. uint8_t raster_end[64];
  148. #if ARCH_PPC
  149. /** Used by dct_quantize_altivec to find last-non-zero */
  150. DECLARE_ALIGNED(16, uint8_t, inverse[64]);
  151. #endif
  152. } ScanTable;
  153. void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
  154. void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize,
  155. int block_w, int block_h,
  156. int src_x, int src_y, int w, int h);
  157. /**
  158. * DSPContext.
  159. */
  160. typedef struct DSPContext {
  161. /* pixel ops : interface with DCT */
  162. void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
  163. void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
  164. void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  165. void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  166. void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  167. void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
  168. void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
  169. int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
  170. /**
  171. * translational global motion compensation.
  172. */
  173. void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
  174. /**
  175. * global motion compensation.
  176. */
  177. void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
  178. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  179. void (*clear_block)(DCTELEM *block/*align 16*/);
  180. void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
  181. int (*pix_sum)(uint8_t * pix, int line_size);
  182. int (*pix_norm1)(uint8_t * pix, int line_size);
  183. // 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
  184. me_cmp_func sad[5]; /* identical to pix_absAxA except additional void * */
  185. me_cmp_func sse[5];
  186. me_cmp_func hadamard8_diff[5];
  187. me_cmp_func dct_sad[5];
  188. me_cmp_func quant_psnr[5];
  189. me_cmp_func bit[5];
  190. me_cmp_func rd[5];
  191. me_cmp_func vsad[5];
  192. me_cmp_func vsse[5];
  193. me_cmp_func nsse[5];
  194. me_cmp_func w53[5];
  195. me_cmp_func w97[5];
  196. me_cmp_func dct_max[5];
  197. me_cmp_func dct264_sad[5];
  198. me_cmp_func me_pre_cmp[5];
  199. me_cmp_func me_cmp[5];
  200. me_cmp_func me_sub_cmp[5];
  201. me_cmp_func mb_cmp[5];
  202. me_cmp_func ildct_cmp[5]; //only width 16 used
  203. me_cmp_func frame_skip_cmp[5]; //only width 8 used
  204. int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
  205. int size);
  206. /**
  207. * Halfpel motion compensation with rounding (a+b+1)>>1.
  208. * this is an array[4][4] of motion compensation functions for 4
  209. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  210. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  211. * @param block destination where the result is stored
  212. * @param pixels source
  213. * @param line_size number of bytes in a horizontal line of block
  214. * @param h height
  215. */
  216. op_pixels_func put_pixels_tab[4][4];
  217. /**
  218. * Halfpel motion compensation with rounding (a+b+1)>>1.
  219. * This is an array[4][4] of motion compensation functions for 4
  220. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  221. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  222. * @param block destination into which the result is averaged (a+b+1)>>1
  223. * @param pixels source
  224. * @param line_size number of bytes in a horizontal line of block
  225. * @param h height
  226. */
  227. op_pixels_func avg_pixels_tab[4][4];
  228. /**
  229. * Halfpel motion compensation with no rounding (a+b)>>1.
  230. * this is an array[2][4] of motion compensation functions for 2
  231. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  232. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  233. * @param block destination where the result is stored
  234. * @param pixels source
  235. * @param line_size number of bytes in a horizontal line of block
  236. * @param h height
  237. */
  238. op_pixels_func put_no_rnd_pixels_tab[4][4];
  239. /**
  240. * Halfpel motion compensation with no rounding (a+b)>>1.
  241. * this is an array[2][4] of motion compensation functions for 2
  242. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  243. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  244. * @param block destination into which the result is averaged (a+b)>>1
  245. * @param pixels source
  246. * @param line_size number of bytes in a horizontal line of block
  247. * @param h height
  248. */
  249. op_pixels_func avg_no_rnd_pixels_tab[4][4];
  250. void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
  251. /**
  252. * Thirdpel motion compensation with rounding (a+b+1)>>1.
  253. * this is an array[12] of motion compensation functions for the 9 thirdpe
  254. * positions<br>
  255. * *pixels_tab[ xthirdpel + 4*ythirdpel ]
  256. * @param block destination where the result is stored
  257. * @param pixels source
  258. * @param line_size number of bytes in a horizontal line of block
  259. * @param h height
  260. */
  261. tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  262. tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  263. qpel_mc_func put_qpel_pixels_tab[2][16];
  264. qpel_mc_func avg_qpel_pixels_tab[2][16];
  265. qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
  266. qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
  267. qpel_mc_func put_mspel_pixels_tab[8];
  268. /**
  269. * h264 Chroma MC
  270. */
  271. h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
  272. /* This is really one func used in VC-1 decoding */
  273. h264_chroma_mc_func put_no_rnd_h264_chroma_pixels_tab[3];
  274. h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
  275. qpel_mc_func put_h264_qpel_pixels_tab[4][16];
  276. qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
  277. qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
  278. qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
  279. h264_weight_func weight_h264_pixels_tab[10];
  280. h264_biweight_func biweight_h264_pixels_tab[10];
  281. /* AVS specific */
  282. qpel_mc_func put_cavs_qpel_pixels_tab[2][16];
  283. qpel_mc_func avg_cavs_qpel_pixels_tab[2][16];
  284. void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  285. void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  286. void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  287. void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
  288. void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
  289. me_cmp_func pix_abs[2][4];
  290. /* huffyuv specific */
  291. void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
  292. void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w);
  293. void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
  294. /**
  295. * subtract huffyuv's variant of median prediction
  296. * note, this might read from src1[-1], src2[-1]
  297. */
  298. void (*sub_hfyu_median_prediction)(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top);
  299. void (*add_hfyu_median_prediction)(uint8_t *dst, uint8_t *top, uint8_t *diff, int w, int *left, int *left_top);
  300. /* this might write to dst[w] */
  301. void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp);
  302. void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
  303. void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0);
  304. void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0);
  305. /* v/h_loop_filter_luma_intra: align 16 */
  306. void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
  307. void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
  308. void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0);
  309. void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0);
  310. void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
  311. void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
  312. // h264_loop_filter_strength: simd only. the C version is inlined in h264.c
  313. void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2],
  314. int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field);
  315. void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
  316. void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
  317. void (*h261_loop_filter)(uint8_t *src, int stride);
  318. void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
  319. void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
  320. void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values);
  321. void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values);
  322. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  323. void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
  324. void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len);
  325. /* no alignment needed */
  326. void (*flac_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc);
  327. /* assume len is a multiple of 8, and arrays are 16-byte aligned */
  328. void (*vector_fmul)(float *dst, const float *src, int len);
  329. void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
  330. /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
  331. void (*vector_fmul_add_add)(float *dst, const float *src0, const float *src1, const float *src2, int src3, int len, int step);
  332. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  333. void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len);
  334. /* assume len is a multiple of 8, and arrays are 16-byte aligned */
  335. void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len);
  336. /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
  337. * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
  338. void (*float_to_int16)(int16_t *dst, const float *src, long len);
  339. void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels);
  340. /* (I)DCT */
  341. void (*fdct)(DCTELEM *block/* align 16*/);
  342. void (*fdct248)(DCTELEM *block/* align 16*/);
  343. /* IDCT really*/
  344. void (*idct)(DCTELEM *block/* align 16*/);
  345. /**
  346. * block -> idct -> clip to unsigned 8 bit -> dest.
  347. * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
  348. * @param line_size size in bytes of a horizontal line of dest
  349. */
  350. void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  351. /**
  352. * block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
  353. * @param line_size size in bytes of a horizontal line of dest
  354. */
  355. void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  356. /**
  357. * idct input permutation.
  358. * several optimized IDCTs need a permutated input (relative to the normal order of the reference
  359. * IDCT)
  360. * this permutation must be performed before the idct_put/add, note, normally this can be merged
  361. * with the zigzag/alternate scan<br>
  362. * an example to avoid confusion:
  363. * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
  364. * - (x -> referece dct -> reference idct -> x)
  365. * - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
  366. * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
  367. */
  368. uint8_t idct_permutation[64];
  369. int idct_permutation_type;
  370. #define FF_NO_IDCT_PERM 1
  371. #define FF_LIBMPEG2_IDCT_PERM 2
  372. #define FF_SIMPLE_IDCT_PERM 3
  373. #define FF_TRANSPOSE_IDCT_PERM 4
  374. #define FF_PARTTRANS_IDCT_PERM 5
  375. #define FF_SSE2_IDCT_PERM 6
  376. int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
  377. void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
  378. #define BASIS_SHIFT 16
  379. #define RECON_SHIFT 6
  380. void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w);
  381. #define EDGE_WIDTH 16
  382. /* h264 functions */
  383. /* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them
  384. NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them
  385. The reason for above, is that no 2 out of one list may use a different permutation.
  386. */
  387. void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
  388. void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
  389. void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
  390. void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
  391. void (*h264_dct)(DCTELEM block[4][4]);
  392. void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  393. void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  394. void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  395. void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
  396. /* snow wavelet */
  397. void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width);
  398. void (*horizontal_compose97i)(IDWTELEM *b, int width);
  399. void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8);
  400. void (*prefetch)(void *mem, int stride, int h);
  401. void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  402. /* vc1 functions */
  403. void (*vc1_inv_trans_8x8)(DCTELEM *b);
  404. void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block);
  405. void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block);
  406. void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block);
  407. void (*vc1_v_overlap)(uint8_t* src, int stride);
  408. void (*vc1_h_overlap)(uint8_t* src, int stride);
  409. /* put 8x8 block with bicubic interpolation and quarterpel precision
  410. * last argument is actually round value instead of height
  411. */
  412. op_pixels_func put_vc1_mspel_pixels_tab[16];
  413. /* intrax8 functions */
  414. void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
  415. void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
  416. int * range, int * sum, int edges);
  417. /* ape functions */
  418. /**
  419. * Add contents of the second vector to the first one.
  420. * @param len length of vectors, should be multiple of 16
  421. */
  422. void (*add_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
  423. /**
  424. * Add contents of the second vector to the first one.
  425. * @param len length of vectors, should be multiple of 16
  426. */
  427. void (*sub_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
  428. /**
  429. * Calculate scalar product of two vectors.
  430. * @param len length of vectors, should be multiple of 16
  431. * @param shift number of bits to discard from product
  432. */
  433. int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift);
  434. /* rv30 functions */
  435. qpel_mc_func put_rv30_tpel_pixels_tab[4][16];
  436. qpel_mc_func avg_rv30_tpel_pixels_tab[4][16];
  437. /* rv40 functions */
  438. qpel_mc_func put_rv40_qpel_pixels_tab[4][16];
  439. qpel_mc_func avg_rv40_qpel_pixels_tab[4][16];
  440. h264_chroma_mc_func put_rv40_chroma_pixels_tab[3];
  441. h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3];
  442. } DSPContext;
  443. void dsputil_static_init(void);
  444. void dsputil_init(DSPContext* p, AVCodecContext *avctx);
  445. int ff_check_alignment(void);
  446. /**
  447. * permute block according to permuatation.
  448. * @param last last non zero element in scantable order
  449. */
  450. void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
  451. void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
  452. #define BYTE_VEC32(c) ((c)*0x01010101UL)
  453. static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
  454. {
  455. return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  456. }
  457. static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
  458. {
  459. return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  460. }
  461. static inline int get_penalty_factor(int lambda, int lambda2, int type){
  462. switch(type&0xFF){
  463. default:
  464. case FF_CMP_SAD:
  465. return lambda>>FF_LAMBDA_SHIFT;
  466. case FF_CMP_DCT:
  467. return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
  468. case FF_CMP_W53:
  469. return (4*lambda)>>(FF_LAMBDA_SHIFT);
  470. case FF_CMP_W97:
  471. return (2*lambda)>>(FF_LAMBDA_SHIFT);
  472. case FF_CMP_SATD:
  473. case FF_CMP_DCT264:
  474. return (2*lambda)>>FF_LAMBDA_SHIFT;
  475. case FF_CMP_RD:
  476. case FF_CMP_PSNR:
  477. case FF_CMP_SSE:
  478. case FF_CMP_NSSE:
  479. return lambda2>>FF_LAMBDA_SHIFT;
  480. case FF_CMP_BIT:
  481. return 1;
  482. }
  483. }
  484. /**
  485. * Empty mmx state.
  486. * this must be called between any dsp function and float/double code.
  487. * for example sin(); dsp->idct_put(); emms_c(); cos()
  488. */
  489. #define emms_c()
  490. /* should be defined by architectures supporting
  491. one or more MultiMedia extension */
  492. int mm_support(void);
  493. void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
  494. void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
  495. void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
  496. void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
  497. void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
  498. void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
  499. void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
  500. void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
  501. void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
  502. #define DECLARE_ALIGNED_16(t, v) DECLARE_ALIGNED(16, t, v)
  503. #if HAVE_MMX
  504. #undef emms_c
  505. extern int mm_flags;
  506. void add_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
  507. void put_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
  508. void put_signed_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
  509. static inline void emms(void)
  510. {
  511. __asm__ volatile ("emms;":::"memory");
  512. }
  513. #define emms_c() \
  514. {\
  515. if (mm_flags & FF_MM_MMX)\
  516. emms();\
  517. }
  518. void dsputil_init_pix_mmx(DSPContext* c, AVCodecContext *avctx);
  519. #elif ARCH_ARM
  520. extern int mm_flags;
  521. #if HAVE_NEON
  522. # define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(16, t, v)
  523. # define STRIDE_ALIGN 16
  524. #endif
  525. #elif ARCH_PPC
  526. extern int mm_flags;
  527. #define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(16, t, v)
  528. #define STRIDE_ALIGN 16
  529. #elif HAVE_MMI
  530. #define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(16, t, v)
  531. #define STRIDE_ALIGN 16
  532. #else
  533. #define mm_flags 0
  534. #define mm_support() 0
  535. #endif
  536. #ifndef DECLARE_ALIGNED_8
  537. # define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(8, t, v)
  538. #endif
  539. #ifndef STRIDE_ALIGN
  540. # define STRIDE_ALIGN 8
  541. #endif
  542. /* PSNR */
  543. void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
  544. int orig_linesize[3], int coded_linesize,
  545. AVCodecContext *avctx);
  546. /* FFT computation */
  547. /* NOTE: soon integer code will be added, so you must use the
  548. FFTSample type */
  549. typedef float FFTSample;
  550. struct MDCTContext;
  551. typedef struct FFTComplex {
  552. FFTSample re, im;
  553. } FFTComplex;
  554. typedef struct FFTContext {
  555. int nbits;
  556. int inverse;
  557. uint16_t *revtab;
  558. FFTComplex *exptab;
  559. FFTComplex *exptab1; /* only used by SSE code */
  560. FFTComplex *tmp_buf;
  561. void (*fft_permute)(struct FFTContext *s, FFTComplex *z);
  562. void (*fft_calc)(struct FFTContext *s, FFTComplex *z);
  563. void (*imdct_calc)(struct MDCTContext *s, FFTSample *output, const FFTSample *input);
  564. void (*imdct_half)(struct MDCTContext *s, FFTSample *output, const FFTSample *input);
  565. } FFTContext;
  566. extern FFTSample* ff_cos_tabs[13];
  567. /**
  568. * Sets up a complex FFT.
  569. * @param nbits log2 of the length of the input array
  570. * @param inverse if 0 perform the forward transform, if 1 perform the inverse
  571. */
  572. int ff_fft_init(FFTContext *s, int nbits, int inverse);
  573. void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
  574. void ff_fft_permute_sse(FFTContext *s, FFTComplex *z);
  575. void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
  576. void ff_fft_calc_sse(FFTContext *s, FFTComplex *z);
  577. void ff_fft_calc_3dn(FFTContext *s, FFTComplex *z);
  578. void ff_fft_calc_3dn2(FFTContext *s, FFTComplex *z);
  579. void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z);
  580. /**
  581. * Do the permutation needed BEFORE calling ff_fft_calc().
  582. */
  583. static inline void ff_fft_permute(FFTContext *s, FFTComplex *z)
  584. {
  585. s->fft_permute(s, z);
  586. }
  587. /**
  588. * Do a complex FFT with the parameters defined in ff_fft_init(). The
  589. * input data must be permuted before. No 1.0/sqrt(n) normalization is done.
  590. */
  591. static inline void ff_fft_calc(FFTContext *s, FFTComplex *z)
  592. {
  593. s->fft_calc(s, z);
  594. }
  595. void ff_fft_end(FFTContext *s);
  596. /* MDCT computation */
  597. typedef struct MDCTContext {
  598. int n; /* size of MDCT (i.e. number of input data * 2) */
  599. int nbits; /* n = 2^nbits */
  600. /* pre/post rotation tables */
  601. FFTSample *tcos;
  602. FFTSample *tsin;
  603. FFTContext fft;
  604. } MDCTContext;
  605. static inline void ff_imdct_calc(MDCTContext *s, FFTSample *output, const FFTSample *input)
  606. {
  607. s->fft.imdct_calc(s, output, input);
  608. }
  609. static inline void ff_imdct_half(MDCTContext *s, FFTSample *output, const FFTSample *input)
  610. {
  611. s->fft.imdct_half(s, output, input);
  612. }
  613. /**
  614. * Generate a Kaiser-Bessel Derived Window.
  615. * @param window pointer to half window
  616. * @param alpha determines window shape
  617. * @param n size of half window
  618. */
  619. void ff_kbd_window_init(float *window, float alpha, int n);
  620. /**
  621. * Generate a sine window.
  622. * @param window pointer to half window
  623. * @param n size of half window
  624. */
  625. void ff_sine_window_init(float *window, int n);
  626. extern float ff_sine_128 [ 128];
  627. extern float ff_sine_256 [ 256];
  628. extern float ff_sine_512 [ 512];
  629. extern float ff_sine_1024[1024];
  630. extern float ff_sine_2048[2048];
  631. extern float ff_sine_4096[4096];
  632. extern float *ff_sine_windows[6];
  633. int ff_mdct_init(MDCTContext *s, int nbits, int inverse);
  634. void ff_imdct_calc_c(MDCTContext *s, FFTSample *output, const FFTSample *input);
  635. void ff_imdct_half_c(MDCTContext *s, FFTSample *output, const FFTSample *input);
  636. void ff_imdct_calc_3dn(MDCTContext *s, FFTSample *output, const FFTSample *input);
  637. void ff_imdct_half_3dn(MDCTContext *s, FFTSample *output, const FFTSample *input);
  638. void ff_imdct_calc_3dn2(MDCTContext *s, FFTSample *output, const FFTSample *input);
  639. void ff_imdct_half_3dn2(MDCTContext *s, FFTSample *output, const FFTSample *input);
  640. void ff_imdct_calc_sse(MDCTContext *s, FFTSample *output, const FFTSample *input);
  641. void ff_imdct_half_sse(MDCTContext *s, FFTSample *output, const FFTSample *input);
  642. void ff_mdct_calc(MDCTContext *s, FFTSample *out, const FFTSample *input);
  643. void ff_mdct_end(MDCTContext *s);
  644. /* Real Discrete Fourier Transform */
  645. enum RDFTransformType {
  646. RDFT,
  647. IRDFT,
  648. RIDFT,
  649. IRIDFT,
  650. };
  651. typedef struct {
  652. int nbits;
  653. int inverse;
  654. int sign_convention;
  655. /* pre/post rotation tables */
  656. FFTSample *tcos;
  657. FFTSample *tsin;
  658. FFTContext fft;
  659. } RDFTContext;
  660. /**
  661. * Sets up a real FFT.
  662. * @param nbits log2 of the length of the input array
  663. * @param trans the type of transform
  664. */
  665. int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans);
  666. void ff_rdft_calc(RDFTContext *s, FFTSample *data);
  667. void ff_rdft_end(RDFTContext *s);
  668. #define WRAPPER8_16(name8, name16)\
  669. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  670. return name8(s, dst , src , stride, h)\
  671. +name8(s, dst+8 , src+8 , stride, h);\
  672. }
  673. #define WRAPPER8_16_SQ(name8, name16)\
  674. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  675. int score=0;\
  676. score +=name8(s, dst , src , stride, 8);\
  677. score +=name8(s, dst+8 , src+8 , stride, 8);\
  678. if(h==16){\
  679. dst += 8*stride;\
  680. src += 8*stride;\
  681. score +=name8(s, dst , src , stride, 8);\
  682. score +=name8(s, dst+8 , src+8 , stride, 8);\
  683. }\
  684. return score;\
  685. }
  686. static inline void copy_block2(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
  687. {
  688. int i;
  689. for(i=0; i<h; i++)
  690. {
  691. AV_WN16(dst , AV_RN16(src ));
  692. dst+=dstStride;
  693. src+=srcStride;
  694. }
  695. }
  696. static inline void copy_block4(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
  697. {
  698. int i;
  699. for(i=0; i<h; i++)
  700. {
  701. AV_WN32(dst , AV_RN32(src ));
  702. dst+=dstStride;
  703. src+=srcStride;
  704. }
  705. }
  706. static inline void copy_block8(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
  707. {
  708. int i;
  709. for(i=0; i<h; i++)
  710. {
  711. AV_WN32(dst , AV_RN32(src ));
  712. AV_WN32(dst+4 , AV_RN32(src+4 ));
  713. dst+=dstStride;
  714. src+=srcStride;
  715. }
  716. }
  717. static inline void copy_block9(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
  718. {
  719. int i;
  720. for(i=0; i<h; i++)
  721. {
  722. AV_WN32(dst , AV_RN32(src ));
  723. AV_WN32(dst+4 , AV_RN32(src+4 ));
  724. dst[8]= src[8];
  725. dst+=dstStride;
  726. src+=srcStride;
  727. }
  728. }
  729. static inline void copy_block16(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
  730. {
  731. int i;
  732. for(i=0; i<h; i++)
  733. {
  734. AV_WN32(dst , AV_RN32(src ));
  735. AV_WN32(dst+4 , AV_RN32(src+4 ));
  736. AV_WN32(dst+8 , AV_RN32(src+8 ));
  737. AV_WN32(dst+12, AV_RN32(src+12));
  738. dst+=dstStride;
  739. src+=srcStride;
  740. }
  741. }
  742. static inline void copy_block17(uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int h)
  743. {
  744. int i;
  745. for(i=0; i<h; i++)
  746. {
  747. AV_WN32(dst , AV_RN32(src ));
  748. AV_WN32(dst+4 , AV_RN32(src+4 ));
  749. AV_WN32(dst+8 , AV_RN32(src+8 ));
  750. AV_WN32(dst+12, AV_RN32(src+12));
  751. dst[16]= src[16];
  752. dst+=dstStride;
  753. src+=srcStride;
  754. }
  755. }
  756. #endif /* AVCODEC_DSPUTIL_H */