You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1294 lines
47KB

  1. /*
  2. * Copyright (c) 2001-2003 The ffmpeg Project
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "avcodec.h"
  21. #include "get_bits.h"
  22. #include "put_bits.h"
  23. #include "bytestream.h"
  24. #include "adpcm.h"
  25. #include "adpcm_data.h"
  26. /**
  27. * @file
  28. * ADPCM decoders
  29. * First version by Francois Revol (revol@free.fr)
  30. * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
  31. * by Mike Melanson (melanson@pcisys.net)
  32. * CD-ROM XA ADPCM codec by BERO
  33. * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
  34. * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
  35. * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
  36. * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
  37. * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
  38. * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
  39. * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
  40. *
  41. * Features and limitations:
  42. *
  43. * Reference documents:
  44. * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
  45. * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
  46. * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
  47. * http://openquicktime.sourceforge.net/
  48. * XAnim sources (xa_codec.c) http://xanim.polter.net/
  49. * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
  50. * SoX source code http://sox.sourceforge.net/
  51. *
  52. * CD-ROM XA:
  53. * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
  54. * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
  55. * readstr http://www.geocities.co.jp/Playtown/2004/
  56. */
  57. /* These are for CD-ROM XA ADPCM */
  58. static const int xa_adpcm_table[5][2] = {
  59. { 0, 0 },
  60. { 60, 0 },
  61. { 115, -52 },
  62. { 98, -55 },
  63. { 122, -60 }
  64. };
  65. static const int ea_adpcm_table[] = {
  66. 0, 240, 460, 392,
  67. 0, 0, -208, -220,
  68. 0, 1, 3, 4,
  69. 7, 8, 10, 11,
  70. 0, -1, -3, -4
  71. };
  72. // padded to zero where table size is less then 16
  73. static const int swf_index_tables[4][16] = {
  74. /*2*/ { -1, 2 },
  75. /*3*/ { -1, -1, 2, 4 },
  76. /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
  77. /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
  78. };
  79. /* end of tables */
  80. typedef struct ADPCMDecodeContext {
  81. AVFrame frame;
  82. ADPCMChannelStatus status[6];
  83. int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
  84. } ADPCMDecodeContext;
  85. static av_cold int adpcm_decode_init(AVCodecContext * avctx)
  86. {
  87. ADPCMDecodeContext *c = avctx->priv_data;
  88. unsigned int min_channels = 1;
  89. unsigned int max_channels = 2;
  90. switch(avctx->codec->id) {
  91. case CODEC_ID_ADPCM_EA:
  92. min_channels = 2;
  93. break;
  94. case CODEC_ID_ADPCM_EA_R1:
  95. case CODEC_ID_ADPCM_EA_R2:
  96. case CODEC_ID_ADPCM_EA_R3:
  97. case CODEC_ID_ADPCM_EA_XAS:
  98. max_channels = 6;
  99. break;
  100. }
  101. if (avctx->channels < min_channels || avctx->channels > max_channels) {
  102. av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
  103. return AVERROR(EINVAL);
  104. }
  105. switch(avctx->codec->id) {
  106. case CODEC_ID_ADPCM_CT:
  107. c->status[0].step = c->status[1].step = 511;
  108. break;
  109. case CODEC_ID_ADPCM_IMA_WAV:
  110. if (avctx->bits_per_coded_sample != 4) {
  111. av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
  112. return -1;
  113. }
  114. break;
  115. case CODEC_ID_ADPCM_IMA_APC:
  116. if (avctx->extradata && avctx->extradata_size >= 8) {
  117. c->status[0].predictor = AV_RL32(avctx->extradata);
  118. c->status[1].predictor = AV_RL32(avctx->extradata + 4);
  119. }
  120. break;
  121. case CODEC_ID_ADPCM_IMA_WS:
  122. if (avctx->extradata && avctx->extradata_size >= 42)
  123. c->vqa_version = AV_RL16(avctx->extradata);
  124. break;
  125. default:
  126. break;
  127. }
  128. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  129. avcodec_get_frame_defaults(&c->frame);
  130. avctx->coded_frame = &c->frame;
  131. return 0;
  132. }
  133. static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
  134. {
  135. int step_index;
  136. int predictor;
  137. int sign, delta, diff, step;
  138. step = ff_adpcm_step_table[c->step_index];
  139. step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
  140. step_index = av_clip(step_index, 0, 88);
  141. sign = nibble & 8;
  142. delta = nibble & 7;
  143. /* perform direct multiplication instead of series of jumps proposed by
  144. * the reference ADPCM implementation since modern CPUs can do the mults
  145. * quickly enough */
  146. diff = ((2 * delta + 1) * step) >> shift;
  147. predictor = c->predictor;
  148. if (sign) predictor -= diff;
  149. else predictor += diff;
  150. c->predictor = av_clip_int16(predictor);
  151. c->step_index = step_index;
  152. return (short)c->predictor;
  153. }
  154. static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
  155. {
  156. int step_index;
  157. int predictor;
  158. int diff, step;
  159. step = ff_adpcm_step_table[c->step_index];
  160. step_index = c->step_index + ff_adpcm_index_table[nibble];
  161. step_index = av_clip(step_index, 0, 88);
  162. diff = step >> 3;
  163. if (nibble & 4) diff += step;
  164. if (nibble & 2) diff += step >> 1;
  165. if (nibble & 1) diff += step >> 2;
  166. if (nibble & 8)
  167. predictor = c->predictor - diff;
  168. else
  169. predictor = c->predictor + diff;
  170. c->predictor = av_clip_int16(predictor);
  171. c->step_index = step_index;
  172. return c->predictor;
  173. }
  174. static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
  175. {
  176. int predictor;
  177. predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
  178. predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
  179. c->sample2 = c->sample1;
  180. c->sample1 = av_clip_int16(predictor);
  181. c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
  182. if (c->idelta < 16) c->idelta = 16;
  183. return c->sample1;
  184. }
  185. static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
  186. {
  187. int sign, delta, diff;
  188. int new_step;
  189. sign = nibble & 8;
  190. delta = nibble & 7;
  191. /* perform direct multiplication instead of series of jumps proposed by
  192. * the reference ADPCM implementation since modern CPUs can do the mults
  193. * quickly enough */
  194. diff = ((2 * delta + 1) * c->step) >> 3;
  195. /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
  196. c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
  197. c->predictor = av_clip_int16(c->predictor);
  198. /* calculate new step and clamp it to range 511..32767 */
  199. new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
  200. c->step = av_clip(new_step, 511, 32767);
  201. return (short)c->predictor;
  202. }
  203. static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
  204. {
  205. int sign, delta, diff;
  206. sign = nibble & (1<<(size-1));
  207. delta = nibble & ((1<<(size-1))-1);
  208. diff = delta << (7 + c->step + shift);
  209. /* clamp result */
  210. c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
  211. /* calculate new step */
  212. if (delta >= (2*size - 3) && c->step < 3)
  213. c->step++;
  214. else if (delta == 0 && c->step > 0)
  215. c->step--;
  216. return (short) c->predictor;
  217. }
  218. static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
  219. {
  220. if(!c->step) {
  221. c->predictor = 0;
  222. c->step = 127;
  223. }
  224. c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
  225. c->predictor = av_clip_int16(c->predictor);
  226. c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
  227. c->step = av_clip(c->step, 127, 24567);
  228. return c->predictor;
  229. }
  230. static int xa_decode(AVCodecContext *avctx,
  231. short *out, const unsigned char *in,
  232. ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
  233. {
  234. int i, j;
  235. int shift,filter,f0,f1;
  236. int s_1,s_2;
  237. int d,s,t;
  238. for(i=0;i<4;i++) {
  239. shift = 12 - (in[4+i*2] & 15);
  240. filter = in[4+i*2] >> 4;
  241. if (filter > 4) {
  242. av_log(avctx, AV_LOG_ERROR,
  243. "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
  244. filter);
  245. return AVERROR_INVALIDDATA;
  246. }
  247. f0 = xa_adpcm_table[filter][0];
  248. f1 = xa_adpcm_table[filter][1];
  249. s_1 = left->sample1;
  250. s_2 = left->sample2;
  251. for(j=0;j<28;j++) {
  252. d = in[16+i+j*4];
  253. t = (signed char)(d<<4)>>4;
  254. s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
  255. s_2 = s_1;
  256. s_1 = av_clip_int16(s);
  257. *out = s_1;
  258. out += inc;
  259. }
  260. if (inc==2) { /* stereo */
  261. left->sample1 = s_1;
  262. left->sample2 = s_2;
  263. s_1 = right->sample1;
  264. s_2 = right->sample2;
  265. out = out + 1 - 28*2;
  266. }
  267. shift = 12 - (in[5+i*2] & 15);
  268. filter = in[5+i*2] >> 4;
  269. if (filter > 4) {
  270. av_log(avctx, AV_LOG_ERROR,
  271. "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
  272. filter);
  273. return AVERROR_INVALIDDATA;
  274. }
  275. f0 = xa_adpcm_table[filter][0];
  276. f1 = xa_adpcm_table[filter][1];
  277. for(j=0;j<28;j++) {
  278. d = in[16+i+j*4];
  279. t = (signed char)d >> 4;
  280. s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
  281. s_2 = s_1;
  282. s_1 = av_clip_int16(s);
  283. *out = s_1;
  284. out += inc;
  285. }
  286. if (inc==2) { /* stereo */
  287. right->sample1 = s_1;
  288. right->sample2 = s_2;
  289. out -= 1;
  290. } else {
  291. left->sample1 = s_1;
  292. left->sample2 = s_2;
  293. }
  294. }
  295. return 0;
  296. }
  297. /**
  298. * Get the number of samples that will be decoded from the packet.
  299. * In one case, this is actually the maximum number of samples possible to
  300. * decode with the given buf_size.
  301. *
  302. * @param[out] coded_samples set to the number of samples as coded in the
  303. * packet, or 0 if the codec does not encode the
  304. * number of samples in each frame.
  305. */
  306. static int get_nb_samples(AVCodecContext *avctx, const uint8_t *buf,
  307. int buf_size, int *coded_samples)
  308. {
  309. ADPCMDecodeContext *s = avctx->priv_data;
  310. int nb_samples = 0;
  311. int ch = avctx->channels;
  312. int has_coded_samples = 0;
  313. int header_size;
  314. *coded_samples = 0;
  315. switch (avctx->codec->id) {
  316. /* constant, only check buf_size */
  317. case CODEC_ID_ADPCM_EA_XAS:
  318. if (buf_size < 76 * ch)
  319. return 0;
  320. nb_samples = 128;
  321. break;
  322. case CODEC_ID_ADPCM_IMA_QT:
  323. if (buf_size < 34 * ch)
  324. return 0;
  325. nb_samples = 64;
  326. break;
  327. /* simple 4-bit adpcm */
  328. case CODEC_ID_ADPCM_CT:
  329. case CODEC_ID_ADPCM_IMA_APC:
  330. case CODEC_ID_ADPCM_IMA_EA_SEAD:
  331. case CODEC_ID_ADPCM_IMA_WS:
  332. case CODEC_ID_ADPCM_YAMAHA:
  333. nb_samples = buf_size * 2 / ch;
  334. break;
  335. }
  336. if (nb_samples)
  337. return nb_samples;
  338. /* simple 4-bit adpcm, with header */
  339. header_size = 0;
  340. switch (avctx->codec->id) {
  341. case CODEC_ID_ADPCM_4XM:
  342. case CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
  343. case CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
  344. case CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break;
  345. }
  346. if (header_size > 0)
  347. return (buf_size - header_size) * 2 / ch;
  348. /* more complex formats */
  349. switch (avctx->codec->id) {
  350. case CODEC_ID_ADPCM_EA:
  351. has_coded_samples = 1;
  352. if (buf_size < 4)
  353. return 0;
  354. *coded_samples = AV_RL32(buf);
  355. *coded_samples -= *coded_samples % 28;
  356. nb_samples = (buf_size - 12) / 30 * 28;
  357. break;
  358. case CODEC_ID_ADPCM_IMA_EA_EACS:
  359. has_coded_samples = 1;
  360. if (buf_size < 4)
  361. return 0;
  362. *coded_samples = AV_RL32(buf);
  363. nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
  364. break;
  365. case CODEC_ID_ADPCM_EA_MAXIS_XA:
  366. nb_samples = ((buf_size - ch) / (2 * ch)) * 2 * ch;
  367. break;
  368. case CODEC_ID_ADPCM_EA_R1:
  369. case CODEC_ID_ADPCM_EA_R2:
  370. case CODEC_ID_ADPCM_EA_R3:
  371. /* maximum number of samples */
  372. /* has internal offsets and a per-frame switch to signal raw 16-bit */
  373. has_coded_samples = 1;
  374. if (buf_size < 4)
  375. return 0;
  376. switch (avctx->codec->id) {
  377. case CODEC_ID_ADPCM_EA_R1:
  378. header_size = 4 + 9 * ch;
  379. *coded_samples = AV_RL32(buf);
  380. break;
  381. case CODEC_ID_ADPCM_EA_R2:
  382. header_size = 4 + 5 * ch;
  383. *coded_samples = AV_RL32(buf);
  384. break;
  385. case CODEC_ID_ADPCM_EA_R3:
  386. header_size = 4 + 5 * ch;
  387. *coded_samples = AV_RB32(buf);
  388. break;
  389. }
  390. *coded_samples -= *coded_samples % 28;
  391. nb_samples = (buf_size - header_size) * 2 / ch;
  392. nb_samples -= nb_samples % 28;
  393. break;
  394. case CODEC_ID_ADPCM_IMA_DK3:
  395. if (avctx->block_align > 0)
  396. buf_size = FFMIN(buf_size, avctx->block_align);
  397. nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
  398. break;
  399. case CODEC_ID_ADPCM_IMA_DK4:
  400. if (avctx->block_align > 0)
  401. buf_size = FFMIN(buf_size, avctx->block_align);
  402. nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
  403. break;
  404. case CODEC_ID_ADPCM_IMA_WAV:
  405. if (avctx->block_align > 0)
  406. buf_size = FFMIN(buf_size, avctx->block_align);
  407. nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
  408. break;
  409. case CODEC_ID_ADPCM_MS:
  410. if (avctx->block_align > 0)
  411. buf_size = FFMIN(buf_size, avctx->block_align);
  412. nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
  413. break;
  414. case CODEC_ID_ADPCM_SBPRO_2:
  415. case CODEC_ID_ADPCM_SBPRO_3:
  416. case CODEC_ID_ADPCM_SBPRO_4:
  417. {
  418. int samples_per_byte;
  419. switch (avctx->codec->id) {
  420. case CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
  421. case CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
  422. case CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
  423. }
  424. if (!s->status[0].step_index) {
  425. nb_samples++;
  426. buf_size -= ch;
  427. }
  428. nb_samples += buf_size * samples_per_byte / ch;
  429. break;
  430. }
  431. case CODEC_ID_ADPCM_SWF:
  432. {
  433. int buf_bits = buf_size * 8 - 2;
  434. int nbits = (buf[0] >> 6) + 2;
  435. int block_hdr_size = 22 * ch;
  436. int block_size = block_hdr_size + nbits * ch * 4095;
  437. int nblocks = buf_bits / block_size;
  438. int bits_left = buf_bits - nblocks * block_size;
  439. nb_samples = nblocks * 4096;
  440. if (bits_left >= block_hdr_size)
  441. nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
  442. break;
  443. }
  444. case CODEC_ID_ADPCM_THP:
  445. has_coded_samples = 1;
  446. if (buf_size < 8)
  447. return 0;
  448. *coded_samples = AV_RB32(&buf[4]);
  449. *coded_samples -= *coded_samples % 14;
  450. nb_samples = (buf_size - 80) / (8 * ch) * 14;
  451. break;
  452. case CODEC_ID_ADPCM_XA:
  453. nb_samples = (buf_size / 128) * 224 / ch;
  454. break;
  455. }
  456. /* validate coded sample count */
  457. if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
  458. return AVERROR_INVALIDDATA;
  459. return nb_samples;
  460. }
  461. static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
  462. int *got_frame_ptr, AVPacket *avpkt)
  463. {
  464. const uint8_t *buf = avpkt->data;
  465. int buf_size = avpkt->size;
  466. ADPCMDecodeContext *c = avctx->priv_data;
  467. ADPCMChannelStatus *cs;
  468. int n, m, channel, i;
  469. short *samples;
  470. const uint8_t *src;
  471. int st; /* stereo */
  472. int count1, count2;
  473. int nb_samples, coded_samples, ret;
  474. GetByteContext gb;
  475. nb_samples = get_nb_samples(avctx, buf, buf_size, &coded_samples);
  476. if (nb_samples <= 0) {
  477. av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
  478. return AVERROR_INVALIDDATA;
  479. }
  480. /* get output buffer */
  481. c->frame.nb_samples = nb_samples;
  482. if ((ret = avctx->get_buffer(avctx, &c->frame)) < 0) {
  483. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  484. return ret;
  485. }
  486. samples = (short *)c->frame.data[0];
  487. /* use coded_samples when applicable */
  488. /* it is always <= nb_samples, so the output buffer will be large enough */
  489. if (coded_samples) {
  490. if (coded_samples != nb_samples)
  491. av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
  492. c->frame.nb_samples = nb_samples = coded_samples;
  493. }
  494. src = buf;
  495. bytestream2_init(&gb, buf, buf_size);
  496. st = avctx->channels == 2 ? 1 : 0;
  497. switch(avctx->codec->id) {
  498. case CODEC_ID_ADPCM_IMA_QT:
  499. /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
  500. Channel data is interleaved per-chunk. */
  501. for (channel = 0; channel < avctx->channels; channel++) {
  502. int predictor;
  503. int step_index;
  504. cs = &(c->status[channel]);
  505. /* (pppppp) (piiiiiii) */
  506. /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
  507. predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
  508. step_index = predictor & 0x7F;
  509. predictor &= ~0x7F;
  510. if (cs->step_index == step_index) {
  511. int diff = predictor - cs->predictor;
  512. if (diff < 0)
  513. diff = - diff;
  514. if (diff > 0x7f)
  515. goto update;
  516. } else {
  517. update:
  518. cs->step_index = step_index;
  519. cs->predictor = predictor;
  520. }
  521. if (cs->step_index > 88u){
  522. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
  523. channel, cs->step_index);
  524. return AVERROR_INVALIDDATA;
  525. }
  526. samples = (short *)c->frame.data[0] + channel;
  527. for (m = 0; m < 32; m++) {
  528. int byte = bytestream2_get_byteu(&gb);
  529. *samples = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
  530. samples += avctx->channels;
  531. *samples = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
  532. samples += avctx->channels;
  533. }
  534. }
  535. break;
  536. case CODEC_ID_ADPCM_IMA_WAV:
  537. for(i=0; i<avctx->channels; i++){
  538. cs = &(c->status[i]);
  539. cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
  540. cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
  541. if (cs->step_index > 88u){
  542. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
  543. i, cs->step_index);
  544. return AVERROR_INVALIDDATA;
  545. }
  546. }
  547. for (n = (nb_samples - 1) / 8; n > 0; n--) {
  548. for (i = 0; i < avctx->channels; i++) {
  549. cs = &c->status[i];
  550. for (m = 0; m < 4; m++) {
  551. int v = bytestream2_get_byteu(&gb);
  552. *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
  553. samples += avctx->channels;
  554. *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
  555. samples += avctx->channels;
  556. }
  557. samples -= 8 * avctx->channels - 1;
  558. }
  559. samples += 7 * avctx->channels;
  560. }
  561. break;
  562. case CODEC_ID_ADPCM_4XM:
  563. for (i = 0; i < avctx->channels; i++)
  564. c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
  565. for (i = 0; i < avctx->channels; i++) {
  566. c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
  567. if (c->status[i].step_index > 88u) {
  568. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
  569. i, c->status[i].step_index);
  570. return AVERROR_INVALIDDATA;
  571. }
  572. }
  573. for (i = 0; i < avctx->channels; i++) {
  574. samples = (short *)c->frame.data[0] + i;
  575. cs = &c->status[i];
  576. for (n = nb_samples >> 1; n > 0; n--) {
  577. int v = bytestream2_get_byteu(&gb);
  578. *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
  579. samples += avctx->channels;
  580. *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
  581. samples += avctx->channels;
  582. }
  583. }
  584. break;
  585. case CODEC_ID_ADPCM_MS:
  586. {
  587. int block_predictor;
  588. block_predictor = bytestream2_get_byteu(&gb);
  589. if (block_predictor > 6) {
  590. av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
  591. block_predictor);
  592. return AVERROR_INVALIDDATA;
  593. }
  594. c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
  595. c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
  596. if (st) {
  597. block_predictor = bytestream2_get_byteu(&gb);
  598. if (block_predictor > 6) {
  599. av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
  600. block_predictor);
  601. return AVERROR_INVALIDDATA;
  602. }
  603. c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
  604. c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
  605. }
  606. c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
  607. if (st){
  608. c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
  609. }
  610. c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
  611. if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
  612. c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
  613. if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
  614. *samples++ = c->status[0].sample2;
  615. if (st) *samples++ = c->status[1].sample2;
  616. *samples++ = c->status[0].sample1;
  617. if (st) *samples++ = c->status[1].sample1;
  618. for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
  619. int byte = bytestream2_get_byteu(&gb);
  620. *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
  621. *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
  622. }
  623. break;
  624. }
  625. case CODEC_ID_ADPCM_IMA_DK4:
  626. for (channel = 0; channel < avctx->channels; channel++) {
  627. cs = &c->status[channel];
  628. cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
  629. cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
  630. if (cs->step_index > 88u){
  631. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
  632. channel, cs->step_index);
  633. return AVERROR_INVALIDDATA;
  634. }
  635. }
  636. for (n = nb_samples >> (1 - st); n > 0; n--) {
  637. int v = bytestream2_get_byteu(&gb);
  638. *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
  639. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
  640. }
  641. break;
  642. case CODEC_ID_ADPCM_IMA_DK3:
  643. {
  644. int last_byte = 0;
  645. int nibble;
  646. int decode_top_nibble_next = 0;
  647. int diff_channel;
  648. const int16_t *samples_end = samples + avctx->channels * nb_samples;
  649. bytestream2_skipu(&gb, 10);
  650. c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
  651. c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
  652. c->status[0].step_index = bytestream2_get_byteu(&gb);
  653. c->status[1].step_index = bytestream2_get_byteu(&gb);
  654. if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
  655. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
  656. c->status[0].step_index, c->status[1].step_index);
  657. return AVERROR_INVALIDDATA;
  658. }
  659. /* sign extend the predictors */
  660. diff_channel = c->status[1].predictor;
  661. /* DK3 ADPCM support macro */
  662. #define DK3_GET_NEXT_NIBBLE() \
  663. if (decode_top_nibble_next) { \
  664. nibble = last_byte >> 4; \
  665. decode_top_nibble_next = 0; \
  666. } else { \
  667. last_byte = bytestream2_get_byteu(&gb); \
  668. nibble = last_byte & 0x0F; \
  669. decode_top_nibble_next = 1; \
  670. }
  671. while (samples < samples_end) {
  672. /* for this algorithm, c->status[0] is the sum channel and
  673. * c->status[1] is the diff channel */
  674. /* process the first predictor of the sum channel */
  675. DK3_GET_NEXT_NIBBLE();
  676. adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
  677. /* process the diff channel predictor */
  678. DK3_GET_NEXT_NIBBLE();
  679. adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
  680. /* process the first pair of stereo PCM samples */
  681. diff_channel = (diff_channel + c->status[1].predictor) / 2;
  682. *samples++ = c->status[0].predictor + c->status[1].predictor;
  683. *samples++ = c->status[0].predictor - c->status[1].predictor;
  684. /* process the second predictor of the sum channel */
  685. DK3_GET_NEXT_NIBBLE();
  686. adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
  687. /* process the second pair of stereo PCM samples */
  688. diff_channel = (diff_channel + c->status[1].predictor) / 2;
  689. *samples++ = c->status[0].predictor + c->status[1].predictor;
  690. *samples++ = c->status[0].predictor - c->status[1].predictor;
  691. }
  692. break;
  693. }
  694. case CODEC_ID_ADPCM_IMA_ISS:
  695. for (channel = 0; channel < avctx->channels; channel++) {
  696. cs = &c->status[channel];
  697. cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
  698. cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
  699. if (cs->step_index > 88u){
  700. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
  701. channel, cs->step_index);
  702. return AVERROR_INVALIDDATA;
  703. }
  704. }
  705. for (n = nb_samples >> (1 - st); n > 0; n--) {
  706. int v1, v2;
  707. int v = bytestream2_get_byteu(&gb);
  708. /* nibbles are swapped for mono */
  709. if (st) {
  710. v1 = v >> 4;
  711. v2 = v & 0x0F;
  712. } else {
  713. v2 = v >> 4;
  714. v1 = v & 0x0F;
  715. }
  716. *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
  717. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
  718. }
  719. break;
  720. case CODEC_ID_ADPCM_IMA_APC:
  721. while (src < buf + buf_size) {
  722. uint8_t v = *src++;
  723. *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
  724. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
  725. }
  726. break;
  727. case CODEC_ID_ADPCM_IMA_WS:
  728. for (channel = 0; channel < avctx->channels; channel++) {
  729. const uint8_t *src0;
  730. int src_stride;
  731. int16_t *smp = samples + channel;
  732. if (c->vqa_version == 3) {
  733. src0 = src + channel * buf_size / 2;
  734. src_stride = 1;
  735. } else {
  736. src0 = src + channel;
  737. src_stride = avctx->channels;
  738. }
  739. for (n = nb_samples / 2; n > 0; n--) {
  740. uint8_t v = *src0;
  741. src0 += src_stride;
  742. *smp = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
  743. smp += avctx->channels;
  744. *smp = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
  745. smp += avctx->channels;
  746. }
  747. }
  748. src = buf + buf_size;
  749. break;
  750. case CODEC_ID_ADPCM_XA:
  751. while (buf_size >= 128) {
  752. if ((ret = xa_decode(avctx, samples, src, &c->status[0],
  753. &c->status[1], avctx->channels)) < 0)
  754. return ret;
  755. src += 128;
  756. samples += 28 * 8;
  757. buf_size -= 128;
  758. }
  759. break;
  760. case CODEC_ID_ADPCM_IMA_EA_EACS:
  761. src += 4; // skip sample count (already read)
  762. for (i=0; i<=st; i++)
  763. c->status[i].step_index = av_clip(bytestream_get_le32(&src), 0, 88);
  764. for (i=0; i<=st; i++)
  765. c->status[i].predictor = bytestream_get_le32(&src);
  766. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  767. *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
  768. *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
  769. }
  770. break;
  771. case CODEC_ID_ADPCM_IMA_EA_SEAD:
  772. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  773. *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
  774. *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
  775. }
  776. break;
  777. case CODEC_ID_ADPCM_EA:
  778. {
  779. int32_t previous_left_sample, previous_right_sample;
  780. int32_t current_left_sample, current_right_sample;
  781. int32_t next_left_sample, next_right_sample;
  782. int32_t coeff1l, coeff2l, coeff1r, coeff2r;
  783. uint8_t shift_left, shift_right;
  784. /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
  785. each coding 28 stereo samples. */
  786. src += 4; // skip sample count (already read)
  787. current_left_sample = (int16_t)bytestream_get_le16(&src);
  788. previous_left_sample = (int16_t)bytestream_get_le16(&src);
  789. current_right_sample = (int16_t)bytestream_get_le16(&src);
  790. previous_right_sample = (int16_t)bytestream_get_le16(&src);
  791. for (count1 = 0; count1 < nb_samples / 28; count1++) {
  792. coeff1l = ea_adpcm_table[ *src >> 4 ];
  793. coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
  794. coeff1r = ea_adpcm_table[*src & 0x0F];
  795. coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
  796. src++;
  797. shift_left = 20 - (*src >> 4);
  798. shift_right = 20 - (*src & 0x0F);
  799. src++;
  800. for (count2 = 0; count2 < 28; count2++) {
  801. next_left_sample = sign_extend(*src >> 4, 4) << shift_left;
  802. next_right_sample = sign_extend(*src, 4) << shift_right;
  803. src++;
  804. next_left_sample = (next_left_sample +
  805. (current_left_sample * coeff1l) +
  806. (previous_left_sample * coeff2l) + 0x80) >> 8;
  807. next_right_sample = (next_right_sample +
  808. (current_right_sample * coeff1r) +
  809. (previous_right_sample * coeff2r) + 0x80) >> 8;
  810. previous_left_sample = current_left_sample;
  811. current_left_sample = av_clip_int16(next_left_sample);
  812. previous_right_sample = current_right_sample;
  813. current_right_sample = av_clip_int16(next_right_sample);
  814. *samples++ = (unsigned short)current_left_sample;
  815. *samples++ = (unsigned short)current_right_sample;
  816. }
  817. }
  818. if (src - buf == buf_size - 2)
  819. src += 2; // Skip terminating 0x0000
  820. break;
  821. }
  822. case CODEC_ID_ADPCM_EA_MAXIS_XA:
  823. {
  824. int coeff[2][2], shift[2];
  825. for(channel = 0; channel < avctx->channels; channel++) {
  826. for (i=0; i<2; i++)
  827. coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
  828. shift[channel] = 20 - (*src & 0x0F);
  829. src++;
  830. }
  831. for (count1 = 0; count1 < nb_samples / 2; count1++) {
  832. for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
  833. for(channel = 0; channel < avctx->channels; channel++) {
  834. int32_t sample = sign_extend(src[channel] >> i, 4) << shift[channel];
  835. sample = (sample +
  836. c->status[channel].sample1 * coeff[channel][0] +
  837. c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
  838. c->status[channel].sample2 = c->status[channel].sample1;
  839. c->status[channel].sample1 = av_clip_int16(sample);
  840. *samples++ = c->status[channel].sample1;
  841. }
  842. }
  843. src+=avctx->channels;
  844. }
  845. /* consume whole packet */
  846. src = buf + buf_size;
  847. break;
  848. }
  849. case CODEC_ID_ADPCM_EA_R1:
  850. case CODEC_ID_ADPCM_EA_R2:
  851. case CODEC_ID_ADPCM_EA_R3: {
  852. /* channel numbering
  853. 2chan: 0=fl, 1=fr
  854. 4chan: 0=fl, 1=rl, 2=fr, 3=rr
  855. 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
  856. const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
  857. int32_t previous_sample, current_sample, next_sample;
  858. int32_t coeff1, coeff2;
  859. uint8_t shift;
  860. unsigned int channel;
  861. uint16_t *samplesC;
  862. const uint8_t *srcC;
  863. const uint8_t *src_end = buf + buf_size;
  864. int count = 0;
  865. src += 4; // skip sample count (already read)
  866. for (channel=0; channel<avctx->channels; channel++) {
  867. int32_t offset = (big_endian ? bytestream_get_be32(&src)
  868. : bytestream_get_le32(&src))
  869. + (avctx->channels-channel-1) * 4;
  870. if ((offset < 0) || (offset >= src_end - src - 4)) break;
  871. srcC = src + offset;
  872. samplesC = samples + channel;
  873. if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
  874. current_sample = (int16_t)bytestream_get_le16(&srcC);
  875. previous_sample = (int16_t)bytestream_get_le16(&srcC);
  876. } else {
  877. current_sample = c->status[channel].predictor;
  878. previous_sample = c->status[channel].prev_sample;
  879. }
  880. for (count1 = 0; count1 < nb_samples / 28; count1++) {
  881. if (*srcC == 0xEE) { /* only seen in R2 and R3 */
  882. srcC++;
  883. if (srcC > src_end - 30*2) break;
  884. current_sample = (int16_t)bytestream_get_be16(&srcC);
  885. previous_sample = (int16_t)bytestream_get_be16(&srcC);
  886. for (count2=0; count2<28; count2++) {
  887. *samplesC = (int16_t)bytestream_get_be16(&srcC);
  888. samplesC += avctx->channels;
  889. }
  890. } else {
  891. coeff1 = ea_adpcm_table[ *srcC>>4 ];
  892. coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
  893. shift = 20 - (*srcC++ & 0x0F);
  894. if (srcC > src_end - 14) break;
  895. for (count2=0; count2<28; count2++) {
  896. if (count2 & 1)
  897. next_sample = sign_extend(*srcC++, 4) << shift;
  898. else
  899. next_sample = sign_extend(*srcC >> 4, 4) << shift;
  900. next_sample += (current_sample * coeff1) +
  901. (previous_sample * coeff2);
  902. next_sample = av_clip_int16(next_sample >> 8);
  903. previous_sample = current_sample;
  904. current_sample = next_sample;
  905. *samplesC = current_sample;
  906. samplesC += avctx->channels;
  907. }
  908. }
  909. }
  910. if (!count) {
  911. count = count1;
  912. } else if (count != count1) {
  913. av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
  914. count = FFMAX(count, count1);
  915. }
  916. if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
  917. c->status[channel].predictor = current_sample;
  918. c->status[channel].prev_sample = previous_sample;
  919. }
  920. }
  921. c->frame.nb_samples = count * 28;
  922. src = src_end;
  923. break;
  924. }
  925. case CODEC_ID_ADPCM_EA_XAS:
  926. for (channel=0; channel<avctx->channels; channel++) {
  927. int coeff[2][4], shift[4];
  928. short *s2, *s = &samples[channel];
  929. for (n=0; n<4; n++, s+=32*avctx->channels) {
  930. for (i=0; i<2; i++)
  931. coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
  932. shift[n] = 20 - (src[2] & 0x0F);
  933. for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
  934. s2[0] = (src[0]&0xF0) + (src[1]<<8);
  935. }
  936. for (m=2; m<32; m+=2) {
  937. s = &samples[m*avctx->channels + channel];
  938. for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
  939. for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
  940. int level = sign_extend(*src >> (4 - i), 4) << shift[n];
  941. int pred = s2[-1*avctx->channels] * coeff[0][n]
  942. + s2[-2*avctx->channels] * coeff[1][n];
  943. s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
  944. }
  945. }
  946. }
  947. }
  948. break;
  949. case CODEC_ID_ADPCM_IMA_AMV:
  950. case CODEC_ID_ADPCM_IMA_SMJPEG:
  951. if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) {
  952. c->status[0].predictor = sign_extend(bytestream_get_le16(&src), 16);
  953. c->status[0].step_index = av_clip(bytestream_get_le16(&src), 0, 88);
  954. src += 4;
  955. } else {
  956. c->status[0].predictor = sign_extend(bytestream_get_be16(&src), 16);
  957. c->status[0].step_index = av_clip(bytestream_get_byte(&src), 0, 88);
  958. src += 1;
  959. }
  960. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  961. char hi, lo;
  962. lo = *src & 0x0F;
  963. hi = *src >> 4;
  964. if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
  965. FFSWAP(char, hi, lo);
  966. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  967. lo, 3);
  968. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  969. hi, 3);
  970. }
  971. break;
  972. case CODEC_ID_ADPCM_CT:
  973. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  974. uint8_t v = *src;
  975. *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
  976. *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
  977. }
  978. break;
  979. case CODEC_ID_ADPCM_SBPRO_4:
  980. case CODEC_ID_ADPCM_SBPRO_3:
  981. case CODEC_ID_ADPCM_SBPRO_2:
  982. if (!c->status[0].step_index) {
  983. /* the first byte is a raw sample */
  984. *samples++ = 128 * (*src++ - 0x80);
  985. if (st)
  986. *samples++ = 128 * (*src++ - 0x80);
  987. c->status[0].step_index = 1;
  988. nb_samples--;
  989. }
  990. if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
  991. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  992. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  993. src[0] >> 4, 4, 0);
  994. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  995. src[0] & 0x0F, 4, 0);
  996. }
  997. } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
  998. for (n = nb_samples / 3; n > 0; n--, src++) {
  999. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  1000. src[0] >> 5 , 3, 0);
  1001. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  1002. (src[0] >> 2) & 0x07, 3, 0);
  1003. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  1004. src[0] & 0x03, 2, 0);
  1005. }
  1006. } else {
  1007. for (n = nb_samples >> (2 - st); n > 0; n--, src++) {
  1008. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  1009. src[0] >> 6 , 2, 2);
  1010. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  1011. (src[0] >> 4) & 0x03, 2, 2);
  1012. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  1013. (src[0] >> 2) & 0x03, 2, 2);
  1014. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  1015. src[0] & 0x03, 2, 2);
  1016. }
  1017. }
  1018. break;
  1019. case CODEC_ID_ADPCM_SWF:
  1020. {
  1021. GetBitContext gb;
  1022. const int *table;
  1023. int k0, signmask, nb_bits, count;
  1024. int size = buf_size*8;
  1025. init_get_bits(&gb, buf, size);
  1026. //read bits & initial values
  1027. nb_bits = get_bits(&gb, 2)+2;
  1028. //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
  1029. table = swf_index_tables[nb_bits-2];
  1030. k0 = 1 << (nb_bits-2);
  1031. signmask = 1 << (nb_bits-1);
  1032. while (get_bits_count(&gb) <= size - 22*avctx->channels) {
  1033. for (i = 0; i < avctx->channels; i++) {
  1034. *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
  1035. c->status[i].step_index = get_bits(&gb, 6);
  1036. }
  1037. for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
  1038. int i;
  1039. for (i = 0; i < avctx->channels; i++) {
  1040. // similar to IMA adpcm
  1041. int delta = get_bits(&gb, nb_bits);
  1042. int step = ff_adpcm_step_table[c->status[i].step_index];
  1043. long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
  1044. int k = k0;
  1045. do {
  1046. if (delta & k)
  1047. vpdiff += step;
  1048. step >>= 1;
  1049. k >>= 1;
  1050. } while(k);
  1051. vpdiff += step;
  1052. if (delta & signmask)
  1053. c->status[i].predictor -= vpdiff;
  1054. else
  1055. c->status[i].predictor += vpdiff;
  1056. c->status[i].step_index += table[delta & (~signmask)];
  1057. c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
  1058. c->status[i].predictor = av_clip_int16(c->status[i].predictor);
  1059. *samples++ = c->status[i].predictor;
  1060. }
  1061. }
  1062. }
  1063. src += buf_size;
  1064. break;
  1065. }
  1066. case CODEC_ID_ADPCM_YAMAHA:
  1067. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  1068. uint8_t v = *src;
  1069. *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
  1070. *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
  1071. }
  1072. break;
  1073. case CODEC_ID_ADPCM_THP:
  1074. {
  1075. int table[2][16];
  1076. int prev[2][2];
  1077. int ch;
  1078. src += 4; // skip channel size
  1079. src += 4; // skip number of samples (already read)
  1080. for (i = 0; i < 32; i++)
  1081. table[0][i] = (int16_t)bytestream_get_be16(&src);
  1082. /* Initialize the previous sample. */
  1083. for (i = 0; i < 4; i++)
  1084. prev[0][i] = (int16_t)bytestream_get_be16(&src);
  1085. for (ch = 0; ch <= st; ch++) {
  1086. samples = (short *)c->frame.data[0] + ch;
  1087. /* Read in every sample for this channel. */
  1088. for (i = 0; i < nb_samples / 14; i++) {
  1089. int index = (*src >> 4) & 7;
  1090. unsigned int exp = *src++ & 15;
  1091. int factor1 = table[ch][index * 2];
  1092. int factor2 = table[ch][index * 2 + 1];
  1093. /* Decode 14 samples. */
  1094. for (n = 0; n < 14; n++) {
  1095. int32_t sampledat;
  1096. if(n&1) sampledat = sign_extend(*src++, 4);
  1097. else sampledat = sign_extend(*src >> 4, 4);
  1098. sampledat = ((prev[ch][0]*factor1
  1099. + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
  1100. *samples = av_clip_int16(sampledat);
  1101. prev[ch][1] = prev[ch][0];
  1102. prev[ch][0] = *samples++;
  1103. /* In case of stereo, skip one sample, this sample
  1104. is for the other channel. */
  1105. samples += st;
  1106. }
  1107. }
  1108. }
  1109. break;
  1110. }
  1111. default:
  1112. return -1;
  1113. }
  1114. *got_frame_ptr = 1;
  1115. *(AVFrame *)data = c->frame;
  1116. return src == buf ? bytestream2_tell(&gb) : src - buf;
  1117. }
  1118. #define ADPCM_DECODER(id_, name_, long_name_) \
  1119. AVCodec ff_ ## name_ ## _decoder = { \
  1120. .name = #name_, \
  1121. .type = AVMEDIA_TYPE_AUDIO, \
  1122. .id = id_, \
  1123. .priv_data_size = sizeof(ADPCMDecodeContext), \
  1124. .init = adpcm_decode_init, \
  1125. .decode = adpcm_decode_frame, \
  1126. .capabilities = CODEC_CAP_DR1, \
  1127. .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
  1128. }
  1129. /* Note: Do not forget to add new entries to the Makefile as well. */
  1130. ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
  1131. ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
  1132. ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
  1133. ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
  1134. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
  1135. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
  1136. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
  1137. ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
  1138. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
  1139. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_APC, adpcm_ima_apc, "ADPCM IMA CRYO APC");
  1140. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
  1141. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
  1142. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
  1143. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
  1144. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
  1145. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
  1146. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
  1147. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
  1148. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
  1149. ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
  1150. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
  1151. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
  1152. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
  1153. ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
  1154. ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
  1155. ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
  1156. ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");