You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

749 lines
25KB

  1. /*
  2. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  5. * the algorithm used
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * huffyuv encoder
  26. */
  27. #include "libavutil/opt.h"
  28. #include "avcodec.h"
  29. #include "huffyuv.h"
  30. #include "huffman.h"
  31. #include "huffyuvencdsp.h"
  32. #include "internal.h"
  33. #include "put_bits.h"
  34. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
  35. uint8_t *src, int w, int left)
  36. {
  37. int i;
  38. if (w < 32) {
  39. for (i = 0; i < w; i++) {
  40. const int temp = src[i];
  41. dst[i] = temp - left;
  42. left = temp;
  43. }
  44. return left;
  45. } else {
  46. for (i = 0; i < 16; i++) {
  47. const int temp = src[i];
  48. dst[i] = temp - left;
  49. left = temp;
  50. }
  51. s->hencdsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16);
  52. return src[w-1];
  53. }
  54. }
  55. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
  56. uint8_t *src, int w,
  57. int *red, int *green, int *blue,
  58. int *alpha)
  59. {
  60. int i;
  61. int r, g, b, a;
  62. r = *red;
  63. g = *green;
  64. b = *blue;
  65. a = *alpha;
  66. for (i = 0; i < FFMIN(w, 4); i++) {
  67. const int rt = src[i * 4 + R];
  68. const int gt = src[i * 4 + G];
  69. const int bt = src[i * 4 + B];
  70. const int at = src[i * 4 + A];
  71. dst[i * 4 + R] = rt - r;
  72. dst[i * 4 + G] = gt - g;
  73. dst[i * 4 + B] = bt - b;
  74. dst[i * 4 + A] = at - a;
  75. r = rt;
  76. g = gt;
  77. b = bt;
  78. a = at;
  79. }
  80. s->hencdsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
  81. *red = src[(w - 1) * 4 + R];
  82. *green = src[(w - 1) * 4 + G];
  83. *blue = src[(w - 1) * 4 + B];
  84. *alpha = src[(w - 1) * 4 + A];
  85. }
  86. static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst,
  87. uint8_t *src, int w,
  88. int *red, int *green, int *blue)
  89. {
  90. int i;
  91. int r, g, b;
  92. r = *red;
  93. g = *green;
  94. b = *blue;
  95. for (i = 0; i < FFMIN(w, 16); i++) {
  96. const int rt = src[i * 3 + 0];
  97. const int gt = src[i * 3 + 1];
  98. const int bt = src[i * 3 + 2];
  99. dst[i * 3 + 0] = rt - r;
  100. dst[i * 3 + 1] = gt - g;
  101. dst[i * 3 + 2] = bt - b;
  102. r = rt;
  103. g = gt;
  104. b = bt;
  105. }
  106. s->hencdsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);
  107. *red = src[(w - 1) * 3 + 0];
  108. *green = src[(w - 1) * 3 + 1];
  109. *blue = src[(w - 1) * 3 + 2];
  110. }
  111. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
  112. {
  113. int i;
  114. int index = 0;
  115. for (i = 0; i < 256;) {
  116. int val = len[i];
  117. int repeat = 0;
  118. for (; i < 256 && len[i] == val && repeat < 255; i++)
  119. repeat++;
  120. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  121. if ( repeat > 7) {
  122. buf[index++] = val;
  123. buf[index++] = repeat;
  124. } else {
  125. buf[index++] = val | (repeat << 5);
  126. }
  127. }
  128. return index;
  129. }
  130. static av_cold int encode_init(AVCodecContext *avctx)
  131. {
  132. HYuvContext *s = avctx->priv_data;
  133. int i, j;
  134. ff_huffyuv_common_init(avctx);
  135. ff_huffyuvencdsp_init(&s->hencdsp);
  136. avctx->extradata = av_mallocz(1024*30); // 256*3+4 == 772
  137. avctx->stats_out = av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  138. s->version = 2;
  139. if (!avctx->extradata || !avctx->stats_out)
  140. return AVERROR(ENOMEM);
  141. #if FF_API_CODED_FRAME
  142. FF_DISABLE_DEPRECATION_WARNINGS
  143. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  144. avctx->coded_frame->key_frame = 1;
  145. FF_ENABLE_DEPRECATION_WARNINGS
  146. #endif
  147. #if FF_API_PRIVATE_OPT
  148. FF_DISABLE_DEPRECATION_WARNINGS
  149. if (avctx->context_model == 1)
  150. s->context = avctx->context_model;
  151. FF_ENABLE_DEPRECATION_WARNINGS
  152. #endif
  153. switch (avctx->pix_fmt) {
  154. case AV_PIX_FMT_YUV420P:
  155. case AV_PIX_FMT_YUV422P:
  156. if (s->width & 1) {
  157. av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
  158. return -1;
  159. }
  160. s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
  161. break;
  162. case AV_PIX_FMT_RGB32:
  163. s->bitstream_bpp = 32;
  164. break;
  165. case AV_PIX_FMT_RGB24:
  166. s->bitstream_bpp = 24;
  167. break;
  168. default:
  169. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  170. return -1;
  171. }
  172. avctx->bits_per_coded_sample = s->bitstream_bpp;
  173. s->decorrelate = s->bitstream_bpp >= 24;
  174. s->predictor = avctx->prediction_method;
  175. s->interlaced = avctx->flags & AV_CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  176. if (s->context) {
  177. if (s->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) {
  178. av_log(avctx, AV_LOG_ERROR,
  179. "context=1 is not compatible with "
  180. "2 pass huffyuv encoding\n");
  181. return -1;
  182. }
  183. }
  184. if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
  185. if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
  186. av_log(avctx, AV_LOG_ERROR,
  187. "Error: YV12 is not supported by huffyuv; use "
  188. "vcodec=ffvhuff or format=422p\n");
  189. return -1;
  190. }
  191. #if FF_API_PRIVATE_OPT
  192. if (s->context) {
  193. av_log(avctx, AV_LOG_ERROR,
  194. "Error: per-frame huffman tables are not supported "
  195. "by huffyuv; use vcodec=ffvhuff\n");
  196. return -1;
  197. }
  198. #endif
  199. if (s->interlaced != ( s->height > 288 ))
  200. av_log(avctx, AV_LOG_INFO,
  201. "using huffyuv 2.2.0 or newer interlacing flag\n");
  202. }
  203. if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN) {
  204. av_log(avctx, AV_LOG_ERROR,
  205. "Error: RGB is incompatible with median predictor\n");
  206. return -1;
  207. }
  208. ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
  209. ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
  210. ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
  211. if (s->context)
  212. ((uint8_t*)avctx->extradata)[2] |= 0x40;
  213. ((uint8_t*)avctx->extradata)[3] = 0;
  214. s->avctx->extradata_size = 4;
  215. if (avctx->stats_in) {
  216. char *p = avctx->stats_in;
  217. for (i = 0; i < 3; i++)
  218. for (j = 0; j < 256; j++)
  219. s->stats[i][j] = 1;
  220. for (;;) {
  221. for (i = 0; i < 3; i++) {
  222. char *next;
  223. for (j = 0; j < 256; j++) {
  224. s->stats[i][j] += strtol(p, &next, 0);
  225. if (next == p) return -1;
  226. p = next;
  227. }
  228. }
  229. if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
  230. }
  231. } else {
  232. for (i = 0; i < 3; i++)
  233. for (j = 0; j < 256; j++) {
  234. int d = FFMIN(j, 256 - j);
  235. s->stats[i][j] = 100000000 / (d + 1);
  236. }
  237. }
  238. for (i = 0; i < 3; i++) {
  239. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  240. if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i]) < 0) {
  241. return -1;
  242. }
  243. s->avctx->extradata_size +=
  244. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  245. }
  246. if (s->context) {
  247. for (i = 0; i < 3; i++) {
  248. int pels = s->width * s->height / (i ? 40 : 10);
  249. for (j = 0; j < 256; j++) {
  250. int d = FFMIN(j, 256 - j);
  251. s->stats[i][j] = pels/(d + 1);
  252. }
  253. }
  254. } else {
  255. for (i = 0; i < 3; i++)
  256. for (j = 0; j < 256; j++)
  257. s->stats[i][j]= 0;
  258. }
  259. ff_huffyuv_alloc_temp(s);
  260. s->picture_number=0;
  261. return 0;
  262. }
  263. static int encode_422_bitstream(HYuvContext *s, int offset, int count)
  264. {
  265. int i;
  266. const uint8_t *y = s->temp[0] + offset;
  267. const uint8_t *u = s->temp[1] + offset / 2;
  268. const uint8_t *v = s->temp[2] + offset / 2;
  269. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
  270. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  271. return -1;
  272. }
  273. #define LOAD4\
  274. int y0 = y[2 * i];\
  275. int y1 = y[2 * i + 1];\
  276. int u0 = u[i];\
  277. int v0 = v[i];
  278. count /= 2;
  279. if (s->flags & AV_CODEC_FLAG_PASS1) {
  280. for(i = 0; i < count; i++) {
  281. LOAD4;
  282. s->stats[0][y0]++;
  283. s->stats[1][u0]++;
  284. s->stats[0][y1]++;
  285. s->stats[2][v0]++;
  286. }
  287. }
  288. if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
  289. return 0;
  290. if (s->context) {
  291. for (i = 0; i < count; i++) {
  292. LOAD4;
  293. s->stats[0][y0]++;
  294. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  295. s->stats[1][u0]++;
  296. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  297. s->stats[0][y1]++;
  298. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  299. s->stats[2][v0]++;
  300. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  301. }
  302. } else {
  303. for(i = 0; i < count; i++) {
  304. LOAD4;
  305. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  306. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  307. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  308. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  309. }
  310. }
  311. return 0;
  312. }
  313. static int encode_gray_bitstream(HYuvContext *s, int count)
  314. {
  315. int i;
  316. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
  317. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  318. return -1;
  319. }
  320. #define LOAD2\
  321. int y0 = s->temp[0][2 * i];\
  322. int y1 = s->temp[0][2 * i + 1];
  323. #define STAT2\
  324. s->stats[0][y0]++;\
  325. s->stats[0][y1]++;
  326. #define WRITE2\
  327. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  328. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  329. count /= 2;
  330. if (s->flags & AV_CODEC_FLAG_PASS1) {
  331. for (i = 0; i < count; i++) {
  332. LOAD2;
  333. STAT2;
  334. }
  335. }
  336. if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
  337. return 0;
  338. if (s->context) {
  339. for (i = 0; i < count; i++) {
  340. LOAD2;
  341. STAT2;
  342. WRITE2;
  343. }
  344. } else {
  345. for (i = 0; i < count; i++) {
  346. LOAD2;
  347. WRITE2;
  348. }
  349. }
  350. return 0;
  351. }
  352. static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
  353. {
  354. int i;
  355. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) <
  356. 4 * planes * count) {
  357. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  358. return -1;
  359. }
  360. #define LOAD_GBRA \
  361. int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G]; \
  362. int b = s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g & 0xFF; \
  363. int r = s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g & 0xFF; \
  364. int a = s->temp[0][planes * i + A];
  365. #define STAT_BGRA \
  366. s->stats[0][b]++; \
  367. s->stats[1][g]++; \
  368. s->stats[2][r]++; \
  369. if (planes == 4) \
  370. s->stats[2][a]++;
  371. #define WRITE_GBRA \
  372. put_bits(&s->pb, s->len[1][g], s->bits[1][g]); \
  373. put_bits(&s->pb, s->len[0][b], s->bits[0][b]); \
  374. put_bits(&s->pb, s->len[2][r], s->bits[2][r]); \
  375. if (planes == 4) \
  376. put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
  377. if ((s->flags & AV_CODEC_FLAG_PASS1) &&
  378. (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) {
  379. for (i = 0; i < count; i++) {
  380. LOAD_GBRA;
  381. STAT_BGRA;
  382. }
  383. } else if (s->context || (s->flags & AV_CODEC_FLAG_PASS1)) {
  384. for (i = 0; i < count; i++) {
  385. LOAD_GBRA;
  386. STAT_BGRA;
  387. WRITE_GBRA;
  388. }
  389. } else {
  390. for (i = 0; i < count; i++) {
  391. LOAD_GBRA;
  392. WRITE_GBRA;
  393. }
  394. }
  395. return 0;
  396. }
  397. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  398. const AVFrame *pict, int *got_packet)
  399. {
  400. HYuvContext *s = avctx->priv_data;
  401. const int width = s->width;
  402. const int width2 = s->width>>1;
  403. const int height = s->height;
  404. const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  405. const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  406. const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  407. const AVFrame * const p = pict;
  408. int i, j, size = 0, ret;
  409. if (!pkt->data &&
  410. (ret = av_new_packet(pkt, width * height * 3 * 4 + AV_INPUT_BUFFER_MIN_SIZE)) < 0) {
  411. av_log(avctx, AV_LOG_ERROR, "Error allocating output packet.\n");
  412. return ret;
  413. }
  414. if (s->context) {
  415. for (i = 0; i < 3; i++) {
  416. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  417. if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i]) < 0)
  418. return -1;
  419. size += store_table(s, s->len[i], &pkt->data[size]);
  420. }
  421. for (i = 0; i < 3; i++)
  422. for (j = 0; j < 256; j++)
  423. s->stats[i][j] >>= 1;
  424. }
  425. init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
  426. if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
  427. avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
  428. int lefty, leftu, leftv, y, cy;
  429. put_bits(&s->pb, 8, leftv = p->data[2][0]);
  430. put_bits(&s->pb, 8, lefty = p->data[0][1]);
  431. put_bits(&s->pb, 8, leftu = p->data[1][0]);
  432. put_bits(&s->pb, 8, p->data[0][0]);
  433. lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  434. leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  435. leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  436. encode_422_bitstream(s, 2, width-2);
  437. if (s->predictor==MEDIAN) {
  438. int lefttopy, lefttopu, lefttopv;
  439. cy = y = 1;
  440. if (s->interlaced) {
  441. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
  442. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
  443. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
  444. encode_422_bitstream(s, 0, width);
  445. y++; cy++;
  446. }
  447. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
  448. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
  449. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
  450. encode_422_bitstream(s, 0, 4);
  451. lefttopy = p->data[0][3];
  452. lefttopu = p->data[1][1];
  453. lefttopv = p->data[2][1];
  454. s->hencdsp.sub_hfyu_median_pred(s->temp[0], p->data[0] + 4, p->data[0] + fake_ystride + 4, width - 4, &lefty, &lefttopy);
  455. s->hencdsp.sub_hfyu_median_pred(s->temp[1], p->data[1] + 2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
  456. s->hencdsp.sub_hfyu_median_pred(s->temp[2], p->data[2] + 2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
  457. encode_422_bitstream(s, 0, width - 4);
  458. y++; cy++;
  459. for (; y < height; y++,cy++) {
  460. uint8_t *ydst, *udst, *vdst;
  461. if (s->bitstream_bpp == 12) {
  462. while (2 * cy > y) {
  463. ydst = p->data[0] + p->linesize[0] * y;
  464. s->hencdsp.sub_hfyu_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
  465. encode_gray_bitstream(s, width);
  466. y++;
  467. }
  468. if (y >= height) break;
  469. }
  470. ydst = p->data[0] + p->linesize[0] * y;
  471. udst = p->data[1] + p->linesize[1] * cy;
  472. vdst = p->data[2] + p->linesize[2] * cy;
  473. s->hencdsp.sub_hfyu_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
  474. s->hencdsp.sub_hfyu_median_pred(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  475. s->hencdsp.sub_hfyu_median_pred(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  476. encode_422_bitstream(s, 0, width);
  477. }
  478. } else {
  479. for (cy = y = 1; y < height; y++, cy++) {
  480. uint8_t *ydst, *udst, *vdst;
  481. /* encode a luma only line & y++ */
  482. if (s->bitstream_bpp == 12) {
  483. ydst = p->data[0] + p->linesize[0] * y;
  484. if (s->predictor == PLANE && s->interlaced < y) {
  485. s->hencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  486. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  487. } else {
  488. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  489. }
  490. encode_gray_bitstream(s, width);
  491. y++;
  492. if (y >= height) break;
  493. }
  494. ydst = p->data[0] + p->linesize[0] * y;
  495. udst = p->data[1] + p->linesize[1] * cy;
  496. vdst = p->data[2] + p->linesize[2] * cy;
  497. if (s->predictor == PLANE && s->interlaced < cy) {
  498. s->hencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  499. s->hencdsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  500. s->hencdsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  501. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  502. leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  503. leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  504. } else {
  505. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  506. leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  507. leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  508. }
  509. encode_422_bitstream(s, 0, width);
  510. }
  511. }
  512. } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
  513. uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
  514. const int stride = -p->linesize[0];
  515. const int fake_stride = -fake_ystride;
  516. int y;
  517. int leftr, leftg, leftb, lefta;
  518. put_bits(&s->pb, 8, lefta = data[A]);
  519. put_bits(&s->pb, 8, leftr = data[R]);
  520. put_bits(&s->pb, 8, leftg = data[G]);
  521. put_bits(&s->pb, 8, leftb = data[B]);
  522. sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
  523. &leftr, &leftg, &leftb, &lefta);
  524. encode_bgra_bitstream(s, width - 1, 4);
  525. for (y = 1; y < s->height; y++) {
  526. uint8_t *dst = data + y*stride;
  527. if (s->predictor == PLANE && s->interlaced < y) {
  528. s->hencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
  529. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
  530. &leftr, &leftg, &leftb, &lefta);
  531. } else {
  532. sub_left_prediction_bgr32(s, s->temp[0], dst, width,
  533. &leftr, &leftg, &leftb, &lefta);
  534. }
  535. encode_bgra_bitstream(s, width, 4);
  536. }
  537. } else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
  538. uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
  539. const int stride = -p->linesize[0];
  540. const int fake_stride = -fake_ystride;
  541. int y;
  542. int leftr, leftg, leftb;
  543. put_bits(&s->pb, 8, leftr = data[0]);
  544. put_bits(&s->pb, 8, leftg = data[1]);
  545. put_bits(&s->pb, 8, leftb = data[2]);
  546. put_bits(&s->pb, 8, 0);
  547. sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
  548. &leftr, &leftg, &leftb);
  549. encode_bgra_bitstream(s, width-1, 3);
  550. for (y = 1; y < s->height; y++) {
  551. uint8_t *dst = data + y * stride;
  552. if (s->predictor == PLANE && s->interlaced < y) {
  553. s->hencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
  554. width * 3);
  555. sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
  556. &leftr, &leftg, &leftb);
  557. } else {
  558. sub_left_prediction_rgb24(s, s->temp[0], dst, width,
  559. &leftr, &leftg, &leftb);
  560. }
  561. encode_bgra_bitstream(s, width, 3);
  562. }
  563. } else {
  564. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  565. }
  566. emms_c();
  567. size += (put_bits_count(&s->pb) + 31) / 8;
  568. put_bits(&s->pb, 16, 0);
  569. put_bits(&s->pb, 15, 0);
  570. size /= 4;
  571. if ((s->flags & AV_CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
  572. int j;
  573. char *p = avctx->stats_out;
  574. char *end = p + 1024*30;
  575. for (i = 0; i < 3; i++) {
  576. for (j = 0; j < 256; j++) {
  577. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  578. p += strlen(p);
  579. s->stats[i][j]= 0;
  580. }
  581. snprintf(p, end-p, "\n");
  582. p++;
  583. }
  584. } else
  585. avctx->stats_out[0] = '\0';
  586. if (!(s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) {
  587. flush_put_bits(&s->pb);
  588. s->bdsp.bswap_buf((uint32_t *) pkt->data, (uint32_t *) pkt->data, size);
  589. }
  590. s->picture_number++;
  591. pkt->size = size * 4;
  592. pkt->flags |= AV_PKT_FLAG_KEY;
  593. *got_packet = 1;
  594. return 0;
  595. }
  596. static av_cold int encode_end(AVCodecContext *avctx)
  597. {
  598. HYuvContext *s = avctx->priv_data;
  599. ff_huffyuv_common_end(s);
  600. av_freep(&avctx->extradata);
  601. av_freep(&avctx->stats_out);
  602. return 0;
  603. }
  604. #define OFFSET(x) offsetof(HYuvContext, x)
  605. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  606. AVCodec ff_huffyuv_encoder = {
  607. .name = "huffyuv",
  608. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  609. .type = AVMEDIA_TYPE_VIDEO,
  610. .id = AV_CODEC_ID_HUFFYUV,
  611. .priv_data_size = sizeof(HYuvContext),
  612. .init = encode_init,
  613. .encode2 = encode_frame,
  614. .close = encode_end,
  615. .pix_fmts = (const enum AVPixelFormat[]){
  616. AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
  617. AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
  618. },
  619. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
  620. FF_CODEC_CAP_INIT_CLEANUP,
  621. };
  622. #if CONFIG_FFVHUFF_ENCODER
  623. static const AVOption ffhuffyuv_options[] = {
  624. { "context", "Set per-frame huffman tables", OFFSET(context), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
  625. { NULL }
  626. };
  627. static const AVClass ffhuffyuv_class = {
  628. .class_name = "ffhuffyuv encoder",
  629. .item_name = av_default_item_name,
  630. .option = ffhuffyuv_options,
  631. .version = LIBAVUTIL_VERSION_INT,
  632. };
  633. AVCodec ff_ffvhuff_encoder = {
  634. .name = "ffvhuff",
  635. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  636. .type = AVMEDIA_TYPE_VIDEO,
  637. .id = AV_CODEC_ID_FFVHUFF,
  638. .priv_data_size = sizeof(HYuvContext),
  639. .priv_class = &ffhuffyuv_class,
  640. .init = encode_init,
  641. .encode2 = encode_frame,
  642. .close = encode_end,
  643. .pix_fmts = (const enum AVPixelFormat[]){
  644. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
  645. AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
  646. },
  647. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
  648. FF_CODEC_CAP_INIT_CLEANUP,
  649. };
  650. #endif