|
- /*
- * Copyright (c) 2019 Eugene Lyapustin
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /**
- * @file
- * 360 video conversion filter.
- * Principle of operation:
- *
- * (for each pixel in output frame)
- * 1) Calculate OpenGL-like coordinates (x, y, z) for pixel position (i, j)
- * 2) Apply 360 operations (rotation, mirror) to (x, y, z)
- * 3) Calculate pixel position (u, v) in input frame
- * 4) Calculate interpolation window and weight for each pixel
- *
- * (for each frame)
- * 5) Remap input frame to output frame using precalculated data
- */
-
- #include <math.h>
-
- #include "libavutil/avassert.h"
- #include "libavutil/imgutils.h"
- #include "libavutil/pixdesc.h"
- #include "libavutil/opt.h"
- #include "avfilter.h"
- #include "formats.h"
- #include "internal.h"
- #include "video.h"
- #include "v360.h"
-
- typedef struct ThreadData {
- AVFrame *in;
- AVFrame *out;
- } ThreadData;
-
- #define OFFSET(x) offsetof(V360Context, x)
- #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
-
- static const AVOption v360_options[] = {
- { "input", "set input projection", OFFSET(in), AV_OPT_TYPE_INT, {.i64=EQUIRECTANGULAR}, 0, NB_PROJECTIONS-1, FLAGS, "in" },
- { "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "in" },
- { "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "in" },
- { "c3x2", "cubemap 3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, "in" },
- { "c6x1", "cubemap 6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, "in" },
- { "eac", "equi-angular cubemap", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, "in" },
- { "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, "in" },
- { "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "in" },
- {"rectilinear", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "in" },
- { "gnomonic", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "in" },
- { "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "in" },
- { "fb", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "in" },
- { "c1x6", "cubemap 1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, "in" },
- { "sg", "stereographic", 0, AV_OPT_TYPE_CONST, {.i64=STEREOGRAPHIC}, 0, 0, FLAGS, "in" },
- { "mercator", "mercator", 0, AV_OPT_TYPE_CONST, {.i64=MERCATOR}, 0, 0, FLAGS, "in" },
- { "ball", "ball", 0, AV_OPT_TYPE_CONST, {.i64=BALL}, 0, 0, FLAGS, "in" },
- { "hammer", "hammer", 0, AV_OPT_TYPE_CONST, {.i64=HAMMER}, 0, 0, FLAGS, "in" },
- {"sinusoidal", "sinusoidal", 0, AV_OPT_TYPE_CONST, {.i64=SINUSOIDAL}, 0, 0, FLAGS, "in" },
- { "fisheye", "fisheye", 0, AV_OPT_TYPE_CONST, {.i64=FISHEYE}, 0, 0, FLAGS, "in" },
- {"cylindrical", "cylindrical", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICAL}, 0, 0, FLAGS, "in" },
- {"tetrahedron", "tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=TETRAHEDRON}, 0, 0, FLAGS, "in" },
- { "output", "set output projection", OFFSET(out), AV_OPT_TYPE_INT, {.i64=CUBEMAP_3_2}, 0, NB_PROJECTIONS-1, FLAGS, "out" },
- { "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" },
- { "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" },
- { "c3x2", "cubemap 3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, "out" },
- { "c6x1", "cubemap 6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, "out" },
- { "eac", "equi-angular cubemap", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, "out" },
- { "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, "out" },
- { "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "out" },
- {"rectilinear", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "out" },
- { "gnomonic", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "out" },
- { "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "out" },
- { "fb", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, "out" },
- { "c1x6", "cubemap 1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, "out" },
- { "sg", "stereographic", 0, AV_OPT_TYPE_CONST, {.i64=STEREOGRAPHIC}, 0, 0, FLAGS, "out" },
- { "mercator", "mercator", 0, AV_OPT_TYPE_CONST, {.i64=MERCATOR}, 0, 0, FLAGS, "out" },
- { "ball", "ball", 0, AV_OPT_TYPE_CONST, {.i64=BALL}, 0, 0, FLAGS, "out" },
- { "hammer", "hammer", 0, AV_OPT_TYPE_CONST, {.i64=HAMMER}, 0, 0, FLAGS, "out" },
- {"sinusoidal", "sinusoidal", 0, AV_OPT_TYPE_CONST, {.i64=SINUSOIDAL}, 0, 0, FLAGS, "out" },
- { "fisheye", "fisheye", 0, AV_OPT_TYPE_CONST, {.i64=FISHEYE}, 0, 0, FLAGS, "out" },
- { "pannini", "pannini", 0, AV_OPT_TYPE_CONST, {.i64=PANNINI}, 0, 0, FLAGS, "out" },
- {"cylindrical", "cylindrical", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICAL}, 0, 0, FLAGS, "out" },
- {"perspective", "perspective", 0, AV_OPT_TYPE_CONST, {.i64=PERSPECTIVE}, 0, 0, FLAGS, "out" },
- {"tetrahedron", "tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=TETRAHEDRON}, 0, 0, FLAGS, "out" },
- { "interp", "set interpolation method", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=BILINEAR}, 0, NB_INTERP_METHODS-1, FLAGS, "interp" },
- { "near", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" },
- { "nearest", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" },
- { "line", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, "interp" },
- { "linear", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, "interp" },
- { "cube", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, "interp" },
- { "cubic", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, "interp" },
- { "lanc", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, "interp" },
- { "lanczos", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, "interp" },
- { "sp16", "spline16 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=SPLINE16}, 0, 0, FLAGS, "interp" },
- { "spline16", "spline16 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=SPLINE16}, 0, 0, FLAGS, "interp" },
- { "gauss", "gaussian interpolation", 0, AV_OPT_TYPE_CONST, {.i64=GAUSSIAN}, 0, 0, FLAGS, "interp" },
- { "gaussian", "gaussian interpolation", 0, AV_OPT_TYPE_CONST, {.i64=GAUSSIAN}, 0, 0, FLAGS, "interp" },
- { "w", "output width", OFFSET(width), AV_OPT_TYPE_INT, {.i64=0}, 0, INT16_MAX, FLAGS, "w"},
- { "h", "output height", OFFSET(height), AV_OPT_TYPE_INT, {.i64=0}, 0, INT16_MAX, FLAGS, "h"},
- { "in_stereo", "input stereo format", OFFSET(in_stereo), AV_OPT_TYPE_INT, {.i64=STEREO_2D}, 0, NB_STEREO_FMTS-1, FLAGS, "stereo" },
- {"out_stereo", "output stereo format", OFFSET(out_stereo), AV_OPT_TYPE_INT, {.i64=STEREO_2D}, 0, NB_STEREO_FMTS-1, FLAGS, "stereo" },
- { "2d", "2d mono", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_2D}, 0, 0, FLAGS, "stereo" },
- { "sbs", "side by side", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_SBS}, 0, 0, FLAGS, "stereo" },
- { "tb", "top bottom", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_TB}, 0, 0, FLAGS, "stereo" },
- { "in_forder", "input cubemap face order", OFFSET(in_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, "in_forder"},
- {"out_forder", "output cubemap face order", OFFSET(out_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, "out_forder"},
- { "in_frot", "input cubemap face rotation", OFFSET(in_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, "in_frot"},
- { "out_frot", "output cubemap face rotation",OFFSET(out_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, "out_frot"},
- { "in_pad", "percent input cubemap pads", OFFSET(in_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 1.f, FLAGS, "in_pad"},
- { "out_pad", "percent output cubemap pads", OFFSET(out_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 1.f, FLAGS, "out_pad"},
- { "fin_pad", "fixed input cubemap pads", OFFSET(fin_pad), AV_OPT_TYPE_INT, {.i64=0}, 0, 100, FLAGS, "fin_pad"},
- { "fout_pad", "fixed output cubemap pads", OFFSET(fout_pad), AV_OPT_TYPE_INT, {.i64=0}, 0, 100, FLAGS, "fout_pad"},
- { "yaw", "yaw rotation", OFFSET(yaw), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f, FLAGS, "yaw"},
- { "pitch", "pitch rotation", OFFSET(pitch), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f, FLAGS, "pitch"},
- { "roll", "roll rotation", OFFSET(roll), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f, FLAGS, "roll"},
- { "rorder", "rotation order", OFFSET(rorder), AV_OPT_TYPE_STRING, {.str="ypr"}, 0, 0, FLAGS, "rorder"},
- { "h_fov", "horizontal field of view", OFFSET(h_fov), AV_OPT_TYPE_FLOAT, {.dbl=90.f}, 0.00001f, 360.f, FLAGS, "h_fov"},
- { "v_fov", "vertical field of view", OFFSET(v_fov), AV_OPT_TYPE_FLOAT, {.dbl=45.f}, 0.00001f, 360.f, FLAGS, "v_fov"},
- { "d_fov", "diagonal field of view", OFFSET(d_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f, FLAGS, "d_fov"},
- { "h_flip", "flip out video horizontally", OFFSET(h_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "h_flip"},
- { "v_flip", "flip out video vertically", OFFSET(v_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "v_flip"},
- { "d_flip", "flip out video indepth", OFFSET(d_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "d_flip"},
- { "ih_flip", "flip in video horizontally", OFFSET(ih_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "ih_flip"},
- { "iv_flip", "flip in video vertically", OFFSET(iv_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "iv_flip"},
- { "in_trans", "transpose video input", OFFSET(in_transpose), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "in_transpose"},
- { "out_trans", "transpose video output", OFFSET(out_transpose), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "out_transpose"},
- { "ih_fov", "input horizontal field of view",OFFSET(ih_fov), AV_OPT_TYPE_FLOAT, {.dbl=90.f}, 0.00001f, 360.f, FLAGS, "ih_fov"},
- { "iv_fov", "input vertical field of view", OFFSET(iv_fov), AV_OPT_TYPE_FLOAT, {.dbl=45.f}, 0.00001f, 360.f, FLAGS, "iv_fov"},
- { "id_fov", "input diagonal field of view", OFFSET(id_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f, FLAGS, "id_fov"},
- {"alpha_mask", "build mask in alpha plane", OFFSET(alpha), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "alpha"},
- { NULL }
- };
-
- AVFILTER_DEFINE_CLASS(v360);
-
- static int query_formats(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
- static const enum AVPixelFormat pix_fmts[] = {
- // YUVA444
- AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9,
- AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12,
- AV_PIX_FMT_YUVA444P16,
-
- // YUVA422
- AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9,
- AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12,
- AV_PIX_FMT_YUVA422P16,
-
- // YUVA420
- AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9,
- AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
-
- // YUVJ
- AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
- AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
- AV_PIX_FMT_YUVJ411P,
-
- // YUV444
- AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV444P9,
- AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12,
- AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
-
- // YUV440
- AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV440P10,
- AV_PIX_FMT_YUV440P12,
-
- // YUV422
- AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV422P9,
- AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12,
- AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16,
-
- // YUV420
- AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV420P9,
- AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12,
- AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16,
-
- // YUV411
- AV_PIX_FMT_YUV411P,
-
- // YUV410
- AV_PIX_FMT_YUV410P,
-
- // GBR
- AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9,
- AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
- AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
-
- // GBRA
- AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10,
- AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
-
- // GRAY
- AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
- AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
- AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
-
- AV_PIX_FMT_NONE
- };
- static const enum AVPixelFormat alpha_pix_fmts[] = {
- AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9,
- AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12,
- AV_PIX_FMT_YUVA444P16,
- AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9,
- AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12,
- AV_PIX_FMT_YUVA422P16,
- AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9,
- AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
- AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10,
- AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
- AV_PIX_FMT_NONE
- };
-
- AVFilterFormats *fmts_list = ff_make_format_list(s->alpha ? alpha_pix_fmts : pix_fmts);
- if (!fmts_list)
- return AVERROR(ENOMEM);
- return ff_set_common_formats(ctx, fmts_list);
- }
-
- #define DEFINE_REMAP1_LINE(bits, div) \
- static void remap1_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \
- ptrdiff_t in_linesize, \
- const int16_t *const u, const int16_t *const v, \
- const int16_t *const ker) \
- { \
- const uint##bits##_t *const s = (const uint##bits##_t *const)src; \
- uint##bits##_t *d = (uint##bits##_t *)dst; \
- \
- in_linesize /= div; \
- \
- for (int x = 0; x < width; x++) \
- d[x] = s[v[x] * in_linesize + u[x]]; \
- }
-
- DEFINE_REMAP1_LINE( 8, 1)
- DEFINE_REMAP1_LINE(16, 2)
-
- /**
- * Generate remapping function with a given window size and pixel depth.
- *
- * @param ws size of interpolation window
- * @param bits number of bits per pixel
- */
- #define DEFINE_REMAP(ws, bits) \
- static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
- { \
- ThreadData *td = arg; \
- const V360Context *s = ctx->priv; \
- const AVFrame *in = td->in; \
- AVFrame *out = td->out; \
- \
- for (int stereo = 0; stereo < 1 + s->out_stereo > STEREO_2D; stereo++) { \
- for (int plane = 0; plane < s->nb_planes; plane++) { \
- const unsigned map = s->map[plane]; \
- const int in_linesize = in->linesize[plane]; \
- const int out_linesize = out->linesize[plane]; \
- const int uv_linesize = s->uv_linesize[plane]; \
- const int in_offset_w = stereo ? s->in_offset_w[plane] : 0; \
- const int in_offset_h = stereo ? s->in_offset_h[plane] : 0; \
- const int out_offset_w = stereo ? s->out_offset_w[plane] : 0; \
- const int out_offset_h = stereo ? s->out_offset_h[plane] : 0; \
- const uint8_t *const src = in->data[plane] + \
- in_offset_h * in_linesize + in_offset_w * (bits >> 3); \
- uint8_t *dst = out->data[plane] + out_offset_h * out_linesize + out_offset_w * (bits >> 3); \
- const uint8_t *mask = plane == 3 ? s->mask : NULL; \
- const int width = s->pr_width[plane]; \
- const int height = s->pr_height[plane]; \
- \
- const int slice_start = (height * jobnr ) / nb_jobs; \
- const int slice_end = (height * (jobnr + 1)) / nb_jobs; \
- \
- for (int y = slice_start; y < slice_end && !mask; y++) { \
- const int16_t *const u = s->u[map] + y * uv_linesize * ws * ws; \
- const int16_t *const v = s->v[map] + y * uv_linesize * ws * ws; \
- const int16_t *const ker = s->ker[map] + y * uv_linesize * ws * ws; \
- \
- s->remap_line(dst + y * out_linesize, width, src, in_linesize, u, v, ker); \
- } \
- \
- for (int y = slice_start; y < slice_end && mask; y++) { \
- memcpy(dst + y * out_linesize, mask + y * width * (bits >> 3), width * (bits >> 3)); \
- } \
- } \
- } \
- \
- return 0; \
- }
-
- DEFINE_REMAP(1, 8)
- DEFINE_REMAP(2, 8)
- DEFINE_REMAP(4, 8)
- DEFINE_REMAP(1, 16)
- DEFINE_REMAP(2, 16)
- DEFINE_REMAP(4, 16)
-
- #define DEFINE_REMAP_LINE(ws, bits, div) \
- static void remap##ws##_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \
- ptrdiff_t in_linesize, \
- const int16_t *const u, const int16_t *const v, \
- const int16_t *const ker) \
- { \
- const uint##bits##_t *const s = (const uint##bits##_t *const)src; \
- uint##bits##_t *d = (uint##bits##_t *)dst; \
- \
- in_linesize /= div; \
- \
- for (int x = 0; x < width; x++) { \
- const int16_t *const uu = u + x * ws * ws; \
- const int16_t *const vv = v + x * ws * ws; \
- const int16_t *const kker = ker + x * ws * ws; \
- int tmp = 0; \
- \
- for (int i = 0; i < ws; i++) { \
- for (int j = 0; j < ws; j++) { \
- tmp += kker[i * ws + j] * s[vv[i * ws + j] * in_linesize + uu[i * ws + j]]; \
- } \
- } \
- \
- d[x] = av_clip_uint##bits(tmp >> 14); \
- } \
- }
-
- DEFINE_REMAP_LINE(2, 8, 1)
- DEFINE_REMAP_LINE(4, 8, 1)
- DEFINE_REMAP_LINE(2, 16, 2)
- DEFINE_REMAP_LINE(4, 16, 2)
-
- void ff_v360_init(V360Context *s, int depth)
- {
- switch (s->interp) {
- case NEAREST:
- s->remap_line = depth <= 8 ? remap1_8bit_line_c : remap1_16bit_line_c;
- break;
- case BILINEAR:
- s->remap_line = depth <= 8 ? remap2_8bit_line_c : remap2_16bit_line_c;
- break;
- case BICUBIC:
- case LANCZOS:
- case SPLINE16:
- case GAUSSIAN:
- s->remap_line = depth <= 8 ? remap4_8bit_line_c : remap4_16bit_line_c;
- break;
- }
-
- if (ARCH_X86)
- ff_v360_init_x86(s, depth);
- }
-
- /**
- * Save nearest pixel coordinates for remapping.
- *
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- * @param rmap calculated 4x4 window
- * @param u u remap data
- * @param v v remap data
- * @param ker ker remap data
- */
- static void nearest_kernel(float du, float dv, const XYRemap *rmap,
- int16_t *u, int16_t *v, int16_t *ker)
- {
- const int i = lrintf(dv) + 1;
- const int j = lrintf(du) + 1;
-
- u[0] = rmap->u[i][j];
- v[0] = rmap->v[i][j];
- }
-
- /**
- * Calculate kernel for bilinear interpolation.
- *
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- * @param rmap calculated 4x4 window
- * @param u u remap data
- * @param v v remap data
- * @param ker ker remap data
- */
- static void bilinear_kernel(float du, float dv, const XYRemap *rmap,
- int16_t *u, int16_t *v, int16_t *ker)
- {
- for (int i = 0; i < 2; i++) {
- for (int j = 0; j < 2; j++) {
- u[i * 2 + j] = rmap->u[i + 1][j + 1];
- v[i * 2 + j] = rmap->v[i + 1][j + 1];
- }
- }
-
- ker[0] = lrintf((1.f - du) * (1.f - dv) * 16385.f);
- ker[1] = lrintf( du * (1.f - dv) * 16385.f);
- ker[2] = lrintf((1.f - du) * dv * 16385.f);
- ker[3] = lrintf( du * dv * 16385.f);
- }
-
- /**
- * Calculate 1-dimensional cubic coefficients.
- *
- * @param t relative coordinate
- * @param coeffs coefficients
- */
- static inline void calculate_bicubic_coeffs(float t, float *coeffs)
- {
- const float tt = t * t;
- const float ttt = t * t * t;
-
- coeffs[0] = - t / 3.f + tt / 2.f - ttt / 6.f;
- coeffs[1] = 1.f - t / 2.f - tt + ttt / 2.f;
- coeffs[2] = t + tt / 2.f - ttt / 2.f;
- coeffs[3] = - t / 6.f + ttt / 6.f;
- }
-
- /**
- * Calculate kernel for bicubic interpolation.
- *
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- * @param rmap calculated 4x4 window
- * @param u u remap data
- * @param v v remap data
- * @param ker ker remap data
- */
- static void bicubic_kernel(float du, float dv, const XYRemap *rmap,
- int16_t *u, int16_t *v, int16_t *ker)
- {
- float du_coeffs[4];
- float dv_coeffs[4];
-
- calculate_bicubic_coeffs(du, du_coeffs);
- calculate_bicubic_coeffs(dv, dv_coeffs);
-
- for (int i = 0; i < 4; i++) {
- for (int j = 0; j < 4; j++) {
- u[i * 4 + j] = rmap->u[i][j];
- v[i * 4 + j] = rmap->v[i][j];
- ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
- }
- }
- }
-
- /**
- * Calculate 1-dimensional lanczos coefficients.
- *
- * @param t relative coordinate
- * @param coeffs coefficients
- */
- static inline void calculate_lanczos_coeffs(float t, float *coeffs)
- {
- float sum = 0.f;
-
- for (int i = 0; i < 4; i++) {
- const float x = M_PI * (t - i + 1);
- if (x == 0.f) {
- coeffs[i] = 1.f;
- } else {
- coeffs[i] = sinf(x) * sinf(x / 2.f) / (x * x / 2.f);
- }
- sum += coeffs[i];
- }
-
- for (int i = 0; i < 4; i++) {
- coeffs[i] /= sum;
- }
- }
-
- /**
- * Calculate kernel for lanczos interpolation.
- *
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- * @param rmap calculated 4x4 window
- * @param u u remap data
- * @param v v remap data
- * @param ker ker remap data
- */
- static void lanczos_kernel(float du, float dv, const XYRemap *rmap,
- int16_t *u, int16_t *v, int16_t *ker)
- {
- float du_coeffs[4];
- float dv_coeffs[4];
-
- calculate_lanczos_coeffs(du, du_coeffs);
- calculate_lanczos_coeffs(dv, dv_coeffs);
-
- for (int i = 0; i < 4; i++) {
- for (int j = 0; j < 4; j++) {
- u[i * 4 + j] = rmap->u[i][j];
- v[i * 4 + j] = rmap->v[i][j];
- ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
- }
- }
- }
-
- /**
- * Calculate 1-dimensional spline16 coefficients.
- *
- * @param t relative coordinate
- * @param coeffs coefficients
- */
- static void calculate_spline16_coeffs(float t, float *coeffs)
- {
- coeffs[0] = ((-1.f / 3.f * t + 0.8f) * t - 7.f / 15.f) * t;
- coeffs[1] = ((t - 9.f / 5.f) * t - 0.2f) * t + 1.f;
- coeffs[2] = ((6.f / 5.f - t) * t + 0.8f) * t;
- coeffs[3] = ((1.f / 3.f * t - 0.2f) * t - 2.f / 15.f) * t;
- }
-
- /**
- * Calculate kernel for spline16 interpolation.
- *
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- * @param rmap calculated 4x4 window
- * @param u u remap data
- * @param v v remap data
- * @param ker ker remap data
- */
- static void spline16_kernel(float du, float dv, const XYRemap *rmap,
- int16_t *u, int16_t *v, int16_t *ker)
- {
- float du_coeffs[4];
- float dv_coeffs[4];
-
- calculate_spline16_coeffs(du, du_coeffs);
- calculate_spline16_coeffs(dv, dv_coeffs);
-
- for (int i = 0; i < 4; i++) {
- for (int j = 0; j < 4; j++) {
- u[i * 4 + j] = rmap->u[i][j];
- v[i * 4 + j] = rmap->v[i][j];
- ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
- }
- }
- }
-
- /**
- * Calculate 1-dimensional gaussian coefficients.
- *
- * @param t relative coordinate
- * @param coeffs coefficients
- */
- static void calculate_gaussian_coeffs(float t, float *coeffs)
- {
- float sum = 0.f;
-
- for (int i = 0; i < 4; i++) {
- const float x = t - (i - 1);
- if (x == 0.f) {
- coeffs[i] = 1.f;
- } else {
- coeffs[i] = expf(-2.f * x * x) * expf(-x * x / 2.f);
- }
- sum += coeffs[i];
- }
-
- for (int i = 0; i < 4; i++) {
- coeffs[i] /= sum;
- }
- }
-
- /**
- * Calculate kernel for gaussian interpolation.
- *
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- * @param rmap calculated 4x4 window
- * @param u u remap data
- * @param v v remap data
- * @param ker ker remap data
- */
- static void gaussian_kernel(float du, float dv, const XYRemap *rmap,
- int16_t *u, int16_t *v, int16_t *ker)
- {
- float du_coeffs[4];
- float dv_coeffs[4];
-
- calculate_gaussian_coeffs(du, du_coeffs);
- calculate_gaussian_coeffs(dv, dv_coeffs);
-
- for (int i = 0; i < 4; i++) {
- for (int j = 0; j < 4; j++) {
- u[i * 4 + j] = rmap->u[i][j];
- v[i * 4 + j] = rmap->v[i][j];
- ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
- }
- }
- }
-
- /**
- * Modulo operation with only positive remainders.
- *
- * @param a dividend
- * @param b divisor
- *
- * @return positive remainder of (a / b)
- */
- static inline int mod(int a, int b)
- {
- const int res = a % b;
- if (res < 0) {
- return res + b;
- } else {
- return res;
- }
- }
-
- /**
- * Convert char to corresponding direction.
- * Used for cubemap options.
- */
- static int get_direction(char c)
- {
- switch (c) {
- case 'r':
- return RIGHT;
- case 'l':
- return LEFT;
- case 'u':
- return UP;
- case 'd':
- return DOWN;
- case 'f':
- return FRONT;
- case 'b':
- return BACK;
- default:
- return -1;
- }
- }
-
- /**
- * Convert char to corresponding rotation angle.
- * Used for cubemap options.
- */
- static int get_rotation(char c)
- {
- switch (c) {
- case '0':
- return ROT_0;
- case '1':
- return ROT_90;
- case '2':
- return ROT_180;
- case '3':
- return ROT_270;
- default:
- return -1;
- }
- }
-
- /**
- * Convert char to corresponding rotation order.
- */
- static int get_rorder(char c)
- {
- switch (c) {
- case 'Y':
- case 'y':
- return YAW;
- case 'P':
- case 'p':
- return PITCH;
- case 'R':
- case 'r':
- return ROLL;
- default:
- return -1;
- }
- }
-
- /**
- * Prepare data for processing cubemap input format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_cube_in(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- for (int face = 0; face < NB_FACES; face++) {
- const char c = s->in_forder[face];
- int direction;
-
- if (c == '\0') {
- av_log(ctx, AV_LOG_ERROR,
- "Incomplete in_forder option. Direction for all 6 faces should be specified.\n");
- return AVERROR(EINVAL);
- }
-
- direction = get_direction(c);
- if (direction == -1) {
- av_log(ctx, AV_LOG_ERROR,
- "Incorrect direction symbol '%c' in in_forder option.\n", c);
- return AVERROR(EINVAL);
- }
-
- s->in_cubemap_face_order[direction] = face;
- }
-
- for (int face = 0; face < NB_FACES; face++) {
- const char c = s->in_frot[face];
- int rotation;
-
- if (c == '\0') {
- av_log(ctx, AV_LOG_ERROR,
- "Incomplete in_frot option. Rotation for all 6 faces should be specified.\n");
- return AVERROR(EINVAL);
- }
-
- rotation = get_rotation(c);
- if (rotation == -1) {
- av_log(ctx, AV_LOG_ERROR,
- "Incorrect rotation symbol '%c' in in_frot option.\n", c);
- return AVERROR(EINVAL);
- }
-
- s->in_cubemap_face_rotation[face] = rotation;
- }
-
- return 0;
- }
-
- /**
- * Prepare data for processing cubemap output format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_cube_out(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- for (int face = 0; face < NB_FACES; face++) {
- const char c = s->out_forder[face];
- int direction;
-
- if (c == '\0') {
- av_log(ctx, AV_LOG_ERROR,
- "Incomplete out_forder option. Direction for all 6 faces should be specified.\n");
- return AVERROR(EINVAL);
- }
-
- direction = get_direction(c);
- if (direction == -1) {
- av_log(ctx, AV_LOG_ERROR,
- "Incorrect direction symbol '%c' in out_forder option.\n", c);
- return AVERROR(EINVAL);
- }
-
- s->out_cubemap_direction_order[face] = direction;
- }
-
- for (int face = 0; face < NB_FACES; face++) {
- const char c = s->out_frot[face];
- int rotation;
-
- if (c == '\0') {
- av_log(ctx, AV_LOG_ERROR,
- "Incomplete out_frot option. Rotation for all 6 faces should be specified.\n");
- return AVERROR(EINVAL);
- }
-
- rotation = get_rotation(c);
- if (rotation == -1) {
- av_log(ctx, AV_LOG_ERROR,
- "Incorrect rotation symbol '%c' in out_frot option.\n", c);
- return AVERROR(EINVAL);
- }
-
- s->out_cubemap_face_rotation[face] = rotation;
- }
-
- return 0;
- }
-
- static inline void rotate_cube_face(float *uf, float *vf, int rotation)
- {
- float tmp;
-
- switch (rotation) {
- case ROT_0:
- break;
- case ROT_90:
- tmp = *uf;
- *uf = -*vf;
- *vf = tmp;
- break;
- case ROT_180:
- *uf = -*uf;
- *vf = -*vf;
- break;
- case ROT_270:
- tmp = -*uf;
- *uf = *vf;
- *vf = tmp;
- break;
- default:
- av_assert0(0);
- }
- }
-
- static inline void rotate_cube_face_inverse(float *uf, float *vf, int rotation)
- {
- float tmp;
-
- switch (rotation) {
- case ROT_0:
- break;
- case ROT_90:
- tmp = -*uf;
- *uf = *vf;
- *vf = tmp;
- break;
- case ROT_180:
- *uf = -*uf;
- *vf = -*vf;
- break;
- case ROT_270:
- tmp = *uf;
- *uf = -*vf;
- *vf = tmp;
- break;
- default:
- av_assert0(0);
- }
- }
-
- /**
- * Normalize vector.
- *
- * @param vec vector
- */
- static void normalize_vector(float *vec)
- {
- const float norm = sqrtf(vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]);
-
- vec[0] /= norm;
- vec[1] /= norm;
- vec[2] /= norm;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding cubemap position.
- * Common operation for every cubemap.
- *
- * @param s filter private context
- * @param uf horizontal cubemap coordinate [0, 1)
- * @param vf vertical cubemap coordinate [0, 1)
- * @param face face of cubemap
- * @param vec coordinates on sphere
- * @param scalew scale for uf
- * @param scaleh scale for vf
- */
- static void cube_to_xyz(const V360Context *s,
- float uf, float vf, int face,
- float *vec, float scalew, float scaleh)
- {
- const int direction = s->out_cubemap_direction_order[face];
- float l_x, l_y, l_z;
-
- uf /= scalew;
- vf /= scaleh;
-
- rotate_cube_face_inverse(&uf, &vf, s->out_cubemap_face_rotation[face]);
-
- switch (direction) {
- case RIGHT:
- l_x = 1.f;
- l_y = -vf;
- l_z = uf;
- break;
- case LEFT:
- l_x = -1.f;
- l_y = -vf;
- l_z = -uf;
- break;
- case UP:
- l_x = uf;
- l_y = 1.f;
- l_z = -vf;
- break;
- case DOWN:
- l_x = uf;
- l_y = -1.f;
- l_z = vf;
- break;
- case FRONT:
- l_x = uf;
- l_y = -vf;
- l_z = -1.f;
- break;
- case BACK:
- l_x = -uf;
- l_y = -vf;
- l_z = 1.f;
- break;
- default:
- av_assert0(0);
- }
-
- vec[0] = l_x;
- vec[1] = l_y;
- vec[2] = l_z;
-
- normalize_vector(vec);
- }
-
- /**
- * Calculate cubemap position for corresponding 3D coordinates on sphere.
- * Common operation for every cubemap.
- *
- * @param s filter private context
- * @param vec coordinated on sphere
- * @param uf horizontal cubemap coordinate [0, 1)
- * @param vf vertical cubemap coordinate [0, 1)
- * @param direction direction of view
- */
- static void xyz_to_cube(const V360Context *s,
- const float *vec,
- float *uf, float *vf, int *direction)
- {
- const float phi = atan2f(vec[0], -vec[2]);
- const float theta = asinf(-vec[1]);
- float phi_norm, theta_threshold;
- int face;
-
- if (phi >= -M_PI_4 && phi < M_PI_4) {
- *direction = FRONT;
- phi_norm = phi;
- } else if (phi >= -(M_PI_2 + M_PI_4) && phi < -M_PI_4) {
- *direction = LEFT;
- phi_norm = phi + M_PI_2;
- } else if (phi >= M_PI_4 && phi < M_PI_2 + M_PI_4) {
- *direction = RIGHT;
- phi_norm = phi - M_PI_2;
- } else {
- *direction = BACK;
- phi_norm = phi + ((phi > 0.f) ? -M_PI : M_PI);
- }
-
- theta_threshold = atanf(cosf(phi_norm));
- if (theta > theta_threshold) {
- *direction = DOWN;
- } else if (theta < -theta_threshold) {
- *direction = UP;
- }
-
- switch (*direction) {
- case RIGHT:
- *uf = vec[2] / vec[0];
- *vf = -vec[1] / vec[0];
- break;
- case LEFT:
- *uf = vec[2] / vec[0];
- *vf = vec[1] / vec[0];
- break;
- case UP:
- *uf = vec[0] / vec[1];
- *vf = -vec[2] / vec[1];
- break;
- case DOWN:
- *uf = -vec[0] / vec[1];
- *vf = -vec[2] / vec[1];
- break;
- case FRONT:
- *uf = -vec[0] / vec[2];
- *vf = vec[1] / vec[2];
- break;
- case BACK:
- *uf = -vec[0] / vec[2];
- *vf = -vec[1] / vec[2];
- break;
- default:
- av_assert0(0);
- }
-
- face = s->in_cubemap_face_order[*direction];
- rotate_cube_face(uf, vf, s->in_cubemap_face_rotation[face]);
-
- (*uf) *= s->input_mirror_modifier[0];
- (*vf) *= s->input_mirror_modifier[1];
- }
-
- /**
- * Find position on another cube face in case of overflow/underflow.
- * Used for calculation of interpolation window.
- *
- * @param s filter private context
- * @param uf horizontal cubemap coordinate
- * @param vf vertical cubemap coordinate
- * @param direction direction of view
- * @param new_uf new horizontal cubemap coordinate
- * @param new_vf new vertical cubemap coordinate
- * @param face face position on cubemap
- */
- static void process_cube_coordinates(const V360Context *s,
- float uf, float vf, int direction,
- float *new_uf, float *new_vf, int *face)
- {
- /*
- * Cubemap orientation
- *
- * width
- * <------->
- * +-------+
- * | | U
- * | up | h ------->
- * +-------+-------+-------+-------+ ^ e |
- * | | | | | | i V |
- * | left | front | right | back | | g |
- * +-------+-------+-------+-------+ v h v
- * | | t
- * | down |
- * +-------+
- */
-
- *face = s->in_cubemap_face_order[direction];
- rotate_cube_face_inverse(&uf, &vf, s->in_cubemap_face_rotation[*face]);
-
- if ((uf < -1.f || uf >= 1.f) && (vf < -1.f || vf >= 1.f)) {
- // There are no pixels to use in this case
- *new_uf = uf;
- *new_vf = vf;
- } else if (uf < -1.f) {
- uf += 2.f;
- switch (direction) {
- case RIGHT:
- direction = FRONT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case LEFT:
- direction = BACK;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case UP:
- direction = LEFT;
- *new_uf = vf;
- *new_vf = -uf;
- break;
- case DOWN:
- direction = LEFT;
- *new_uf = -vf;
- *new_vf = uf;
- break;
- case FRONT:
- direction = LEFT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case BACK:
- direction = RIGHT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- default:
- av_assert0(0);
- }
- } else if (uf >= 1.f) {
- uf -= 2.f;
- switch (direction) {
- case RIGHT:
- direction = BACK;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case LEFT:
- direction = FRONT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case UP:
- direction = RIGHT;
- *new_uf = -vf;
- *new_vf = uf;
- break;
- case DOWN:
- direction = RIGHT;
- *new_uf = vf;
- *new_vf = -uf;
- break;
- case FRONT:
- direction = RIGHT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case BACK:
- direction = LEFT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- default:
- av_assert0(0);
- }
- } else if (vf < -1.f) {
- vf += 2.f;
- switch (direction) {
- case RIGHT:
- direction = UP;
- *new_uf = vf;
- *new_vf = -uf;
- break;
- case LEFT:
- direction = UP;
- *new_uf = -vf;
- *new_vf = uf;
- break;
- case UP:
- direction = BACK;
- *new_uf = -uf;
- *new_vf = -vf;
- break;
- case DOWN:
- direction = FRONT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case FRONT:
- direction = UP;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case BACK:
- direction = UP;
- *new_uf = -uf;
- *new_vf = -vf;
- break;
- default:
- av_assert0(0);
- }
- } else if (vf >= 1.f) {
- vf -= 2.f;
- switch (direction) {
- case RIGHT:
- direction = DOWN;
- *new_uf = -vf;
- *new_vf = uf;
- break;
- case LEFT:
- direction = DOWN;
- *new_uf = vf;
- *new_vf = -uf;
- break;
- case UP:
- direction = FRONT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case DOWN:
- direction = BACK;
- *new_uf = -uf;
- *new_vf = -vf;
- break;
- case FRONT:
- direction = DOWN;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case BACK:
- direction = DOWN;
- *new_uf = -uf;
- *new_vf = -vf;
- break;
- default:
- av_assert0(0);
- }
- } else {
- // Inside cube face
- *new_uf = uf;
- *new_vf = vf;
- }
-
- *face = s->in_cubemap_face_order[direction];
- rotate_cube_face(new_uf, new_vf, s->in_cubemap_face_rotation[*face]);
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in cubemap3x2 format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int cube3x2_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (s->out_width / 3.f) : 1.f - s->out_pad;
- const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (s->out_height / 2.f) : 1.f - s->out_pad;
-
- const float ew = width / 3.f;
- const float eh = height / 2.f;
-
- const int u_face = floorf(i / ew);
- const int v_face = floorf(j / eh);
- const int face = u_face + 3 * v_face;
-
- const int u_shift = ceilf(ew * u_face);
- const int v_shift = ceilf(eh * v_face);
- const int ewi = ceilf(ew * (u_face + 1)) - u_shift;
- const int ehi = ceilf(eh * (v_face + 1)) - v_shift;
-
- const float uf = 2.f * (i - u_shift + 0.5f) / ewi - 1.f;
- const float vf = 2.f * (j - v_shift + 0.5f) / ehi - 1.f;
-
- cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
-
- return 1;
- }
-
- /**
- * Calculate frame position in cubemap3x2 format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_cube3x2(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (s->in_width / 3.f) : 1.f - s->in_pad;
- const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (s->in_height / 2.f) : 1.f - s->in_pad;
- const float ew = width / 3.f;
- const float eh = height / 2.f;
- float uf, vf;
- int ui, vi;
- int ewi, ehi;
- int direction, face;
- int u_face, v_face;
-
- xyz_to_cube(s, vec, &uf, &vf, &direction);
-
- uf *= scalew;
- vf *= scaleh;
-
- face = s->in_cubemap_face_order[direction];
- u_face = face % 3;
- v_face = face / 3;
- ewi = ceilf(ew * (u_face + 1)) - ceilf(ew * u_face);
- ehi = ceilf(eh * (v_face + 1)) - ceilf(eh * v_face);
-
- uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
- vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- int new_ui = ui + j;
- int new_vi = vi + i;
- int u_shift, v_shift;
- int new_ewi, new_ehi;
-
- if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
- face = s->in_cubemap_face_order[direction];
-
- u_face = face % 3;
- v_face = face / 3;
- u_shift = ceilf(ew * u_face);
- v_shift = ceilf(eh * v_face);
- } else {
- uf = 2.f * new_ui / ewi - 1.f;
- vf = 2.f * new_vi / ehi - 1.f;
-
- uf /= scalew;
- vf /= scaleh;
-
- process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
-
- uf *= scalew;
- vf *= scaleh;
-
- u_face = face % 3;
- v_face = face / 3;
- u_shift = ceilf(ew * u_face);
- v_shift = ceilf(eh * v_face);
- new_ewi = ceilf(ew * (u_face + 1)) - u_shift;
- new_ehi = ceilf(eh * (v_face + 1)) - v_shift;
-
- new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
- new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
- }
-
- us[i + 1][j + 1] = u_shift + new_ui;
- vs[i + 1][j + 1] = v_shift + new_vi;
- }
- }
-
- return 1;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in cubemap1x6 format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int cube1x6_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float scalew = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / s->out_width : 1.f - s->out_pad;
- const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (s->out_height / 6.f) : 1.f - s->out_pad;
-
- const float ew = width;
- const float eh = height / 6.f;
-
- const int face = floorf(j / eh);
-
- const int v_shift = ceilf(eh * face);
- const int ehi = ceilf(eh * (face + 1)) - v_shift;
-
- const float uf = 2.f * (i + 0.5f) / ew - 1.f;
- const float vf = 2.f * (j - v_shift + 0.5f) / ehi - 1.f;
-
- cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
-
- return 1;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in cubemap6x1 format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int cube6x1_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (s->out_width / 6.f) : 1.f - s->out_pad;
- const float scaleh = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / s->out_height : 1.f - s->out_pad;
-
- const float ew = width / 6.f;
- const float eh = height;
-
- const int face = floorf(i / ew);
-
- const int u_shift = ceilf(ew * face);
- const int ewi = ceilf(ew * (face + 1)) - u_shift;
-
- const float uf = 2.f * (i - u_shift + 0.5f) / ewi - 1.f;
- const float vf = 2.f * (j + 0.5f) / eh - 1.f;
-
- cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
-
- return 1;
- }
-
- /**
- * Calculate frame position in cubemap1x6 format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_cube1x6(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float scalew = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / s->in_width : 1.f - s->in_pad;
- const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (s->in_height / 6.f) : 1.f - s->in_pad;
- const float eh = height / 6.f;
- const int ewi = width;
- float uf, vf;
- int ui, vi;
- int ehi;
- int direction, face;
-
- xyz_to_cube(s, vec, &uf, &vf, &direction);
-
- uf *= scalew;
- vf *= scaleh;
-
- face = s->in_cubemap_face_order[direction];
- ehi = ceilf(eh * (face + 1)) - ceilf(eh * face);
-
- uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
- vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- int new_ui = ui + j;
- int new_vi = vi + i;
- int v_shift;
- int new_ehi;
-
- if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
- face = s->in_cubemap_face_order[direction];
-
- v_shift = ceilf(eh * face);
- } else {
- uf = 2.f * new_ui / ewi - 1.f;
- vf = 2.f * new_vi / ehi - 1.f;
-
- uf /= scalew;
- vf /= scaleh;
-
- process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
-
- uf *= scalew;
- vf *= scaleh;
-
- v_shift = ceilf(eh * face);
- new_ehi = ceilf(eh * (face + 1)) - v_shift;
-
- new_ui = av_clip(lrintf(0.5f * ewi * (uf + 1.f)), 0, ewi - 1);
- new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
- }
-
- us[i + 1][j + 1] = new_ui;
- vs[i + 1][j + 1] = v_shift + new_vi;
- }
- }
-
- return 1;
- }
-
- /**
- * Calculate frame position in cubemap6x1 format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_cube6x1(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (s->in_width / 6.f) : 1.f - s->in_pad;
- const float scaleh = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / s->in_height : 1.f - s->in_pad;
- const float ew = width / 6.f;
- const int ehi = height;
- float uf, vf;
- int ui, vi;
- int ewi;
- int direction, face;
-
- xyz_to_cube(s, vec, &uf, &vf, &direction);
-
- uf *= scalew;
- vf *= scaleh;
-
- face = s->in_cubemap_face_order[direction];
- ewi = ceilf(ew * (face + 1)) - ceilf(ew * face);
-
- uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
- vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- int new_ui = ui + j;
- int new_vi = vi + i;
- int u_shift;
- int new_ewi;
-
- if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
- face = s->in_cubemap_face_order[direction];
-
- u_shift = ceilf(ew * face);
- } else {
- uf = 2.f * new_ui / ewi - 1.f;
- vf = 2.f * new_vi / ehi - 1.f;
-
- uf /= scalew;
- vf /= scaleh;
-
- process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
-
- uf *= scalew;
- vf *= scaleh;
-
- u_shift = ceilf(ew * face);
- new_ewi = ceilf(ew * (face + 1)) - u_shift;
-
- new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
- new_vi = av_clip(lrintf(0.5f * ehi * (vf + 1.f)), 0, ehi - 1);
- }
-
- us[i + 1][j + 1] = u_shift + new_ui;
- vs[i + 1][j + 1] = new_vi;
- }
- }
-
- return 1;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in equirectangular format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int equirect_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float phi = ((2.f * i) / width - 1.f) * M_PI;
- const float theta = ((2.f * j) / height - 1.f) * M_PI_2;
-
- const float sin_phi = sinf(phi);
- const float cos_phi = cosf(phi);
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
-
- vec[0] = cos_theta * sin_phi;
- vec[1] = -sin_theta;
- vec[2] = -cos_theta * cos_phi;
-
- return 1;
- }
-
- /**
- * Prepare data for processing stereographic output format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_stereographic_out(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- s->flat_range[0] = tanf(FFMIN(s->h_fov, 359.f) * M_PI / 720.f);
- s->flat_range[1] = tanf(FFMIN(s->v_fov, 359.f) * M_PI / 720.f);
-
- return 0;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in stereographic format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int stereographic_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float x = ((2.f * i) / width - 1.f) * s->flat_range[0];
- const float y = ((2.f * j) / height - 1.f) * s->flat_range[1];
- const float xy = x * x + y * y;
-
- vec[0] = 2.f * x / (1.f + xy);
- vec[1] = (-1.f + xy) / (1.f + xy);
- vec[2] = 2.f * y / (1.f + xy);
-
- normalize_vector(vec);
-
- return 1;
- }
-
- /**
- * Prepare data for processing stereographic input format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_stereographic_in(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- s->iflat_range[0] = tanf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f);
- s->iflat_range[1] = tanf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f);
-
- return 0;
- }
-
- /**
- * Calculate frame position in stereographic format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_stereographic(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float x = vec[0] / (1.f - vec[1]) / s->iflat_range[0] * s->input_mirror_modifier[0];
- const float y = vec[2] / (1.f - vec[1]) / s->iflat_range[1] * s->input_mirror_modifier[1];
- float uf, vf;
- int visible, ui, vi;
-
- uf = (x + 1.f) * width / 2.f;
- vf = (y + 1.f) * height / 2.f;
- ui = floorf(uf);
- vi = floorf(vf);
-
- visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width;
-
- *du = visible ? uf - ui : 0.f;
- *dv = visible ? vf - vi : 0.f;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- us[i + 1][j + 1] = visible ? av_clip(ui + j, 0, width - 1) : 0;
- vs[i + 1][j + 1] = visible ? av_clip(vi + i, 0, height - 1) : 0;
- }
- }
-
- return visible;
- }
-
- /**
- * Calculate frame position in equirectangular format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_equirect(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
- const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1];
- float uf, vf;
- int ui, vi;
-
- uf = (phi / M_PI + 1.f) * width / 2.f;
- vf = (theta / M_PI_2 + 1.f) * height / 2.f;
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- us[i + 1][j + 1] = mod(ui + j, width);
- vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
- }
- }
-
- return 1;
- }
-
- /**
- * Prepare data for processing flat input format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_flat_in(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- s->iflat_range[0] = tanf(0.5f * s->ih_fov * M_PI / 180.f);
- s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f);
-
- return 0;
- }
-
- /**
- * Calculate frame position in flat format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_flat(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float theta = acosf(vec[2]);
- const float r = tanf(theta);
- const float rr = fabsf(r) < 1e+6f ? r : hypotf(width, height);
- const float zf = -vec[2];
- const float h = hypotf(vec[0], vec[1]);
- const float c = h <= 1e-6f ? 1.f : rr / h;
- float uf = -vec[0] * c / s->iflat_range[0] * s->input_mirror_modifier[0];
- float vf = vec[1] * c / s->iflat_range[1] * s->input_mirror_modifier[1];
- int visible, ui, vi;
-
- uf = zf >= 0.f ? (uf + 1.f) * width / 2.f : 0.f;
- vf = zf >= 0.f ? (vf + 1.f) * height / 2.f : 0.f;
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- visible = vi >= 0 && vi < height && ui >= 0 && ui < width && zf >= 0.f;
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- us[i + 1][j + 1] = visible ? av_clip(ui + j, 0, width - 1) : 0;
- vs[i + 1][j + 1] = visible ? av_clip(vi + i, 0, height - 1) : 0;
- }
- }
-
- return visible;
- }
-
- /**
- * Calculate frame position in mercator format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_mercator(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
- const float theta = -vec[1] * s->input_mirror_modifier[1];
- float uf, vf;
- int ui, vi;
-
- uf = (phi / M_PI + 1.f) * width / 2.f;
- vf = (av_clipf(logf((1.f + theta) / (1.f - theta)) / (2.f * M_PI), -1.f, 1.f) + 1.f) * height / 2.f;
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- us[i + 1][j + 1] = av_clip(ui + j, 0, width - 1);
- vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
- }
- }
-
- return 1;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in mercator format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int mercator_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float phi = ((2.f * i) / width - 1.f) * M_PI + M_PI_2;
- const float y = ((2.f * j) / height - 1.f) * M_PI;
- const float div = expf(2.f * y) + 1.f;
-
- const float sin_phi = sinf(phi);
- const float cos_phi = cosf(phi);
- const float sin_theta = -2.f * expf(y) / div;
- const float cos_theta = -(expf(2.f * y) - 1.f) / div;
-
- vec[0] = sin_theta * cos_phi;
- vec[1] = cos_theta;
- vec[2] = sin_theta * sin_phi;
-
- return 1;
- }
-
- /**
- * Calculate frame position in ball format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_ball(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float l = hypotf(vec[0], vec[1]);
- const float r = sqrtf(1.f + vec[2]) / M_SQRT2;
- float uf, vf;
- int ui, vi;
-
- uf = (1.f + r * vec[0] * s->input_mirror_modifier[0] / (l > 0.f ? l : 1.f)) * width * 0.5f;
- vf = (1.f - r * vec[1] * s->input_mirror_modifier[1] / (l > 0.f ? l : 1.f)) * height * 0.5f;
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- us[i + 1][j + 1] = av_clip(ui + j, 0, width - 1);
- vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
- }
- }
-
- return 1;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in ball format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int ball_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float x = (2.f * i) / width - 1.f;
- const float y = (2.f * j) / height - 1.f;
- const float l = hypotf(x, y);
-
- if (l <= 1.f) {
- const float z = 2.f * l * sqrtf(1.f - l * l);
-
- vec[0] = z * x / (l > 0.f ? l : 1.f);
- vec[1] = -z * y / (l > 0.f ? l : 1.f);
- vec[2] = -1.f + 2.f * l * l;
- } else {
- vec[0] = 0.f;
- vec[1] = -1.f;
- vec[2] = 0.f;
- return 0;
- }
-
- return 1;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in hammer format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int hammer_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float x = ((2.f * i) / width - 1.f);
- const float y = ((2.f * j) / height - 1.f);
-
- const float xx = x * x;
- const float yy = y * y;
-
- const float z = sqrtf(1.f - xx * 0.5f - yy * 0.5f);
-
- const float a = M_SQRT2 * x * z;
- const float b = 2.f * z * z - 1.f;
-
- const float aa = a * a;
- const float bb = b * b;
-
- const float w = sqrtf(1.f - 2.f * yy * z * z);
-
- vec[0] = w * 2.f * a * b / (aa + bb);
- vec[1] = -M_SQRT2 * y * z;
- vec[2] = -w * (bb - aa) / (aa + bb);
-
- normalize_vector(vec);
-
- return 1;
- }
-
- /**
- * Calculate frame position in hammer format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_hammer(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float theta = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
-
- const float z = sqrtf(1.f + sqrtf(1.f - vec[1] * vec[1]) * cosf(theta * 0.5f));
- const float x = sqrtf(1.f - vec[1] * vec[1]) * sinf(theta * 0.5f) / z;
- const float y = -vec[1] / z * s->input_mirror_modifier[1];
- float uf, vf;
- int ui, vi;
-
- uf = (x + 1.f) * width / 2.f;
- vf = (y + 1.f) * height / 2.f;
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- us[i + 1][j + 1] = av_clip(ui + j, 0, width - 1);
- vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
- }
- }
-
- return 1;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in sinusoidal format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int sinusoidal_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float theta = ((2.f * j) / height - 1.f) * M_PI_2;
- const float phi = ((2.f * i) / width - 1.f) * M_PI / cosf(theta);
-
- const float sin_phi = sinf(phi);
- const float cos_phi = cosf(phi);
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
-
- vec[0] = cos_theta * sin_phi;
- vec[1] = -sin_theta;
- vec[2] = -cos_theta * cos_phi;
-
- normalize_vector(vec);
-
- return 1;
- }
-
- /**
- * Calculate frame position in sinusoidal format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_sinusoidal(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1];
- const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0] * cosf(theta);
- float uf, vf;
- int ui, vi;
-
- uf = (phi / M_PI + 1.f) * width / 2.f;
- vf = (theta / M_PI_2 + 1.f) * height / 2.f;
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- us[i + 1][j + 1] = av_clip(ui + j, 0, width - 1);
- vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
- }
- }
-
- return 1;
- }
-
- /**
- * Prepare data for processing equi-angular cubemap input format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_eac_in(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- if (s->ih_flip && s->iv_flip) {
- s->in_cubemap_face_order[RIGHT] = BOTTOM_LEFT;
- s->in_cubemap_face_order[LEFT] = BOTTOM_RIGHT;
- s->in_cubemap_face_order[UP] = TOP_LEFT;
- s->in_cubemap_face_order[DOWN] = TOP_RIGHT;
- s->in_cubemap_face_order[FRONT] = BOTTOM_MIDDLE;
- s->in_cubemap_face_order[BACK] = TOP_MIDDLE;
- } else if (s->ih_flip) {
- s->in_cubemap_face_order[RIGHT] = TOP_LEFT;
- s->in_cubemap_face_order[LEFT] = TOP_RIGHT;
- s->in_cubemap_face_order[UP] = BOTTOM_LEFT;
- s->in_cubemap_face_order[DOWN] = BOTTOM_RIGHT;
- s->in_cubemap_face_order[FRONT] = TOP_MIDDLE;
- s->in_cubemap_face_order[BACK] = BOTTOM_MIDDLE;
- } else if (s->iv_flip) {
- s->in_cubemap_face_order[RIGHT] = BOTTOM_RIGHT;
- s->in_cubemap_face_order[LEFT] = BOTTOM_LEFT;
- s->in_cubemap_face_order[UP] = TOP_RIGHT;
- s->in_cubemap_face_order[DOWN] = TOP_LEFT;
- s->in_cubemap_face_order[FRONT] = BOTTOM_MIDDLE;
- s->in_cubemap_face_order[BACK] = TOP_MIDDLE;
- } else {
- s->in_cubemap_face_order[RIGHT] = TOP_RIGHT;
- s->in_cubemap_face_order[LEFT] = TOP_LEFT;
- s->in_cubemap_face_order[UP] = BOTTOM_RIGHT;
- s->in_cubemap_face_order[DOWN] = BOTTOM_LEFT;
- s->in_cubemap_face_order[FRONT] = TOP_MIDDLE;
- s->in_cubemap_face_order[BACK] = BOTTOM_MIDDLE;
- }
-
- if (s->iv_flip) {
- s->in_cubemap_face_rotation[TOP_LEFT] = ROT_270;
- s->in_cubemap_face_rotation[TOP_MIDDLE] = ROT_90;
- s->in_cubemap_face_rotation[TOP_RIGHT] = ROT_270;
- s->in_cubemap_face_rotation[BOTTOM_LEFT] = ROT_0;
- s->in_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_0;
- s->in_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_0;
- } else {
- s->in_cubemap_face_rotation[TOP_LEFT] = ROT_0;
- s->in_cubemap_face_rotation[TOP_MIDDLE] = ROT_0;
- s->in_cubemap_face_rotation[TOP_RIGHT] = ROT_0;
- s->in_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270;
- s->in_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
- s->in_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270;
- }
-
- return 0;
- }
-
- /**
- * Prepare data for processing equi-angular cubemap output format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_eac_out(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- s->out_cubemap_direction_order[TOP_LEFT] = LEFT;
- s->out_cubemap_direction_order[TOP_MIDDLE] = FRONT;
- s->out_cubemap_direction_order[TOP_RIGHT] = RIGHT;
- s->out_cubemap_direction_order[BOTTOM_LEFT] = DOWN;
- s->out_cubemap_direction_order[BOTTOM_MIDDLE] = BACK;
- s->out_cubemap_direction_order[BOTTOM_RIGHT] = UP;
-
- s->out_cubemap_face_rotation[TOP_LEFT] = ROT_0;
- s->out_cubemap_face_rotation[TOP_MIDDLE] = ROT_0;
- s->out_cubemap_face_rotation[TOP_RIGHT] = ROT_0;
- s->out_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270;
- s->out_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
- s->out_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270;
-
- return 0;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in equi-angular cubemap format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int eac_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float pixel_pad = 2;
- const float u_pad = pixel_pad / width;
- const float v_pad = pixel_pad / height;
-
- int u_face, v_face, face;
-
- float l_x, l_y, l_z;
-
- float uf = (i + 0.5f) / width;
- float vf = (j + 0.5f) / height;
-
- // EAC has 2-pixel padding on faces except between faces on the same row
- // Padding pixels seems not to be stretched with tangent as regular pixels
- // Formulas below approximate original padding as close as I could get experimentally
-
- // Horizontal padding
- uf = 3.f * (uf - u_pad) / (1.f - 2.f * u_pad);
- if (uf < 0.f) {
- u_face = 0;
- uf -= 0.5f;
- } else if (uf >= 3.f) {
- u_face = 2;
- uf -= 2.5f;
- } else {
- u_face = floorf(uf);
- uf = fmodf(uf, 1.f) - 0.5f;
- }
-
- // Vertical padding
- v_face = floorf(vf * 2.f);
- vf = (vf - v_pad - 0.5f * v_face) / (0.5f - 2.f * v_pad) - 0.5f;
-
- if (uf >= -0.5f && uf < 0.5f) {
- uf = tanf(M_PI_2 * uf);
- } else {
- uf = 2.f * uf;
- }
- if (vf >= -0.5f && vf < 0.5f) {
- vf = tanf(M_PI_2 * vf);
- } else {
- vf = 2.f * vf;
- }
-
- face = u_face + 3 * v_face;
-
- switch (face) {
- case TOP_LEFT:
- l_x = -1.f;
- l_y = -vf;
- l_z = -uf;
- break;
- case TOP_MIDDLE:
- l_x = uf;
- l_y = -vf;
- l_z = -1.f;
- break;
- case TOP_RIGHT:
- l_x = 1.f;
- l_y = -vf;
- l_z = uf;
- break;
- case BOTTOM_LEFT:
- l_x = -vf;
- l_y = -1.f;
- l_z = uf;
- break;
- case BOTTOM_MIDDLE:
- l_x = -vf;
- l_y = uf;
- l_z = 1.f;
- break;
- case BOTTOM_RIGHT:
- l_x = -vf;
- l_y = 1.f;
- l_z = -uf;
- break;
- default:
- av_assert0(0);
- }
-
- vec[0] = l_x;
- vec[1] = l_y;
- vec[2] = l_z;
-
- normalize_vector(vec);
-
- return 1;
- }
-
- /**
- * Calculate frame position in equi-angular cubemap format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_eac(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float pixel_pad = 2;
- const float u_pad = pixel_pad / width;
- const float v_pad = pixel_pad / height;
-
- float uf, vf;
- int ui, vi;
- int direction, face;
- int u_face, v_face;
-
- xyz_to_cube(s, vec, &uf, &vf, &direction);
-
- face = s->in_cubemap_face_order[direction];
- u_face = face % 3;
- v_face = face / 3;
-
- uf = M_2_PI * atanf(uf) + 0.5f;
- vf = M_2_PI * atanf(vf) + 0.5f;
-
- // These formulas are inversed from eac_to_xyz ones
- uf = (uf + u_face) * (1.f - 2.f * u_pad) / 3.f + u_pad;
- vf = vf * (0.5f - 2.f * v_pad) + v_pad + 0.5f * v_face;
-
- uf *= width;
- vf *= height;
-
- uf -= 0.5f;
- vf -= 0.5f;
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- us[i + 1][j + 1] = av_clip(ui + j, 0, width - 1);
- vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
- }
- }
-
- return 1;
- }
-
- /**
- * Prepare data for processing flat output format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_flat_out(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- s->flat_range[0] = tanf(0.5f * s->h_fov * M_PI / 180.f);
- s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f);
-
- return 0;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in flat format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int flat_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float l_x = s->flat_range[0] * (2.f * i / width - 1.f);
- const float l_y = -s->flat_range[1] * (2.f * j / height - 1.f);
-
- vec[0] = l_x;
- vec[1] = l_y;
- vec[2] = -1.f;
-
- normalize_vector(vec);
-
- return 1;
- }
-
- /**
- * Prepare data for processing fisheye output format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_fisheye_out(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- s->flat_range[0] = s->h_fov / 180.f;
- s->flat_range[1] = s->v_fov / 180.f;
-
- return 0;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in fisheye format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int fisheye_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float uf = s->flat_range[0] * ((2.f * i) / width - 1.f);
- const float vf = s->flat_range[1] * ((2.f * j) / height - 1.f);
-
- const float phi = -atan2f(vf, uf);
- const float theta = -M_PI_2 * (1.f - hypotf(uf, vf));
-
- vec[0] = cosf(theta) * cosf(phi);
- vec[1] = cosf(theta) * sinf(phi);
- vec[2] = sinf(theta);
-
- normalize_vector(vec);
-
- return 1;
- }
-
- /**
- * Prepare data for processing fisheye input format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_fisheye_in(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- s->iflat_range[0] = s->ih_fov / 180.f;
- s->iflat_range[1] = s->iv_fov / 180.f;
-
- return 0;
- }
-
- /**
- * Calculate frame position in fisheye format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_fisheye(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float phi = -atan2f(hypotf(vec[0], vec[1]), -vec[2]) / M_PI;
- const float theta = -atan2f(vec[0], vec[1]);
-
- float uf = sinf(theta) * phi * s->input_mirror_modifier[0] / s->iflat_range[0];
- float vf = cosf(theta) * phi * s->input_mirror_modifier[1] / s->iflat_range[1];
-
- const int visible = hypotf(uf, vf) <= 0.5f;
- int ui, vi;
-
- uf = (uf + 0.5f) * width;
- vf = (vf + 0.5f) * height;
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = visible ? uf - ui : 0.f;
- *dv = visible ? vf - vi : 0.f;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- us[i + 1][j + 1] = visible ? av_clip(ui + j, 0, width - 1) : 0;
- vs[i + 1][j + 1] = visible ? av_clip(vi + i, 0, height - 1) : 0;
- }
- }
-
- return visible;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in pannini format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int pannini_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float uf = ((2.f * i) / width - 1.f);
- const float vf = ((2.f * j) / height - 1.f);
-
- const float d = s->h_fov;
- const float k = uf * uf / ((d + 1.f) * (d + 1.f));
- const float dscr = k * k * d * d - (k + 1.f) * (k * d * d - 1.f);
- const float clon = (-k * d + sqrtf(dscr)) / (k + 1.f);
- const float S = (d + 1.f) / (d + clon);
- const float lon = -(M_PI + atan2f(uf, S * clon));
- const float lat = -atan2f(vf, S);
-
- vec[0] = sinf(lon) * cosf(lat);
- vec[1] = sinf(lat);
- vec[2] = cosf(lon) * cosf(lat);
-
- normalize_vector(vec);
-
- return 1;
- }
-
- /**
- * Prepare data for processing cylindrical output format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_cylindrical_out(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- s->flat_range[0] = M_PI * s->h_fov / 360.f;
- s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f);
-
- return 0;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in cylindrical format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int cylindrical_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float uf = s->flat_range[0] * ((2.f * i) / width - 1.f);
- const float vf = s->flat_range[1] * ((2.f * j) / height - 1.f);
-
- const float phi = uf;
- const float theta = atanf(vf);
-
- const float sin_phi = sinf(phi);
- const float cos_phi = cosf(phi);
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
-
- vec[0] = cos_theta * sin_phi;
- vec[1] = -sin_theta;
- vec[2] = -cos_theta * cos_phi;
-
- normalize_vector(vec);
-
- return 1;
- }
-
- /**
- * Prepare data for processing cylindrical input format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_cylindrical_in(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- s->iflat_range[0] = M_PI * s->ih_fov / 360.f;
- s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f);
-
- return 0;
- }
-
- /**
- * Calculate frame position in cylindrical format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_cylindrical(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0] / s->iflat_range[0];
- const float theta = atan2f(-vec[1], hypotf(vec[0], vec[2])) * s->input_mirror_modifier[1] / s->iflat_range[1];
- int visible, ui, vi;
- float uf, vf;
-
- uf = (phi + 1.f) * (width - 1) / 2.f;
- vf = (tanf(theta) + 1.f) * height / 2.f;
- ui = floorf(uf);
- vi = floorf(vf);
-
- visible = vi >= 0 && vi < height && ui >= 0 && ui < width &&
- theta <= M_PI * s->iv_fov / 180.f &&
- theta >= -M_PI * s->iv_fov / 180.f;
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- us[i + 1][j + 1] = visible ? av_clip(ui + j, 0, width - 1) : 0;
- vs[i + 1][j + 1] = visible ? av_clip(vi + i, 0, height - 1) : 0;
- }
- }
-
- return visible;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in perspective format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int perspective_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float uf = ((2.f * i) / width - 1.f);
- const float vf = ((2.f * j) / height - 1.f);
- const float rh = hypotf(uf, vf);
- const float sinzz = 1.f - rh * rh;
- const float h = 1.f + s->v_fov;
- const float sinz = (h - sqrtf(sinzz)) / (h / rh + rh / h);
- const float sinz2 = sinz * sinz;
-
- if (sinz2 <= 1.f) {
- const float cosz = sqrtf(1.f - sinz2);
-
- const float theta = asinf(cosz);
- const float phi = atan2f(uf, vf);
-
- const float sin_phi = sinf(phi);
- const float cos_phi = cosf(phi);
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
-
- vec[0] = cos_theta * sin_phi;
- vec[1] = sin_theta;
- vec[2] = -cos_theta * cos_phi;
- } else {
- vec[0] = 0.f;
- vec[1] = -1.f;
- vec[2] = 0.f;
- return 0;
- }
-
- normalize_vector(vec);
- return 1;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in tetrahedron format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int tetrahedron_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float uf = (float)i / width;
- const float vf = (float)j / height;
-
- vec[0] = uf < 0.5f ? uf * 4.f - 1.f : 3.f - uf * 4.f;
- vec[1] = 1.f - vf * 2.f;
- vec[2] = 2.f * fabsf(1.f - fabsf(1.f - uf * 2.f + vf)) - 1.f;
-
- normalize_vector(vec);
-
- return 1;
- }
-
- /**
- * Calculate frame position in tetrahedron format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_tetrahedron(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- float d = 0.5f * (vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]);
-
- const float d0 = (vec[0] * 0.5f + vec[1] * 0.5f + vec[2] *-0.5f) / d;
- const float d1 = (vec[0] *-0.5f + vec[1] *-0.5f + vec[2] *-0.5f) / d;
- const float d2 = (vec[0] * 0.5f + vec[1] *-0.5f + vec[2] * 0.5f) / d;
- const float d3 = (vec[0] *-0.5f + vec[1] * 0.5f + vec[2] * 0.5f) / d;
-
- float uf, vf, x, y, z;
- int ui, vi;
-
- d = FFMAX(d0, FFMAX3(d1, d2, d3));
-
- x = vec[0] / d;
- y = vec[1] / d;
- z = -vec[2] / d;
-
- vf = 0.5f - y * 0.5f * s->input_mirror_modifier[1];
-
- if ((x + y >= 0.f && y + z >= 0.f && -z - x <= 0.f) ||
- (x + y <= 0.f && -y + z >= 0.f && z - x >= 0.f)) {
- uf = 0.25f * x * s->input_mirror_modifier[0] + 0.25f;
- } else {
- uf = 0.75f - 0.25f * x * s->input_mirror_modifier[0];
- }
-
- uf *= width;
- vf *= height;
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- us[i + 1][j + 1] = mod(ui + j, width);
- vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
- }
- }
-
- return 1;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in dual fisheye format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int dfisheye_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float scale = 1.f + s->out_pad;
-
- const float ew = width / 2.f;
- const float eh = height;
-
- const int ei = i >= ew ? i - ew : i;
- const float m = i >= ew ? -1.f : 1.f;
-
- const float uf = ((2.f * ei) / ew - 1.f) * scale;
- const float vf = ((2.f * j) / eh - 1.f) * scale;
-
- const float h = hypotf(uf, vf);
- const float lh = h > 0.f ? h : 1.f;
- const float theta = m * M_PI_2 * (1.f - h);
-
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
-
- vec[0] = cos_theta * m * -uf / lh;
- vec[1] = cos_theta * -vf / lh;
- vec[2] = sin_theta;
-
- normalize_vector(vec);
-
- return 1;
- }
-
- /**
- * Calculate frame position in dual fisheye format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_dfisheye(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float scale = 1.f - s->in_pad;
-
- const float ew = width / 2.f;
- const float eh = height;
-
- const float h = hypotf(vec[0], vec[1]);
- const float lh = h > 0.f ? h : 1.f;
- const float theta = acosf(fabsf(vec[2])) / M_PI;
-
- float uf = (theta * (-vec[0] / lh) * s->input_mirror_modifier[0] * scale + 0.5f) * ew;
- float vf = (theta * (-vec[1] / lh) * s->input_mirror_modifier[1] * scale + 0.5f) * eh;
-
- int ui, vi;
- int u_shift;
-
- if (vec[2] >= 0.f) {
- u_shift = 0;
- } else {
- u_shift = ceilf(ew);
- uf = ew - uf;
- }
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- us[i + 1][j + 1] = av_clip(u_shift + ui + j, 0, width - 1);
- vs[i + 1][j + 1] = av_clip( vi + i, 0, height - 1);
- }
- }
-
- return 1;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in barrel facebook's format.
- *
- * @param s filter private context
- * @param i horizontal position on frame [0, width)
- * @param j vertical position on frame [0, height)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static int barrel_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float scale = 0.99f;
- float l_x, l_y, l_z;
-
- if (i < 4 * width / 5) {
- const float theta_range = M_PI_4;
-
- const int ew = 4 * width / 5;
- const int eh = height;
-
- const float phi = ((2.f * i) / ew - 1.f) * M_PI / scale;
- const float theta = ((2.f * j) / eh - 1.f) * theta_range / scale;
-
- const float sin_phi = sinf(phi);
- const float cos_phi = cosf(phi);
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
-
- l_x = cos_theta * sin_phi;
- l_y = -sin_theta;
- l_z = -cos_theta * cos_phi;
- } else {
- const int ew = width / 5;
- const int eh = height / 2;
-
- float uf, vf;
-
- if (j < eh) { // UP
- uf = 2.f * (i - 4 * ew) / ew - 1.f;
- vf = 2.f * (j ) / eh - 1.f;
-
- uf /= scale;
- vf /= scale;
-
- l_x = uf;
- l_y = 1.f;
- l_z = -vf;
- } else { // DOWN
- uf = 2.f * (i - 4 * ew) / ew - 1.f;
- vf = 2.f * (j - eh) / eh - 1.f;
-
- uf /= scale;
- vf /= scale;
-
- l_x = uf;
- l_y = -1.f;
- l_z = vf;
- }
- }
-
- vec[0] = l_x;
- vec[1] = l_y;
- vec[2] = l_z;
-
- normalize_vector(vec);
-
- return 1;
- }
-
- /**
- * Calculate frame position in barrel facebook's format for corresponding 3D coordinates on sphere.
- *
- * @param s filter private context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static int xyz_to_barrel(const V360Context *s,
- const float *vec, int width, int height,
- int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
- {
- const float scale = 0.99f;
-
- const float phi = atan2f(vec[0], -vec[2]) * s->input_mirror_modifier[0];
- const float theta = asinf(-vec[1]) * s->input_mirror_modifier[1];
- const float theta_range = M_PI_4;
-
- int ew, eh;
- int u_shift, v_shift;
- float uf, vf;
- int ui, vi;
-
- if (theta > -theta_range && theta < theta_range) {
- ew = 4 * width / 5;
- eh = height;
-
- u_shift = s->ih_flip ? width / 5 : 0;
- v_shift = 0;
-
- uf = (phi / M_PI * scale + 1.f) * ew / 2.f;
- vf = (theta / theta_range * scale + 1.f) * eh / 2.f;
- } else {
- ew = width / 5;
- eh = height / 2;
-
- u_shift = s->ih_flip ? 0 : 4 * ew;
-
- if (theta < 0.f) { // UP
- uf = vec[0] / vec[1];
- vf = -vec[2] / vec[1];
- v_shift = 0;
- } else { // DOWN
- uf = -vec[0] / vec[1];
- vf = -vec[2] / vec[1];
- v_shift = eh;
- }
-
- uf *= s->input_mirror_modifier[0] * s->input_mirror_modifier[1];
- vf *= s->input_mirror_modifier[1];
-
- uf = 0.5f * ew * (uf * scale + 1.f);
- vf = 0.5f * eh * (vf * scale + 1.f);
- }
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (int i = -1; i < 3; i++) {
- for (int j = -1; j < 3; j++) {
- us[i + 1][j + 1] = u_shift + av_clip(ui + j, 0, ew - 1);
- vs[i + 1][j + 1] = v_shift + av_clip(vi + i, 0, eh - 1);
- }
- }
-
- return 1;
- }
-
- static void multiply_matrix(float c[3][3], const float a[3][3], const float b[3][3])
- {
- for (int i = 0; i < 3; i++) {
- for (int j = 0; j < 3; j++) {
- float sum = 0.f;
-
- for (int k = 0; k < 3; k++)
- sum += a[i][k] * b[k][j];
-
- c[i][j] = sum;
- }
- }
- }
-
- /**
- * Calculate rotation matrix for yaw/pitch/roll angles.
- */
- static inline void calculate_rotation_matrix(float yaw, float pitch, float roll,
- float rot_mat[3][3],
- const int rotation_order[3])
- {
- const float yaw_rad = yaw * M_PI / 180.f;
- const float pitch_rad = pitch * M_PI / 180.f;
- const float roll_rad = roll * M_PI / 180.f;
-
- const float sin_yaw = sinf(-yaw_rad);
- const float cos_yaw = cosf(-yaw_rad);
- const float sin_pitch = sinf(pitch_rad);
- const float cos_pitch = cosf(pitch_rad);
- const float sin_roll = sinf(roll_rad);
- const float cos_roll = cosf(roll_rad);
-
- float m[3][3][3];
- float temp[3][3];
-
- m[0][0][0] = cos_yaw; m[0][0][1] = 0; m[0][0][2] = sin_yaw;
- m[0][1][0] = 0; m[0][1][1] = 1; m[0][1][2] = 0;
- m[0][2][0] = -sin_yaw; m[0][2][1] = 0; m[0][2][2] = cos_yaw;
-
- m[1][0][0] = 1; m[1][0][1] = 0; m[1][0][2] = 0;
- m[1][1][0] = 0; m[1][1][1] = cos_pitch; m[1][1][2] = -sin_pitch;
- m[1][2][0] = 0; m[1][2][1] = sin_pitch; m[1][2][2] = cos_pitch;
-
- m[2][0][0] = cos_roll; m[2][0][1] = -sin_roll; m[2][0][2] = 0;
- m[2][1][0] = sin_roll; m[2][1][1] = cos_roll; m[2][1][2] = 0;
- m[2][2][0] = 0; m[2][2][1] = 0; m[2][2][2] = 1;
-
- multiply_matrix(temp, m[rotation_order[0]], m[rotation_order[1]]);
- multiply_matrix(rot_mat, temp, m[rotation_order[2]]);
- }
-
- /**
- * Rotate vector with given rotation matrix.
- *
- * @param rot_mat rotation matrix
- * @param vec vector
- */
- static inline void rotate(const float rot_mat[3][3],
- float *vec)
- {
- const float x_tmp = vec[0] * rot_mat[0][0] + vec[1] * rot_mat[0][1] + vec[2] * rot_mat[0][2];
- const float y_tmp = vec[0] * rot_mat[1][0] + vec[1] * rot_mat[1][1] + vec[2] * rot_mat[1][2];
- const float z_tmp = vec[0] * rot_mat[2][0] + vec[1] * rot_mat[2][1] + vec[2] * rot_mat[2][2];
-
- vec[0] = x_tmp;
- vec[1] = y_tmp;
- vec[2] = z_tmp;
- }
-
- static inline void set_mirror_modifier(int h_flip, int v_flip, int d_flip,
- float *modifier)
- {
- modifier[0] = h_flip ? -1.f : 1.f;
- modifier[1] = v_flip ? -1.f : 1.f;
- modifier[2] = d_flip ? -1.f : 1.f;
- }
-
- static inline void mirror(const float *modifier, float *vec)
- {
- vec[0] *= modifier[0];
- vec[1] *= modifier[1];
- vec[2] *= modifier[2];
- }
-
- static int allocate_plane(V360Context *s, int sizeof_uv, int sizeof_ker, int sizeof_mask, int p)
- {
- s->u[p] = av_calloc(s->uv_linesize[p] * s->pr_height[p], sizeof_uv);
- s->v[p] = av_calloc(s->uv_linesize[p] * s->pr_height[p], sizeof_uv);
- if (!s->u[p] || !s->v[p])
- return AVERROR(ENOMEM);
- if (sizeof_ker) {
- s->ker[p] = av_calloc(s->uv_linesize[p] * s->pr_height[p], sizeof_ker);
- if (!s->ker[p])
- return AVERROR(ENOMEM);
- }
-
- if (sizeof_mask && !p) {
- s->mask = av_calloc(s->pr_width[p] * s->pr_height[p], sizeof_mask);
- if (!s->mask)
- return AVERROR(ENOMEM);
- }
-
- return 0;
- }
-
- static void fov_from_dfov(int format, float d_fov, float w, float h, float *h_fov, float *v_fov)
- {
- switch (format) {
- case FISHEYE:
- {
- const float d = 0.5f * hypotf(w, h);
-
- *h_fov = d / h * d_fov;
- *v_fov = d / w * d_fov;
- }
- break;
- case FLAT:
- default:
- {
- const float da = tanf(0.5 * FFMIN(d_fov, 359.f) * M_PI / 180.f);
- const float d = hypotf(w, h);
-
- *h_fov = atan2f(da * w, d) * 360.f / M_PI;
- *v_fov = atan2f(da * h, d) * 360.f / M_PI;
-
- if (*h_fov < 0.f)
- *h_fov += 360.f;
- if (*v_fov < 0.f)
- *v_fov += 360.f;
- }
- break;
- }
- }
-
- static void set_dimensions(int *outw, int *outh, int w, int h, const AVPixFmtDescriptor *desc)
- {
- outw[1] = outw[2] = FF_CEIL_RSHIFT(w, desc->log2_chroma_w);
- outw[0] = outw[3] = w;
- outh[1] = outh[2] = FF_CEIL_RSHIFT(h, desc->log2_chroma_h);
- outh[0] = outh[3] = h;
- }
-
- // Calculate remap data
- static av_always_inline int v360_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
- {
- V360Context *s = ctx->priv;
-
- for (int p = 0; p < s->nb_allocated; p++) {
- const int max_value = s->max_value;
- const int width = s->pr_width[p];
- const int uv_linesize = s->uv_linesize[p];
- const int height = s->pr_height[p];
- const int in_width = s->inplanewidth[p];
- const int in_height = s->inplaneheight[p];
- const int slice_start = (height * jobnr ) / nb_jobs;
- const int slice_end = (height * (jobnr + 1)) / nb_jobs;
- float du, dv;
- float vec[3];
- XYRemap rmap;
-
- for (int j = slice_start; j < slice_end; j++) {
- for (int i = 0; i < width; i++) {
- int16_t *u = s->u[p] + (j * uv_linesize + i) * s->elements;
- int16_t *v = s->v[p] + (j * uv_linesize + i) * s->elements;
- int16_t *ker = s->ker[p] + (j * uv_linesize + i) * s->elements;
- uint8_t *mask8 = p ? NULL : s->mask + (j * s->pr_width[0] + i);
- uint16_t *mask16 = p ? NULL : (uint16_t *)s->mask + (j * s->pr_width[0] + i);
- int in_mask, out_mask;
-
- if (s->out_transpose)
- out_mask = s->out_transform(s, j, i, height, width, vec);
- else
- out_mask = s->out_transform(s, i, j, width, height, vec);
- av_assert1(!isnan(vec[0]) && !isnan(vec[1]) && !isnan(vec[2]));
- rotate(s->rot_mat, vec);
- av_assert1(!isnan(vec[0]) && !isnan(vec[1]) && !isnan(vec[2]));
- normalize_vector(vec);
- mirror(s->output_mirror_modifier, vec);
- if (s->in_transpose)
- in_mask = s->in_transform(s, vec, in_height, in_width, rmap.v, rmap.u, &du, &dv);
- else
- in_mask = s->in_transform(s, vec, in_width, in_height, rmap.u, rmap.v, &du, &dv);
- av_assert1(!isnan(du) && !isnan(dv));
- s->calculate_kernel(du, dv, &rmap, u, v, ker);
-
- if (!p && s->mask) {
- if (s->mask_size == 1) {
- mask8[0] = 255 * (out_mask & in_mask);
- } else {
- mask16[0] = max_value * (out_mask & in_mask);
- }
- }
- }
- }
- }
-
- return 0;
- }
-
- static int config_output(AVFilterLink *outlink)
- {
- AVFilterContext *ctx = outlink->src;
- AVFilterLink *inlink = ctx->inputs[0];
- V360Context *s = ctx->priv;
- const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
- const int depth = desc->comp[0].depth;
- const int sizeof_mask = s->mask_size = (depth + 7) >> 3;
- int sizeof_uv;
- int sizeof_ker;
- int err;
- int h, w;
- int in_offset_h, in_offset_w;
- int out_offset_h, out_offset_w;
- float hf, wf;
- int (*prepare_out)(AVFilterContext *ctx);
- int have_alpha;
-
- s->max_value = (1 << depth) - 1;
- s->input_mirror_modifier[0] = s->ih_flip ? -1.f : 1.f;
- s->input_mirror_modifier[1] = s->iv_flip ? -1.f : 1.f;
-
- switch (s->interp) {
- case NEAREST:
- s->calculate_kernel = nearest_kernel;
- s->remap_slice = depth <= 8 ? remap1_8bit_slice : remap1_16bit_slice;
- s->elements = 1;
- sizeof_uv = sizeof(int16_t) * s->elements;
- sizeof_ker = 0;
- break;
- case BILINEAR:
- s->calculate_kernel = bilinear_kernel;
- s->remap_slice = depth <= 8 ? remap2_8bit_slice : remap2_16bit_slice;
- s->elements = 2 * 2;
- sizeof_uv = sizeof(int16_t) * s->elements;
- sizeof_ker = sizeof(int16_t) * s->elements;
- break;
- case BICUBIC:
- s->calculate_kernel = bicubic_kernel;
- s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
- s->elements = 4 * 4;
- sizeof_uv = sizeof(int16_t) * s->elements;
- sizeof_ker = sizeof(int16_t) * s->elements;
- break;
- case LANCZOS:
- s->calculate_kernel = lanczos_kernel;
- s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
- s->elements = 4 * 4;
- sizeof_uv = sizeof(int16_t) * s->elements;
- sizeof_ker = sizeof(int16_t) * s->elements;
- break;
- case SPLINE16:
- s->calculate_kernel = spline16_kernel;
- s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
- s->elements = 4 * 4;
- sizeof_uv = sizeof(int16_t) * s->elements;
- sizeof_ker = sizeof(int16_t) * s->elements;
- break;
- case GAUSSIAN:
- s->calculate_kernel = gaussian_kernel;
- s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
- s->elements = 4 * 4;
- sizeof_uv = sizeof(int16_t) * s->elements;
- sizeof_ker = sizeof(int16_t) * s->elements;
- break;
- default:
- av_assert0(0);
- }
-
- ff_v360_init(s, depth);
-
- for (int order = 0; order < NB_RORDERS; order++) {
- const char c = s->rorder[order];
- int rorder;
-
- if (c == '\0') {
- av_log(ctx, AV_LOG_ERROR,
- "Incomplete rorder option. Direction for all 3 rotation orders should be specified.\n");
- return AVERROR(EINVAL);
- }
-
- rorder = get_rorder(c);
- if (rorder == -1) {
- av_log(ctx, AV_LOG_ERROR,
- "Incorrect rotation order symbol '%c' in rorder option.\n", c);
- return AVERROR(EINVAL);
- }
-
- s->rotation_order[order] = rorder;
- }
-
- switch (s->in_stereo) {
- case STEREO_2D:
- w = inlink->w;
- h = inlink->h;
- in_offset_w = in_offset_h = 0;
- break;
- case STEREO_SBS:
- w = inlink->w / 2;
- h = inlink->h;
- in_offset_w = w;
- in_offset_h = 0;
- break;
- case STEREO_TB:
- w = inlink->w;
- h = inlink->h / 2;
- in_offset_w = 0;
- in_offset_h = h;
- break;
- default:
- av_assert0(0);
- }
-
- set_dimensions(s->inplanewidth, s->inplaneheight, w, h, desc);
- set_dimensions(s->in_offset_w, s->in_offset_h, in_offset_w, in_offset_h, desc);
-
- s->in_width = s->inplanewidth[0];
- s->in_height = s->inplaneheight[0];
-
- if (s->id_fov > 0.f)
- fov_from_dfov(s->in, s->id_fov, w, h, &s->ih_fov, &s->iv_fov);
-
- if (s->in_transpose)
- FFSWAP(int, s->in_width, s->in_height);
-
- switch (s->in) {
- case EQUIRECTANGULAR:
- s->in_transform = xyz_to_equirect;
- err = 0;
- wf = w;
- hf = h;
- break;
- case CUBEMAP_3_2:
- s->in_transform = xyz_to_cube3x2;
- err = prepare_cube_in(ctx);
- wf = w / 3.f * 4.f;
- hf = h;
- break;
- case CUBEMAP_1_6:
- s->in_transform = xyz_to_cube1x6;
- err = prepare_cube_in(ctx);
- wf = w * 4.f;
- hf = h / 3.f;
- break;
- case CUBEMAP_6_1:
- s->in_transform = xyz_to_cube6x1;
- err = prepare_cube_in(ctx);
- wf = w / 3.f * 2.f;
- hf = h * 2.f;
- break;
- case EQUIANGULAR:
- s->in_transform = xyz_to_eac;
- err = prepare_eac_in(ctx);
- wf = w;
- hf = h / 9.f * 8.f;
- break;
- case FLAT:
- s->in_transform = xyz_to_flat;
- err = prepare_flat_in(ctx);
- wf = w;
- hf = h;
- break;
- case PERSPECTIVE:
- case PANNINI:
- av_log(ctx, AV_LOG_ERROR, "Supplied format is not accepted as input.\n");
- return AVERROR(EINVAL);
- case DUAL_FISHEYE:
- s->in_transform = xyz_to_dfisheye;
- err = 0;
- wf = w;
- hf = h;
- break;
- case BARREL:
- s->in_transform = xyz_to_barrel;
- err = 0;
- wf = w / 5.f * 4.f;
- hf = h;
- break;
- case STEREOGRAPHIC:
- s->in_transform = xyz_to_stereographic;
- err = prepare_stereographic_in(ctx);
- wf = w;
- hf = h / 2.f;
- break;
- case MERCATOR:
- s->in_transform = xyz_to_mercator;
- err = 0;
- wf = w;
- hf = h / 2.f;
- break;
- case BALL:
- s->in_transform = xyz_to_ball;
- err = 0;
- wf = w;
- hf = h / 2.f;
- break;
- case HAMMER:
- s->in_transform = xyz_to_hammer;
- err = 0;
- wf = w;
- hf = h;
- break;
- case SINUSOIDAL:
- s->in_transform = xyz_to_sinusoidal;
- err = 0;
- wf = w;
- hf = h;
- break;
- case FISHEYE:
- s->in_transform = xyz_to_fisheye;
- err = prepare_fisheye_in(ctx);
- wf = w * 2;
- hf = h;
- break;
- case CYLINDRICAL:
- s->in_transform = xyz_to_cylindrical;
- err = prepare_cylindrical_in(ctx);
- wf = w;
- hf = h * 2.f;
- break;
- case TETRAHEDRON:
- s->in_transform = xyz_to_tetrahedron;
- err = 0;
- wf = w;
- hf = h;
- break;
- default:
- av_log(ctx, AV_LOG_ERROR, "Specified input format is not handled.\n");
- return AVERROR_BUG;
- }
-
- if (err != 0) {
- return err;
- }
-
- switch (s->out) {
- case EQUIRECTANGULAR:
- s->out_transform = equirect_to_xyz;
- prepare_out = NULL;
- w = lrintf(wf);
- h = lrintf(hf);
- break;
- case CUBEMAP_3_2:
- s->out_transform = cube3x2_to_xyz;
- prepare_out = prepare_cube_out;
- w = lrintf(wf / 4.f * 3.f);
- h = lrintf(hf);
- break;
- case CUBEMAP_1_6:
- s->out_transform = cube1x6_to_xyz;
- prepare_out = prepare_cube_out;
- w = lrintf(wf / 4.f);
- h = lrintf(hf * 3.f);
- break;
- case CUBEMAP_6_1:
- s->out_transform = cube6x1_to_xyz;
- prepare_out = prepare_cube_out;
- w = lrintf(wf / 2.f * 3.f);
- h = lrintf(hf / 2.f);
- break;
- case EQUIANGULAR:
- s->out_transform = eac_to_xyz;
- prepare_out = prepare_eac_out;
- w = lrintf(wf);
- h = lrintf(hf / 8.f * 9.f);
- break;
- case FLAT:
- s->out_transform = flat_to_xyz;
- prepare_out = prepare_flat_out;
- w = lrintf(wf);
- h = lrintf(hf);
- break;
- case DUAL_FISHEYE:
- s->out_transform = dfisheye_to_xyz;
- prepare_out = NULL;
- w = lrintf(wf);
- h = lrintf(hf);
- break;
- case BARREL:
- s->out_transform = barrel_to_xyz;
- prepare_out = NULL;
- w = lrintf(wf / 4.f * 5.f);
- h = lrintf(hf);
- break;
- case STEREOGRAPHIC:
- s->out_transform = stereographic_to_xyz;
- prepare_out = prepare_stereographic_out;
- w = lrintf(wf);
- h = lrintf(hf * 2.f);
- break;
- case MERCATOR:
- s->out_transform = mercator_to_xyz;
- prepare_out = NULL;
- w = lrintf(wf);
- h = lrintf(hf * 2.f);
- break;
- case BALL:
- s->out_transform = ball_to_xyz;
- prepare_out = NULL;
- w = lrintf(wf);
- h = lrintf(hf * 2.f);
- break;
- case HAMMER:
- s->out_transform = hammer_to_xyz;
- prepare_out = NULL;
- w = lrintf(wf);
- h = lrintf(hf);
- break;
- case SINUSOIDAL:
- s->out_transform = sinusoidal_to_xyz;
- prepare_out = NULL;
- w = lrintf(wf);
- h = lrintf(hf);
- break;
- case FISHEYE:
- s->out_transform = fisheye_to_xyz;
- prepare_out = prepare_fisheye_out;
- w = lrintf(wf * 0.5f);
- h = lrintf(hf);
- break;
- case PANNINI:
- s->out_transform = pannini_to_xyz;
- prepare_out = NULL;
- w = lrintf(wf);
- h = lrintf(hf);
- break;
- case CYLINDRICAL:
- s->out_transform = cylindrical_to_xyz;
- prepare_out = prepare_cylindrical_out;
- w = lrintf(wf);
- h = lrintf(hf * 0.5f);
- break;
- case PERSPECTIVE:
- s->out_transform = perspective_to_xyz;
- prepare_out = NULL;
- w = lrintf(wf / 2.f);
- h = lrintf(hf);
- break;
- case TETRAHEDRON:
- s->out_transform = tetrahedron_to_xyz;
- prepare_out = NULL;
- w = lrintf(wf);
- h = lrintf(hf);
- break;
- default:
- av_log(ctx, AV_LOG_ERROR, "Specified output format is not handled.\n");
- return AVERROR_BUG;
- }
-
- // Override resolution with user values if specified
- if (s->width > 0 && s->height > 0) {
- w = s->width;
- h = s->height;
- } else if (s->width > 0 || s->height > 0) {
- av_log(ctx, AV_LOG_ERROR, "Both width and height values should be specified.\n");
- return AVERROR(EINVAL);
- } else {
- if (s->out_transpose)
- FFSWAP(int, w, h);
-
- if (s->in_transpose)
- FFSWAP(int, w, h);
- }
-
- if (s->d_fov > 0.f)
- fov_from_dfov(s->out, s->d_fov, w, h, &s->h_fov, &s->v_fov);
-
- if (prepare_out) {
- err = prepare_out(ctx);
- if (err != 0)
- return err;
- }
-
- set_dimensions(s->pr_width, s->pr_height, w, h, desc);
-
- s->out_width = s->pr_width[0];
- s->out_height = s->pr_height[0];
-
- if (s->out_transpose)
- FFSWAP(int, s->out_width, s->out_height);
-
- switch (s->out_stereo) {
- case STEREO_2D:
- out_offset_w = out_offset_h = 0;
- break;
- case STEREO_SBS:
- out_offset_w = w;
- out_offset_h = 0;
- w *= 2;
- break;
- case STEREO_TB:
- out_offset_w = 0;
- out_offset_h = h;
- h *= 2;
- break;
- default:
- av_assert0(0);
- }
-
- set_dimensions(s->out_offset_w, s->out_offset_h, out_offset_w, out_offset_h, desc);
- set_dimensions(s->planewidth, s->planeheight, w, h, desc);
-
- for (int i = 0; i < 4; i++)
- s->uv_linesize[i] = FFALIGN(s->pr_width[i], 8);
-
- outlink->h = h;
- outlink->w = w;
-
- s->nb_planes = av_pix_fmt_count_planes(inlink->format);
- have_alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
-
- if (desc->log2_chroma_h == desc->log2_chroma_w && desc->log2_chroma_h == 0) {
- s->nb_allocated = 1;
- s->map[0] = s->map[1] = s->map[2] = s->map[3] = 0;
- } else {
- s->nb_allocated = 2;
- s->map[0] = s->map[3] = 0;
- s->map[1] = s->map[2] = 1;
- }
-
- for (int i = 0; i < s->nb_allocated; i++)
- allocate_plane(s, sizeof_uv, sizeof_ker, sizeof_mask * have_alpha * s->alpha, i);
-
- calculate_rotation_matrix(s->yaw, s->pitch, s->roll, s->rot_mat, s->rotation_order);
- set_mirror_modifier(s->h_flip, s->v_flip, s->d_flip, s->output_mirror_modifier);
-
- ctx->internal->execute(ctx, v360_slice, NULL, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
-
- return 0;
- }
-
- static int filter_frame(AVFilterLink *inlink, AVFrame *in)
- {
- AVFilterContext *ctx = inlink->dst;
- AVFilterLink *outlink = ctx->outputs[0];
- V360Context *s = ctx->priv;
- AVFrame *out;
- ThreadData td;
-
- out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
- if (!out) {
- av_frame_free(&in);
- return AVERROR(ENOMEM);
- }
- av_frame_copy_props(out, in);
-
- td.in = in;
- td.out = out;
-
- ctx->internal->execute(ctx, s->remap_slice, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
-
- av_frame_free(&in);
- return ff_filter_frame(outlink, out);
- }
-
- static av_cold void uninit(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- for (int p = 0; p < s->nb_allocated; p++) {
- av_freep(&s->u[p]);
- av_freep(&s->v[p]);
- av_freep(&s->ker[p]);
- }
- av_freep(&s->mask);
- }
-
- static const AVFilterPad inputs[] = {
- {
- .name = "default",
- .type = AVMEDIA_TYPE_VIDEO,
- .filter_frame = filter_frame,
- },
- { NULL }
- };
-
- static const AVFilterPad outputs[] = {
- {
- .name = "default",
- .type = AVMEDIA_TYPE_VIDEO,
- .config_props = config_output,
- },
- { NULL }
- };
-
- AVFilter ff_vf_v360 = {
- .name = "v360",
- .description = NULL_IF_CONFIG_SMALL("Convert 360 projection of video."),
- .priv_size = sizeof(V360Context),
- .uninit = uninit,
- .query_formats = query_formats,
- .inputs = inputs,
- .outputs = outputs,
- .priv_class = &v360_class,
- .flags = AVFILTER_FLAG_SLICE_THREADS,
- };
|