|
- /*
- * Copyright (c) 2018 Gregor Richards
- * Copyright (c) 2017 Mozilla
- * Copyright (c) 2005-2009 Xiph.Org Foundation
- * Copyright (c) 2007-2008 CSIRO
- * Copyright (c) 2008-2011 Octasic Inc.
- * Copyright (c) Jean-Marc Valin
- * Copyright (c) 2019 Paul B Mahol
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * - Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * - Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
- #include <float.h>
-
- #include "libavutil/avassert.h"
- #include "libavutil/avstring.h"
- #include "libavutil/float_dsp.h"
- #include "libavutil/opt.h"
- #include "libavutil/tx.h"
- #include "avfilter.h"
- #include "audio.h"
- #include "filters.h"
- #include "formats.h"
-
- #define FRAME_SIZE_SHIFT 2
- #define FRAME_SIZE (120<<FRAME_SIZE_SHIFT)
- #define WINDOW_SIZE (2*FRAME_SIZE)
- #define FREQ_SIZE (FRAME_SIZE + 1)
-
- #define PITCH_MIN_PERIOD 60
- #define PITCH_MAX_PERIOD 768
- #define PITCH_FRAME_SIZE 960
- #define PITCH_BUF_SIZE (PITCH_MAX_PERIOD+PITCH_FRAME_SIZE)
-
- #define SQUARE(x) ((x)*(x))
-
- #define NB_BANDS 22
-
- #define CEPS_MEM 8
- #define NB_DELTA_CEPS 6
-
- #define NB_FEATURES (NB_BANDS+3*NB_DELTA_CEPS+2)
-
- #define WEIGHTS_SCALE (1.f/256)
-
- #define MAX_NEURONS 128
-
- #define ACTIVATION_TANH 0
- #define ACTIVATION_SIGMOID 1
- #define ACTIVATION_RELU 2
-
- #define Q15ONE 1.0f
-
- typedef struct DenseLayer {
- const float *bias;
- const float *input_weights;
- int nb_inputs;
- int nb_neurons;
- int activation;
- } DenseLayer;
-
- typedef struct GRULayer {
- const float *bias;
- const float *input_weights;
- const float *recurrent_weights;
- int nb_inputs;
- int nb_neurons;
- int activation;
- } GRULayer;
-
- typedef struct RNNModel {
- int input_dense_size;
- const DenseLayer *input_dense;
-
- int vad_gru_size;
- const GRULayer *vad_gru;
-
- int noise_gru_size;
- const GRULayer *noise_gru;
-
- int denoise_gru_size;
- const GRULayer *denoise_gru;
-
- int denoise_output_size;
- const DenseLayer *denoise_output;
-
- int vad_output_size;
- const DenseLayer *vad_output;
- } RNNModel;
-
- typedef struct RNNState {
- float *vad_gru_state;
- float *noise_gru_state;
- float *denoise_gru_state;
- RNNModel *model;
- } RNNState;
-
- typedef struct DenoiseState {
- float analysis_mem[FRAME_SIZE];
- float cepstral_mem[CEPS_MEM][NB_BANDS];
- int memid;
- DECLARE_ALIGNED(32, float, synthesis_mem)[FRAME_SIZE];
- float pitch_buf[PITCH_BUF_SIZE];
- float pitch_enh_buf[PITCH_BUF_SIZE];
- float last_gain;
- int last_period;
- float mem_hp_x[2];
- float lastg[NB_BANDS];
- RNNState rnn;
- AVTXContext *tx, *txi;
- av_tx_fn tx_fn, txi_fn;
- } DenoiseState;
-
- typedef struct AudioRNNContext {
- const AVClass *class;
-
- char *model_name;
-
- int channels;
- DenoiseState *st;
-
- DECLARE_ALIGNED(32, float, window)[WINDOW_SIZE];
- float dct_table[NB_BANDS*NB_BANDS];
-
- RNNModel *model;
-
- AVFloatDSPContext *fdsp;
- } AudioRNNContext;
-
- #define F_ACTIVATION_TANH 0
- #define F_ACTIVATION_SIGMOID 1
- #define F_ACTIVATION_RELU 2
-
- static void rnnoise_model_free(RNNModel *model)
- {
- #define FREE_MAYBE(ptr) do { if (ptr) free(ptr); } while (0)
- #define FREE_DENSE(name) do { \
- if (model->name) { \
- av_free((void *) model->name->input_weights); \
- av_free((void *) model->name->bias); \
- av_free((void *) model->name); \
- } \
- } while (0)
- #define FREE_GRU(name) do { \
- if (model->name) { \
- av_free((void *) model->name->input_weights); \
- av_free((void *) model->name->recurrent_weights); \
- av_free((void *) model->name->bias); \
- av_free((void *) model->name); \
- } \
- } while (0)
-
- if (!model)
- return;
- FREE_DENSE(input_dense);
- FREE_GRU(vad_gru);
- FREE_GRU(noise_gru);
- FREE_GRU(denoise_gru);
- FREE_DENSE(denoise_output);
- FREE_DENSE(vad_output);
- av_free(model);
- }
-
- static RNNModel *rnnoise_model_from_file(FILE *f)
- {
- RNNModel *ret;
- DenseLayer *input_dense;
- GRULayer *vad_gru;
- GRULayer *noise_gru;
- GRULayer *denoise_gru;
- DenseLayer *denoise_output;
- DenseLayer *vad_output;
- int in;
-
- if (fscanf(f, "rnnoise-nu model file version %d\n", &in) != 1 || in != 1)
- return NULL;
-
- ret = av_calloc(1, sizeof(RNNModel));
- if (!ret)
- return NULL;
-
- #define ALLOC_LAYER(type, name) \
- name = av_calloc(1, sizeof(type)); \
- if (!name) { \
- rnnoise_model_free(ret); \
- return NULL; \
- } \
- ret->name = name
-
- ALLOC_LAYER(DenseLayer, input_dense);
- ALLOC_LAYER(GRULayer, vad_gru);
- ALLOC_LAYER(GRULayer, noise_gru);
- ALLOC_LAYER(GRULayer, denoise_gru);
- ALLOC_LAYER(DenseLayer, denoise_output);
- ALLOC_LAYER(DenseLayer, vad_output);
-
- #define INPUT_VAL(name) do { \
- if (fscanf(f, "%d", &in) != 1 || in < 0 || in > 128) { \
- rnnoise_model_free(ret); \
- return NULL; \
- } \
- name = in; \
- } while (0)
-
- #define INPUT_ACTIVATION(name) do { \
- int activation; \
- INPUT_VAL(activation); \
- switch (activation) { \
- case F_ACTIVATION_SIGMOID: \
- name = ACTIVATION_SIGMOID; \
- break; \
- case F_ACTIVATION_RELU: \
- name = ACTIVATION_RELU; \
- break; \
- default: \
- name = ACTIVATION_TANH; \
- } \
- } while (0)
-
- #define INPUT_ARRAY(name, len) do { \
- float *values = av_calloc((len), sizeof(float)); \
- if (!values) { \
- rnnoise_model_free(ret); \
- return NULL; \
- } \
- name = values; \
- for (int i = 0; i < (len); i++) { \
- if (fscanf(f, "%d", &in) != 1) { \
- rnnoise_model_free(ret); \
- return NULL; \
- } \
- values[i] = in; \
- } \
- } while (0)
-
- #define INPUT_ARRAY3(name, len0, len1, len2) do { \
- float *values = av_calloc(FFALIGN((len0), 4) * FFALIGN((len1), 4) * (len2), sizeof(float)); \
- if (!values) { \
- rnnoise_model_free(ret); \
- return NULL; \
- } \
- name = values; \
- for (int k = 0; k < (len0); k++) { \
- for (int i = 0; i < (len2); i++) { \
- for (int j = 0; j < (len1); j++) { \
- if (fscanf(f, "%d", &in) != 1) { \
- rnnoise_model_free(ret); \
- return NULL; \
- } \
- values[j * (len2) * FFALIGN((len0), 4) + i * FFALIGN((len0), 4) + k] = in; \
- } \
- } \
- } \
- } while (0)
-
- #define INPUT_DENSE(name) do { \
- INPUT_VAL(name->nb_inputs); \
- INPUT_VAL(name->nb_neurons); \
- ret->name ## _size = name->nb_neurons; \
- INPUT_ACTIVATION(name->activation); \
- INPUT_ARRAY(name->input_weights, name->nb_inputs * name->nb_neurons); \
- INPUT_ARRAY(name->bias, name->nb_neurons); \
- } while (0)
-
- #define INPUT_GRU(name) do { \
- INPUT_VAL(name->nb_inputs); \
- INPUT_VAL(name->nb_neurons); \
- ret->name ## _size = name->nb_neurons; \
- INPUT_ACTIVATION(name->activation); \
- INPUT_ARRAY3(name->input_weights, name->nb_inputs, name->nb_neurons, 3); \
- INPUT_ARRAY3(name->recurrent_weights, name->nb_neurons, name->nb_neurons, 3); \
- INPUT_ARRAY(name->bias, name->nb_neurons * 3); \
- } while (0)
-
- INPUT_DENSE(input_dense);
- INPUT_GRU(vad_gru);
- INPUT_GRU(noise_gru);
- INPUT_GRU(denoise_gru);
- INPUT_DENSE(denoise_output);
- INPUT_DENSE(vad_output);
-
- if (vad_output->nb_neurons != 1) {
- rnnoise_model_free(ret);
- return NULL;
- }
-
- return ret;
- }
-
- static int query_formats(AVFilterContext *ctx)
- {
- AVFilterFormats *formats = NULL;
- AVFilterChannelLayouts *layouts = NULL;
- static const enum AVSampleFormat sample_fmts[] = {
- AV_SAMPLE_FMT_FLTP,
- AV_SAMPLE_FMT_NONE
- };
- int ret, sample_rates[] = { 48000, -1 };
-
- formats = ff_make_format_list(sample_fmts);
- if (!formats)
- return AVERROR(ENOMEM);
- ret = ff_set_common_formats(ctx, formats);
- if (ret < 0)
- return ret;
-
- layouts = ff_all_channel_counts();
- if (!layouts)
- return AVERROR(ENOMEM);
-
- ret = ff_set_common_channel_layouts(ctx, layouts);
- if (ret < 0)
- return ret;
-
- formats = ff_make_format_list(sample_rates);
- if (!formats)
- return AVERROR(ENOMEM);
- return ff_set_common_samplerates(ctx, formats);
- }
-
- static int config_input(AVFilterLink *inlink)
- {
- AVFilterContext *ctx = inlink->dst;
- AudioRNNContext *s = ctx->priv;
- int ret;
-
- s->channels = inlink->channels;
-
- s->st = av_calloc(s->channels, sizeof(DenoiseState));
- if (!s->st)
- return AVERROR(ENOMEM);
-
- for (int i = 0; i < s->channels; i++) {
- DenoiseState *st = &s->st[i];
-
- st->rnn.model = s->model;
- st->rnn.vad_gru_state = av_calloc(sizeof(float), FFALIGN(s->model->vad_gru_size, 16));
- st->rnn.noise_gru_state = av_calloc(sizeof(float), FFALIGN(s->model->noise_gru_size, 16));
- st->rnn.denoise_gru_state = av_calloc(sizeof(float), FFALIGN(s->model->denoise_gru_size, 16));
- if (!st->rnn.vad_gru_state ||
- !st->rnn.noise_gru_state ||
- !st->rnn.denoise_gru_state)
- return AVERROR(ENOMEM);
-
- ret = av_tx_init(&st->tx, &st->tx_fn, AV_TX_FLOAT_FFT, 0, WINDOW_SIZE, NULL, 0);
- if (ret < 0)
- return ret;
-
- ret = av_tx_init(&st->txi, &st->txi_fn, AV_TX_FLOAT_FFT, 1, WINDOW_SIZE, NULL, 0);
- if (ret < 0)
- return ret;
- }
-
- return 0;
- }
-
- static void biquad(float *y, float mem[2], const float *x,
- const float *b, const float *a, int N)
- {
- for (int i = 0; i < N; i++) {
- float xi, yi;
-
- xi = x[i];
- yi = x[i] + mem[0];
- mem[0] = mem[1] + (b[0]*xi - a[0]*yi);
- mem[1] = (b[1]*xi - a[1]*yi);
- y[i] = yi;
- }
- }
-
- #define RNN_MOVE(dst, src, n) (memmove((dst), (src), (n)*sizeof(*(dst)) + 0*((dst)-(src)) ))
- #define RNN_CLEAR(dst, n) (memset((dst), 0, (n)*sizeof(*(dst))))
- #define RNN_COPY(dst, src, n) (memcpy((dst), (src), (n)*sizeof(*(dst)) + 0*((dst)-(src)) ))
-
- static void forward_transform(DenoiseState *st, AVComplexFloat *out, const float *in)
- {
- AVComplexFloat x[WINDOW_SIZE];
- AVComplexFloat y[WINDOW_SIZE];
-
- for (int i = 0; i < WINDOW_SIZE; i++) {
- x[i].re = in[i];
- x[i].im = 0;
- }
-
- st->tx_fn(st->tx, y, x, sizeof(float));
-
- RNN_COPY(out, y, FREQ_SIZE);
- }
-
- static void inverse_transform(DenoiseState *st, float *out, const AVComplexFloat *in)
- {
- AVComplexFloat x[WINDOW_SIZE];
- AVComplexFloat y[WINDOW_SIZE];
-
- for (int i = 0; i < FREQ_SIZE; i++)
- x[i] = in[i];
-
- for (int i = FREQ_SIZE; i < WINDOW_SIZE; i++) {
- x[i].re = x[WINDOW_SIZE - i].re;
- x[i].im = -x[WINDOW_SIZE - i].im;
- }
-
- st->txi_fn(st->txi, y, x, sizeof(float));
-
- for (int i = 0; i < WINDOW_SIZE; i++)
- out[i] = y[i].re / WINDOW_SIZE;
- }
-
- static const uint8_t eband5ms[] = {
- /*0 200 400 600 800 1k 1.2 1.4 1.6 2k 2.4 2.8 3.2 4k 4.8 5.6 6.8 8k 9.6 12k 15.6 20k*/
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 34, 40, 48, 60, 78, 100
- };
-
- static void compute_band_energy(float *bandE, const AVComplexFloat *X)
- {
- float sum[NB_BANDS] = {0};
-
- for (int i = 0; i < NB_BANDS - 1; i++) {
- int band_size;
-
- band_size = (eband5ms[i + 1] - eband5ms[i]) << FRAME_SIZE_SHIFT;
- for (int j = 0; j < band_size; j++) {
- float tmp, frac = (float)j / band_size;
-
- tmp = SQUARE(X[(eband5ms[i] << FRAME_SIZE_SHIFT) + j].re);
- tmp += SQUARE(X[(eband5ms[i] << FRAME_SIZE_SHIFT) + j].im);
- sum[i] += (1.f - frac) * tmp;
- sum[i + 1] += frac * tmp;
- }
- }
-
- sum[0] *= 2;
- sum[NB_BANDS - 1] *= 2;
-
- for (int i = 0; i < NB_BANDS; i++)
- bandE[i] = sum[i];
- }
-
- static void compute_band_corr(float *bandE, const AVComplexFloat *X, const AVComplexFloat *P)
- {
- float sum[NB_BANDS] = { 0 };
-
- for (int i = 0; i < NB_BANDS - 1; i++) {
- int band_size;
-
- band_size = (eband5ms[i + 1] - eband5ms[i]) << FRAME_SIZE_SHIFT;
- for (int j = 0; j < band_size; j++) {
- float tmp, frac = (float)j / band_size;
-
- tmp = X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].re * P[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].re;
- tmp += X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].im * P[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].im;
- sum[i] += (1 - frac) * tmp;
- sum[i + 1] += frac * tmp;
- }
- }
-
- sum[0] *= 2;
- sum[NB_BANDS-1] *= 2;
-
- for (int i = 0; i < NB_BANDS; i++)
- bandE[i] = sum[i];
- }
-
- static void frame_analysis(AudioRNNContext *s, DenoiseState *st, AVComplexFloat *X, float *Ex, const float *in)
- {
- LOCAL_ALIGNED_32(float, x, [WINDOW_SIZE]);
-
- RNN_COPY(x, st->analysis_mem, FRAME_SIZE);
- RNN_COPY(x + FRAME_SIZE, in, FRAME_SIZE);
- RNN_COPY(st->analysis_mem, in, FRAME_SIZE);
- s->fdsp->vector_fmul(x, x, s->window, WINDOW_SIZE);
- forward_transform(st, X, x);
- compute_band_energy(Ex, X);
- }
-
- static void frame_synthesis(AudioRNNContext *s, DenoiseState *st, float *out, const AVComplexFloat *y)
- {
- LOCAL_ALIGNED_32(float, x, [WINDOW_SIZE]);
-
- inverse_transform(st, x, y);
- s->fdsp->vector_fmul(x, x, s->window, WINDOW_SIZE);
- s->fdsp->vector_fmac_scalar(x, st->synthesis_mem, 1.f, FRAME_SIZE);
- RNN_COPY(out, x, FRAME_SIZE);
- RNN_COPY(st->synthesis_mem, &x[FRAME_SIZE], FRAME_SIZE);
- }
-
- static inline void xcorr_kernel(const float *x, const float *y, float sum[4], int len)
- {
- float y_0, y_1, y_2, y_3 = 0;
- int j;
-
- y_0 = *y++;
- y_1 = *y++;
- y_2 = *y++;
-
- for (j = 0; j < len - 3; j += 4) {
- float tmp;
-
- tmp = *x++;
- y_3 = *y++;
- sum[0] += tmp * y_0;
- sum[1] += tmp * y_1;
- sum[2] += tmp * y_2;
- sum[3] += tmp * y_3;
- tmp = *x++;
- y_0 = *y++;
- sum[0] += tmp * y_1;
- sum[1] += tmp * y_2;
- sum[2] += tmp * y_3;
- sum[3] += tmp * y_0;
- tmp = *x++;
- y_1 = *y++;
- sum[0] += tmp * y_2;
- sum[1] += tmp * y_3;
- sum[2] += tmp * y_0;
- sum[3] += tmp * y_1;
- tmp = *x++;
- y_2 = *y++;
- sum[0] += tmp * y_3;
- sum[1] += tmp * y_0;
- sum[2] += tmp * y_1;
- sum[3] += tmp * y_2;
- }
-
- if (j++ < len) {
- float tmp = *x++;
-
- y_3 = *y++;
- sum[0] += tmp * y_0;
- sum[1] += tmp * y_1;
- sum[2] += tmp * y_2;
- sum[3] += tmp * y_3;
- }
-
- if (j++ < len) {
- float tmp=*x++;
-
- y_0 = *y++;
- sum[0] += tmp * y_1;
- sum[1] += tmp * y_2;
- sum[2] += tmp * y_3;
- sum[3] += tmp * y_0;
- }
-
- if (j < len) {
- float tmp=*x++;
-
- y_1 = *y++;
- sum[0] += tmp * y_2;
- sum[1] += tmp * y_3;
- sum[2] += tmp * y_0;
- sum[3] += tmp * y_1;
- }
- }
-
- static inline float celt_inner_prod(const float *x,
- const float *y, int N)
- {
- float xy = 0.f;
-
- for (int i = 0; i < N; i++)
- xy += x[i] * y[i];
-
- return xy;
- }
-
- static void celt_pitch_xcorr(const float *x, const float *y,
- float *xcorr, int len, int max_pitch)
- {
- int i;
-
- for (i = 0; i < max_pitch - 3; i += 4) {
- float sum[4] = { 0, 0, 0, 0};
-
- xcorr_kernel(x, y + i, sum, len);
-
- xcorr[i] = sum[0];
- xcorr[i + 1] = sum[1];
- xcorr[i + 2] = sum[2];
- xcorr[i + 3] = sum[3];
- }
- /* In case max_pitch isn't a multiple of 4, do non-unrolled version. */
- for (; i < max_pitch; i++) {
- xcorr[i] = celt_inner_prod(x, y + i, len);
- }
- }
-
- static int celt_autocorr(const float *x, /* in: [0...n-1] samples x */
- float *ac, /* out: [0...lag-1] ac values */
- const float *window,
- int overlap,
- int lag,
- int n)
- {
- int fastN = n - lag;
- int shift;
- const float *xptr;
- float xx[PITCH_BUF_SIZE>>1];
-
- if (overlap == 0) {
- xptr = x;
- } else {
- for (int i = 0; i < n; i++)
- xx[i] = x[i];
- for (int i = 0; i < overlap; i++) {
- xx[i] = x[i] * window[i];
- xx[n-i-1] = x[n-i-1] * window[i];
- }
- xptr = xx;
- }
-
- shift = 0;
- celt_pitch_xcorr(xptr, xptr, ac, fastN, lag+1);
-
- for (int k = 0; k <= lag; k++) {
- float d = 0.f;
-
- for (int i = k + fastN; i < n; i++)
- d += xptr[i] * xptr[i-k];
- ac[k] += d;
- }
-
- return shift;
- }
-
- static void celt_lpc(float *lpc, /* out: [0...p-1] LPC coefficients */
- const float *ac, /* in: [0...p] autocorrelation values */
- int p)
- {
- float r, error = ac[0];
-
- RNN_CLEAR(lpc, p);
- if (ac[0] != 0) {
- for (int i = 0; i < p; i++) {
- /* Sum up this iteration's reflection coefficient */
- float rr = 0;
- for (int j = 0; j < i; j++)
- rr += (lpc[j] * ac[i - j]);
- rr += ac[i + 1];
- r = -rr/error;
- /* Update LPC coefficients and total error */
- lpc[i] = r;
- for (int j = 0; j < (i + 1) >> 1; j++) {
- float tmp1, tmp2;
- tmp1 = lpc[j];
- tmp2 = lpc[i-1-j];
- lpc[j] = tmp1 + (r*tmp2);
- lpc[i-1-j] = tmp2 + (r*tmp1);
- }
-
- error = error - (r * r *error);
- /* Bail out once we get 30 dB gain */
- if (error < .001f * ac[0])
- break;
- }
- }
- }
-
- static void celt_fir5(const float *x,
- const float *num,
- float *y,
- int N,
- float *mem)
- {
- float num0, num1, num2, num3, num4;
- float mem0, mem1, mem2, mem3, mem4;
-
- num0 = num[0];
- num1 = num[1];
- num2 = num[2];
- num3 = num[3];
- num4 = num[4];
- mem0 = mem[0];
- mem1 = mem[1];
- mem2 = mem[2];
- mem3 = mem[3];
- mem4 = mem[4];
-
- for (int i = 0; i < N; i++) {
- float sum = x[i];
-
- sum += (num0*mem0);
- sum += (num1*mem1);
- sum += (num2*mem2);
- sum += (num3*mem3);
- sum += (num4*mem4);
- mem4 = mem3;
- mem3 = mem2;
- mem2 = mem1;
- mem1 = mem0;
- mem0 = x[i];
- y[i] = sum;
- }
-
- mem[0] = mem0;
- mem[1] = mem1;
- mem[2] = mem2;
- mem[3] = mem3;
- mem[4] = mem4;
- }
-
- static void pitch_downsample(float *x[], float *x_lp,
- int len, int C)
- {
- float ac[5];
- float tmp=Q15ONE;
- float lpc[4], mem[5]={0,0,0,0,0};
- float lpc2[5];
- float c1 = .8f;
-
- for (int i = 1; i < len >> 1; i++)
- x_lp[i] = .5f * (.5f * (x[0][(2*i-1)]+x[0][(2*i+1)])+x[0][2*i]);
- x_lp[0] = .5f * (.5f * (x[0][1])+x[0][0]);
- if (C==2) {
- for (int i = 1; i < len >> 1; i++)
- x_lp[i] += (.5f * (.5f * (x[1][(2*i-1)]+x[1][(2*i+1)])+x[1][2*i]));
- x_lp[0] += .5f * (.5f * (x[1][1])+x[1][0]);
- }
-
- celt_autocorr(x_lp, ac, NULL, 0, 4, len>>1);
-
- /* Noise floor -40 dB */
- ac[0] *= 1.0001f;
- /* Lag windowing */
- for (int i = 1; i <= 4; i++) {
- /*ac[i] *= exp(-.5*(2*M_PI*.002*i)*(2*M_PI*.002*i));*/
- ac[i] -= ac[i]*(.008f*i)*(.008f*i);
- }
-
- celt_lpc(lpc, ac, 4);
- for (int i = 0; i < 4; i++) {
- tmp = .9f * tmp;
- lpc[i] = (lpc[i] * tmp);
- }
- /* Add a zero */
- lpc2[0] = lpc[0] + .8f;
- lpc2[1] = lpc[1] + (c1 * lpc[0]);
- lpc2[2] = lpc[2] + (c1 * lpc[1]);
- lpc2[3] = lpc[3] + (c1 * lpc[2]);
- lpc2[4] = (c1 * lpc[3]);
- celt_fir5(x_lp, lpc2, x_lp, len>>1, mem);
- }
-
- static inline void dual_inner_prod(const float *x, const float *y01, const float *y02,
- int N, float *xy1, float *xy2)
- {
- float xy01 = 0, xy02 = 0;
-
- for (int i = 0; i < N; i++) {
- xy01 += (x[i] * y01[i]);
- xy02 += (x[i] * y02[i]);
- }
-
- *xy1 = xy01;
- *xy2 = xy02;
- }
-
- static float compute_pitch_gain(float xy, float xx, float yy)
- {
- return xy / sqrtf(1.f + xx * yy);
- }
-
- static const int second_check[16] = {0, 0, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2};
- static float remove_doubling(float *x, int maxperiod, int minperiod, int N,
- int *T0_, int prev_period, float prev_gain)
- {
- int k, i, T, T0;
- float g, g0;
- float pg;
- float xy,xx,yy,xy2;
- float xcorr[3];
- float best_xy, best_yy;
- int offset;
- int minperiod0;
- float yy_lookup[PITCH_MAX_PERIOD+1];
-
- minperiod0 = minperiod;
- maxperiod /= 2;
- minperiod /= 2;
- *T0_ /= 2;
- prev_period /= 2;
- N /= 2;
- x += maxperiod;
- if (*T0_>=maxperiod)
- *T0_=maxperiod-1;
-
- T = T0 = *T0_;
- dual_inner_prod(x, x, x-T0, N, &xx, &xy);
- yy_lookup[0] = xx;
- yy=xx;
- for (i = 1; i <= maxperiod; i++) {
- yy = yy+(x[-i] * x[-i])-(x[N-i] * x[N-i]);
- yy_lookup[i] = FFMAX(0, yy);
- }
- yy = yy_lookup[T0];
- best_xy = xy;
- best_yy = yy;
- g = g0 = compute_pitch_gain(xy, xx, yy);
- /* Look for any pitch at T/k */
- for (k = 2; k <= 15; k++) {
- int T1, T1b;
- float g1;
- float cont=0;
- float thresh;
- T1 = (2*T0+k)/(2*k);
- if (T1 < minperiod)
- break;
- /* Look for another strong correlation at T1b */
- if (k==2)
- {
- if (T1+T0>maxperiod)
- T1b = T0;
- else
- T1b = T0+T1;
- } else
- {
- T1b = (2*second_check[k]*T0+k)/(2*k);
- }
- dual_inner_prod(x, &x[-T1], &x[-T1b], N, &xy, &xy2);
- xy = .5f * (xy + xy2);
- yy = .5f * (yy_lookup[T1] + yy_lookup[T1b]);
- g1 = compute_pitch_gain(xy, xx, yy);
- if (FFABS(T1-prev_period)<=1)
- cont = prev_gain;
- else if (FFABS(T1-prev_period)<=2 && 5 * k * k < T0)
- cont = prev_gain * .5f;
- else
- cont = 0;
- thresh = FFMAX(.3f, (.7f * g0) - cont);
- /* Bias against very high pitch (very short period) to avoid false-positives
- due to short-term correlation */
- if (T1<3*minperiod)
- thresh = FFMAX(.4f, (.85f * g0) - cont);
- else if (T1<2*minperiod)
- thresh = FFMAX(.5f, (.9f * g0) - cont);
- if (g1 > thresh)
- {
- best_xy = xy;
- best_yy = yy;
- T = T1;
- g = g1;
- }
- }
- best_xy = FFMAX(0, best_xy);
- if (best_yy <= best_xy)
- pg = Q15ONE;
- else
- pg = best_xy/(best_yy + 1);
-
- for (k = 0; k < 3; k++)
- xcorr[k] = celt_inner_prod(x, x-(T+k-1), N);
- if ((xcorr[2]-xcorr[0]) > .7f * (xcorr[1]-xcorr[0]))
- offset = 1;
- else if ((xcorr[0]-xcorr[2]) > (.7f * (xcorr[1] - xcorr[2])))
- offset = -1;
- else
- offset = 0;
- if (pg > g)
- pg = g;
- *T0_ = 2*T+offset;
-
- if (*T0_<minperiod0)
- *T0_=minperiod0;
- return pg;
- }
-
- static void find_best_pitch(float *xcorr, float *y, int len,
- int max_pitch, int *best_pitch)
- {
- float best_num[2];
- float best_den[2];
- float Syy = 1.f;
-
- best_num[0] = -1;
- best_num[1] = -1;
- best_den[0] = 0;
- best_den[1] = 0;
- best_pitch[0] = 0;
- best_pitch[1] = 1;
-
- for (int j = 0; j < len; j++)
- Syy += y[j] * y[j];
-
- for (int i = 0; i < max_pitch; i++) {
- if (xcorr[i]>0) {
- float num;
- float xcorr16;
-
- xcorr16 = xcorr[i];
- /* Considering the range of xcorr16, this should avoid both underflows
- and overflows (inf) when squaring xcorr16 */
- xcorr16 *= 1e-12f;
- num = xcorr16 * xcorr16;
- if ((num * best_den[1]) > (best_num[1] * Syy)) {
- if ((num * best_den[0]) > (best_num[0] * Syy)) {
- best_num[1] = best_num[0];
- best_den[1] = best_den[0];
- best_pitch[1] = best_pitch[0];
- best_num[0] = num;
- best_den[0] = Syy;
- best_pitch[0] = i;
- } else {
- best_num[1] = num;
- best_den[1] = Syy;
- best_pitch[1] = i;
- }
- }
- }
- Syy += y[i+len]*y[i+len] - y[i] * y[i];
- Syy = FFMAX(1, Syy);
- }
- }
-
- static void pitch_search(const float *x_lp, float *y,
- int len, int max_pitch, int *pitch)
- {
- int lag;
- int best_pitch[2]={0,0};
- int offset;
-
- float x_lp4[WINDOW_SIZE];
- float y_lp4[WINDOW_SIZE];
- float xcorr[WINDOW_SIZE];
-
- lag = len+max_pitch;
-
- /* Downsample by 2 again */
- for (int j = 0; j < len >> 2; j++)
- x_lp4[j] = x_lp[2*j];
- for (int j = 0; j < lag >> 2; j++)
- y_lp4[j] = y[2*j];
-
- /* Coarse search with 4x decimation */
-
- celt_pitch_xcorr(x_lp4, y_lp4, xcorr, len>>2, max_pitch>>2);
-
- find_best_pitch(xcorr, y_lp4, len>>2, max_pitch>>2, best_pitch);
-
- /* Finer search with 2x decimation */
- for (int i = 0; i < max_pitch >> 1; i++) {
- float sum;
- xcorr[i] = 0;
- if (FFABS(i-2*best_pitch[0])>2 && FFABS(i-2*best_pitch[1])>2)
- continue;
- sum = celt_inner_prod(x_lp, y+i, len>>1);
- xcorr[i] = FFMAX(-1, sum);
- }
-
- find_best_pitch(xcorr, y, len>>1, max_pitch>>1, best_pitch);
-
- /* Refine by pseudo-interpolation */
- if (best_pitch[0] > 0 && best_pitch[0] < (max_pitch >> 1) - 1) {
- float a, b, c;
-
- a = xcorr[best_pitch[0] - 1];
- b = xcorr[best_pitch[0]];
- c = xcorr[best_pitch[0] + 1];
- if (c - a > .7f * (b - a))
- offset = 1;
- else if (a - c > .7f * (b-c))
- offset = -1;
- else
- offset = 0;
- } else {
- offset = 0;
- }
-
- *pitch = 2 * best_pitch[0] - offset;
- }
-
- static void dct(AudioRNNContext *s, float *out, const float *in)
- {
- for (int i = 0; i < NB_BANDS; i++) {
- float sum = 0.f;
-
- for (int j = 0; j < NB_BANDS; j++) {
- sum += in[j] * s->dct_table[j * NB_BANDS + i];
- }
- out[i] = sum * sqrtf(2.f / 22);
- }
- }
-
- static int compute_frame_features(AudioRNNContext *s, DenoiseState *st, AVComplexFloat *X, AVComplexFloat *P,
- float *Ex, float *Ep, float *Exp, float *features, const float *in)
- {
- float E = 0;
- float *ceps_0, *ceps_1, *ceps_2;
- float spec_variability = 0;
- float Ly[NB_BANDS];
- LOCAL_ALIGNED_32(float, p, [WINDOW_SIZE]);
- float pitch_buf[PITCH_BUF_SIZE>>1];
- int pitch_index;
- float gain;
- float *(pre[1]);
- float tmp[NB_BANDS];
- float follow, logMax;
-
- frame_analysis(s, st, X, Ex, in);
- RNN_MOVE(st->pitch_buf, &st->pitch_buf[FRAME_SIZE], PITCH_BUF_SIZE-FRAME_SIZE);
- RNN_COPY(&st->pitch_buf[PITCH_BUF_SIZE-FRAME_SIZE], in, FRAME_SIZE);
- pre[0] = &st->pitch_buf[0];
- pitch_downsample(pre, pitch_buf, PITCH_BUF_SIZE, 1);
- pitch_search(pitch_buf+(PITCH_MAX_PERIOD>>1), pitch_buf, PITCH_FRAME_SIZE,
- PITCH_MAX_PERIOD-3*PITCH_MIN_PERIOD, &pitch_index);
- pitch_index = PITCH_MAX_PERIOD-pitch_index;
-
- gain = remove_doubling(pitch_buf, PITCH_MAX_PERIOD, PITCH_MIN_PERIOD,
- PITCH_FRAME_SIZE, &pitch_index, st->last_period, st->last_gain);
- st->last_period = pitch_index;
- st->last_gain = gain;
-
- for (int i = 0; i < WINDOW_SIZE; i++)
- p[i] = st->pitch_buf[PITCH_BUF_SIZE-WINDOW_SIZE-pitch_index+i];
-
- s->fdsp->vector_fmul(p, p, s->window, WINDOW_SIZE);
- forward_transform(st, P, p);
- compute_band_energy(Ep, P);
- compute_band_corr(Exp, X, P);
-
- for (int i = 0; i < NB_BANDS; i++)
- Exp[i] = Exp[i] / sqrtf(.001f+Ex[i]*Ep[i]);
-
- dct(s, tmp, Exp);
-
- for (int i = 0; i < NB_DELTA_CEPS; i++)
- features[NB_BANDS+2*NB_DELTA_CEPS+i] = tmp[i];
-
- features[NB_BANDS+2*NB_DELTA_CEPS] -= 1.3;
- features[NB_BANDS+2*NB_DELTA_CEPS+1] -= 0.9;
- features[NB_BANDS+3*NB_DELTA_CEPS] = .01*(pitch_index-300);
- logMax = -2;
- follow = -2;
-
- for (int i = 0; i < NB_BANDS; i++) {
- Ly[i] = log10f(1e-2f + Ex[i]);
- Ly[i] = FFMAX(logMax-7, FFMAX(follow-1.5, Ly[i]));
- logMax = FFMAX(logMax, Ly[i]);
- follow = FFMAX(follow-1.5, Ly[i]);
- E += Ex[i];
- }
-
- if (E < 0.04f) {
- /* If there's no audio, avoid messing up the state. */
- RNN_CLEAR(features, NB_FEATURES);
- return 1;
- }
-
- dct(s, features, Ly);
- features[0] -= 12;
- features[1] -= 4;
- ceps_0 = st->cepstral_mem[st->memid];
- ceps_1 = (st->memid < 1) ? st->cepstral_mem[CEPS_MEM+st->memid-1] : st->cepstral_mem[st->memid-1];
- ceps_2 = (st->memid < 2) ? st->cepstral_mem[CEPS_MEM+st->memid-2] : st->cepstral_mem[st->memid-2];
-
- for (int i = 0; i < NB_BANDS; i++)
- ceps_0[i] = features[i];
-
- st->memid++;
- for (int i = 0; i < NB_DELTA_CEPS; i++) {
- features[i] = ceps_0[i] + ceps_1[i] + ceps_2[i];
- features[NB_BANDS+i] = ceps_0[i] - ceps_2[i];
- features[NB_BANDS+NB_DELTA_CEPS+i] = ceps_0[i] - 2*ceps_1[i] + ceps_2[i];
- }
- /* Spectral variability features. */
- if (st->memid == CEPS_MEM)
- st->memid = 0;
-
- for (int i = 0; i < CEPS_MEM; i++) {
- float mindist = 1e15f;
- for (int j = 0; j < CEPS_MEM; j++) {
- float dist = 0.f;
- for (int k = 0; k < NB_BANDS; k++) {
- float tmp;
-
- tmp = st->cepstral_mem[i][k] - st->cepstral_mem[j][k];
- dist += tmp*tmp;
- }
-
- if (j != i)
- mindist = FFMIN(mindist, dist);
- }
-
- spec_variability += mindist;
- }
-
- features[NB_BANDS+3*NB_DELTA_CEPS+1] = spec_variability/CEPS_MEM-2.1;
-
- return 0;
- }
-
- static void interp_band_gain(float *g, const float *bandE)
- {
- memset(g, 0, sizeof(*g) * FREQ_SIZE);
-
- for (int i = 0; i < NB_BANDS - 1; i++) {
- const int band_size = (eband5ms[i + 1] - eband5ms[i]) << FRAME_SIZE_SHIFT;
-
- for (int j = 0; j < band_size; j++) {
- float frac = (float)j / band_size;
-
- g[(eband5ms[i] << FRAME_SIZE_SHIFT) + j] = (1.f - frac) * bandE[i] + frac * bandE[i + 1];
- }
- }
- }
-
- static void pitch_filter(AVComplexFloat *X, const AVComplexFloat *P, const float *Ex, const float *Ep,
- const float *Exp, const float *g)
- {
- float newE[NB_BANDS];
- float r[NB_BANDS];
- float norm[NB_BANDS];
- float rf[FREQ_SIZE] = {0};
- float normf[FREQ_SIZE]={0};
-
- for (int i = 0; i < NB_BANDS; i++) {
- if (Exp[i]>g[i]) r[i] = 1;
- else r[i] = SQUARE(Exp[i])*(1-SQUARE(g[i]))/(.001 + SQUARE(g[i])*(1-SQUARE(Exp[i])));
- r[i] = sqrtf(av_clipf(r[i], 0, 1));
- r[i] *= sqrtf(Ex[i]/(1e-8+Ep[i]));
- }
- interp_band_gain(rf, r);
- for (int i = 0; i < FREQ_SIZE; i++) {
- X[i].re += rf[i]*P[i].re;
- X[i].im += rf[i]*P[i].im;
- }
- compute_band_energy(newE, X);
- for (int i = 0; i < NB_BANDS; i++) {
- norm[i] = sqrtf(Ex[i] / (1e-8+newE[i]));
- }
- interp_band_gain(normf, norm);
- for (int i = 0; i < FREQ_SIZE; i++) {
- X[i].re *= normf[i];
- X[i].im *= normf[i];
- }
- }
-
- static const float tansig_table[201] = {
- 0.000000f, 0.039979f, 0.079830f, 0.119427f, 0.158649f,
- 0.197375f, 0.235496f, 0.272905f, 0.309507f, 0.345214f,
- 0.379949f, 0.413644f, 0.446244f, 0.477700f, 0.507977f,
- 0.537050f, 0.564900f, 0.591519f, 0.616909f, 0.641077f,
- 0.664037f, 0.685809f, 0.706419f, 0.725897f, 0.744277f,
- 0.761594f, 0.777888f, 0.793199f, 0.807569f, 0.821040f,
- 0.833655f, 0.845456f, 0.856485f, 0.866784f, 0.876393f,
- 0.885352f, 0.893698f, 0.901468f, 0.908698f, 0.915420f,
- 0.921669f, 0.927473f, 0.932862f, 0.937863f, 0.942503f,
- 0.946806f, 0.950795f, 0.954492f, 0.957917f, 0.961090f,
- 0.964028f, 0.966747f, 0.969265f, 0.971594f, 0.973749f,
- 0.975743f, 0.977587f, 0.979293f, 0.980869f, 0.982327f,
- 0.983675f, 0.984921f, 0.986072f, 0.987136f, 0.988119f,
- 0.989027f, 0.989867f, 0.990642f, 0.991359f, 0.992020f,
- 0.992631f, 0.993196f, 0.993718f, 0.994199f, 0.994644f,
- 0.995055f, 0.995434f, 0.995784f, 0.996108f, 0.996407f,
- 0.996682f, 0.996937f, 0.997172f, 0.997389f, 0.997590f,
- 0.997775f, 0.997946f, 0.998104f, 0.998249f, 0.998384f,
- 0.998508f, 0.998623f, 0.998728f, 0.998826f, 0.998916f,
- 0.999000f, 0.999076f, 0.999147f, 0.999213f, 0.999273f,
- 0.999329f, 0.999381f, 0.999428f, 0.999472f, 0.999513f,
- 0.999550f, 0.999585f, 0.999617f, 0.999646f, 0.999673f,
- 0.999699f, 0.999722f, 0.999743f, 0.999763f, 0.999781f,
- 0.999798f, 0.999813f, 0.999828f, 0.999841f, 0.999853f,
- 0.999865f, 0.999875f, 0.999885f, 0.999893f, 0.999902f,
- 0.999909f, 0.999916f, 0.999923f, 0.999929f, 0.999934f,
- 0.999939f, 0.999944f, 0.999948f, 0.999952f, 0.999956f,
- 0.999959f, 0.999962f, 0.999965f, 0.999968f, 0.999970f,
- 0.999973f, 0.999975f, 0.999977f, 0.999978f, 0.999980f,
- 0.999982f, 0.999983f, 0.999984f, 0.999986f, 0.999987f,
- 0.999988f, 0.999989f, 0.999990f, 0.999990f, 0.999991f,
- 0.999992f, 0.999992f, 0.999993f, 0.999994f, 0.999994f,
- 0.999994f, 0.999995f, 0.999995f, 0.999996f, 0.999996f,
- 0.999996f, 0.999997f, 0.999997f, 0.999997f, 0.999997f,
- 0.999997f, 0.999998f, 0.999998f, 0.999998f, 0.999998f,
- 0.999998f, 0.999998f, 0.999999f, 0.999999f, 0.999999f,
- 0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f,
- 0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f,
- 1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f,
- 1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f,
- 1.000000f,
- };
-
- static inline float tansig_approx(float x)
- {
- float y, dy;
- float sign=1;
- int i;
-
- /* Tests are reversed to catch NaNs */
- if (!(x<8))
- return 1;
- if (!(x>-8))
- return -1;
- /* Another check in case of -ffast-math */
-
- if (isnan(x))
- return 0;
-
- if (x < 0) {
- x=-x;
- sign=-1;
- }
- i = (int)floor(.5f+25*x);
- x -= .04f*i;
- y = tansig_table[i];
- dy = 1-y*y;
- y = y + x*dy*(1 - y*x);
- return sign*y;
- }
-
- static inline float sigmoid_approx(float x)
- {
- return .5f + .5f*tansig_approx(.5f*x);
- }
-
- static void compute_dense(const DenseLayer *layer, float *output, const float *input)
- {
- const int N = layer->nb_neurons, M = layer->nb_inputs, stride = N;
-
- for (int i = 0; i < N; i++) {
- /* Compute update gate. */
- float sum = layer->bias[i];
-
- for (int j = 0; j < M; j++)
- sum += layer->input_weights[j * stride + i] * input[j];
-
- output[i] = WEIGHTS_SCALE * sum;
- }
-
- if (layer->activation == ACTIVATION_SIGMOID) {
- for (int i = 0; i < N; i++)
- output[i] = sigmoid_approx(output[i]);
- } else if (layer->activation == ACTIVATION_TANH) {
- for (int i = 0; i < N; i++)
- output[i] = tansig_approx(output[i]);
- } else if (layer->activation == ACTIVATION_RELU) {
- for (int i = 0; i < N; i++)
- output[i] = FFMAX(0, output[i]);
- } else {
- av_assert0(0);
- }
- }
-
- static void compute_gru(AudioRNNContext *s, const GRULayer *gru, float *state, const float *input)
- {
- LOCAL_ALIGNED_32(float, z, [MAX_NEURONS]);
- LOCAL_ALIGNED_32(float, r, [MAX_NEURONS]);
- LOCAL_ALIGNED_32(float, h, [MAX_NEURONS]);
- const int M = gru->nb_inputs;
- const int N = gru->nb_neurons;
- const int AN = FFALIGN(N, 4);
- const int AM = FFALIGN(M, 4);
- const int stride = 3 * AN, istride = 3 * AM;
-
- for (int i = 0; i < N; i++) {
- /* Compute update gate. */
- float sum = gru->bias[i];
-
- sum += s->fdsp->scalarproduct_float(gru->input_weights + i * istride, input, AM);
- sum += s->fdsp->scalarproduct_float(gru->recurrent_weights + i * stride, state, AN);
- z[i] = sigmoid_approx(WEIGHTS_SCALE * sum);
- }
-
- for (int i = 0; i < N; i++) {
- /* Compute reset gate. */
- float sum = gru->bias[N + i];
-
- sum += s->fdsp->scalarproduct_float(gru->input_weights + AM + i * istride, input, AM);
- sum += s->fdsp->scalarproduct_float(gru->recurrent_weights + AN + i * stride, state, AN);
- r[i] = sigmoid_approx(WEIGHTS_SCALE * sum);
- }
-
- for (int i = 0; i < N; i++) {
- /* Compute output. */
- float sum = gru->bias[2 * N + i];
-
- sum += s->fdsp->scalarproduct_float(gru->input_weights + 2 * AM + i * istride, input, AM);
- for (int j = 0; j < N; j++)
- sum += gru->recurrent_weights[2 * AN + i * stride + j] * state[j] * r[j];
-
- if (gru->activation == ACTIVATION_SIGMOID)
- sum = sigmoid_approx(WEIGHTS_SCALE * sum);
- else if (gru->activation == ACTIVATION_TANH)
- sum = tansig_approx(WEIGHTS_SCALE * sum);
- else if (gru->activation == ACTIVATION_RELU)
- sum = FFMAX(0, WEIGHTS_SCALE * sum);
- else
- av_assert0(0);
- h[i] = z[i] * state[i] + (1.f - z[i]) * sum;
- }
-
- RNN_COPY(state, h, N);
- }
-
- #define INPUT_SIZE 42
-
- static void compute_rnn(AudioRNNContext *s, RNNState *rnn, float *gains, float *vad, const float *input)
- {
- LOCAL_ALIGNED_32(float, dense_out, [MAX_NEURONS]);
- LOCAL_ALIGNED_32(float, noise_input, [MAX_NEURONS * 3]);
- LOCAL_ALIGNED_32(float, denoise_input, [MAX_NEURONS * 3]);
-
- compute_dense(rnn->model->input_dense, dense_out, input);
- compute_gru(s, rnn->model->vad_gru, rnn->vad_gru_state, dense_out);
- compute_dense(rnn->model->vad_output, vad, rnn->vad_gru_state);
-
- for (int i = 0; i < rnn->model->input_dense_size; i++)
- noise_input[i] = dense_out[i];
- for (int i = 0; i < rnn->model->vad_gru_size; i++)
- noise_input[i + rnn->model->input_dense_size] = rnn->vad_gru_state[i];
- for (int i = 0; i < INPUT_SIZE; i++)
- noise_input[i + rnn->model->input_dense_size + rnn->model->vad_gru_size] = input[i];
-
- compute_gru(s, rnn->model->noise_gru, rnn->noise_gru_state, noise_input);
-
- for (int i = 0; i < rnn->model->vad_gru_size; i++)
- denoise_input[i] = rnn->vad_gru_state[i];
- for (int i = 0; i < rnn->model->noise_gru_size; i++)
- denoise_input[i + rnn->model->vad_gru_size] = rnn->noise_gru_state[i];
- for (int i = 0; i < INPUT_SIZE; i++)
- denoise_input[i + rnn->model->vad_gru_size + rnn->model->noise_gru_size] = input[i];
-
- compute_gru(s, rnn->model->denoise_gru, rnn->denoise_gru_state, denoise_input);
- compute_dense(rnn->model->denoise_output, gains, rnn->denoise_gru_state);
- }
-
- static float rnnoise_channel(AudioRNNContext *s, DenoiseState *st, float *out, const float *in)
- {
- AVComplexFloat X[FREQ_SIZE];
- AVComplexFloat P[WINDOW_SIZE];
- float x[FRAME_SIZE];
- float Ex[NB_BANDS], Ep[NB_BANDS];
- float Exp[NB_BANDS];
- float features[NB_FEATURES];
- float g[NB_BANDS];
- float gf[FREQ_SIZE];
- float vad_prob = 0;
- static const float a_hp[2] = {-1.99599, 0.99600};
- static const float b_hp[2] = {-2, 1};
- int silence;
-
- biquad(x, st->mem_hp_x, in, b_hp, a_hp, FRAME_SIZE);
- silence = compute_frame_features(s, st, X, P, Ex, Ep, Exp, features, x);
-
- if (!silence) {
- compute_rnn(s, &st->rnn, g, &vad_prob, features);
- pitch_filter(X, P, Ex, Ep, Exp, g);
- for (int i = 0; i < NB_BANDS; i++) {
- float alpha = .6f;
-
- g[i] = FFMAX(g[i], alpha * st->lastg[i]);
- st->lastg[i] = g[i];
- }
-
- interp_band_gain(gf, g);
-
- for (int i = 0; i < FREQ_SIZE; i++) {
- X[i].re *= gf[i];
- X[i].im *= gf[i];
- }
- }
-
- frame_synthesis(s, st, out, X);
-
- return vad_prob;
- }
-
- typedef struct ThreadData {
- AVFrame *in, *out;
- } ThreadData;
-
- static int rnnoise_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
- {
- AudioRNNContext *s = ctx->priv;
- ThreadData *td = arg;
- AVFrame *in = td->in;
- AVFrame *out = td->out;
- const int start = (out->channels * jobnr) / nb_jobs;
- const int end = (out->channels * (jobnr+1)) / nb_jobs;
-
- for (int ch = start; ch < end; ch++) {
- rnnoise_channel(s, &s->st[ch],
- (float *)out->extended_data[ch],
- (const float *)in->extended_data[ch]);
- }
-
- return 0;
- }
-
- static int filter_frame(AVFilterLink *inlink, AVFrame *in)
- {
- AVFilterContext *ctx = inlink->dst;
- AVFilterLink *outlink = ctx->outputs[0];
- AVFrame *out = NULL;
- ThreadData td;
-
- out = ff_get_audio_buffer(outlink, FRAME_SIZE);
- if (!out) {
- av_frame_free(&in);
- return AVERROR(ENOMEM);
- }
- out->pts = in->pts;
-
- td.in = in; td.out = out;
- ctx->internal->execute(ctx, rnnoise_channels, &td, NULL, FFMIN(outlink->channels,
- ff_filter_get_nb_threads(ctx)));
-
- av_frame_free(&in);
- return ff_filter_frame(outlink, out);
- }
-
- static int activate(AVFilterContext *ctx)
- {
- AVFilterLink *inlink = ctx->inputs[0];
- AVFilterLink *outlink = ctx->outputs[0];
- AVFrame *in = NULL;
- int ret;
-
- FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
-
- ret = ff_inlink_consume_samples(inlink, FRAME_SIZE, FRAME_SIZE, &in);
- if (ret < 0)
- return ret;
-
- if (ret > 0)
- return filter_frame(inlink, in);
-
- FF_FILTER_FORWARD_STATUS(inlink, outlink);
- FF_FILTER_FORWARD_WANTED(outlink, inlink);
-
- return FFERROR_NOT_READY;
- }
-
- static av_cold int init(AVFilterContext *ctx)
- {
- AudioRNNContext *s = ctx->priv;
- FILE *f;
-
- s->fdsp = avpriv_float_dsp_alloc(0);
- if (!s->fdsp)
- return AVERROR(ENOMEM);
-
- if (!s->model_name)
- return AVERROR(EINVAL);
- f = av_fopen_utf8(s->model_name, "r");
- if (!f)
- return AVERROR(EINVAL);
-
- s->model = rnnoise_model_from_file(f);
- fclose(f);
- if (!s->model)
- return AVERROR(EINVAL);
-
- for (int i = 0; i < FRAME_SIZE; i++) {
- s->window[i] = sin(.5*M_PI*sin(.5*M_PI*(i+.5)/FRAME_SIZE) * sin(.5*M_PI*(i+.5)/FRAME_SIZE));
- s->window[WINDOW_SIZE - 1 - i] = s->window[i];
- }
-
- for (int i = 0; i < NB_BANDS; i++) {
- for (int j = 0; j < NB_BANDS; j++) {
- s->dct_table[i*NB_BANDS + j] = cosf((i + .5f) * j * M_PI / NB_BANDS);
- if (j == 0)
- s->dct_table[i*NB_BANDS + j] *= sqrtf(.5);
- }
- }
-
- return 0;
- }
-
- static av_cold void uninit(AVFilterContext *ctx)
- {
- AudioRNNContext *s = ctx->priv;
-
- av_freep(&s->fdsp);
- rnnoise_model_free(s->model);
- s->model = NULL;
-
- if (s->st) {
- for (int ch = 0; ch < s->channels; ch++) {
- av_freep(&s->st[ch].rnn.vad_gru_state);
- av_freep(&s->st[ch].rnn.noise_gru_state);
- av_freep(&s->st[ch].rnn.denoise_gru_state);
- av_tx_uninit(&s->st[ch].tx);
- av_tx_uninit(&s->st[ch].txi);
- }
- }
- av_freep(&s->st);
- }
-
- static const AVFilterPad inputs[] = {
- {
- .name = "default",
- .type = AVMEDIA_TYPE_AUDIO,
- .config_props = config_input,
- },
- { NULL }
- };
-
- static const AVFilterPad outputs[] = {
- {
- .name = "default",
- .type = AVMEDIA_TYPE_AUDIO,
- },
- { NULL }
- };
-
- #define OFFSET(x) offsetof(AudioRNNContext, x)
- #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
-
- static const AVOption arnndn_options[] = {
- { "model", "set model name", OFFSET(model_name), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, AF },
- { "m", "set model name", OFFSET(model_name), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, AF },
- { NULL }
- };
-
- AVFILTER_DEFINE_CLASS(arnndn);
-
- AVFilter ff_af_arnndn = {
- .name = "arnndn",
- .description = NULL_IF_CONFIG_SMALL("Reduce noise from speech using Recurrent Neural Networks."),
- .query_formats = query_formats,
- .priv_size = sizeof(AudioRNNContext),
- .priv_class = &arnndn_class,
- .activate = activate,
- .init = init,
- .uninit = uninit,
- .inputs = inputs,
- .outputs = outputs,
- .flags = AVFILTER_FLAG_SLICE_THREADS,
- };
|