You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

981 lines
31KB

  1. /*
  2. * Copyright (c) 2017 Paul B Mahol
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * An arbitrary audio FIR filter
  23. */
  24. #include <float.h>
  25. #include "libavutil/avstring.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/float_dsp.h"
  28. #include "libavutil/intreadwrite.h"
  29. #include "libavutil/opt.h"
  30. #include "libavutil/xga_font_data.h"
  31. #include "libavcodec/avfft.h"
  32. #include "audio.h"
  33. #include "avfilter.h"
  34. #include "filters.h"
  35. #include "formats.h"
  36. #include "internal.h"
  37. #include "af_afir.h"
  38. static void fcmul_add_c(float *sum, const float *t, const float *c, ptrdiff_t len)
  39. {
  40. int n;
  41. for (n = 0; n < len; n++) {
  42. const float cre = c[2 * n ];
  43. const float cim = c[2 * n + 1];
  44. const float tre = t[2 * n ];
  45. const float tim = t[2 * n + 1];
  46. sum[2 * n ] += tre * cre - tim * cim;
  47. sum[2 * n + 1] += tre * cim + tim * cre;
  48. }
  49. sum[2 * n] += t[2 * n] * c[2 * n];
  50. }
  51. static void direct(const float *in, const FFTComplex *ir, int len, float *out)
  52. {
  53. for (int n = 0; n < len; n++)
  54. for (int m = 0; m <= n; m++)
  55. out[n] += ir[m].re * in[n - m];
  56. }
  57. static int fir_quantum(AVFilterContext *ctx, AVFrame *out, int ch, int offset)
  58. {
  59. AudioFIRContext *s = ctx->priv;
  60. const float *in = (const float *)s->in->extended_data[ch] + offset;
  61. float *block, *buf, *ptr = (float *)out->extended_data[ch] + offset;
  62. const int nb_samples = FFMIN(s->min_part_size, out->nb_samples - offset);
  63. int n, i, j;
  64. for (int segment = 0; segment < s->nb_segments; segment++) {
  65. AudioFIRSegment *seg = &s->seg[segment];
  66. float *src = (float *)seg->input->extended_data[ch];
  67. float *dst = (float *)seg->output->extended_data[ch];
  68. float *sum = (float *)seg->sum->extended_data[ch];
  69. if (s->min_part_size >= 8) {
  70. s->fdsp->vector_fmul_scalar(src + seg->input_offset, in, s->dry_gain, FFALIGN(nb_samples, 4));
  71. emms_c();
  72. } else {
  73. for (n = 0; n < nb_samples; n++)
  74. src[seg->input_offset + n] = in[n] * s->dry_gain;
  75. }
  76. seg->output_offset[ch] += s->min_part_size;
  77. if (seg->output_offset[ch] == seg->part_size) {
  78. seg->output_offset[ch] = 0;
  79. } else {
  80. memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
  81. dst += seg->output_offset[ch];
  82. for (n = 0; n < nb_samples; n++) {
  83. ptr[n] += dst[n];
  84. }
  85. continue;
  86. }
  87. if (seg->part_size < 8) {
  88. memset(dst, 0, sizeof(*dst) * seg->part_size * seg->nb_partitions);
  89. j = seg->part_index[ch];
  90. for (i = 0; i < seg->nb_partitions; i++) {
  91. const int coffset = j * seg->coeff_size;
  92. const FFTComplex *coeff = (const FFTComplex *)seg->coeff->extended_data[ch * !s->one2many] + coffset;
  93. direct(src, coeff, nb_samples, dst);
  94. if (j == 0)
  95. j = seg->nb_partitions;
  96. j--;
  97. }
  98. seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions;
  99. memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
  100. for (n = 0; n < nb_samples; n++) {
  101. ptr[n] += dst[n];
  102. }
  103. continue;
  104. }
  105. memset(sum, 0, sizeof(*sum) * seg->fft_length);
  106. block = (float *)seg->block->extended_data[ch] + seg->part_index[ch] * seg->block_size;
  107. memset(block + seg->part_size, 0, sizeof(*block) * (seg->fft_length - seg->part_size));
  108. memcpy(block, src, sizeof(*src) * seg->part_size);
  109. av_rdft_calc(seg->rdft[ch], block);
  110. block[2 * seg->part_size] = block[1];
  111. block[1] = 0;
  112. j = seg->part_index[ch];
  113. for (i = 0; i < seg->nb_partitions; i++) {
  114. const int coffset = j * seg->coeff_size;
  115. const float *block = (const float *)seg->block->extended_data[ch] + i * seg->block_size;
  116. const FFTComplex *coeff = (const FFTComplex *)seg->coeff->extended_data[ch * !s->one2many] + coffset;
  117. s->afirdsp.fcmul_add(sum, block, (const float *)coeff, seg->part_size);
  118. if (j == 0)
  119. j = seg->nb_partitions;
  120. j--;
  121. }
  122. sum[1] = sum[2 * seg->part_size];
  123. av_rdft_calc(seg->irdft[ch], sum);
  124. buf = (float *)seg->buffer->extended_data[ch];
  125. for (n = 0; n < seg->part_size; n++) {
  126. buf[n] += sum[n];
  127. }
  128. memcpy(dst, buf, seg->part_size * sizeof(*dst));
  129. buf = (float *)seg->buffer->extended_data[ch];
  130. memcpy(buf, sum + seg->part_size, seg->part_size * sizeof(*buf));
  131. seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions;
  132. memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
  133. for (n = 0; n < nb_samples; n++) {
  134. ptr[n] += dst[n];
  135. }
  136. }
  137. if (s->min_part_size >= 8) {
  138. s->fdsp->vector_fmul_scalar(ptr, ptr, s->wet_gain, FFALIGN(nb_samples, 4));
  139. emms_c();
  140. } else {
  141. for (n = 0; n < nb_samples; n++)
  142. ptr[n] *= s->wet_gain;
  143. }
  144. return 0;
  145. }
  146. static int fir_channel(AVFilterContext *ctx, AVFrame *out, int ch)
  147. {
  148. AudioFIRContext *s = ctx->priv;
  149. for (int offset = 0; offset < out->nb_samples; offset += s->min_part_size) {
  150. fir_quantum(ctx, out, ch, offset);
  151. }
  152. return 0;
  153. }
  154. static int fir_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  155. {
  156. AVFrame *out = arg;
  157. const int start = (out->channels * jobnr) / nb_jobs;
  158. const int end = (out->channels * (jobnr+1)) / nb_jobs;
  159. for (int ch = start; ch < end; ch++) {
  160. fir_channel(ctx, out, ch);
  161. }
  162. return 0;
  163. }
  164. static int fir_frame(AudioFIRContext *s, AVFrame *in, AVFilterLink *outlink)
  165. {
  166. AVFilterContext *ctx = outlink->src;
  167. AVFrame *out = NULL;
  168. out = ff_get_audio_buffer(outlink, in->nb_samples);
  169. if (!out) {
  170. av_frame_free(&in);
  171. return AVERROR(ENOMEM);
  172. }
  173. if (s->pts == AV_NOPTS_VALUE)
  174. s->pts = in->pts;
  175. s->in = in;
  176. ctx->internal->execute(ctx, fir_channels, out, NULL, FFMIN(outlink->channels,
  177. ff_filter_get_nb_threads(ctx)));
  178. out->pts = s->pts;
  179. if (s->pts != AV_NOPTS_VALUE)
  180. s->pts += av_rescale_q(out->nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base);
  181. av_frame_free(&in);
  182. s->in = NULL;
  183. return ff_filter_frame(outlink, out);
  184. }
  185. static void drawtext(AVFrame *pic, int x, int y, const char *txt, uint32_t color)
  186. {
  187. const uint8_t *font;
  188. int font_height;
  189. int i;
  190. font = avpriv_cga_font, font_height = 8;
  191. for (i = 0; txt[i]; i++) {
  192. int char_y, mask;
  193. uint8_t *p = pic->data[0] + y * pic->linesize[0] + (x + i * 8) * 4;
  194. for (char_y = 0; char_y < font_height; char_y++) {
  195. for (mask = 0x80; mask; mask >>= 1) {
  196. if (font[txt[i] * font_height + char_y] & mask)
  197. AV_WL32(p, color);
  198. p += 4;
  199. }
  200. p += pic->linesize[0] - 8 * 4;
  201. }
  202. }
  203. }
  204. static void draw_line(AVFrame *out, int x0, int y0, int x1, int y1, uint32_t color)
  205. {
  206. int dx = FFABS(x1-x0);
  207. int dy = FFABS(y1-y0), sy = y0 < y1 ? 1 : -1;
  208. int err = (dx>dy ? dx : -dy) / 2, e2;
  209. for (;;) {
  210. AV_WL32(out->data[0] + y0 * out->linesize[0] + x0 * 4, color);
  211. if (x0 == x1 && y0 == y1)
  212. break;
  213. e2 = err;
  214. if (e2 >-dx) {
  215. err -= dy;
  216. x0--;
  217. }
  218. if (e2 < dy) {
  219. err += dx;
  220. y0 += sy;
  221. }
  222. }
  223. }
  224. static void draw_response(AVFilterContext *ctx, AVFrame *out)
  225. {
  226. AudioFIRContext *s = ctx->priv;
  227. float *mag, *phase, *delay, min = FLT_MAX, max = FLT_MIN;
  228. float min_delay = FLT_MAX, max_delay = FLT_MIN;
  229. int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1;
  230. char text[32];
  231. int channel, i, x;
  232. memset(out->data[0], 0, s->h * out->linesize[0]);
  233. phase = av_malloc_array(s->w, sizeof(*phase));
  234. mag = av_malloc_array(s->w, sizeof(*mag));
  235. delay = av_malloc_array(s->w, sizeof(*delay));
  236. if (!mag || !phase || !delay)
  237. goto end;
  238. channel = av_clip(s->ir_channel, 0, s->ir[s->selir]->channels - 1);
  239. for (i = 0; i < s->w; i++) {
  240. const float *src = (const float *)s->ir[s->selir]->extended_data[channel];
  241. double w = i * M_PI / (s->w - 1);
  242. double div, real_num = 0., imag_num = 0., real = 0., imag = 0.;
  243. for (x = 0; x < s->nb_taps; x++) {
  244. real += cos(-x * w) * src[x];
  245. imag += sin(-x * w) * src[x];
  246. real_num += cos(-x * w) * src[x] * x;
  247. imag_num += sin(-x * w) * src[x] * x;
  248. }
  249. mag[i] = hypot(real, imag);
  250. phase[i] = atan2(imag, real);
  251. div = real * real + imag * imag;
  252. delay[i] = (real_num * real + imag_num * imag) / div;
  253. min = fminf(min, mag[i]);
  254. max = fmaxf(max, mag[i]);
  255. min_delay = fminf(min_delay, delay[i]);
  256. max_delay = fmaxf(max_delay, delay[i]);
  257. }
  258. for (i = 0; i < s->w; i++) {
  259. int ymag = mag[i] / max * (s->h - 1);
  260. int ydelay = (delay[i] - min_delay) / (max_delay - min_delay) * (s->h - 1);
  261. int yphase = (0.5 * (1. + phase[i] / M_PI)) * (s->h - 1);
  262. ymag = s->h - 1 - av_clip(ymag, 0, s->h - 1);
  263. yphase = s->h - 1 - av_clip(yphase, 0, s->h - 1);
  264. ydelay = s->h - 1 - av_clip(ydelay, 0, s->h - 1);
  265. if (prev_ymag < 0)
  266. prev_ymag = ymag;
  267. if (prev_yphase < 0)
  268. prev_yphase = yphase;
  269. if (prev_ydelay < 0)
  270. prev_ydelay = ydelay;
  271. draw_line(out, i, ymag, FFMAX(i - 1, 0), prev_ymag, 0xFFFF00FF);
  272. draw_line(out, i, yphase, FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00);
  273. draw_line(out, i, ydelay, FFMAX(i - 1, 0), prev_ydelay, 0xFF00FFFF);
  274. prev_ymag = ymag;
  275. prev_yphase = yphase;
  276. prev_ydelay = ydelay;
  277. }
  278. if (s->w > 400 && s->h > 100) {
  279. drawtext(out, 2, 2, "Max Magnitude:", 0xDDDDDDDD);
  280. snprintf(text, sizeof(text), "%.2f", max);
  281. drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD);
  282. drawtext(out, 2, 12, "Min Magnitude:", 0xDDDDDDDD);
  283. snprintf(text, sizeof(text), "%.2f", min);
  284. drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD);
  285. drawtext(out, 2, 22, "Max Delay:", 0xDDDDDDDD);
  286. snprintf(text, sizeof(text), "%.2f", max_delay);
  287. drawtext(out, 11 * 8 + 2, 22, text, 0xDDDDDDDD);
  288. drawtext(out, 2, 32, "Min Delay:", 0xDDDDDDDD);
  289. snprintf(text, sizeof(text), "%.2f", min_delay);
  290. drawtext(out, 11 * 8 + 2, 32, text, 0xDDDDDDDD);
  291. }
  292. end:
  293. av_free(delay);
  294. av_free(phase);
  295. av_free(mag);
  296. }
  297. static int init_segment(AVFilterContext *ctx, AudioFIRSegment *seg,
  298. int offset, int nb_partitions, int part_size)
  299. {
  300. AudioFIRContext *s = ctx->priv;
  301. seg->rdft = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->rdft));
  302. seg->irdft = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->irdft));
  303. if (!seg->rdft || !seg->irdft)
  304. return AVERROR(ENOMEM);
  305. seg->fft_length = part_size * 2 + 1;
  306. seg->part_size = part_size;
  307. seg->block_size = FFALIGN(seg->fft_length, 32);
  308. seg->coeff_size = FFALIGN(seg->part_size + 1, 32);
  309. seg->nb_partitions = nb_partitions;
  310. seg->input_size = offset + s->min_part_size;
  311. seg->input_offset = offset;
  312. seg->part_index = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->part_index));
  313. seg->output_offset = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->output_offset));
  314. if (!seg->part_index || !seg->output_offset)
  315. return AVERROR(ENOMEM);
  316. for (int ch = 0; ch < ctx->inputs[0]->channels && part_size >= 8; ch++) {
  317. seg->rdft[ch] = av_rdft_init(av_log2(2 * part_size), DFT_R2C);
  318. seg->irdft[ch] = av_rdft_init(av_log2(2 * part_size), IDFT_C2R);
  319. if (!seg->rdft[ch] || !seg->irdft[ch])
  320. return AVERROR(ENOMEM);
  321. }
  322. seg->sum = ff_get_audio_buffer(ctx->inputs[0], seg->fft_length);
  323. seg->block = ff_get_audio_buffer(ctx->inputs[0], seg->nb_partitions * seg->block_size);
  324. seg->buffer = ff_get_audio_buffer(ctx->inputs[0], seg->part_size);
  325. seg->coeff = ff_get_audio_buffer(ctx->inputs[1 + s->selir], seg->nb_partitions * seg->coeff_size * 2);
  326. seg->input = ff_get_audio_buffer(ctx->inputs[0], seg->input_size);
  327. seg->output = ff_get_audio_buffer(ctx->inputs[0], seg->part_size);
  328. if (!seg->buffer || !seg->sum || !seg->block || !seg->coeff || !seg->input || !seg->output)
  329. return AVERROR(ENOMEM);
  330. return 0;
  331. }
  332. static void uninit_segment(AVFilterContext *ctx, AudioFIRSegment *seg)
  333. {
  334. AudioFIRContext *s = ctx->priv;
  335. if (seg->rdft) {
  336. for (int ch = 0; ch < s->nb_channels; ch++) {
  337. av_rdft_end(seg->rdft[ch]);
  338. }
  339. }
  340. av_freep(&seg->rdft);
  341. if (seg->irdft) {
  342. for (int ch = 0; ch < s->nb_channels; ch++) {
  343. av_rdft_end(seg->irdft[ch]);
  344. }
  345. }
  346. av_freep(&seg->irdft);
  347. av_freep(&seg->output_offset);
  348. av_freep(&seg->part_index);
  349. av_frame_free(&seg->block);
  350. av_frame_free(&seg->sum);
  351. av_frame_free(&seg->buffer);
  352. av_frame_free(&seg->coeff);
  353. av_frame_free(&seg->input);
  354. av_frame_free(&seg->output);
  355. seg->input_size = 0;
  356. }
  357. static int convert_coeffs(AVFilterContext *ctx)
  358. {
  359. AudioFIRContext *s = ctx->priv;
  360. int ret, i, ch, n, cur_nb_taps;
  361. float power = 0;
  362. if (!s->nb_taps) {
  363. int part_size, max_part_size;
  364. int left, offset = 0;
  365. s->nb_taps = ff_inlink_queued_samples(ctx->inputs[1 + s->selir]);
  366. if (s->nb_taps <= 0)
  367. return AVERROR(EINVAL);
  368. if (s->minp > s->maxp) {
  369. s->maxp = s->minp;
  370. }
  371. left = s->nb_taps;
  372. part_size = 1 << av_log2(s->minp);
  373. max_part_size = 1 << av_log2(s->maxp);
  374. s->min_part_size = part_size;
  375. for (i = 0; left > 0; i++) {
  376. int step = part_size == max_part_size ? INT_MAX : 1 + (i == 0);
  377. int nb_partitions = FFMIN(step, (left + part_size - 1) / part_size);
  378. s->nb_segments = i + 1;
  379. ret = init_segment(ctx, &s->seg[i], offset, nb_partitions, part_size);
  380. if (ret < 0)
  381. return ret;
  382. offset += nb_partitions * part_size;
  383. left -= nb_partitions * part_size;
  384. part_size *= 2;
  385. part_size = FFMIN(part_size, max_part_size);
  386. }
  387. }
  388. if (!s->ir[s->selir]) {
  389. ret = ff_inlink_consume_samples(ctx->inputs[1 + s->selir], s->nb_taps, s->nb_taps, &s->ir[s->selir]);
  390. if (ret < 0)
  391. return ret;
  392. if (ret == 0)
  393. return AVERROR_BUG;
  394. }
  395. if (s->response)
  396. draw_response(ctx, s->video);
  397. s->gain = 1;
  398. cur_nb_taps = s->ir[s->selir]->nb_samples;
  399. switch (s->gtype) {
  400. case -1:
  401. /* nothing to do */
  402. break;
  403. case 0:
  404. for (ch = 0; ch < ctx->inputs[1 + s->selir]->channels; ch++) {
  405. float *time = (float *)s->ir[s->selir]->extended_data[!s->one2many * ch];
  406. for (i = 0; i < cur_nb_taps; i++)
  407. power += FFABS(time[i]);
  408. }
  409. s->gain = ctx->inputs[1 + s->selir]->channels / power;
  410. break;
  411. case 1:
  412. for (ch = 0; ch < ctx->inputs[1 + s->selir]->channels; ch++) {
  413. float *time = (float *)s->ir[s->selir]->extended_data[!s->one2many * ch];
  414. for (i = 0; i < cur_nb_taps; i++)
  415. power += time[i];
  416. }
  417. s->gain = ctx->inputs[1 + s->selir]->channels / power;
  418. break;
  419. case 2:
  420. for (ch = 0; ch < ctx->inputs[1 + s->selir]->channels; ch++) {
  421. float *time = (float *)s->ir[s->selir]->extended_data[!s->one2many * ch];
  422. for (i = 0; i < cur_nb_taps; i++)
  423. power += time[i] * time[i];
  424. }
  425. s->gain = sqrtf(ch / power);
  426. break;
  427. default:
  428. return AVERROR_BUG;
  429. }
  430. s->gain = FFMIN(s->gain * s->ir_gain, 1.f);
  431. av_log(ctx, AV_LOG_DEBUG, "power %f, gain %f\n", power, s->gain);
  432. for (ch = 0; ch < ctx->inputs[1 + s->selir]->channels; ch++) {
  433. float *time = (float *)s->ir[s->selir]->extended_data[!s->one2many * ch];
  434. s->fdsp->vector_fmul_scalar(time, time, s->gain, FFALIGN(cur_nb_taps, 4));
  435. }
  436. av_log(ctx, AV_LOG_DEBUG, "nb_taps: %d\n", cur_nb_taps);
  437. av_log(ctx, AV_LOG_DEBUG, "nb_segments: %d\n", s->nb_segments);
  438. for (ch = 0; ch < ctx->inputs[1 + s->selir]->channels; ch++) {
  439. float *time = (float *)s->ir[s->selir]->extended_data[!s->one2many * ch];
  440. int toffset = 0;
  441. for (i = FFMAX(1, s->length * s->nb_taps); i < s->nb_taps; i++)
  442. time[i] = 0;
  443. av_log(ctx, AV_LOG_DEBUG, "channel: %d\n", ch);
  444. for (int segment = 0; segment < s->nb_segments; segment++) {
  445. AudioFIRSegment *seg = &s->seg[segment];
  446. float *block = (float *)seg->block->extended_data[ch];
  447. FFTComplex *coeff = (FFTComplex *)seg->coeff->extended_data[ch];
  448. av_log(ctx, AV_LOG_DEBUG, "segment: %d\n", segment);
  449. for (i = 0; i < seg->nb_partitions; i++) {
  450. const float scale = 1.f / seg->part_size;
  451. const int coffset = i * seg->coeff_size;
  452. const int remaining = s->nb_taps - toffset;
  453. const int size = remaining >= seg->part_size ? seg->part_size : remaining;
  454. if (size < 8) {
  455. for (n = 0; n < size; n++)
  456. coeff[coffset + n].re = time[toffset + n];
  457. toffset += size;
  458. continue;
  459. }
  460. memset(block, 0, sizeof(*block) * seg->fft_length);
  461. memcpy(block, time + toffset, size * sizeof(*block));
  462. av_rdft_calc(seg->rdft[0], block);
  463. coeff[coffset].re = block[0] * scale;
  464. coeff[coffset].im = 0;
  465. for (n = 1; n < seg->part_size; n++) {
  466. coeff[coffset + n].re = block[2 * n] * scale;
  467. coeff[coffset + n].im = block[2 * n + 1] * scale;
  468. }
  469. coeff[coffset + seg->part_size].re = block[1] * scale;
  470. coeff[coffset + seg->part_size].im = 0;
  471. toffset += size;
  472. }
  473. av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", seg->nb_partitions);
  474. av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", seg->part_size);
  475. av_log(ctx, AV_LOG_DEBUG, "block size: %d\n", seg->block_size);
  476. av_log(ctx, AV_LOG_DEBUG, "fft_length: %d\n", seg->fft_length);
  477. av_log(ctx, AV_LOG_DEBUG, "coeff_size: %d\n", seg->coeff_size);
  478. av_log(ctx, AV_LOG_DEBUG, "input_size: %d\n", seg->input_size);
  479. av_log(ctx, AV_LOG_DEBUG, "input_offset: %d\n", seg->input_offset);
  480. }
  481. }
  482. s->have_coeffs = 1;
  483. return 0;
  484. }
  485. static int check_ir(AVFilterLink *link, AVFrame *frame)
  486. {
  487. AVFilterContext *ctx = link->dst;
  488. AudioFIRContext *s = ctx->priv;
  489. int nb_taps, max_nb_taps;
  490. nb_taps = ff_inlink_queued_samples(link);
  491. max_nb_taps = s->max_ir_len * ctx->outputs[0]->sample_rate;
  492. if (nb_taps > max_nb_taps) {
  493. av_log(ctx, AV_LOG_ERROR, "Too big number of coefficients: %d > %d.\n", nb_taps, max_nb_taps);
  494. return AVERROR(EINVAL);
  495. }
  496. return 0;
  497. }
  498. static int activate(AVFilterContext *ctx)
  499. {
  500. AudioFIRContext *s = ctx->priv;
  501. AVFilterLink *outlink = ctx->outputs[0];
  502. int ret, status, available, wanted;
  503. AVFrame *in = NULL;
  504. int64_t pts;
  505. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
  506. if (s->response)
  507. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[1], ctx);
  508. if (!s->eof_coeffs[s->selir]) {
  509. AVFrame *ir = NULL;
  510. ret = check_ir(ctx->inputs[1 + s->selir], ir);
  511. if (ret < 0)
  512. return ret;
  513. if (ff_outlink_get_status(ctx->inputs[1 + s->selir]) == AVERROR_EOF)
  514. s->eof_coeffs[s->selir] = 1;
  515. if (!s->eof_coeffs[s->selir]) {
  516. if (ff_outlink_frame_wanted(ctx->outputs[0]))
  517. ff_inlink_request_frame(ctx->inputs[1 + s->selir]);
  518. else if (s->response && ff_outlink_frame_wanted(ctx->outputs[1]))
  519. ff_inlink_request_frame(ctx->inputs[1 + s->selir]);
  520. return 0;
  521. }
  522. }
  523. if (!s->have_coeffs && s->eof_coeffs[s->selir]) {
  524. ret = convert_coeffs(ctx);
  525. if (ret < 0)
  526. return ret;
  527. }
  528. available = ff_inlink_queued_samples(ctx->inputs[0]);
  529. wanted = FFMAX(s->min_part_size, (available / s->min_part_size) * s->min_part_size);
  530. ret = ff_inlink_consume_samples(ctx->inputs[0], wanted, wanted, &in);
  531. if (ret > 0)
  532. ret = fir_frame(s, in, outlink);
  533. if (ret < 0)
  534. return ret;
  535. if (s->response && s->have_coeffs) {
  536. int64_t old_pts = s->video->pts;
  537. int64_t new_pts = av_rescale_q(s->pts, ctx->inputs[0]->time_base, ctx->outputs[1]->time_base);
  538. if (ff_outlink_frame_wanted(ctx->outputs[1]) && old_pts < new_pts) {
  539. AVFrame *clone;
  540. s->video->pts = new_pts;
  541. clone = av_frame_clone(s->video);
  542. if (!clone)
  543. return AVERROR(ENOMEM);
  544. return ff_filter_frame(ctx->outputs[1], clone);
  545. }
  546. }
  547. if (ff_inlink_queued_samples(ctx->inputs[0]) >= s->min_part_size) {
  548. ff_filter_set_ready(ctx, 10);
  549. return 0;
  550. }
  551. if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) {
  552. if (status == AVERROR_EOF) {
  553. ff_outlink_set_status(ctx->outputs[0], status, pts);
  554. if (s->response)
  555. ff_outlink_set_status(ctx->outputs[1], status, pts);
  556. return 0;
  557. }
  558. }
  559. if (ff_outlink_frame_wanted(ctx->outputs[0]) &&
  560. !ff_outlink_get_status(ctx->inputs[0])) {
  561. ff_inlink_request_frame(ctx->inputs[0]);
  562. return 0;
  563. }
  564. if (s->response &&
  565. ff_outlink_frame_wanted(ctx->outputs[1]) &&
  566. !ff_outlink_get_status(ctx->inputs[0])) {
  567. ff_inlink_request_frame(ctx->inputs[0]);
  568. return 0;
  569. }
  570. return FFERROR_NOT_READY;
  571. }
  572. static int query_formats(AVFilterContext *ctx)
  573. {
  574. AudioFIRContext *s = ctx->priv;
  575. AVFilterFormats *formats;
  576. AVFilterChannelLayouts *layouts;
  577. static const enum AVSampleFormat sample_fmts[] = {
  578. AV_SAMPLE_FMT_FLTP,
  579. AV_SAMPLE_FMT_NONE
  580. };
  581. static const enum AVPixelFormat pix_fmts[] = {
  582. AV_PIX_FMT_RGB0,
  583. AV_PIX_FMT_NONE
  584. };
  585. int ret;
  586. if (s->response) {
  587. AVFilterLink *videolink = ctx->outputs[1];
  588. formats = ff_make_format_list(pix_fmts);
  589. if ((ret = ff_formats_ref(formats, &videolink->in_formats)) < 0)
  590. return ret;
  591. }
  592. layouts = ff_all_channel_counts();
  593. if (!layouts)
  594. return AVERROR(ENOMEM);
  595. if (s->ir_format) {
  596. ret = ff_set_common_channel_layouts(ctx, layouts);
  597. if (ret < 0)
  598. return ret;
  599. } else {
  600. AVFilterChannelLayouts *mono = NULL;
  601. ret = ff_add_channel_layout(&mono, AV_CH_LAYOUT_MONO);
  602. if (ret)
  603. return ret;
  604. if ((ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts)) < 0)
  605. return ret;
  606. if ((ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts)) < 0)
  607. return ret;
  608. for (int i = 1; i < ctx->nb_inputs; i++) {
  609. if ((ret = ff_channel_layouts_ref(mono, &ctx->inputs[i]->out_channel_layouts)) < 0)
  610. return ret;
  611. }
  612. }
  613. formats = ff_make_format_list(sample_fmts);
  614. if ((ret = ff_set_common_formats(ctx, formats)) < 0)
  615. return ret;
  616. formats = ff_all_samplerates();
  617. return ff_set_common_samplerates(ctx, formats);
  618. }
  619. static int config_output(AVFilterLink *outlink)
  620. {
  621. AVFilterContext *ctx = outlink->src;
  622. AudioFIRContext *s = ctx->priv;
  623. s->one2many = ctx->inputs[1 + s->selir]->channels == 1;
  624. outlink->sample_rate = ctx->inputs[0]->sample_rate;
  625. outlink->time_base = ctx->inputs[0]->time_base;
  626. outlink->channel_layout = ctx->inputs[0]->channel_layout;
  627. outlink->channels = ctx->inputs[0]->channels;
  628. s->nb_channels = outlink->channels;
  629. s->nb_coef_channels = ctx->inputs[1 + s->selir]->channels;
  630. s->pts = AV_NOPTS_VALUE;
  631. return 0;
  632. }
  633. static av_cold void uninit(AVFilterContext *ctx)
  634. {
  635. AudioFIRContext *s = ctx->priv;
  636. for (int i = 0; i < s->nb_segments; i++) {
  637. uninit_segment(ctx, &s->seg[i]);
  638. }
  639. av_freep(&s->fdsp);
  640. for (int i = 0; i < s->nb_irs; i++) {
  641. av_frame_free(&s->ir[i]);
  642. }
  643. for (int i = 0; i < ctx->nb_inputs; i++)
  644. av_freep(&ctx->input_pads[i].name);
  645. for (int i = 0; i < ctx->nb_outputs; i++)
  646. av_freep(&ctx->output_pads[i].name);
  647. av_frame_free(&s->video);
  648. }
  649. static int config_video(AVFilterLink *outlink)
  650. {
  651. AVFilterContext *ctx = outlink->src;
  652. AudioFIRContext *s = ctx->priv;
  653. outlink->sample_aspect_ratio = (AVRational){1,1};
  654. outlink->w = s->w;
  655. outlink->h = s->h;
  656. outlink->frame_rate = s->frame_rate;
  657. outlink->time_base = av_inv_q(outlink->frame_rate);
  658. av_frame_free(&s->video);
  659. s->video = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  660. if (!s->video)
  661. return AVERROR(ENOMEM);
  662. return 0;
  663. }
  664. void ff_afir_init(AudioFIRDSPContext *dsp)
  665. {
  666. dsp->fcmul_add = fcmul_add_c;
  667. if (ARCH_X86)
  668. ff_afir_init_x86(dsp);
  669. }
  670. static av_cold int init(AVFilterContext *ctx)
  671. {
  672. AudioFIRContext *s = ctx->priv;
  673. AVFilterPad pad, vpad;
  674. int ret;
  675. pad = (AVFilterPad) {
  676. .name = av_strdup("main"),
  677. .type = AVMEDIA_TYPE_AUDIO,
  678. };
  679. if (!pad.name)
  680. return AVERROR(ENOMEM);
  681. ret = ff_insert_inpad(ctx, 0, &pad);
  682. if (ret < 0) {
  683. av_freep(&pad.name);
  684. return ret;
  685. }
  686. for (int n = 0; n < s->nb_irs; n++) {
  687. pad = (AVFilterPad) {
  688. .name = av_asprintf("ir%d", n),
  689. .type = AVMEDIA_TYPE_AUDIO,
  690. };
  691. if (!pad.name)
  692. return AVERROR(ENOMEM);
  693. ret = ff_insert_inpad(ctx, n + 1, &pad);
  694. if (ret < 0) {
  695. av_freep(&pad.name);
  696. return ret;
  697. }
  698. }
  699. pad = (AVFilterPad) {
  700. .name = av_strdup("default"),
  701. .type = AVMEDIA_TYPE_AUDIO,
  702. .config_props = config_output,
  703. };
  704. if (!pad.name)
  705. return AVERROR(ENOMEM);
  706. if (s->response) {
  707. vpad = (AVFilterPad){
  708. .name = av_strdup("filter_response"),
  709. .type = AVMEDIA_TYPE_VIDEO,
  710. .config_props = config_video,
  711. };
  712. if (!vpad.name)
  713. return AVERROR(ENOMEM);
  714. }
  715. ret = ff_insert_outpad(ctx, 0, &pad);
  716. if (ret < 0) {
  717. av_freep(&pad.name);
  718. return ret;
  719. }
  720. if (s->response) {
  721. ret = ff_insert_outpad(ctx, 1, &vpad);
  722. if (ret < 0) {
  723. av_freep(&vpad.name);
  724. return ret;
  725. }
  726. }
  727. s->fdsp = avpriv_float_dsp_alloc(0);
  728. if (!s->fdsp)
  729. return AVERROR(ENOMEM);
  730. ff_afir_init(&s->afirdsp);
  731. return 0;
  732. }
  733. static int process_command(AVFilterContext *ctx,
  734. const char *cmd,
  735. const char *arg,
  736. char *res,
  737. int res_len,
  738. int flags)
  739. {
  740. AudioFIRContext *s = ctx->priv;
  741. int prev_ir = s->selir;
  742. int ret = ff_filter_process_command(ctx, cmd, arg, res, res_len, flags);
  743. if (ret < 0)
  744. return ret;
  745. s->selir = FFMIN(s->nb_irs - 1, s->selir);
  746. if (prev_ir != s->selir) {
  747. s->have_coeffs = 0;
  748. }
  749. return 0;
  750. }
  751. #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  752. #define AFR AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
  753. #define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  754. #define OFFSET(x) offsetof(AudioFIRContext, x)
  755. static const AVOption afir_options[] = {
  756. { "dry", "set dry gain", OFFSET(dry_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  757. { "wet", "set wet gain", OFFSET(wet_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  758. { "length", "set IR length", OFFSET(length), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  759. { "gtype", "set IR auto gain type",OFFSET(gtype), AV_OPT_TYPE_INT, {.i64=0}, -1, 2, AF, "gtype" },
  760. { "none", "without auto gain", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "gtype" },
  761. { "peak", "peak gain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "gtype" },
  762. { "dc", "DC gain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "gtype" },
  763. { "gn", "gain to noise", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "gtype" },
  764. { "irgain", "set IR gain", OFFSET(ir_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  765. { "irfmt", "set IR format", OFFSET(ir_format), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, AF, "irfmt" },
  766. { "mono", "single channel", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "irfmt" },
  767. { "input", "same as input", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "irfmt" },
  768. { "maxir", "set max IR length", OFFSET(max_ir_len), AV_OPT_TYPE_FLOAT, {.dbl=30}, 0.1, 60, AF },
  769. { "response", "show IR frequency response", OFFSET(response), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF },
  770. { "channel", "set IR channel to display frequency response", OFFSET(ir_channel), AV_OPT_TYPE_INT, {.i64=0}, 0, 1024, VF },
  771. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "hd720"}, 0, 0, VF },
  772. { "rate", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT32_MAX, VF },
  773. { "minp", "set min partition size", OFFSET(minp), AV_OPT_TYPE_INT, {.i64=8192}, 1, 32768, AF },
  774. { "maxp", "set max partition size", OFFSET(maxp), AV_OPT_TYPE_INT, {.i64=8192}, 8, 32768, AF },
  775. { "nbirs", "set number of input IRs",OFFSET(nb_irs),AV_OPT_TYPE_INT, {.i64=1}, 1, 32, AF },
  776. { "ir", "select IR", OFFSET(selir), AV_OPT_TYPE_INT, {.i64=0}, 0, 31, AFR },
  777. { NULL }
  778. };
  779. AVFILTER_DEFINE_CLASS(afir);
  780. AVFilter ff_af_afir = {
  781. .name = "afir",
  782. .description = NULL_IF_CONFIG_SMALL("Apply Finite Impulse Response filter with supplied coefficients in additional stream(s)."),
  783. .priv_size = sizeof(AudioFIRContext),
  784. .priv_class = &afir_class,
  785. .query_formats = query_formats,
  786. .init = init,
  787. .activate = activate,
  788. .uninit = uninit,
  789. .process_command = process_command,
  790. .flags = AVFILTER_FLAG_DYNAMIC_INPUTS |
  791. AVFILTER_FLAG_DYNAMIC_OUTPUTS |
  792. AVFILTER_FLAG_SLICE_THREADS,
  793. };