You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4394 lines
148KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. /**
  24. * @file vc1.c
  25. * VC-1 and WMV3 decoder
  26. *
  27. */
  28. #include "common.h"
  29. #include "dsputil.h"
  30. #include "avcodec.h"
  31. #include "mpegvideo.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  37. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  38. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  39. #define MB_INTRA_VLC_BITS 9
  40. extern VLC ff_msmp4_mb_i_vlc;
  41. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. /** Available Profiles */
  46. //@{
  47. enum Profile {
  48. PROFILE_SIMPLE,
  49. PROFILE_MAIN,
  50. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  51. PROFILE_ADVANCED
  52. };
  53. //@}
  54. /** Sequence quantizer mode */
  55. //@{
  56. enum QuantMode {
  57. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  58. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  59. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  60. QUANT_UNIFORM ///< Uniform quant used for all frames
  61. };
  62. //@}
  63. /** Where quant can be changed */
  64. //@{
  65. enum DQProfile {
  66. DQPROFILE_FOUR_EDGES,
  67. DQPROFILE_DOUBLE_EDGES,
  68. DQPROFILE_SINGLE_EDGE,
  69. DQPROFILE_ALL_MBS
  70. };
  71. //@}
  72. /** @name Where quant can be changed
  73. */
  74. //@{
  75. enum DQSingleEdge {
  76. DQSINGLE_BEDGE_LEFT,
  77. DQSINGLE_BEDGE_TOP,
  78. DQSINGLE_BEDGE_RIGHT,
  79. DQSINGLE_BEDGE_BOTTOM
  80. };
  81. //@}
  82. /** Which pair of edges is quantized with ALTPQUANT */
  83. //@{
  84. enum DQDoubleEdge {
  85. DQDOUBLE_BEDGE_TOPLEFT,
  86. DQDOUBLE_BEDGE_TOPRIGHT,
  87. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  88. DQDOUBLE_BEDGE_BOTTOMLEFT
  89. };
  90. //@}
  91. /** MV modes for P frames */
  92. //@{
  93. enum MVModes {
  94. MV_PMODE_1MV_HPEL_BILIN,
  95. MV_PMODE_1MV,
  96. MV_PMODE_1MV_HPEL,
  97. MV_PMODE_MIXED_MV,
  98. MV_PMODE_INTENSITY_COMP
  99. };
  100. //@}
  101. /** @name MV types for B frames */
  102. //@{
  103. enum BMVTypes {
  104. BMV_TYPE_BACKWARD,
  105. BMV_TYPE_FORWARD,
  106. BMV_TYPE_INTERPOLATED
  107. };
  108. //@}
  109. /** @name Block types for P/B frames */
  110. //@{
  111. enum TransformTypes {
  112. TT_8X8,
  113. TT_8X4_BOTTOM,
  114. TT_8X4_TOP,
  115. TT_8X4, //Both halves
  116. TT_4X8_RIGHT,
  117. TT_4X8_LEFT,
  118. TT_4X8, //Both halves
  119. TT_4X4
  120. };
  121. //@}
  122. /** Table for conversion between TTBLK and TTMB */
  123. static const int ttblk_to_tt[3][8] = {
  124. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  125. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  126. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  127. };
  128. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  129. /** MV P mode - the 5th element is only used for mode 1 */
  130. static const uint8_t mv_pmode_table[2][5] = {
  131. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  132. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  133. };
  134. static const uint8_t mv_pmode_table2[2][4] = {
  135. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  136. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  137. };
  138. /** One more frame type */
  139. #define BI_TYPE 7
  140. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  141. fps_dr[2] = { 1000, 1001 };
  142. static const uint8_t pquant_table[3][32] = {
  143. { /* Implicit quantizer */
  144. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  145. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  146. },
  147. { /* Explicit quantizer, pquantizer uniform */
  148. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  149. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  150. },
  151. { /* Explicit quantizer, pquantizer non-uniform */
  152. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  153. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  154. }
  155. };
  156. /** @name VC-1 VLC tables and defines
  157. * @todo TODO move this into the context
  158. */
  159. //@{
  160. #define VC1_BFRACTION_VLC_BITS 7
  161. static VLC vc1_bfraction_vlc;
  162. #define VC1_IMODE_VLC_BITS 4
  163. static VLC vc1_imode_vlc;
  164. #define VC1_NORM2_VLC_BITS 3
  165. static VLC vc1_norm2_vlc;
  166. #define VC1_NORM6_VLC_BITS 9
  167. static VLC vc1_norm6_vlc;
  168. /* Could be optimized, one table only needs 8 bits */
  169. #define VC1_TTMB_VLC_BITS 9 //12
  170. static VLC vc1_ttmb_vlc[3];
  171. #define VC1_MV_DIFF_VLC_BITS 9 //15
  172. static VLC vc1_mv_diff_vlc[4];
  173. #define VC1_CBPCY_P_VLC_BITS 9 //14
  174. static VLC vc1_cbpcy_p_vlc[4];
  175. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  176. static VLC vc1_4mv_block_pattern_vlc[4];
  177. #define VC1_TTBLK_VLC_BITS 5
  178. static VLC vc1_ttblk_vlc[3];
  179. #define VC1_SUBBLKPAT_VLC_BITS 6
  180. static VLC vc1_subblkpat_vlc[3];
  181. static VLC vc1_ac_coeff_table[8];
  182. //@}
  183. enum CodingSet {
  184. CS_HIGH_MOT_INTRA = 0,
  185. CS_HIGH_MOT_INTER,
  186. CS_LOW_MOT_INTRA,
  187. CS_LOW_MOT_INTER,
  188. CS_MID_RATE_INTRA,
  189. CS_MID_RATE_INTER,
  190. CS_HIGH_RATE_INTRA,
  191. CS_HIGH_RATE_INTER
  192. };
  193. /** @name Overlap conditions for Advanced Profile */
  194. //@{
  195. enum COTypes {
  196. CONDOVER_NONE = 0,
  197. CONDOVER_ALL,
  198. CONDOVER_SELECT
  199. };
  200. //@}
  201. /** The VC1 Context
  202. * @fixme Change size wherever another size is more efficient
  203. * Many members are only used for Advanced Profile
  204. */
  205. typedef struct VC1Context{
  206. MpegEncContext s;
  207. int bits;
  208. /** Simple/Main Profile sequence header */
  209. //@{
  210. int res_sm; ///< reserved, 2b
  211. int res_x8; ///< reserved
  212. int multires; ///< frame-level RESPIC syntax element present
  213. int res_fasttx; ///< reserved, always 1
  214. int res_transtab; ///< reserved, always 0
  215. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  216. ///< at frame level
  217. int res_rtm_flag; ///< reserved, set to 1
  218. int reserved; ///< reserved
  219. //@}
  220. /** Advanced Profile */
  221. //@{
  222. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  223. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  224. int postprocflag; ///< Per-frame processing suggestion flag present
  225. int broadcast; ///< TFF/RFF present
  226. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  227. int tfcntrflag; ///< TFCNTR present
  228. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  229. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  230. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  231. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  232. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  233. int hrd_param_flag; ///< Presence of Hypothetical Reference
  234. ///< Decoder parameters
  235. int psf; ///< Progressive Segmented Frame
  236. //@}
  237. /** Sequence header data for all Profiles
  238. * TODO: choose between ints, uint8_ts and monobit flags
  239. */
  240. //@{
  241. int profile; ///< 2bits, Profile
  242. int frmrtq_postproc; ///< 3bits,
  243. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  244. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  245. int extended_mv; ///< Ext MV in P/B (not in Simple)
  246. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  247. int vstransform; ///< variable-size [48]x[48] transform type + info
  248. int overlap; ///< overlapped transforms in use
  249. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  250. int finterpflag; ///< INTERPFRM present
  251. //@}
  252. /** Frame decoding info for all profiles */
  253. //@{
  254. uint8_t mv_mode; ///< MV coding monde
  255. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  256. int k_x; ///< Number of bits for MVs (depends on MV range)
  257. int k_y; ///< Number of bits for MVs (depends on MV range)
  258. int range_x, range_y; ///< MV range
  259. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  260. /** pquant parameters */
  261. //@{
  262. uint8_t dquantfrm;
  263. uint8_t dqprofile;
  264. uint8_t dqsbedge;
  265. uint8_t dqbilevel;
  266. //@}
  267. /** AC coding set indexes
  268. * @see 8.1.1.10, p(1)10
  269. */
  270. //@{
  271. int c_ac_table_index; ///< Chroma index from ACFRM element
  272. int y_ac_table_index; ///< Luma index from AC2FRM element
  273. //@}
  274. int ttfrm; ///< Transform type info present at frame level
  275. uint8_t ttmbf; ///< Transform type flag
  276. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  277. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  278. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  279. int pqindex; ///< raw pqindex used in coding set selection
  280. int a_avail, c_avail;
  281. uint8_t *mb_type_base, *mb_type[3];
  282. /** Luma compensation parameters */
  283. //@{
  284. uint8_t lumscale;
  285. uint8_t lumshift;
  286. //@}
  287. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  288. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  289. uint8_t respic; ///< Frame-level flag for resized images
  290. int buffer_fullness; ///< HRD info
  291. /** Ranges:
  292. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  293. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  294. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  295. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  296. */
  297. uint8_t mvrange;
  298. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  299. VLC *cbpcy_vlc; ///< CBPCY VLC table
  300. int tt_index; ///< Index for Transform Type tables
  301. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  302. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  303. int mv_type_is_raw; ///< mv type mb plane is not coded
  304. int dmb_is_raw; ///< direct mb plane is raw
  305. int skip_is_raw; ///< skip mb plane is not coded
  306. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  307. int use_ic; ///< use intensity compensation in B-frames
  308. int rnd; ///< rounding control
  309. /** Frame decoding info for S/M profiles only */
  310. //@{
  311. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  312. uint8_t interpfrm;
  313. //@}
  314. /** Frame decoding info for Advanced profile */
  315. //@{
  316. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  317. uint8_t numpanscanwin;
  318. uint8_t tfcntr;
  319. uint8_t rptfrm, tff, rff;
  320. uint16_t topleftx;
  321. uint16_t toplefty;
  322. uint16_t bottomrightx;
  323. uint16_t bottomrighty;
  324. uint8_t uvsamp;
  325. uint8_t postproc;
  326. int hrd_num_leaky_buckets;
  327. uint8_t bit_rate_exponent;
  328. uint8_t buffer_size_exponent;
  329. uint8_t* acpred_plane; ///< AC prediction flags bitplane
  330. int acpred_is_raw;
  331. uint8_t* over_flags_plane; ///< Overflags bitplane
  332. int overflg_is_raw;
  333. uint8_t condover;
  334. uint16_t *hrd_rate, *hrd_buffer;
  335. uint8_t *hrd_fullness;
  336. uint8_t range_mapy_flag;
  337. uint8_t range_mapuv_flag;
  338. uint8_t range_mapy;
  339. uint8_t range_mapuv;
  340. //@}
  341. int p_frame_skipped;
  342. int bi_type;
  343. } VC1Context;
  344. /**
  345. * Get unary code of limited length
  346. * @fixme FIXME Slow and ugly
  347. * @param gb GetBitContext
  348. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  349. * @param[in] len Maximum length
  350. * @return Unary length/index
  351. */
  352. static int get_prefix(GetBitContext *gb, int stop, int len)
  353. {
  354. #if 1
  355. int i;
  356. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  357. return i;
  358. /* int i = 0, tmp = !stop;
  359. while (i != len && tmp != stop)
  360. {
  361. tmp = get_bits(gb, 1);
  362. i++;
  363. }
  364. if (i == len && tmp != stop) return len+1;
  365. return i;*/
  366. #else
  367. unsigned int buf;
  368. int log;
  369. OPEN_READER(re, gb);
  370. UPDATE_CACHE(re, gb);
  371. buf=GET_CACHE(re, gb); //Still not sure
  372. if (stop) buf = ~buf;
  373. log= av_log2(-buf); //FIXME: -?
  374. if (log < limit){
  375. LAST_SKIP_BITS(re, gb, log+1);
  376. CLOSE_READER(re, gb);
  377. return log;
  378. }
  379. LAST_SKIP_BITS(re, gb, limit);
  380. CLOSE_READER(re, gb);
  381. return limit;
  382. #endif
  383. }
  384. static inline int decode210(GetBitContext *gb){
  385. int n;
  386. n = get_bits1(gb);
  387. if (n == 1)
  388. return 0;
  389. else
  390. return 2 - get_bits1(gb);
  391. }
  392. /**
  393. * Init VC-1 specific tables and VC1Context members
  394. * @param v The VC1Context to initialize
  395. * @return Status
  396. */
  397. static int vc1_init_common(VC1Context *v)
  398. {
  399. static int done = 0;
  400. int i = 0;
  401. v->hrd_rate = v->hrd_buffer = NULL;
  402. /* VLC tables */
  403. if(!done)
  404. {
  405. done = 1;
  406. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  407. vc1_bfraction_bits, 1, 1,
  408. vc1_bfraction_codes, 1, 1, 1);
  409. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  410. vc1_norm2_bits, 1, 1,
  411. vc1_norm2_codes, 1, 1, 1);
  412. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  413. vc1_norm6_bits, 1, 1,
  414. vc1_norm6_codes, 2, 2, 1);
  415. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  416. vc1_imode_bits, 1, 1,
  417. vc1_imode_codes, 1, 1, 1);
  418. for (i=0; i<3; i++)
  419. {
  420. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  421. vc1_ttmb_bits[i], 1, 1,
  422. vc1_ttmb_codes[i], 2, 2, 1);
  423. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  424. vc1_ttblk_bits[i], 1, 1,
  425. vc1_ttblk_codes[i], 1, 1, 1);
  426. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  427. vc1_subblkpat_bits[i], 1, 1,
  428. vc1_subblkpat_codes[i], 1, 1, 1);
  429. }
  430. for(i=0; i<4; i++)
  431. {
  432. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  433. vc1_4mv_block_pattern_bits[i], 1, 1,
  434. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  435. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  436. vc1_cbpcy_p_bits[i], 1, 1,
  437. vc1_cbpcy_p_codes[i], 2, 2, 1);
  438. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  439. vc1_mv_diff_bits[i], 1, 1,
  440. vc1_mv_diff_codes[i], 2, 2, 1);
  441. }
  442. for(i=0; i<8; i++)
  443. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  444. &vc1_ac_tables[i][0][1], 8, 4,
  445. &vc1_ac_tables[i][0][0], 8, 4, 1);
  446. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  447. &ff_msmp4_mb_i_table[0][1], 4, 2,
  448. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  449. }
  450. /* Other defaults */
  451. v->pq = -1;
  452. v->mvrange = 0; /* 7.1.1.18, p80 */
  453. return 0;
  454. }
  455. /***********************************************************************/
  456. /**
  457. * @defgroup bitplane VC9 Bitplane decoding
  458. * @see 8.7, p56
  459. * @{
  460. */
  461. /** @addtogroup bitplane
  462. * Imode types
  463. * @{
  464. */
  465. enum Imode {
  466. IMODE_RAW,
  467. IMODE_NORM2,
  468. IMODE_DIFF2,
  469. IMODE_NORM6,
  470. IMODE_DIFF6,
  471. IMODE_ROWSKIP,
  472. IMODE_COLSKIP
  473. };
  474. /** @} */ //imode defines
  475. /** Decode rows by checking if they are skipped
  476. * @param plane Buffer to store decoded bits
  477. * @param[in] width Width of this buffer
  478. * @param[in] height Height of this buffer
  479. * @param[in] stride of this buffer
  480. */
  481. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  482. int x, y;
  483. for (y=0; y<height; y++){
  484. if (!get_bits(gb, 1)) //rowskip
  485. memset(plane, 0, width);
  486. else
  487. for (x=0; x<width; x++)
  488. plane[x] = get_bits(gb, 1);
  489. plane += stride;
  490. }
  491. }
  492. /** Decode columns by checking if they are skipped
  493. * @param plane Buffer to store decoded bits
  494. * @param[in] width Width of this buffer
  495. * @param[in] height Height of this buffer
  496. * @param[in] stride of this buffer
  497. * @fixme FIXME: Optimize
  498. */
  499. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  500. int x, y;
  501. for (x=0; x<width; x++){
  502. if (!get_bits(gb, 1)) //colskip
  503. for (y=0; y<height; y++)
  504. plane[y*stride] = 0;
  505. else
  506. for (y=0; y<height; y++)
  507. plane[y*stride] = get_bits(gb, 1);
  508. plane ++;
  509. }
  510. }
  511. /** Decode a bitplane's bits
  512. * @param bp Bitplane where to store the decode bits
  513. * @param v VC-1 context for bit reading and logging
  514. * @return Status
  515. * @fixme FIXME: Optimize
  516. */
  517. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  518. {
  519. GetBitContext *gb = &v->s.gb;
  520. int imode, x, y, code, offset;
  521. uint8_t invert, *planep = data;
  522. int width, height, stride;
  523. width = v->s.mb_width;
  524. height = v->s.mb_height;
  525. stride = v->s.mb_stride;
  526. invert = get_bits(gb, 1);
  527. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  528. *raw_flag = 0;
  529. switch (imode)
  530. {
  531. case IMODE_RAW:
  532. //Data is actually read in the MB layer (same for all tests == "raw")
  533. *raw_flag = 1; //invert ignored
  534. return invert;
  535. case IMODE_DIFF2:
  536. case IMODE_NORM2:
  537. if ((height * width) & 1)
  538. {
  539. *planep++ = get_bits(gb, 1);
  540. offset = 1;
  541. }
  542. else offset = 0;
  543. // decode bitplane as one long line
  544. for (y = offset; y < height * width; y += 2) {
  545. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  546. *planep++ = code & 1;
  547. offset++;
  548. if(offset == width) {
  549. offset = 0;
  550. planep += stride - width;
  551. }
  552. *planep++ = code >> 1;
  553. offset++;
  554. if(offset == width) {
  555. offset = 0;
  556. planep += stride - width;
  557. }
  558. }
  559. break;
  560. case IMODE_DIFF6:
  561. case IMODE_NORM6:
  562. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  563. for(y = 0; y < height; y+= 3) {
  564. for(x = width & 1; x < width; x += 2) {
  565. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  566. if(code < 0){
  567. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  568. return -1;
  569. }
  570. planep[x + 0] = (code >> 0) & 1;
  571. planep[x + 1] = (code >> 1) & 1;
  572. planep[x + 0 + stride] = (code >> 2) & 1;
  573. planep[x + 1 + stride] = (code >> 3) & 1;
  574. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  575. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  576. }
  577. planep += stride * 3;
  578. }
  579. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  580. } else { // 3x2
  581. planep += (height & 1) * stride;
  582. for(y = height & 1; y < height; y += 2) {
  583. for(x = width % 3; x < width; x += 3) {
  584. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  585. if(code < 0){
  586. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  587. return -1;
  588. }
  589. planep[x + 0] = (code >> 0) & 1;
  590. planep[x + 1] = (code >> 1) & 1;
  591. planep[x + 2] = (code >> 2) & 1;
  592. planep[x + 0 + stride] = (code >> 3) & 1;
  593. planep[x + 1 + stride] = (code >> 4) & 1;
  594. planep[x + 2 + stride] = (code >> 5) & 1;
  595. }
  596. planep += stride * 2;
  597. }
  598. x = width % 3;
  599. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  600. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  601. }
  602. break;
  603. case IMODE_ROWSKIP:
  604. decode_rowskip(data, width, height, stride, &v->s.gb);
  605. break;
  606. case IMODE_COLSKIP:
  607. decode_colskip(data, width, height, stride, &v->s.gb);
  608. break;
  609. default: break;
  610. }
  611. /* Applying diff operator */
  612. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  613. {
  614. planep = data;
  615. planep[0] ^= invert;
  616. for (x=1; x<width; x++)
  617. planep[x] ^= planep[x-1];
  618. for (y=1; y<height; y++)
  619. {
  620. planep += stride;
  621. planep[0] ^= planep[-stride];
  622. for (x=1; x<width; x++)
  623. {
  624. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  625. else planep[x] ^= planep[x-1];
  626. }
  627. }
  628. }
  629. else if (invert)
  630. {
  631. planep = data;
  632. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  633. }
  634. return (imode<<1) + invert;
  635. }
  636. /** @} */ //Bitplane group
  637. /***********************************************************************/
  638. /** VOP Dquant decoding
  639. * @param v VC-1 Context
  640. */
  641. static int vop_dquant_decoding(VC1Context *v)
  642. {
  643. GetBitContext *gb = &v->s.gb;
  644. int pqdiff;
  645. //variable size
  646. if (v->dquant == 2)
  647. {
  648. pqdiff = get_bits(gb, 3);
  649. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  650. else v->altpq = v->pq + pqdiff + 1;
  651. }
  652. else
  653. {
  654. v->dquantfrm = get_bits(gb, 1);
  655. if ( v->dquantfrm )
  656. {
  657. v->dqprofile = get_bits(gb, 2);
  658. switch (v->dqprofile)
  659. {
  660. case DQPROFILE_SINGLE_EDGE:
  661. case DQPROFILE_DOUBLE_EDGES:
  662. v->dqsbedge = get_bits(gb, 2);
  663. break;
  664. case DQPROFILE_ALL_MBS:
  665. v->dqbilevel = get_bits(gb, 1);
  666. default: break; //Forbidden ?
  667. }
  668. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  669. {
  670. pqdiff = get_bits(gb, 3);
  671. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  672. else v->altpq = v->pq + pqdiff + 1;
  673. }
  674. }
  675. }
  676. return 0;
  677. }
  678. /** Put block onto picture
  679. */
  680. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  681. {
  682. uint8_t *Y;
  683. int ys, us, vs;
  684. DSPContext *dsp = &v->s.dsp;
  685. if(v->rangeredfrm) {
  686. int i, j, k;
  687. for(k = 0; k < 6; k++)
  688. for(j = 0; j < 8; j++)
  689. for(i = 0; i < 8; i++)
  690. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  691. }
  692. ys = v->s.current_picture.linesize[0];
  693. us = v->s.current_picture.linesize[1];
  694. vs = v->s.current_picture.linesize[2];
  695. Y = v->s.dest[0];
  696. dsp->put_pixels_clamped(block[0], Y, ys);
  697. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  698. Y += ys * 8;
  699. dsp->put_pixels_clamped(block[2], Y, ys);
  700. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  701. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  702. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  703. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  704. }
  705. }
  706. /** Do motion compensation over 1 macroblock
  707. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  708. */
  709. static void vc1_mc_1mv(VC1Context *v, int dir)
  710. {
  711. MpegEncContext *s = &v->s;
  712. DSPContext *dsp = &v->s.dsp;
  713. uint8_t *srcY, *srcU, *srcV;
  714. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  715. if(!v->s.last_picture.data[0])return;
  716. mx = s->mv[dir][0][0];
  717. my = s->mv[dir][0][1];
  718. // store motion vectors for further use in B frames
  719. if(s->pict_type == P_TYPE) {
  720. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  721. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  722. }
  723. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  724. uvmy = (my + ((my & 3) == 3)) >> 1;
  725. if(v->fastuvmc) {
  726. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  727. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  728. }
  729. if(!dir) {
  730. srcY = s->last_picture.data[0];
  731. srcU = s->last_picture.data[1];
  732. srcV = s->last_picture.data[2];
  733. } else {
  734. srcY = s->next_picture.data[0];
  735. srcU = s->next_picture.data[1];
  736. srcV = s->next_picture.data[2];
  737. }
  738. src_x = s->mb_x * 16 + (mx >> 2);
  739. src_y = s->mb_y * 16 + (my >> 2);
  740. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  741. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  742. src_x = clip( src_x, -16, s->mb_width * 16);
  743. src_y = clip( src_y, -16, s->mb_height * 16);
  744. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  745. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  746. srcY += src_y * s->linesize + src_x;
  747. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  748. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  749. /* for grayscale we should not try to read from unknown area */
  750. if(s->flags & CODEC_FLAG_GRAY) {
  751. srcU = s->edge_emu_buffer + 18 * s->linesize;
  752. srcV = s->edge_emu_buffer + 18 * s->linesize;
  753. }
  754. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  755. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  756. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  757. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  758. srcY -= s->mspel * (1 + s->linesize);
  759. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  760. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  761. srcY = s->edge_emu_buffer;
  762. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  763. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  764. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  765. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  766. srcU = uvbuf;
  767. srcV = uvbuf + 16;
  768. /* if we deal with range reduction we need to scale source blocks */
  769. if(v->rangeredfrm) {
  770. int i, j;
  771. uint8_t *src, *src2;
  772. src = srcY;
  773. for(j = 0; j < 17 + s->mspel*2; j++) {
  774. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  775. src += s->linesize;
  776. }
  777. src = srcU; src2 = srcV;
  778. for(j = 0; j < 9; j++) {
  779. for(i = 0; i < 9; i++) {
  780. src[i] = ((src[i] - 128) >> 1) + 128;
  781. src2[i] = ((src2[i] - 128) >> 1) + 128;
  782. }
  783. src += s->uvlinesize;
  784. src2 += s->uvlinesize;
  785. }
  786. }
  787. /* if we deal with intensity compensation we need to scale source blocks */
  788. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  789. int i, j;
  790. uint8_t *src, *src2;
  791. src = srcY;
  792. for(j = 0; j < 17 + s->mspel*2; j++) {
  793. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  794. src += s->linesize;
  795. }
  796. src = srcU; src2 = srcV;
  797. for(j = 0; j < 9; j++) {
  798. for(i = 0; i < 9; i++) {
  799. src[i] = v->lutuv[src[i]];
  800. src2[i] = v->lutuv[src2[i]];
  801. }
  802. src += s->uvlinesize;
  803. src2 += s->uvlinesize;
  804. }
  805. }
  806. srcY += s->mspel * (1 + s->linesize);
  807. }
  808. if(s->mspel) {
  809. dxy = ((my & 3) << 2) | (mx & 3);
  810. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  811. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  812. srcY += s->linesize * 8;
  813. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  814. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  815. } else { // hpel mc - always used for luma
  816. dxy = (my & 2) | ((mx & 2) >> 1);
  817. if(!v->rnd)
  818. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  819. else
  820. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  821. }
  822. if(s->flags & CODEC_FLAG_GRAY) return;
  823. /* Chroma MC always uses qpel bilinear */
  824. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  825. uvmx = (uvmx&3)<<1;
  826. uvmy = (uvmy&3)<<1;
  827. if(!v->rnd){
  828. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  829. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  830. }else{
  831. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  832. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  833. }
  834. }
  835. /** Do motion compensation for 4-MV macroblock - luminance block
  836. */
  837. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  838. {
  839. MpegEncContext *s = &v->s;
  840. DSPContext *dsp = &v->s.dsp;
  841. uint8_t *srcY;
  842. int dxy, mx, my, src_x, src_y;
  843. int off;
  844. if(!v->s.last_picture.data[0])return;
  845. mx = s->mv[0][n][0];
  846. my = s->mv[0][n][1];
  847. srcY = s->last_picture.data[0];
  848. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  849. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  850. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  851. src_x = clip( src_x, -16, s->mb_width * 16);
  852. src_y = clip( src_y, -16, s->mb_height * 16);
  853. srcY += src_y * s->linesize + src_x;
  854. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  855. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  856. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  857. srcY -= s->mspel * (1 + s->linesize);
  858. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  859. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  860. srcY = s->edge_emu_buffer;
  861. /* if we deal with range reduction we need to scale source blocks */
  862. if(v->rangeredfrm) {
  863. int i, j;
  864. uint8_t *src;
  865. src = srcY;
  866. for(j = 0; j < 9 + s->mspel*2; j++) {
  867. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  868. src += s->linesize;
  869. }
  870. }
  871. /* if we deal with intensity compensation we need to scale source blocks */
  872. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  873. int i, j;
  874. uint8_t *src;
  875. src = srcY;
  876. for(j = 0; j < 9 + s->mspel*2; j++) {
  877. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  878. src += s->linesize;
  879. }
  880. }
  881. srcY += s->mspel * (1 + s->linesize);
  882. }
  883. if(s->mspel) {
  884. dxy = ((my & 3) << 2) | (mx & 3);
  885. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  886. } else { // hpel mc - always used for luma
  887. dxy = (my & 2) | ((mx & 2) >> 1);
  888. if(!v->rnd)
  889. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  890. else
  891. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  892. }
  893. }
  894. static inline int median4(int a, int b, int c, int d)
  895. {
  896. if(a < b) {
  897. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  898. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  899. } else {
  900. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  901. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  902. }
  903. }
  904. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  905. */
  906. static void vc1_mc_4mv_chroma(VC1Context *v)
  907. {
  908. MpegEncContext *s = &v->s;
  909. DSPContext *dsp = &v->s.dsp;
  910. uint8_t *srcU, *srcV;
  911. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  912. int i, idx, tx = 0, ty = 0;
  913. int mvx[4], mvy[4], intra[4];
  914. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  915. if(!v->s.last_picture.data[0])return;
  916. if(s->flags & CODEC_FLAG_GRAY) return;
  917. for(i = 0; i < 4; i++) {
  918. mvx[i] = s->mv[0][i][0];
  919. mvy[i] = s->mv[0][i][1];
  920. intra[i] = v->mb_type[0][s->block_index[i]];
  921. }
  922. /* calculate chroma MV vector from four luma MVs */
  923. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  924. if(!idx) { // all blocks are inter
  925. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  926. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  927. } else if(count[idx] == 1) { // 3 inter blocks
  928. switch(idx) {
  929. case 0x1:
  930. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  931. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  932. break;
  933. case 0x2:
  934. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  935. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  936. break;
  937. case 0x4:
  938. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  939. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  940. break;
  941. case 0x8:
  942. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  943. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  944. break;
  945. }
  946. } else if(count[idx] == 2) {
  947. int t1 = 0, t2 = 0;
  948. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  949. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  950. tx = (mvx[t1] + mvx[t2]) / 2;
  951. ty = (mvy[t1] + mvy[t2]) / 2;
  952. } else
  953. return; //no need to do MC for inter blocks
  954. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  955. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  956. uvmx = (tx + ((tx&3) == 3)) >> 1;
  957. uvmy = (ty + ((ty&3) == 3)) >> 1;
  958. if(v->fastuvmc) {
  959. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  960. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  961. }
  962. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  963. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  964. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  965. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  966. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  967. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  968. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  969. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  970. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  971. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  972. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  973. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  974. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  975. srcU = s->edge_emu_buffer;
  976. srcV = s->edge_emu_buffer + 16;
  977. /* if we deal with range reduction we need to scale source blocks */
  978. if(v->rangeredfrm) {
  979. int i, j;
  980. uint8_t *src, *src2;
  981. src = srcU; src2 = srcV;
  982. for(j = 0; j < 9; j++) {
  983. for(i = 0; i < 9; i++) {
  984. src[i] = ((src[i] - 128) >> 1) + 128;
  985. src2[i] = ((src2[i] - 128) >> 1) + 128;
  986. }
  987. src += s->uvlinesize;
  988. src2 += s->uvlinesize;
  989. }
  990. }
  991. /* if we deal with intensity compensation we need to scale source blocks */
  992. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  993. int i, j;
  994. uint8_t *src, *src2;
  995. src = srcU; src2 = srcV;
  996. for(j = 0; j < 9; j++) {
  997. for(i = 0; i < 9; i++) {
  998. src[i] = v->lutuv[src[i]];
  999. src2[i] = v->lutuv[src2[i]];
  1000. }
  1001. src += s->uvlinesize;
  1002. src2 += s->uvlinesize;
  1003. }
  1004. }
  1005. }
  1006. /* Chroma MC always uses qpel bilinear */
  1007. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1008. uvmx = (uvmx&3)<<1;
  1009. uvmy = (uvmy&3)<<1;
  1010. if(!v->rnd){
  1011. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1012. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1013. }else{
  1014. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1015. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1016. }
  1017. }
  1018. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  1019. /**
  1020. * Decode Simple/Main Profiles sequence header
  1021. * @see Figure 7-8, p16-17
  1022. * @param avctx Codec context
  1023. * @param gb GetBit context initialized from Codec context extra_data
  1024. * @return Status
  1025. */
  1026. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1027. {
  1028. VC1Context *v = avctx->priv_data;
  1029. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  1030. v->profile = get_bits(gb, 2);
  1031. if (v->profile == 2)
  1032. {
  1033. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  1034. return -1;
  1035. }
  1036. if (v->profile == PROFILE_ADVANCED)
  1037. {
  1038. return decode_sequence_header_adv(v, gb);
  1039. }
  1040. else
  1041. {
  1042. v->res_sm = get_bits(gb, 2); //reserved
  1043. if (v->res_sm)
  1044. {
  1045. av_log(avctx, AV_LOG_ERROR,
  1046. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1047. return -1;
  1048. }
  1049. }
  1050. // (fps-2)/4 (->30)
  1051. v->frmrtq_postproc = get_bits(gb, 3); //common
  1052. // (bitrate-32kbps)/64kbps
  1053. v->bitrtq_postproc = get_bits(gb, 5); //common
  1054. v->s.loop_filter = get_bits(gb, 1); //common
  1055. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1056. {
  1057. av_log(avctx, AV_LOG_ERROR,
  1058. "LOOPFILTER shell not be enabled in simple profile\n");
  1059. }
  1060. v->res_x8 = get_bits(gb, 1); //reserved
  1061. if (v->res_x8)
  1062. {
  1063. av_log(avctx, AV_LOG_ERROR,
  1064. "1 for reserved RES_X8 is forbidden\n");
  1065. //return -1;
  1066. }
  1067. v->multires = get_bits(gb, 1);
  1068. v->res_fasttx = get_bits(gb, 1);
  1069. if (!v->res_fasttx)
  1070. {
  1071. av_log(avctx, AV_LOG_ERROR,
  1072. "0 for reserved RES_FASTTX is forbidden\n");
  1073. //return -1;
  1074. }
  1075. v->fastuvmc = get_bits(gb, 1); //common
  1076. if (!v->profile && !v->fastuvmc)
  1077. {
  1078. av_log(avctx, AV_LOG_ERROR,
  1079. "FASTUVMC unavailable in Simple Profile\n");
  1080. return -1;
  1081. }
  1082. v->extended_mv = get_bits(gb, 1); //common
  1083. if (!v->profile && v->extended_mv)
  1084. {
  1085. av_log(avctx, AV_LOG_ERROR,
  1086. "Extended MVs unavailable in Simple Profile\n");
  1087. return -1;
  1088. }
  1089. v->dquant = get_bits(gb, 2); //common
  1090. v->vstransform = get_bits(gb, 1); //common
  1091. v->res_transtab = get_bits(gb, 1);
  1092. if (v->res_transtab)
  1093. {
  1094. av_log(avctx, AV_LOG_ERROR,
  1095. "1 for reserved RES_TRANSTAB is forbidden\n");
  1096. return -1;
  1097. }
  1098. v->overlap = get_bits(gb, 1); //common
  1099. v->s.resync_marker = get_bits(gb, 1);
  1100. v->rangered = get_bits(gb, 1);
  1101. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1102. {
  1103. av_log(avctx, AV_LOG_INFO,
  1104. "RANGERED should be set to 0 in simple profile\n");
  1105. }
  1106. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1107. v->quantizer_mode = get_bits(gb, 2); //common
  1108. v->finterpflag = get_bits(gb, 1); //common
  1109. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1110. if (!v->res_rtm_flag)
  1111. {
  1112. // av_log(avctx, AV_LOG_ERROR,
  1113. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  1114. av_log(avctx, AV_LOG_ERROR,
  1115. "Old WMV3 version detected, only I-frames will be decoded\n");
  1116. //return -1;
  1117. }
  1118. av_log(avctx, AV_LOG_DEBUG,
  1119. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1120. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1121. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1122. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1123. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1124. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1125. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1126. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1127. );
  1128. return 0;
  1129. }
  1130. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  1131. {
  1132. v->res_rtm_flag = 1;
  1133. v->level = get_bits(gb, 3);
  1134. if(v->level >= 5)
  1135. {
  1136. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1137. }
  1138. v->chromaformat = get_bits(gb, 2);
  1139. if (v->chromaformat != 1)
  1140. {
  1141. av_log(v->s.avctx, AV_LOG_ERROR,
  1142. "Only 4:2:0 chroma format supported\n");
  1143. return -1;
  1144. }
  1145. // (fps-2)/4 (->30)
  1146. v->frmrtq_postproc = get_bits(gb, 3); //common
  1147. // (bitrate-32kbps)/64kbps
  1148. v->bitrtq_postproc = get_bits(gb, 5); //common
  1149. v->postprocflag = get_bits(gb, 1); //common
  1150. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  1151. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  1152. v->broadcast = get_bits1(gb);
  1153. v->interlace = get_bits1(gb);
  1154. if(v->interlace){
  1155. av_log(v->s.avctx, AV_LOG_ERROR, "Interlaced mode not supported (yet)\n");
  1156. return -1;
  1157. }
  1158. v->tfcntrflag = get_bits1(gb);
  1159. v->finterpflag = get_bits1(gb);
  1160. get_bits1(gb); // reserved
  1161. av_log(v->s.avctx, AV_LOG_DEBUG,
  1162. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1163. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  1164. "TFCTRflag=%i, FINTERPflag=%i\n",
  1165. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  1166. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  1167. v->tfcntrflag, v->finterpflag
  1168. );
  1169. v->psf = get_bits1(gb);
  1170. if(v->psf) { //PsF, 6.1.13
  1171. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  1172. return -1;
  1173. }
  1174. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  1175. int w, h, ar = 0;
  1176. av_log(v->s.avctx, AV_LOG_INFO, "Display extended info:\n");
  1177. w = get_bits(gb, 14) + 1;
  1178. h = get_bits(gb, 14) + 1;
  1179. av_log(v->s.avctx, AV_LOG_INFO, "Display dimensions: %ix%i\n", w, h);
  1180. if(get_bits1(gb))
  1181. ar = get_bits(gb, 4);
  1182. if(ar && ar < 14){
  1183. v->s.avctx->sample_aspect_ratio = vc1_pixel_aspect[ar];
  1184. }else if(ar == 15){
  1185. w = get_bits(gb, 8);
  1186. h = get_bits(gb, 8);
  1187. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  1188. }
  1189. if(get_bits1(gb)){ //framerate stuff
  1190. if(get_bits1(gb)) {
  1191. get_bits(gb, 16);
  1192. } else {
  1193. get_bits(gb, 8);
  1194. get_bits(gb, 4);
  1195. }
  1196. }
  1197. if(get_bits1(gb)){
  1198. v->color_prim = get_bits(gb, 8);
  1199. v->transfer_char = get_bits(gb, 8);
  1200. v->matrix_coef = get_bits(gb, 8);
  1201. }
  1202. }
  1203. v->hrd_param_flag = get_bits1(gb);
  1204. if(v->hrd_param_flag) {
  1205. int i;
  1206. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  1207. get_bits(gb, 4); //bitrate exponent
  1208. get_bits(gb, 4); //buffer size exponent
  1209. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1210. get_bits(gb, 16); //hrd_rate[n]
  1211. get_bits(gb, 16); //hrd_buffer[n]
  1212. }
  1213. }
  1214. return 0;
  1215. }
  1216. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  1217. {
  1218. VC1Context *v = avctx->priv_data;
  1219. int i, blink, refdist;
  1220. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  1221. blink = get_bits1(gb); // broken link
  1222. avctx->max_b_frames = 1 - get_bits1(gb); // 'closed entry' also signalize possible B-frames
  1223. v->panscanflag = get_bits1(gb);
  1224. refdist = get_bits1(gb); // refdist flag
  1225. v->s.loop_filter = get_bits1(gb);
  1226. v->fastuvmc = get_bits1(gb);
  1227. v->extended_mv = get_bits1(gb);
  1228. v->dquant = get_bits(gb, 2);
  1229. v->vstransform = get_bits1(gb);
  1230. v->overlap = get_bits1(gb);
  1231. v->quantizer_mode = get_bits(gb, 2);
  1232. if(v->hrd_param_flag){
  1233. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1234. get_bits(gb, 8); //hrd_full[n]
  1235. }
  1236. }
  1237. if(get_bits1(gb)){
  1238. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  1239. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1240. }
  1241. if(v->extended_mv)
  1242. v->extended_dmv = get_bits1(gb);
  1243. if(get_bits1(gb)) {
  1244. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1245. skip_bits(gb, 3); // Y range, ignored for now
  1246. }
  1247. if(get_bits1(gb)) {
  1248. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1249. skip_bits(gb, 3); // UV range, ignored for now
  1250. }
  1251. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  1252. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1253. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1254. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1255. blink, 1 - avctx->max_b_frames, v->panscanflag, refdist, v->s.loop_filter,
  1256. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1257. return 0;
  1258. }
  1259. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1260. {
  1261. int pqindex, lowquant, status;
  1262. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1263. skip_bits(gb, 2); //framecnt unused
  1264. v->rangeredfrm = 0;
  1265. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1266. v->s.pict_type = get_bits(gb, 1);
  1267. if (v->s.avctx->max_b_frames) {
  1268. if (!v->s.pict_type) {
  1269. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1270. else v->s.pict_type = B_TYPE;
  1271. } else v->s.pict_type = P_TYPE;
  1272. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1273. v->bi_type = 0;
  1274. if(v->s.pict_type == B_TYPE) {
  1275. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1276. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1277. if(v->bfraction == 0) {
  1278. v->s.pict_type = BI_TYPE;
  1279. }
  1280. }
  1281. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1282. get_bits(gb, 7); // skip buffer fullness
  1283. /* calculate RND */
  1284. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1285. v->rnd = 1;
  1286. if(v->s.pict_type == P_TYPE)
  1287. v->rnd ^= 1;
  1288. /* Quantizer stuff */
  1289. pqindex = get_bits(gb, 5);
  1290. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1291. v->pq = pquant_table[0][pqindex];
  1292. else
  1293. v->pq = pquant_table[1][pqindex];
  1294. v->pquantizer = 1;
  1295. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1296. v->pquantizer = pqindex < 9;
  1297. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1298. v->pquantizer = 0;
  1299. v->pqindex = pqindex;
  1300. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1301. else v->halfpq = 0;
  1302. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1303. v->pquantizer = get_bits(gb, 1);
  1304. v->dquantfrm = 0;
  1305. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1306. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1307. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1308. v->range_x = 1 << (v->k_x - 1);
  1309. v->range_y = 1 << (v->k_y - 1);
  1310. if (v->profile == PROFILE_ADVANCED)
  1311. {
  1312. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1313. }
  1314. else
  1315. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1316. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1317. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1318. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1319. switch(v->s.pict_type) {
  1320. case P_TYPE:
  1321. if (v->pq < 5) v->tt_index = 0;
  1322. else if(v->pq < 13) v->tt_index = 1;
  1323. else v->tt_index = 2;
  1324. lowquant = (v->pq > 12) ? 0 : 1;
  1325. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1326. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1327. {
  1328. int scale, shift, i;
  1329. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1330. v->lumscale = get_bits(gb, 6);
  1331. v->lumshift = get_bits(gb, 6);
  1332. v->use_ic = 1;
  1333. /* fill lookup tables for intensity compensation */
  1334. if(!v->lumscale) {
  1335. scale = -64;
  1336. shift = (255 - v->lumshift * 2) << 6;
  1337. if(v->lumshift > 31)
  1338. shift += 128 << 6;
  1339. } else {
  1340. scale = v->lumscale + 32;
  1341. if(v->lumshift > 31)
  1342. shift = (v->lumshift - 64) << 6;
  1343. else
  1344. shift = v->lumshift << 6;
  1345. }
  1346. for(i = 0; i < 256; i++) {
  1347. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1348. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1349. }
  1350. }
  1351. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1352. v->s.quarter_sample = 0;
  1353. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1354. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1355. v->s.quarter_sample = 0;
  1356. else
  1357. v->s.quarter_sample = 1;
  1358. } else
  1359. v->s.quarter_sample = 1;
  1360. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1361. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1362. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1363. || v->mv_mode == MV_PMODE_MIXED_MV)
  1364. {
  1365. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1366. if (status < 0) return -1;
  1367. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1368. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1369. } else {
  1370. v->mv_type_is_raw = 0;
  1371. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1372. }
  1373. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1374. if (status < 0) return -1;
  1375. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1376. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1377. /* Hopefully this is correct for P frames */
  1378. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1379. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1380. if (v->dquant)
  1381. {
  1382. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1383. vop_dquant_decoding(v);
  1384. }
  1385. v->ttfrm = 0; //FIXME Is that so ?
  1386. if (v->vstransform)
  1387. {
  1388. v->ttmbf = get_bits(gb, 1);
  1389. if (v->ttmbf)
  1390. {
  1391. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1392. }
  1393. } else {
  1394. v->ttmbf = 1;
  1395. v->ttfrm = TT_8X8;
  1396. }
  1397. break;
  1398. case B_TYPE:
  1399. if (v->pq < 5) v->tt_index = 0;
  1400. else if(v->pq < 13) v->tt_index = 1;
  1401. else v->tt_index = 2;
  1402. lowquant = (v->pq > 12) ? 0 : 1;
  1403. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1404. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1405. v->s.mspel = v->s.quarter_sample;
  1406. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1407. if (status < 0) return -1;
  1408. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1409. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1410. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1411. if (status < 0) return -1;
  1412. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1413. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1414. v->s.mv_table_index = get_bits(gb, 2);
  1415. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1416. if (v->dquant)
  1417. {
  1418. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1419. vop_dquant_decoding(v);
  1420. }
  1421. v->ttfrm = 0;
  1422. if (v->vstransform)
  1423. {
  1424. v->ttmbf = get_bits(gb, 1);
  1425. if (v->ttmbf)
  1426. {
  1427. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1428. }
  1429. } else {
  1430. v->ttmbf = 1;
  1431. v->ttfrm = TT_8X8;
  1432. }
  1433. break;
  1434. }
  1435. /* AC Syntax */
  1436. v->c_ac_table_index = decode012(gb);
  1437. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1438. {
  1439. v->y_ac_table_index = decode012(gb);
  1440. }
  1441. /* DC Syntax */
  1442. v->s.dc_table_index = get_bits(gb, 1);
  1443. if(v->s.pict_type == BI_TYPE) {
  1444. v->s.pict_type = B_TYPE;
  1445. v->bi_type = 1;
  1446. }
  1447. return 0;
  1448. }
  1449. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1450. {
  1451. int fcm;
  1452. int pqindex, lowquant;
  1453. int status;
  1454. v->p_frame_skipped = 0;
  1455. if(v->interlace)
  1456. fcm = decode012(gb);
  1457. switch(get_prefix(gb, 0, 4)) {
  1458. case 0:
  1459. v->s.pict_type = P_TYPE;
  1460. break;
  1461. case 1:
  1462. v->s.pict_type = B_TYPE;
  1463. break;
  1464. case 2:
  1465. v->s.pict_type = I_TYPE;
  1466. break;
  1467. case 3:
  1468. v->s.pict_type = BI_TYPE;
  1469. break;
  1470. case 4:
  1471. v->s.pict_type = P_TYPE; // skipped pic
  1472. v->p_frame_skipped = 1;
  1473. return 0;
  1474. }
  1475. if(v->tfcntrflag)
  1476. get_bits(gb, 8);
  1477. if(v->broadcast) {
  1478. if(!v->interlace || v->panscanflag) {
  1479. get_bits(gb, 2);
  1480. } else {
  1481. get_bits1(gb);
  1482. get_bits1(gb);
  1483. }
  1484. }
  1485. if(v->panscanflag) {
  1486. //...
  1487. }
  1488. v->rnd = get_bits1(gb);
  1489. if(v->interlace)
  1490. v->uvsamp = get_bits1(gb);
  1491. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1492. if(v->s.pict_type == B_TYPE) {
  1493. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1494. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1495. if(v->bfraction == 0) {
  1496. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1497. }
  1498. }
  1499. pqindex = get_bits(gb, 5);
  1500. v->pqindex = pqindex;
  1501. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1502. v->pq = pquant_table[0][pqindex];
  1503. else
  1504. v->pq = pquant_table[1][pqindex];
  1505. v->pquantizer = 1;
  1506. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1507. v->pquantizer = pqindex < 9;
  1508. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1509. v->pquantizer = 0;
  1510. v->pqindex = pqindex;
  1511. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1512. else v->halfpq = 0;
  1513. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1514. v->pquantizer = get_bits(gb, 1);
  1515. switch(v->s.pict_type) {
  1516. case I_TYPE:
  1517. case BI_TYPE:
  1518. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1519. if (status < 0) return -1;
  1520. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1521. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1522. v->condover = CONDOVER_NONE;
  1523. if(v->overlap && v->pq <= 8) {
  1524. v->condover = decode012(gb);
  1525. if(v->condover == CONDOVER_SELECT) {
  1526. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1527. if (status < 0) return -1;
  1528. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1529. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1530. }
  1531. }
  1532. break;
  1533. case P_TYPE:
  1534. if(v->postprocflag)
  1535. v->postproc = get_bits1(gb);
  1536. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1537. else v->mvrange = 0;
  1538. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1539. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1540. v->range_x = 1 << (v->k_x - 1);
  1541. v->range_y = 1 << (v->k_y - 1);
  1542. if (v->pq < 5) v->tt_index = 0;
  1543. else if(v->pq < 13) v->tt_index = 1;
  1544. else v->tt_index = 2;
  1545. lowquant = (v->pq > 12) ? 0 : 1;
  1546. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1547. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1548. {
  1549. int scale, shift, i;
  1550. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1551. v->lumscale = get_bits(gb, 6);
  1552. v->lumshift = get_bits(gb, 6);
  1553. /* fill lookup tables for intensity compensation */
  1554. if(!v->lumscale) {
  1555. scale = -64;
  1556. shift = (255 - v->lumshift * 2) << 6;
  1557. if(v->lumshift > 31)
  1558. shift += 128 << 6;
  1559. } else {
  1560. scale = v->lumscale + 32;
  1561. if(v->lumshift > 31)
  1562. shift = (v->lumshift - 64) << 6;
  1563. else
  1564. shift = v->lumshift << 6;
  1565. }
  1566. for(i = 0; i < 256; i++) {
  1567. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1568. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1569. }
  1570. }
  1571. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1572. v->s.quarter_sample = 0;
  1573. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1574. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1575. v->s.quarter_sample = 0;
  1576. else
  1577. v->s.quarter_sample = 1;
  1578. } else
  1579. v->s.quarter_sample = 1;
  1580. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1581. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1582. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1583. || v->mv_mode == MV_PMODE_MIXED_MV)
  1584. {
  1585. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1586. if (status < 0) return -1;
  1587. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1588. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1589. } else {
  1590. v->mv_type_is_raw = 0;
  1591. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1592. }
  1593. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1594. if (status < 0) return -1;
  1595. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1596. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1597. /* Hopefully this is correct for P frames */
  1598. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1599. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1600. if (v->dquant)
  1601. {
  1602. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1603. vop_dquant_decoding(v);
  1604. }
  1605. v->ttfrm = 0; //FIXME Is that so ?
  1606. if (v->vstransform)
  1607. {
  1608. v->ttmbf = get_bits(gb, 1);
  1609. if (v->ttmbf)
  1610. {
  1611. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1612. }
  1613. } else {
  1614. v->ttmbf = 1;
  1615. v->ttfrm = TT_8X8;
  1616. }
  1617. break;
  1618. case B_TYPE:
  1619. if(v->postprocflag)
  1620. v->postproc = get_bits1(gb);
  1621. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1622. else v->mvrange = 0;
  1623. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1624. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1625. v->range_x = 1 << (v->k_x - 1);
  1626. v->range_y = 1 << (v->k_y - 1);
  1627. if (v->pq < 5) v->tt_index = 0;
  1628. else if(v->pq < 13) v->tt_index = 1;
  1629. else v->tt_index = 2;
  1630. lowquant = (v->pq > 12) ? 0 : 1;
  1631. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1632. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1633. v->s.mspel = v->s.quarter_sample;
  1634. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1635. if (status < 0) return -1;
  1636. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1637. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1638. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1639. if (status < 0) return -1;
  1640. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1641. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1642. v->s.mv_table_index = get_bits(gb, 2);
  1643. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1644. if (v->dquant)
  1645. {
  1646. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1647. vop_dquant_decoding(v);
  1648. }
  1649. v->ttfrm = 0;
  1650. if (v->vstransform)
  1651. {
  1652. v->ttmbf = get_bits(gb, 1);
  1653. if (v->ttmbf)
  1654. {
  1655. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1656. }
  1657. } else {
  1658. v->ttmbf = 1;
  1659. v->ttfrm = TT_8X8;
  1660. }
  1661. break;
  1662. }
  1663. /* AC Syntax */
  1664. v->c_ac_table_index = decode012(gb);
  1665. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1666. {
  1667. v->y_ac_table_index = decode012(gb);
  1668. }
  1669. /* DC Syntax */
  1670. v->s.dc_table_index = get_bits(gb, 1);
  1671. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1672. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1673. vop_dquant_decoding(v);
  1674. }
  1675. v->bi_type = 0;
  1676. if(v->s.pict_type == BI_TYPE) {
  1677. v->s.pict_type = B_TYPE;
  1678. v->bi_type = 1;
  1679. }
  1680. return 0;
  1681. }
  1682. /***********************************************************************/
  1683. /**
  1684. * @defgroup block VC-1 Block-level functions
  1685. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1686. * @{
  1687. */
  1688. /**
  1689. * @def GET_MQUANT
  1690. * @brief Get macroblock-level quantizer scale
  1691. */
  1692. #define GET_MQUANT() \
  1693. if (v->dquantfrm) \
  1694. { \
  1695. int edges = 0; \
  1696. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1697. { \
  1698. if (v->dqbilevel) \
  1699. { \
  1700. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1701. } \
  1702. else \
  1703. { \
  1704. mqdiff = get_bits(gb, 3); \
  1705. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1706. else mquant = get_bits(gb, 5); \
  1707. } \
  1708. } \
  1709. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1710. edges = 1 << v->dqsbedge; \
  1711. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1712. edges = (3 << v->dqsbedge) % 15; \
  1713. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1714. edges = 15; \
  1715. if((edges&1) && !s->mb_x) \
  1716. mquant = v->altpq; \
  1717. if((edges&2) && s->first_slice_line) \
  1718. mquant = v->altpq; \
  1719. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1720. mquant = v->altpq; \
  1721. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1722. mquant = v->altpq; \
  1723. }
  1724. /**
  1725. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1726. * @brief Get MV differentials
  1727. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1728. * @param _dmv_x Horizontal differential for decoded MV
  1729. * @param _dmv_y Vertical differential for decoded MV
  1730. */
  1731. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1732. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1733. VC1_MV_DIFF_VLC_BITS, 2); \
  1734. if (index > 36) \
  1735. { \
  1736. mb_has_coeffs = 1; \
  1737. index -= 37; \
  1738. } \
  1739. else mb_has_coeffs = 0; \
  1740. s->mb_intra = 0; \
  1741. if (!index) { _dmv_x = _dmv_y = 0; } \
  1742. else if (index == 35) \
  1743. { \
  1744. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1745. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1746. } \
  1747. else if (index == 36) \
  1748. { \
  1749. _dmv_x = 0; \
  1750. _dmv_y = 0; \
  1751. s->mb_intra = 1; \
  1752. } \
  1753. else \
  1754. { \
  1755. index1 = index%6; \
  1756. if (!s->quarter_sample && index1 == 5) val = 1; \
  1757. else val = 0; \
  1758. if(size_table[index1] - val > 0) \
  1759. val = get_bits(gb, size_table[index1] - val); \
  1760. else val = 0; \
  1761. sign = 0 - (val&1); \
  1762. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1763. \
  1764. index1 = index/6; \
  1765. if (!s->quarter_sample && index1 == 5) val = 1; \
  1766. else val = 0; \
  1767. if(size_table[index1] - val > 0) \
  1768. val = get_bits(gb, size_table[index1] - val); \
  1769. else val = 0; \
  1770. sign = 0 - (val&1); \
  1771. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1772. }
  1773. /** Predict and set motion vector
  1774. */
  1775. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1776. {
  1777. int xy, wrap, off = 0;
  1778. int16_t *A, *B, *C;
  1779. int px, py;
  1780. int sum;
  1781. /* scale MV difference to be quad-pel */
  1782. dmv_x <<= 1 - s->quarter_sample;
  1783. dmv_y <<= 1 - s->quarter_sample;
  1784. wrap = s->b8_stride;
  1785. xy = s->block_index[n];
  1786. if(s->mb_intra){
  1787. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1788. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1789. if(mv1) { /* duplicate motion data for 1-MV block */
  1790. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1791. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1792. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1793. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1794. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1795. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1796. }
  1797. return;
  1798. }
  1799. C = s->current_picture.motion_val[0][xy - 1];
  1800. A = s->current_picture.motion_val[0][xy - wrap];
  1801. if(mv1)
  1802. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1803. else {
  1804. //in 4-MV mode different blocks have different B predictor position
  1805. switch(n){
  1806. case 0:
  1807. off = (s->mb_x > 0) ? -1 : 1;
  1808. break;
  1809. case 1:
  1810. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1811. break;
  1812. case 2:
  1813. off = 1;
  1814. break;
  1815. case 3:
  1816. off = -1;
  1817. }
  1818. }
  1819. B = s->current_picture.motion_val[0][xy - wrap + off];
  1820. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1821. if(s->mb_width == 1) {
  1822. px = A[0];
  1823. py = A[1];
  1824. } else {
  1825. px = mid_pred(A[0], B[0], C[0]);
  1826. py = mid_pred(A[1], B[1], C[1]);
  1827. }
  1828. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1829. px = C[0];
  1830. py = C[1];
  1831. } else {
  1832. px = py = 0;
  1833. }
  1834. /* Pullback MV as specified in 8.3.5.3.4 */
  1835. {
  1836. int qx, qy, X, Y;
  1837. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1838. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1839. X = (s->mb_width << 6) - 4;
  1840. Y = (s->mb_height << 6) - 4;
  1841. if(mv1) {
  1842. if(qx + px < -60) px = -60 - qx;
  1843. if(qy + py < -60) py = -60 - qy;
  1844. } else {
  1845. if(qx + px < -28) px = -28 - qx;
  1846. if(qy + py < -28) py = -28 - qy;
  1847. }
  1848. if(qx + px > X) px = X - qx;
  1849. if(qy + py > Y) py = Y - qy;
  1850. }
  1851. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1852. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1853. if(is_intra[xy - wrap])
  1854. sum = FFABS(px) + FFABS(py);
  1855. else
  1856. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1857. if(sum > 32) {
  1858. if(get_bits1(&s->gb)) {
  1859. px = A[0];
  1860. py = A[1];
  1861. } else {
  1862. px = C[0];
  1863. py = C[1];
  1864. }
  1865. } else {
  1866. if(is_intra[xy - 1])
  1867. sum = FFABS(px) + FFABS(py);
  1868. else
  1869. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1870. if(sum > 32) {
  1871. if(get_bits1(&s->gb)) {
  1872. px = A[0];
  1873. py = A[1];
  1874. } else {
  1875. px = C[0];
  1876. py = C[1];
  1877. }
  1878. }
  1879. }
  1880. }
  1881. /* store MV using signed modulus of MV range defined in 4.11 */
  1882. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1883. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1884. if(mv1) { /* duplicate motion data for 1-MV block */
  1885. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1886. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1887. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1888. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1889. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1890. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1891. }
  1892. }
  1893. /** Motion compensation for direct or interpolated blocks in B-frames
  1894. */
  1895. static void vc1_interp_mc(VC1Context *v)
  1896. {
  1897. MpegEncContext *s = &v->s;
  1898. DSPContext *dsp = &v->s.dsp;
  1899. uint8_t *srcY, *srcU, *srcV;
  1900. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1901. if(!v->s.next_picture.data[0])return;
  1902. mx = s->mv[1][0][0];
  1903. my = s->mv[1][0][1];
  1904. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1905. uvmy = (my + ((my & 3) == 3)) >> 1;
  1906. if(v->fastuvmc) {
  1907. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1908. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1909. }
  1910. srcY = s->next_picture.data[0];
  1911. srcU = s->next_picture.data[1];
  1912. srcV = s->next_picture.data[2];
  1913. src_x = s->mb_x * 16 + (mx >> 2);
  1914. src_y = s->mb_y * 16 + (my >> 2);
  1915. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1916. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1917. src_x = clip( src_x, -16, s->mb_width * 16);
  1918. src_y = clip( src_y, -16, s->mb_height * 16);
  1919. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  1920. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  1921. srcY += src_y * s->linesize + src_x;
  1922. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1923. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1924. /* for grayscale we should not try to read from unknown area */
  1925. if(s->flags & CODEC_FLAG_GRAY) {
  1926. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1927. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1928. }
  1929. if(v->rangeredfrm
  1930. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1931. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1932. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1933. srcY -= s->mspel * (1 + s->linesize);
  1934. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1935. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1936. srcY = s->edge_emu_buffer;
  1937. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1938. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1939. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1940. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1941. srcU = uvbuf;
  1942. srcV = uvbuf + 16;
  1943. /* if we deal with range reduction we need to scale source blocks */
  1944. if(v->rangeredfrm) {
  1945. int i, j;
  1946. uint8_t *src, *src2;
  1947. src = srcY;
  1948. for(j = 0; j < 17 + s->mspel*2; j++) {
  1949. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1950. src += s->linesize;
  1951. }
  1952. src = srcU; src2 = srcV;
  1953. for(j = 0; j < 9; j++) {
  1954. for(i = 0; i < 9; i++) {
  1955. src[i] = ((src[i] - 128) >> 1) + 128;
  1956. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1957. }
  1958. src += s->uvlinesize;
  1959. src2 += s->uvlinesize;
  1960. }
  1961. }
  1962. srcY += s->mspel * (1 + s->linesize);
  1963. }
  1964. mx >>= 1;
  1965. my >>= 1;
  1966. dxy = ((my & 1) << 1) | (mx & 1);
  1967. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1968. if(s->flags & CODEC_FLAG_GRAY) return;
  1969. /* Chroma MC always uses qpel blilinear */
  1970. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1971. uvmx = (uvmx&3)<<1;
  1972. uvmy = (uvmy&3)<<1;
  1973. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1974. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1975. }
  1976. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1977. {
  1978. int n = bfrac;
  1979. #if B_FRACTION_DEN==256
  1980. if(inv)
  1981. n -= 256;
  1982. if(!qs)
  1983. return 2 * ((value * n + 255) >> 9);
  1984. return (value * n + 128) >> 8;
  1985. #else
  1986. if(inv)
  1987. n -= B_FRACTION_DEN;
  1988. if(!qs)
  1989. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1990. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1991. #endif
  1992. }
  1993. /** Reconstruct motion vector for B-frame and do motion compensation
  1994. */
  1995. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1996. {
  1997. if(v->use_ic) {
  1998. v->mv_mode2 = v->mv_mode;
  1999. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  2000. }
  2001. if(direct) {
  2002. vc1_mc_1mv(v, 0);
  2003. vc1_interp_mc(v);
  2004. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2005. return;
  2006. }
  2007. if(mode == BMV_TYPE_INTERPOLATED) {
  2008. vc1_mc_1mv(v, 0);
  2009. vc1_interp_mc(v);
  2010. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2011. return;
  2012. }
  2013. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  2014. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  2015. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2016. }
  2017. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  2018. {
  2019. MpegEncContext *s = &v->s;
  2020. int xy, wrap, off = 0;
  2021. int16_t *A, *B, *C;
  2022. int px, py;
  2023. int sum;
  2024. int r_x, r_y;
  2025. const uint8_t *is_intra = v->mb_type[0];
  2026. r_x = v->range_x;
  2027. r_y = v->range_y;
  2028. /* scale MV difference to be quad-pel */
  2029. dmv_x[0] <<= 1 - s->quarter_sample;
  2030. dmv_y[0] <<= 1 - s->quarter_sample;
  2031. dmv_x[1] <<= 1 - s->quarter_sample;
  2032. dmv_y[1] <<= 1 - s->quarter_sample;
  2033. wrap = s->b8_stride;
  2034. xy = s->block_index[0];
  2035. if(s->mb_intra) {
  2036. s->current_picture.motion_val[0][xy][0] =
  2037. s->current_picture.motion_val[0][xy][1] =
  2038. s->current_picture.motion_val[1][xy][0] =
  2039. s->current_picture.motion_val[1][xy][1] = 0;
  2040. return;
  2041. }
  2042. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  2043. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  2044. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  2045. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  2046. if(direct) {
  2047. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2048. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2049. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2050. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2051. return;
  2052. }
  2053. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2054. C = s->current_picture.motion_val[0][xy - 2];
  2055. A = s->current_picture.motion_val[0][xy - wrap*2];
  2056. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2057. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  2058. if(!s->first_slice_line) { // predictor A is not out of bounds
  2059. if(s->mb_width == 1) {
  2060. px = A[0];
  2061. py = A[1];
  2062. } else {
  2063. px = mid_pred(A[0], B[0], C[0]);
  2064. py = mid_pred(A[1], B[1], C[1]);
  2065. }
  2066. } else if(s->mb_x) { // predictor C is not out of bounds
  2067. px = C[0];
  2068. py = C[1];
  2069. } else {
  2070. px = py = 0;
  2071. }
  2072. /* Pullback MV as specified in 8.3.5.3.4 */
  2073. {
  2074. int qx, qy, X, Y;
  2075. if(v->profile < PROFILE_ADVANCED) {
  2076. qx = (s->mb_x << 5);
  2077. qy = (s->mb_y << 5);
  2078. X = (s->mb_width << 5) - 4;
  2079. Y = (s->mb_height << 5) - 4;
  2080. if(qx + px < -28) px = -28 - qx;
  2081. if(qy + py < -28) py = -28 - qy;
  2082. if(qx + px > X) px = X - qx;
  2083. if(qy + py > Y) py = Y - qy;
  2084. } else {
  2085. qx = (s->mb_x << 6);
  2086. qy = (s->mb_y << 6);
  2087. X = (s->mb_width << 6) - 4;
  2088. Y = (s->mb_height << 6) - 4;
  2089. if(qx + px < -60) px = -60 - qx;
  2090. if(qy + py < -60) py = -60 - qy;
  2091. if(qx + px > X) px = X - qx;
  2092. if(qy + py > Y) py = Y - qy;
  2093. }
  2094. }
  2095. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2096. if(0 && !s->first_slice_line && s->mb_x) {
  2097. if(is_intra[xy - wrap])
  2098. sum = FFABS(px) + FFABS(py);
  2099. else
  2100. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2101. if(sum > 32) {
  2102. if(get_bits1(&s->gb)) {
  2103. px = A[0];
  2104. py = A[1];
  2105. } else {
  2106. px = C[0];
  2107. py = C[1];
  2108. }
  2109. } else {
  2110. if(is_intra[xy - 2])
  2111. sum = FFABS(px) + FFABS(py);
  2112. else
  2113. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2114. if(sum > 32) {
  2115. if(get_bits1(&s->gb)) {
  2116. px = A[0];
  2117. py = A[1];
  2118. } else {
  2119. px = C[0];
  2120. py = C[1];
  2121. }
  2122. }
  2123. }
  2124. }
  2125. /* store MV using signed modulus of MV range defined in 4.11 */
  2126. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2127. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2128. }
  2129. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2130. C = s->current_picture.motion_val[1][xy - 2];
  2131. A = s->current_picture.motion_val[1][xy - wrap*2];
  2132. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2133. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  2134. if(!s->first_slice_line) { // predictor A is not out of bounds
  2135. if(s->mb_width == 1) {
  2136. px = A[0];
  2137. py = A[1];
  2138. } else {
  2139. px = mid_pred(A[0], B[0], C[0]);
  2140. py = mid_pred(A[1], B[1], C[1]);
  2141. }
  2142. } else if(s->mb_x) { // predictor C is not out of bounds
  2143. px = C[0];
  2144. py = C[1];
  2145. } else {
  2146. px = py = 0;
  2147. }
  2148. /* Pullback MV as specified in 8.3.5.3.4 */
  2149. {
  2150. int qx, qy, X, Y;
  2151. if(v->profile < PROFILE_ADVANCED) {
  2152. qx = (s->mb_x << 5);
  2153. qy = (s->mb_y << 5);
  2154. X = (s->mb_width << 5) - 4;
  2155. Y = (s->mb_height << 5) - 4;
  2156. if(qx + px < -28) px = -28 - qx;
  2157. if(qy + py < -28) py = -28 - qy;
  2158. if(qx + px > X) px = X - qx;
  2159. if(qy + py > Y) py = Y - qy;
  2160. } else {
  2161. qx = (s->mb_x << 6);
  2162. qy = (s->mb_y << 6);
  2163. X = (s->mb_width << 6) - 4;
  2164. Y = (s->mb_height << 6) - 4;
  2165. if(qx + px < -60) px = -60 - qx;
  2166. if(qy + py < -60) py = -60 - qy;
  2167. if(qx + px > X) px = X - qx;
  2168. if(qy + py > Y) py = Y - qy;
  2169. }
  2170. }
  2171. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2172. if(0 && !s->first_slice_line && s->mb_x) {
  2173. if(is_intra[xy - wrap])
  2174. sum = FFABS(px) + FFABS(py);
  2175. else
  2176. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2177. if(sum > 32) {
  2178. if(get_bits1(&s->gb)) {
  2179. px = A[0];
  2180. py = A[1];
  2181. } else {
  2182. px = C[0];
  2183. py = C[1];
  2184. }
  2185. } else {
  2186. if(is_intra[xy - 2])
  2187. sum = FFABS(px) + FFABS(py);
  2188. else
  2189. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2190. if(sum > 32) {
  2191. if(get_bits1(&s->gb)) {
  2192. px = A[0];
  2193. py = A[1];
  2194. } else {
  2195. px = C[0];
  2196. py = C[1];
  2197. }
  2198. }
  2199. }
  2200. }
  2201. /* store MV using signed modulus of MV range defined in 4.11 */
  2202. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2203. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2204. }
  2205. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2206. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2207. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2208. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2209. }
  2210. /** Get predicted DC value for I-frames only
  2211. * prediction dir: left=0, top=1
  2212. * @param s MpegEncContext
  2213. * @param[in] n block index in the current MB
  2214. * @param dc_val_ptr Pointer to DC predictor
  2215. * @param dir_ptr Prediction direction for use in AC prediction
  2216. */
  2217. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2218. int16_t **dc_val_ptr, int *dir_ptr)
  2219. {
  2220. int a, b, c, wrap, pred, scale;
  2221. int16_t *dc_val;
  2222. static const uint16_t dcpred[32] = {
  2223. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2224. 114, 102, 93, 85, 79, 73, 68, 64,
  2225. 60, 57, 54, 51, 49, 47, 45, 43,
  2226. 41, 39, 38, 37, 35, 34, 33
  2227. };
  2228. /* find prediction - wmv3_dc_scale always used here in fact */
  2229. if (n < 4) scale = s->y_dc_scale;
  2230. else scale = s->c_dc_scale;
  2231. wrap = s->block_wrap[n];
  2232. dc_val= s->dc_val[0] + s->block_index[n];
  2233. /* B A
  2234. * C X
  2235. */
  2236. c = dc_val[ - 1];
  2237. b = dc_val[ - 1 - wrap];
  2238. a = dc_val[ - wrap];
  2239. if (pq < 9 || !overlap)
  2240. {
  2241. /* Set outer values */
  2242. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2243. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2244. }
  2245. else
  2246. {
  2247. /* Set outer values */
  2248. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2249. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2250. }
  2251. if (abs(a - b) <= abs(b - c)) {
  2252. pred = c;
  2253. *dir_ptr = 1;//left
  2254. } else {
  2255. pred = a;
  2256. *dir_ptr = 0;//top
  2257. }
  2258. /* update predictor */
  2259. *dc_val_ptr = &dc_val[0];
  2260. return pred;
  2261. }
  2262. /** Get predicted DC value
  2263. * prediction dir: left=0, top=1
  2264. * @param s MpegEncContext
  2265. * @param[in] n block index in the current MB
  2266. * @param dc_val_ptr Pointer to DC predictor
  2267. * @param dir_ptr Prediction direction for use in AC prediction
  2268. */
  2269. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2270. int a_avail, int c_avail,
  2271. int16_t **dc_val_ptr, int *dir_ptr)
  2272. {
  2273. int a, b, c, wrap, pred, scale;
  2274. int16_t *dc_val;
  2275. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2276. int q1, q2 = 0;
  2277. /* find prediction - wmv3_dc_scale always used here in fact */
  2278. if (n < 4) scale = s->y_dc_scale;
  2279. else scale = s->c_dc_scale;
  2280. wrap = s->block_wrap[n];
  2281. dc_val= s->dc_val[0] + s->block_index[n];
  2282. /* B A
  2283. * C X
  2284. */
  2285. c = dc_val[ - 1];
  2286. b = dc_val[ - 1 - wrap];
  2287. a = dc_val[ - wrap];
  2288. /* scale predictors if needed */
  2289. q1 = s->current_picture.qscale_table[mb_pos];
  2290. if(c_avail && (n!= 1 && n!=3)) {
  2291. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2292. if(q2 && q2 != q1)
  2293. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2294. }
  2295. if(a_avail && (n!= 2 && n!=3)) {
  2296. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2297. if(q2 && q2 != q1)
  2298. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2299. }
  2300. if(a_avail && c_avail && (n!=3)) {
  2301. int off = mb_pos;
  2302. if(n != 1) off--;
  2303. if(n != 2) off -= s->mb_stride;
  2304. q2 = s->current_picture.qscale_table[off];
  2305. if(q2 && q2 != q1)
  2306. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2307. }
  2308. if(a_avail && c_avail) {
  2309. if(abs(a - b) <= abs(b - c)) {
  2310. pred = c;
  2311. *dir_ptr = 1;//left
  2312. } else {
  2313. pred = a;
  2314. *dir_ptr = 0;//top
  2315. }
  2316. } else if(a_avail) {
  2317. pred = a;
  2318. *dir_ptr = 0;//top
  2319. } else if(c_avail) {
  2320. pred = c;
  2321. *dir_ptr = 1;//left
  2322. } else {
  2323. pred = 0;
  2324. *dir_ptr = 1;//left
  2325. }
  2326. /* update predictor */
  2327. *dc_val_ptr = &dc_val[0];
  2328. return pred;
  2329. }
  2330. /**
  2331. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2332. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2333. * @{
  2334. */
  2335. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2336. {
  2337. int xy, wrap, pred, a, b, c;
  2338. xy = s->block_index[n];
  2339. wrap = s->b8_stride;
  2340. /* B C
  2341. * A X
  2342. */
  2343. a = s->coded_block[xy - 1 ];
  2344. b = s->coded_block[xy - 1 - wrap];
  2345. c = s->coded_block[xy - wrap];
  2346. if (b == c) {
  2347. pred = a;
  2348. } else {
  2349. pred = c;
  2350. }
  2351. /* store value */
  2352. *coded_block_ptr = &s->coded_block[xy];
  2353. return pred;
  2354. }
  2355. /**
  2356. * Decode one AC coefficient
  2357. * @param v The VC1 context
  2358. * @param last Last coefficient
  2359. * @param skip How much zero coefficients to skip
  2360. * @param value Decoded AC coefficient value
  2361. * @see 8.1.3.4
  2362. */
  2363. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2364. {
  2365. GetBitContext *gb = &v->s.gb;
  2366. int index, escape, run = 0, level = 0, lst = 0;
  2367. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2368. if (index != vc1_ac_sizes[codingset] - 1) {
  2369. run = vc1_index_decode_table[codingset][index][0];
  2370. level = vc1_index_decode_table[codingset][index][1];
  2371. lst = index >= vc1_last_decode_table[codingset];
  2372. if(get_bits(gb, 1))
  2373. level = -level;
  2374. } else {
  2375. escape = decode210(gb);
  2376. if (escape != 2) {
  2377. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2378. run = vc1_index_decode_table[codingset][index][0];
  2379. level = vc1_index_decode_table[codingset][index][1];
  2380. lst = index >= vc1_last_decode_table[codingset];
  2381. if(escape == 0) {
  2382. if(lst)
  2383. level += vc1_last_delta_level_table[codingset][run];
  2384. else
  2385. level += vc1_delta_level_table[codingset][run];
  2386. } else {
  2387. if(lst)
  2388. run += vc1_last_delta_run_table[codingset][level] + 1;
  2389. else
  2390. run += vc1_delta_run_table[codingset][level] + 1;
  2391. }
  2392. if(get_bits(gb, 1))
  2393. level = -level;
  2394. } else {
  2395. int sign;
  2396. lst = get_bits(gb, 1);
  2397. if(v->s.esc3_level_length == 0) {
  2398. if(v->pq < 8 || v->dquantfrm) { // table 59
  2399. v->s.esc3_level_length = get_bits(gb, 3);
  2400. if(!v->s.esc3_level_length)
  2401. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2402. } else { //table 60
  2403. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2404. }
  2405. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2406. }
  2407. run = get_bits(gb, v->s.esc3_run_length);
  2408. sign = get_bits(gb, 1);
  2409. level = get_bits(gb, v->s.esc3_level_length);
  2410. if(sign)
  2411. level = -level;
  2412. }
  2413. }
  2414. *last = lst;
  2415. *skip = run;
  2416. *value = level;
  2417. }
  2418. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2419. * @param v VC1Context
  2420. * @param block block to decode
  2421. * @param coded are AC coeffs present or not
  2422. * @param codingset set of VLC to decode data
  2423. */
  2424. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2425. {
  2426. GetBitContext *gb = &v->s.gb;
  2427. MpegEncContext *s = &v->s;
  2428. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2429. int run_diff, i;
  2430. int16_t *dc_val;
  2431. int16_t *ac_val, *ac_val2;
  2432. int dcdiff;
  2433. /* Get DC differential */
  2434. if (n < 4) {
  2435. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2436. } else {
  2437. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2438. }
  2439. if (dcdiff < 0){
  2440. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2441. return -1;
  2442. }
  2443. if (dcdiff)
  2444. {
  2445. if (dcdiff == 119 /* ESC index value */)
  2446. {
  2447. /* TODO: Optimize */
  2448. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2449. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2450. else dcdiff = get_bits(gb, 8);
  2451. }
  2452. else
  2453. {
  2454. if (v->pq == 1)
  2455. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2456. else if (v->pq == 2)
  2457. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2458. }
  2459. if (get_bits(gb, 1))
  2460. dcdiff = -dcdiff;
  2461. }
  2462. /* Prediction */
  2463. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2464. *dc_val = dcdiff;
  2465. /* Store the quantized DC coeff, used for prediction */
  2466. if (n < 4) {
  2467. block[0] = dcdiff * s->y_dc_scale;
  2468. } else {
  2469. block[0] = dcdiff * s->c_dc_scale;
  2470. }
  2471. /* Skip ? */
  2472. run_diff = 0;
  2473. i = 0;
  2474. if (!coded) {
  2475. goto not_coded;
  2476. }
  2477. //AC Decoding
  2478. i = 1;
  2479. {
  2480. int last = 0, skip, value;
  2481. const int8_t *zz_table;
  2482. int scale;
  2483. int k;
  2484. scale = v->pq * 2 + v->halfpq;
  2485. if(v->s.ac_pred) {
  2486. if(!dc_pred_dir)
  2487. zz_table = vc1_horizontal_zz;
  2488. else
  2489. zz_table = vc1_vertical_zz;
  2490. } else
  2491. zz_table = vc1_normal_zz;
  2492. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2493. ac_val2 = ac_val;
  2494. if(dc_pred_dir) //left
  2495. ac_val -= 16;
  2496. else //top
  2497. ac_val -= 16 * s->block_wrap[n];
  2498. while (!last) {
  2499. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2500. i += skip;
  2501. if(i > 63)
  2502. break;
  2503. block[zz_table[i++]] = value;
  2504. }
  2505. /* apply AC prediction if needed */
  2506. if(s->ac_pred) {
  2507. if(dc_pred_dir) { //left
  2508. for(k = 1; k < 8; k++)
  2509. block[k << 3] += ac_val[k];
  2510. } else { //top
  2511. for(k = 1; k < 8; k++)
  2512. block[k] += ac_val[k + 8];
  2513. }
  2514. }
  2515. /* save AC coeffs for further prediction */
  2516. for(k = 1; k < 8; k++) {
  2517. ac_val2[k] = block[k << 3];
  2518. ac_val2[k + 8] = block[k];
  2519. }
  2520. /* scale AC coeffs */
  2521. for(k = 1; k < 64; k++)
  2522. if(block[k]) {
  2523. block[k] *= scale;
  2524. if(!v->pquantizer)
  2525. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2526. }
  2527. if(s->ac_pred) i = 63;
  2528. }
  2529. not_coded:
  2530. if(!coded) {
  2531. int k, scale;
  2532. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2533. ac_val2 = ac_val;
  2534. scale = v->pq * 2 + v->halfpq;
  2535. memset(ac_val2, 0, 16 * 2);
  2536. if(dc_pred_dir) {//left
  2537. ac_val -= 16;
  2538. if(s->ac_pred)
  2539. memcpy(ac_val2, ac_val, 8 * 2);
  2540. } else {//top
  2541. ac_val -= 16 * s->block_wrap[n];
  2542. if(s->ac_pred)
  2543. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2544. }
  2545. /* apply AC prediction if needed */
  2546. if(s->ac_pred) {
  2547. if(dc_pred_dir) { //left
  2548. for(k = 1; k < 8; k++) {
  2549. block[k << 3] = ac_val[k] * scale;
  2550. if(!v->pquantizer && block[k << 3])
  2551. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2552. }
  2553. } else { //top
  2554. for(k = 1; k < 8; k++) {
  2555. block[k] = ac_val[k + 8] * scale;
  2556. if(!v->pquantizer && block[k])
  2557. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2558. }
  2559. }
  2560. i = 63;
  2561. }
  2562. }
  2563. s->block_last_index[n] = i;
  2564. return 0;
  2565. }
  2566. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2567. * @param v VC1Context
  2568. * @param block block to decode
  2569. * @param coded are AC coeffs present or not
  2570. * @param codingset set of VLC to decode data
  2571. */
  2572. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2573. {
  2574. GetBitContext *gb = &v->s.gb;
  2575. MpegEncContext *s = &v->s;
  2576. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2577. int run_diff, i;
  2578. int16_t *dc_val;
  2579. int16_t *ac_val, *ac_val2;
  2580. int dcdiff;
  2581. int a_avail = v->a_avail, c_avail = v->c_avail;
  2582. int use_pred = s->ac_pred;
  2583. int scale;
  2584. int q1, q2 = 0;
  2585. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2586. /* Get DC differential */
  2587. if (n < 4) {
  2588. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2589. } else {
  2590. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2591. }
  2592. if (dcdiff < 0){
  2593. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2594. return -1;
  2595. }
  2596. if (dcdiff)
  2597. {
  2598. if (dcdiff == 119 /* ESC index value */)
  2599. {
  2600. /* TODO: Optimize */
  2601. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2602. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2603. else dcdiff = get_bits(gb, 8);
  2604. }
  2605. else
  2606. {
  2607. if (mquant == 1)
  2608. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2609. else if (mquant == 2)
  2610. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2611. }
  2612. if (get_bits(gb, 1))
  2613. dcdiff = -dcdiff;
  2614. }
  2615. /* Prediction */
  2616. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2617. *dc_val = dcdiff;
  2618. /* Store the quantized DC coeff, used for prediction */
  2619. if (n < 4) {
  2620. block[0] = dcdiff * s->y_dc_scale;
  2621. } else {
  2622. block[0] = dcdiff * s->c_dc_scale;
  2623. }
  2624. /* Skip ? */
  2625. run_diff = 0;
  2626. i = 0;
  2627. //AC Decoding
  2628. i = 1;
  2629. /* check if AC is needed at all and adjust direction if needed */
  2630. if(!a_avail) dc_pred_dir = 1;
  2631. if(!c_avail) dc_pred_dir = 0;
  2632. if(!a_avail && !c_avail) use_pred = 0;
  2633. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2634. ac_val2 = ac_val;
  2635. scale = mquant * 2 + v->halfpq;
  2636. if(dc_pred_dir) //left
  2637. ac_val -= 16;
  2638. else //top
  2639. ac_val -= 16 * s->block_wrap[n];
  2640. q1 = s->current_picture.qscale_table[mb_pos];
  2641. if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2642. if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2643. if(n && n<4) q2 = q1;
  2644. if(coded) {
  2645. int last = 0, skip, value;
  2646. const int8_t *zz_table;
  2647. int k;
  2648. if(v->s.ac_pred) {
  2649. if(!dc_pred_dir)
  2650. zz_table = vc1_horizontal_zz;
  2651. else
  2652. zz_table = vc1_vertical_zz;
  2653. } else
  2654. zz_table = vc1_normal_zz;
  2655. while (!last) {
  2656. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2657. i += skip;
  2658. if(i > 63)
  2659. break;
  2660. block[zz_table[i++]] = value;
  2661. }
  2662. /* apply AC prediction if needed */
  2663. if(use_pred) {
  2664. /* scale predictors if needed*/
  2665. if(q2 && q1!=q2) {
  2666. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2667. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2668. if(dc_pred_dir) { //left
  2669. for(k = 1; k < 8; k++)
  2670. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2671. } else { //top
  2672. for(k = 1; k < 8; k++)
  2673. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2674. }
  2675. } else {
  2676. if(dc_pred_dir) { //left
  2677. for(k = 1; k < 8; k++)
  2678. block[k << 3] += ac_val[k];
  2679. } else { //top
  2680. for(k = 1; k < 8; k++)
  2681. block[k] += ac_val[k + 8];
  2682. }
  2683. }
  2684. }
  2685. /* save AC coeffs for further prediction */
  2686. for(k = 1; k < 8; k++) {
  2687. ac_val2[k] = block[k << 3];
  2688. ac_val2[k + 8] = block[k];
  2689. }
  2690. /* scale AC coeffs */
  2691. for(k = 1; k < 64; k++)
  2692. if(block[k]) {
  2693. block[k] *= scale;
  2694. if(!v->pquantizer)
  2695. block[k] += (block[k] < 0) ? -mquant : mquant;
  2696. }
  2697. if(use_pred) i = 63;
  2698. } else { // no AC coeffs
  2699. int k;
  2700. memset(ac_val2, 0, 16 * 2);
  2701. if(dc_pred_dir) {//left
  2702. if(use_pred) {
  2703. memcpy(ac_val2, ac_val, 8 * 2);
  2704. if(q2 && q1!=q2) {
  2705. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2706. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2707. for(k = 1; k < 8; k++)
  2708. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2709. }
  2710. }
  2711. } else {//top
  2712. if(use_pred) {
  2713. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2714. if(q2 && q1!=q2) {
  2715. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2716. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2717. for(k = 1; k < 8; k++)
  2718. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2719. }
  2720. }
  2721. }
  2722. /* apply AC prediction if needed */
  2723. if(use_pred) {
  2724. if(dc_pred_dir) { //left
  2725. for(k = 1; k < 8; k++) {
  2726. block[k << 3] = ac_val2[k] * scale;
  2727. if(!v->pquantizer && block[k << 3])
  2728. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2729. }
  2730. } else { //top
  2731. for(k = 1; k < 8; k++) {
  2732. block[k] = ac_val2[k + 8] * scale;
  2733. if(!v->pquantizer && block[k])
  2734. block[k] += (block[k] < 0) ? -mquant : mquant;
  2735. }
  2736. }
  2737. i = 63;
  2738. }
  2739. }
  2740. s->block_last_index[n] = i;
  2741. return 0;
  2742. }
  2743. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2744. * @param v VC1Context
  2745. * @param block block to decode
  2746. * @param coded are AC coeffs present or not
  2747. * @param mquant block quantizer
  2748. * @param codingset set of VLC to decode data
  2749. */
  2750. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2751. {
  2752. GetBitContext *gb = &v->s.gb;
  2753. MpegEncContext *s = &v->s;
  2754. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2755. int run_diff, i;
  2756. int16_t *dc_val;
  2757. int16_t *ac_val, *ac_val2;
  2758. int dcdiff;
  2759. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2760. int a_avail = v->a_avail, c_avail = v->c_avail;
  2761. int use_pred = s->ac_pred;
  2762. int scale;
  2763. int q1, q2 = 0;
  2764. /* XXX: Guard against dumb values of mquant */
  2765. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2766. /* Set DC scale - y and c use the same */
  2767. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2768. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2769. /* Get DC differential */
  2770. if (n < 4) {
  2771. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2772. } else {
  2773. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2774. }
  2775. if (dcdiff < 0){
  2776. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2777. return -1;
  2778. }
  2779. if (dcdiff)
  2780. {
  2781. if (dcdiff == 119 /* ESC index value */)
  2782. {
  2783. /* TODO: Optimize */
  2784. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2785. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2786. else dcdiff = get_bits(gb, 8);
  2787. }
  2788. else
  2789. {
  2790. if (mquant == 1)
  2791. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2792. else if (mquant == 2)
  2793. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2794. }
  2795. if (get_bits(gb, 1))
  2796. dcdiff = -dcdiff;
  2797. }
  2798. /* Prediction */
  2799. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2800. *dc_val = dcdiff;
  2801. /* Store the quantized DC coeff, used for prediction */
  2802. if (n < 4) {
  2803. block[0] = dcdiff * s->y_dc_scale;
  2804. } else {
  2805. block[0] = dcdiff * s->c_dc_scale;
  2806. }
  2807. /* Skip ? */
  2808. run_diff = 0;
  2809. i = 0;
  2810. //AC Decoding
  2811. i = 1;
  2812. /* check if AC is needed at all and adjust direction if needed */
  2813. if(!a_avail) dc_pred_dir = 1;
  2814. if(!c_avail) dc_pred_dir = 0;
  2815. if(!a_avail && !c_avail) use_pred = 0;
  2816. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2817. ac_val2 = ac_val;
  2818. scale = mquant * 2 + v->halfpq;
  2819. if(dc_pred_dir) //left
  2820. ac_val -= 16;
  2821. else //top
  2822. ac_val -= 16 * s->block_wrap[n];
  2823. q1 = s->current_picture.qscale_table[mb_pos];
  2824. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2825. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2826. if(n && n<4) q2 = q1;
  2827. if(coded) {
  2828. int last = 0, skip, value;
  2829. const int8_t *zz_table;
  2830. int k;
  2831. zz_table = vc1_simple_progressive_8x8_zz;
  2832. while (!last) {
  2833. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2834. i += skip;
  2835. if(i > 63)
  2836. break;
  2837. block[zz_table[i++]] = value;
  2838. }
  2839. /* apply AC prediction if needed */
  2840. if(use_pred) {
  2841. /* scale predictors if needed*/
  2842. if(q2 && q1!=q2) {
  2843. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2844. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2845. if(dc_pred_dir) { //left
  2846. for(k = 1; k < 8; k++)
  2847. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2848. } else { //top
  2849. for(k = 1; k < 8; k++)
  2850. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2851. }
  2852. } else {
  2853. if(dc_pred_dir) { //left
  2854. for(k = 1; k < 8; k++)
  2855. block[k << 3] += ac_val[k];
  2856. } else { //top
  2857. for(k = 1; k < 8; k++)
  2858. block[k] += ac_val[k + 8];
  2859. }
  2860. }
  2861. }
  2862. /* save AC coeffs for further prediction */
  2863. for(k = 1; k < 8; k++) {
  2864. ac_val2[k] = block[k << 3];
  2865. ac_val2[k + 8] = block[k];
  2866. }
  2867. /* scale AC coeffs */
  2868. for(k = 1; k < 64; k++)
  2869. if(block[k]) {
  2870. block[k] *= scale;
  2871. if(!v->pquantizer)
  2872. block[k] += (block[k] < 0) ? -mquant : mquant;
  2873. }
  2874. if(use_pred) i = 63;
  2875. } else { // no AC coeffs
  2876. int k;
  2877. memset(ac_val2, 0, 16 * 2);
  2878. if(dc_pred_dir) {//left
  2879. if(use_pred) {
  2880. memcpy(ac_val2, ac_val, 8 * 2);
  2881. if(q2 && q1!=q2) {
  2882. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2883. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2884. for(k = 1; k < 8; k++)
  2885. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2886. }
  2887. }
  2888. } else {//top
  2889. if(use_pred) {
  2890. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2891. if(q2 && q1!=q2) {
  2892. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2893. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2894. for(k = 1; k < 8; k++)
  2895. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2896. }
  2897. }
  2898. }
  2899. /* apply AC prediction if needed */
  2900. if(use_pred) {
  2901. if(dc_pred_dir) { //left
  2902. for(k = 1; k < 8; k++) {
  2903. block[k << 3] = ac_val2[k] * scale;
  2904. if(!v->pquantizer && block[k << 3])
  2905. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2906. }
  2907. } else { //top
  2908. for(k = 1; k < 8; k++) {
  2909. block[k] = ac_val2[k + 8] * scale;
  2910. if(!v->pquantizer && block[k])
  2911. block[k] += (block[k] < 0) ? -mquant : mquant;
  2912. }
  2913. }
  2914. i = 63;
  2915. }
  2916. }
  2917. s->block_last_index[n] = i;
  2918. return 0;
  2919. }
  2920. /** Decode P block
  2921. */
  2922. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2923. {
  2924. MpegEncContext *s = &v->s;
  2925. GetBitContext *gb = &s->gb;
  2926. int i, j;
  2927. int subblkpat = 0;
  2928. int scale, off, idx, last, skip, value;
  2929. int ttblk = ttmb & 7;
  2930. if(ttmb == -1) {
  2931. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2932. }
  2933. if(ttblk == TT_4X4) {
  2934. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2935. }
  2936. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2937. subblkpat = decode012(gb);
  2938. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2939. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2940. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2941. }
  2942. scale = 2 * mquant + v->halfpq;
  2943. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2944. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2945. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2946. ttblk = TT_8X4;
  2947. }
  2948. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2949. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2950. ttblk = TT_4X8;
  2951. }
  2952. switch(ttblk) {
  2953. case TT_8X8:
  2954. i = 0;
  2955. last = 0;
  2956. while (!last) {
  2957. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2958. i += skip;
  2959. if(i > 63)
  2960. break;
  2961. idx = vc1_simple_progressive_8x8_zz[i++];
  2962. block[idx] = value * scale;
  2963. if(!v->pquantizer)
  2964. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2965. }
  2966. s->dsp.vc1_inv_trans_8x8(block);
  2967. break;
  2968. case TT_4X4:
  2969. for(j = 0; j < 4; j++) {
  2970. last = subblkpat & (1 << (3 - j));
  2971. i = 0;
  2972. off = (j & 1) * 4 + (j & 2) * 16;
  2973. while (!last) {
  2974. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2975. i += skip;
  2976. if(i > 15)
  2977. break;
  2978. idx = vc1_simple_progressive_4x4_zz[i++];
  2979. block[idx + off] = value * scale;
  2980. if(!v->pquantizer)
  2981. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2982. }
  2983. if(!(subblkpat & (1 << (3 - j))))
  2984. s->dsp.vc1_inv_trans_4x4(block, j);
  2985. }
  2986. break;
  2987. case TT_8X4:
  2988. for(j = 0; j < 2; j++) {
  2989. last = subblkpat & (1 << (1 - j));
  2990. i = 0;
  2991. off = j * 32;
  2992. while (!last) {
  2993. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2994. i += skip;
  2995. if(i > 31)
  2996. break;
  2997. if(v->profile < PROFILE_ADVANCED)
  2998. idx = vc1_simple_progressive_8x4_zz[i++];
  2999. else
  3000. idx = vc1_adv_progressive_8x4_zz[i++];
  3001. block[idx + off] = value * scale;
  3002. if(!v->pquantizer)
  3003. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3004. }
  3005. if(!(subblkpat & (1 << (1 - j))))
  3006. s->dsp.vc1_inv_trans_8x4(block, j);
  3007. }
  3008. break;
  3009. case TT_4X8:
  3010. for(j = 0; j < 2; j++) {
  3011. last = subblkpat & (1 << (1 - j));
  3012. i = 0;
  3013. off = j * 4;
  3014. while (!last) {
  3015. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3016. i += skip;
  3017. if(i > 31)
  3018. break;
  3019. if(v->profile < PROFILE_ADVANCED)
  3020. idx = vc1_simple_progressive_4x8_zz[i++];
  3021. else
  3022. idx = vc1_adv_progressive_4x8_zz[i++];
  3023. block[idx + off] = value * scale;
  3024. if(!v->pquantizer)
  3025. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3026. }
  3027. if(!(subblkpat & (1 << (1 - j))))
  3028. s->dsp.vc1_inv_trans_4x8(block, j);
  3029. }
  3030. break;
  3031. }
  3032. return 0;
  3033. }
  3034. /** Decode one P-frame MB (in Simple/Main profile)
  3035. */
  3036. static int vc1_decode_p_mb(VC1Context *v)
  3037. {
  3038. MpegEncContext *s = &v->s;
  3039. GetBitContext *gb = &s->gb;
  3040. int i, j;
  3041. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3042. int cbp; /* cbp decoding stuff */
  3043. int mqdiff, mquant; /* MB quantization */
  3044. int ttmb = v->ttfrm; /* MB Transform type */
  3045. int status;
  3046. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3047. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3048. int mb_has_coeffs = 1; /* last_flag */
  3049. int dmv_x, dmv_y; /* Differential MV components */
  3050. int index, index1; /* LUT indices */
  3051. int val, sign; /* temp values */
  3052. int first_block = 1;
  3053. int dst_idx, off;
  3054. int skipped, fourmv;
  3055. mquant = v->pq; /* Loosy initialization */
  3056. if (v->mv_type_is_raw)
  3057. fourmv = get_bits1(gb);
  3058. else
  3059. fourmv = v->mv_type_mb_plane[mb_pos];
  3060. if (v->skip_is_raw)
  3061. skipped = get_bits1(gb);
  3062. else
  3063. skipped = v->s.mbskip_table[mb_pos];
  3064. s->dsp.clear_blocks(s->block[0]);
  3065. if (!fourmv) /* 1MV mode */
  3066. {
  3067. if (!skipped)
  3068. {
  3069. GET_MVDATA(dmv_x, dmv_y);
  3070. if (s->mb_intra) {
  3071. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3072. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3073. }
  3074. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3075. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3076. /* FIXME Set DC val for inter block ? */
  3077. if (s->mb_intra && !mb_has_coeffs)
  3078. {
  3079. GET_MQUANT();
  3080. s->ac_pred = get_bits(gb, 1);
  3081. cbp = 0;
  3082. }
  3083. else if (mb_has_coeffs)
  3084. {
  3085. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  3086. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3087. GET_MQUANT();
  3088. }
  3089. else
  3090. {
  3091. mquant = v->pq;
  3092. cbp = 0;
  3093. }
  3094. s->current_picture.qscale_table[mb_pos] = mquant;
  3095. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3096. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  3097. VC1_TTMB_VLC_BITS, 2);
  3098. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  3099. dst_idx = 0;
  3100. for (i=0; i<6; i++)
  3101. {
  3102. s->dc_val[0][s->block_index[i]] = 0;
  3103. dst_idx += i >> 2;
  3104. val = ((cbp >> (5 - i)) & 1);
  3105. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3106. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3107. if(s->mb_intra) {
  3108. /* check if prediction blocks A and C are available */
  3109. v->a_avail = v->c_avail = 0;
  3110. if(i == 2 || i == 3 || !s->first_slice_line)
  3111. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3112. if(i == 1 || i == 3 || s->mb_x)
  3113. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3114. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3115. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3116. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3117. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3118. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3119. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3120. if(v->pq >= 9 && v->overlap) {
  3121. if(v->c_avail)
  3122. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3123. if(v->a_avail)
  3124. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3125. }
  3126. } else if(val) {
  3127. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3128. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3129. first_block = 0;
  3130. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3131. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3132. }
  3133. }
  3134. }
  3135. else //Skipped
  3136. {
  3137. s->mb_intra = 0;
  3138. for(i = 0; i < 6; i++) {
  3139. v->mb_type[0][s->block_index[i]] = 0;
  3140. s->dc_val[0][s->block_index[i]] = 0;
  3141. }
  3142. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3143. s->current_picture.qscale_table[mb_pos] = 0;
  3144. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3145. vc1_mc_1mv(v, 0);
  3146. return 0;
  3147. }
  3148. } //1MV mode
  3149. else //4MV mode
  3150. {
  3151. if (!skipped /* unskipped MB */)
  3152. {
  3153. int intra_count = 0, coded_inter = 0;
  3154. int is_intra[6], is_coded[6];
  3155. /* Get CBPCY */
  3156. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3157. for (i=0; i<6; i++)
  3158. {
  3159. val = ((cbp >> (5 - i)) & 1);
  3160. s->dc_val[0][s->block_index[i]] = 0;
  3161. s->mb_intra = 0;
  3162. if(i < 4) {
  3163. dmv_x = dmv_y = 0;
  3164. s->mb_intra = 0;
  3165. mb_has_coeffs = 0;
  3166. if(val) {
  3167. GET_MVDATA(dmv_x, dmv_y);
  3168. }
  3169. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3170. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3171. intra_count += s->mb_intra;
  3172. is_intra[i] = s->mb_intra;
  3173. is_coded[i] = mb_has_coeffs;
  3174. }
  3175. if(i&4){
  3176. is_intra[i] = (intra_count >= 3);
  3177. is_coded[i] = val;
  3178. }
  3179. if(i == 4) vc1_mc_4mv_chroma(v);
  3180. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3181. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3182. }
  3183. // if there are no coded blocks then don't do anything more
  3184. if(!intra_count && !coded_inter) return 0;
  3185. dst_idx = 0;
  3186. GET_MQUANT();
  3187. s->current_picture.qscale_table[mb_pos] = mquant;
  3188. /* test if block is intra and has pred */
  3189. {
  3190. int intrapred = 0;
  3191. for(i=0; i<6; i++)
  3192. if(is_intra[i]) {
  3193. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3194. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3195. intrapred = 1;
  3196. break;
  3197. }
  3198. }
  3199. if(intrapred)s->ac_pred = get_bits(gb, 1);
  3200. else s->ac_pred = 0;
  3201. }
  3202. if (!v->ttmbf && coded_inter)
  3203. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3204. for (i=0; i<6; i++)
  3205. {
  3206. dst_idx += i >> 2;
  3207. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3208. s->mb_intra = is_intra[i];
  3209. if (is_intra[i]) {
  3210. /* check if prediction blocks A and C are available */
  3211. v->a_avail = v->c_avail = 0;
  3212. if(i == 2 || i == 3 || !s->first_slice_line)
  3213. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3214. if(i == 1 || i == 3 || s->mb_x)
  3215. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3216. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3217. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3218. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3219. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3220. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3221. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3222. if(v->pq >= 9 && v->overlap) {
  3223. if(v->c_avail)
  3224. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3225. if(v->a_avail)
  3226. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3227. }
  3228. } else if(is_coded[i]) {
  3229. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3230. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3231. first_block = 0;
  3232. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3233. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3234. }
  3235. }
  3236. return status;
  3237. }
  3238. else //Skipped MB
  3239. {
  3240. s->mb_intra = 0;
  3241. s->current_picture.qscale_table[mb_pos] = 0;
  3242. for (i=0; i<6; i++) {
  3243. v->mb_type[0][s->block_index[i]] = 0;
  3244. s->dc_val[0][s->block_index[i]] = 0;
  3245. }
  3246. for (i=0; i<4; i++)
  3247. {
  3248. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3249. vc1_mc_4mv_luma(v, i);
  3250. }
  3251. vc1_mc_4mv_chroma(v);
  3252. s->current_picture.qscale_table[mb_pos] = 0;
  3253. return 0;
  3254. }
  3255. }
  3256. /* Should never happen */
  3257. return -1;
  3258. }
  3259. /** Decode one B-frame MB (in Main profile)
  3260. */
  3261. static void vc1_decode_b_mb(VC1Context *v)
  3262. {
  3263. MpegEncContext *s = &v->s;
  3264. GetBitContext *gb = &s->gb;
  3265. int i, j;
  3266. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3267. int cbp = 0; /* cbp decoding stuff */
  3268. int mqdiff, mquant; /* MB quantization */
  3269. int ttmb = v->ttfrm; /* MB Transform type */
  3270. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3271. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3272. int mb_has_coeffs = 0; /* last_flag */
  3273. int index, index1; /* LUT indices */
  3274. int val, sign; /* temp values */
  3275. int first_block = 1;
  3276. int dst_idx, off;
  3277. int skipped, direct;
  3278. int dmv_x[2], dmv_y[2];
  3279. int bmvtype = BMV_TYPE_BACKWARD;
  3280. mquant = v->pq; /* Loosy initialization */
  3281. s->mb_intra = 0;
  3282. if (v->dmb_is_raw)
  3283. direct = get_bits1(gb);
  3284. else
  3285. direct = v->direct_mb_plane[mb_pos];
  3286. if (v->skip_is_raw)
  3287. skipped = get_bits1(gb);
  3288. else
  3289. skipped = v->s.mbskip_table[mb_pos];
  3290. s->dsp.clear_blocks(s->block[0]);
  3291. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3292. for(i = 0; i < 6; i++) {
  3293. v->mb_type[0][s->block_index[i]] = 0;
  3294. s->dc_val[0][s->block_index[i]] = 0;
  3295. }
  3296. s->current_picture.qscale_table[mb_pos] = 0;
  3297. if (!direct) {
  3298. if (!skipped) {
  3299. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3300. dmv_x[1] = dmv_x[0];
  3301. dmv_y[1] = dmv_y[0];
  3302. }
  3303. if(skipped || !s->mb_intra) {
  3304. bmvtype = decode012(gb);
  3305. switch(bmvtype) {
  3306. case 0:
  3307. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3308. break;
  3309. case 1:
  3310. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3311. break;
  3312. case 2:
  3313. bmvtype = BMV_TYPE_INTERPOLATED;
  3314. dmv_x[0] = dmv_y[0] = 0;
  3315. }
  3316. }
  3317. }
  3318. for(i = 0; i < 6; i++)
  3319. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3320. if (skipped) {
  3321. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3322. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3323. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3324. return;
  3325. }
  3326. if (direct) {
  3327. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3328. GET_MQUANT();
  3329. s->mb_intra = 0;
  3330. mb_has_coeffs = 0;
  3331. s->current_picture.qscale_table[mb_pos] = mquant;
  3332. if(!v->ttmbf)
  3333. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3334. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3335. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3336. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3337. } else {
  3338. if(!mb_has_coeffs && !s->mb_intra) {
  3339. /* no coded blocks - effectively skipped */
  3340. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3341. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3342. return;
  3343. }
  3344. if(s->mb_intra && !mb_has_coeffs) {
  3345. GET_MQUANT();
  3346. s->current_picture.qscale_table[mb_pos] = mquant;
  3347. s->ac_pred = get_bits1(gb);
  3348. cbp = 0;
  3349. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3350. } else {
  3351. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3352. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3353. if(!mb_has_coeffs) {
  3354. /* interpolated skipped block */
  3355. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3356. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3357. return;
  3358. }
  3359. }
  3360. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3361. if(!s->mb_intra) {
  3362. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3363. }
  3364. if(s->mb_intra)
  3365. s->ac_pred = get_bits1(gb);
  3366. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3367. GET_MQUANT();
  3368. s->current_picture.qscale_table[mb_pos] = mquant;
  3369. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3370. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3371. }
  3372. }
  3373. dst_idx = 0;
  3374. for (i=0; i<6; i++)
  3375. {
  3376. s->dc_val[0][s->block_index[i]] = 0;
  3377. dst_idx += i >> 2;
  3378. val = ((cbp >> (5 - i)) & 1);
  3379. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3380. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3381. if(s->mb_intra) {
  3382. /* check if prediction blocks A and C are available */
  3383. v->a_avail = v->c_avail = 0;
  3384. if(i == 2 || i == 3 || !s->first_slice_line)
  3385. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3386. if(i == 1 || i == 3 || s->mb_x)
  3387. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3388. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3389. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3390. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3391. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3392. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3393. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3394. } else if(val) {
  3395. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3396. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3397. first_block = 0;
  3398. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3399. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3400. }
  3401. }
  3402. }
  3403. /** Decode blocks of I-frame
  3404. */
  3405. static void vc1_decode_i_blocks(VC1Context *v)
  3406. {
  3407. int k, j;
  3408. MpegEncContext *s = &v->s;
  3409. int cbp, val;
  3410. uint8_t *coded_val;
  3411. int mb_pos;
  3412. /* select codingmode used for VLC tables selection */
  3413. switch(v->y_ac_table_index){
  3414. case 0:
  3415. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3416. break;
  3417. case 1:
  3418. v->codingset = CS_HIGH_MOT_INTRA;
  3419. break;
  3420. case 2:
  3421. v->codingset = CS_MID_RATE_INTRA;
  3422. break;
  3423. }
  3424. switch(v->c_ac_table_index){
  3425. case 0:
  3426. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3427. break;
  3428. case 1:
  3429. v->codingset2 = CS_HIGH_MOT_INTER;
  3430. break;
  3431. case 2:
  3432. v->codingset2 = CS_MID_RATE_INTER;
  3433. break;
  3434. }
  3435. /* Set DC scale - y and c use the same */
  3436. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3437. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3438. //do frame decode
  3439. s->mb_x = s->mb_y = 0;
  3440. s->mb_intra = 1;
  3441. s->first_slice_line = 1;
  3442. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3443. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3444. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3445. ff_init_block_index(s);
  3446. ff_update_block_index(s);
  3447. s->dsp.clear_blocks(s->block[0]);
  3448. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3449. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3450. s->current_picture.qscale_table[mb_pos] = v->pq;
  3451. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3452. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3453. // do actual MB decoding and displaying
  3454. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3455. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3456. for(k = 0; k < 6; k++) {
  3457. val = ((cbp >> (5 - k)) & 1);
  3458. if (k < 4) {
  3459. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3460. val = val ^ pred;
  3461. *coded_val = val;
  3462. }
  3463. cbp |= val << (5 - k);
  3464. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3465. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3466. if(v->pq >= 9 && v->overlap) {
  3467. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3468. }
  3469. }
  3470. vc1_put_block(v, s->block);
  3471. if(v->pq >= 9 && v->overlap) {
  3472. if(s->mb_x) {
  3473. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3474. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3475. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3476. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3477. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3478. }
  3479. }
  3480. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3481. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3482. if(!s->first_slice_line) {
  3483. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3484. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3485. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3486. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3487. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3488. }
  3489. }
  3490. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3491. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3492. }
  3493. if(get_bits_count(&s->gb) > v->bits) {
  3494. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3495. return;
  3496. }
  3497. }
  3498. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3499. s->first_slice_line = 0;
  3500. }
  3501. }
  3502. /** Decode blocks of I-frame for advanced profile
  3503. */
  3504. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3505. {
  3506. int k, j;
  3507. MpegEncContext *s = &v->s;
  3508. int cbp, val;
  3509. uint8_t *coded_val;
  3510. int mb_pos;
  3511. int mquant = v->pq;
  3512. int mqdiff;
  3513. int overlap;
  3514. GetBitContext *gb = &s->gb;
  3515. /* select codingmode used for VLC tables selection */
  3516. switch(v->y_ac_table_index){
  3517. case 0:
  3518. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3519. break;
  3520. case 1:
  3521. v->codingset = CS_HIGH_MOT_INTRA;
  3522. break;
  3523. case 2:
  3524. v->codingset = CS_MID_RATE_INTRA;
  3525. break;
  3526. }
  3527. switch(v->c_ac_table_index){
  3528. case 0:
  3529. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3530. break;
  3531. case 1:
  3532. v->codingset2 = CS_HIGH_MOT_INTER;
  3533. break;
  3534. case 2:
  3535. v->codingset2 = CS_MID_RATE_INTER;
  3536. break;
  3537. }
  3538. //do frame decode
  3539. s->mb_x = s->mb_y = 0;
  3540. s->mb_intra = 1;
  3541. s->first_slice_line = 1;
  3542. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3543. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3544. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3545. ff_init_block_index(s);
  3546. ff_update_block_index(s);
  3547. s->dsp.clear_blocks(s->block[0]);
  3548. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3549. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3550. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3551. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3552. // do actual MB decoding and displaying
  3553. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3554. if(v->acpred_is_raw)
  3555. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3556. else
  3557. v->s.ac_pred = v->acpred_plane[mb_pos];
  3558. if(v->condover == CONDOVER_SELECT) {
  3559. if(v->overflg_is_raw)
  3560. overlap = get_bits(&v->s.gb, 1);
  3561. else
  3562. overlap = v->over_flags_plane[mb_pos];
  3563. } else
  3564. overlap = (v->condover == CONDOVER_ALL);
  3565. GET_MQUANT();
  3566. s->current_picture.qscale_table[mb_pos] = mquant;
  3567. /* Set DC scale - y and c use the same */
  3568. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3569. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3570. for(k = 0; k < 6; k++) {
  3571. val = ((cbp >> (5 - k)) & 1);
  3572. if (k < 4) {
  3573. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3574. val = val ^ pred;
  3575. *coded_val = val;
  3576. }
  3577. cbp |= val << (5 - k);
  3578. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3579. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3580. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3581. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3582. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3583. }
  3584. vc1_put_block(v, s->block);
  3585. if(overlap) {
  3586. if(s->mb_x) {
  3587. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3588. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3589. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3590. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3591. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3592. }
  3593. }
  3594. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3595. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3596. if(!s->first_slice_line) {
  3597. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3598. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3599. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3600. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3601. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3602. }
  3603. }
  3604. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3605. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3606. }
  3607. if(get_bits_count(&s->gb) > v->bits) {
  3608. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3609. return;
  3610. }
  3611. }
  3612. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3613. s->first_slice_line = 0;
  3614. }
  3615. }
  3616. static void vc1_decode_p_blocks(VC1Context *v)
  3617. {
  3618. MpegEncContext *s = &v->s;
  3619. /* select codingmode used for VLC tables selection */
  3620. switch(v->c_ac_table_index){
  3621. case 0:
  3622. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3623. break;
  3624. case 1:
  3625. v->codingset = CS_HIGH_MOT_INTRA;
  3626. break;
  3627. case 2:
  3628. v->codingset = CS_MID_RATE_INTRA;
  3629. break;
  3630. }
  3631. switch(v->c_ac_table_index){
  3632. case 0:
  3633. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3634. break;
  3635. case 1:
  3636. v->codingset2 = CS_HIGH_MOT_INTER;
  3637. break;
  3638. case 2:
  3639. v->codingset2 = CS_MID_RATE_INTER;
  3640. break;
  3641. }
  3642. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3643. s->first_slice_line = 1;
  3644. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3645. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3646. ff_init_block_index(s);
  3647. ff_update_block_index(s);
  3648. s->dsp.clear_blocks(s->block[0]);
  3649. vc1_decode_p_mb(v);
  3650. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3651. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3652. return;
  3653. }
  3654. }
  3655. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3656. s->first_slice_line = 0;
  3657. }
  3658. }
  3659. static void vc1_decode_b_blocks(VC1Context *v)
  3660. {
  3661. MpegEncContext *s = &v->s;
  3662. /* select codingmode used for VLC tables selection */
  3663. switch(v->c_ac_table_index){
  3664. case 0:
  3665. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3666. break;
  3667. case 1:
  3668. v->codingset = CS_HIGH_MOT_INTRA;
  3669. break;
  3670. case 2:
  3671. v->codingset = CS_MID_RATE_INTRA;
  3672. break;
  3673. }
  3674. switch(v->c_ac_table_index){
  3675. case 0:
  3676. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3677. break;
  3678. case 1:
  3679. v->codingset2 = CS_HIGH_MOT_INTER;
  3680. break;
  3681. case 2:
  3682. v->codingset2 = CS_MID_RATE_INTER;
  3683. break;
  3684. }
  3685. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3686. s->first_slice_line = 1;
  3687. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3688. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3689. ff_init_block_index(s);
  3690. ff_update_block_index(s);
  3691. s->dsp.clear_blocks(s->block[0]);
  3692. vc1_decode_b_mb(v);
  3693. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3694. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3695. return;
  3696. }
  3697. }
  3698. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3699. s->first_slice_line = 0;
  3700. }
  3701. }
  3702. static void vc1_decode_skip_blocks(VC1Context *v)
  3703. {
  3704. MpegEncContext *s = &v->s;
  3705. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3706. s->first_slice_line = 1;
  3707. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3708. s->mb_x = 0;
  3709. ff_init_block_index(s);
  3710. ff_update_block_index(s);
  3711. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3712. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3713. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3714. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3715. s->first_slice_line = 0;
  3716. }
  3717. s->pict_type = P_TYPE;
  3718. }
  3719. static void vc1_decode_blocks(VC1Context *v)
  3720. {
  3721. v->s.esc3_level_length = 0;
  3722. switch(v->s.pict_type) {
  3723. case I_TYPE:
  3724. if(v->profile == PROFILE_ADVANCED)
  3725. vc1_decode_i_blocks_adv(v);
  3726. else
  3727. vc1_decode_i_blocks(v);
  3728. break;
  3729. case P_TYPE:
  3730. if(v->p_frame_skipped)
  3731. vc1_decode_skip_blocks(v);
  3732. else
  3733. vc1_decode_p_blocks(v);
  3734. break;
  3735. case B_TYPE:
  3736. if(v->bi_type){
  3737. if(v->profile == PROFILE_ADVANCED)
  3738. vc1_decode_i_blocks_adv(v);
  3739. else
  3740. vc1_decode_i_blocks(v);
  3741. }else
  3742. vc1_decode_b_blocks(v);
  3743. break;
  3744. }
  3745. }
  3746. /** Initialize a VC1/WMV3 decoder
  3747. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3748. * @todo TODO: Decypher remaining bits in extra_data
  3749. */
  3750. static int vc1_decode_init(AVCodecContext *avctx)
  3751. {
  3752. VC1Context *v = avctx->priv_data;
  3753. MpegEncContext *s = &v->s;
  3754. GetBitContext gb;
  3755. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3756. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3757. avctx->pix_fmt = PIX_FMT_YUV420P;
  3758. else
  3759. avctx->pix_fmt = PIX_FMT_GRAY8;
  3760. v->s.avctx = avctx;
  3761. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3762. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3763. if(ff_h263_decode_init(avctx) < 0)
  3764. return -1;
  3765. if (vc1_init_common(v) < 0) return -1;
  3766. avctx->coded_width = avctx->width;
  3767. avctx->coded_height = avctx->height;
  3768. if (avctx->codec_id == CODEC_ID_WMV3)
  3769. {
  3770. int count = 0;
  3771. // looks like WMV3 has a sequence header stored in the extradata
  3772. // advanced sequence header may be before the first frame
  3773. // the last byte of the extradata is a version number, 1 for the
  3774. // samples we can decode
  3775. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3776. if (decode_sequence_header(avctx, &gb) < 0)
  3777. return -1;
  3778. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3779. if (count>0)
  3780. {
  3781. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3782. count, get_bits(&gb, count));
  3783. }
  3784. else if (count < 0)
  3785. {
  3786. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3787. }
  3788. } else { // VC1/WVC1
  3789. int edata_size = avctx->extradata_size;
  3790. uint8_t *edata = avctx->extradata;
  3791. if(avctx->extradata_size < 16) {
  3792. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", edata_size);
  3793. return -1;
  3794. }
  3795. while(edata_size > 8) {
  3796. // test if we've found header
  3797. if(AV_RB32(edata) == 0x0000010F) {
  3798. edata += 4;
  3799. edata_size -= 4;
  3800. break;
  3801. }
  3802. edata_size--;
  3803. edata++;
  3804. }
  3805. init_get_bits(&gb, edata, edata_size*8);
  3806. if (decode_sequence_header(avctx, &gb) < 0)
  3807. return -1;
  3808. while(edata_size > 8) {
  3809. // test if we've found entry point
  3810. if(AV_RB32(edata) == 0x0000010E) {
  3811. edata += 4;
  3812. edata_size -= 4;
  3813. break;
  3814. }
  3815. edata_size--;
  3816. edata++;
  3817. }
  3818. init_get_bits(&gb, edata, edata_size*8);
  3819. if (decode_entry_point(avctx, &gb) < 0)
  3820. return -1;
  3821. }
  3822. avctx->has_b_frames= !!(avctx->max_b_frames);
  3823. s->low_delay = !avctx->has_b_frames;
  3824. s->mb_width = (avctx->coded_width+15)>>4;
  3825. s->mb_height = (avctx->coded_height+15)>>4;
  3826. /* Allocate mb bitplanes */
  3827. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3828. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3829. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3830. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3831. /* allocate block type info in that way so it could be used with s->block_index[] */
  3832. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3833. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3834. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3835. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3836. /* Init coded blocks info */
  3837. if (v->profile == PROFILE_ADVANCED)
  3838. {
  3839. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3840. // return -1;
  3841. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3842. // return -1;
  3843. }
  3844. return 0;
  3845. }
  3846. /** Decode a VC1/WMV3 frame
  3847. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3848. */
  3849. static int vc1_decode_frame(AVCodecContext *avctx,
  3850. void *data, int *data_size,
  3851. uint8_t *buf, int buf_size)
  3852. {
  3853. VC1Context *v = avctx->priv_data;
  3854. MpegEncContext *s = &v->s;
  3855. AVFrame *pict = data;
  3856. uint8_t *buf2 = NULL;
  3857. /* no supplementary picture */
  3858. if (buf_size == 0) {
  3859. /* special case for last picture */
  3860. if (s->low_delay==0 && s->next_picture_ptr) {
  3861. *pict= *(AVFrame*)s->next_picture_ptr;
  3862. s->next_picture_ptr= NULL;
  3863. *data_size = sizeof(AVFrame);
  3864. }
  3865. return 0;
  3866. }
  3867. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  3868. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3869. int i= ff_find_unused_picture(s, 0);
  3870. s->current_picture_ptr= &s->picture[i];
  3871. }
  3872. //for advanced profile we need to unescape buffer
  3873. if (avctx->codec_id == CODEC_ID_VC1) {
  3874. int i, buf_size2;
  3875. buf2 = av_malloc(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3876. buf_size2 = 0;
  3877. for(i = 0; i < buf_size; i++) {
  3878. if(buf[i] == 3 && i >= 2 && !buf[i-1] && !buf[i-2] && i < buf_size-1 && buf[i+1] < 4) {
  3879. buf2[buf_size2++] = buf[i+1];
  3880. i++;
  3881. } else
  3882. buf2[buf_size2++] = buf[i];
  3883. }
  3884. init_get_bits(&s->gb, buf2, buf_size2*8);
  3885. } else
  3886. init_get_bits(&s->gb, buf, buf_size*8);
  3887. // do parse frame header
  3888. if(v->profile < PROFILE_ADVANCED) {
  3889. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3890. av_free(buf2);
  3891. return -1;
  3892. }
  3893. } else {
  3894. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3895. av_free(buf2);
  3896. return -1;
  3897. }
  3898. }
  3899. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3900. av_free(buf2);
  3901. return -1;
  3902. }
  3903. // for hurry_up==5
  3904. s->current_picture.pict_type= s->pict_type;
  3905. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3906. /* skip B-frames if we don't have reference frames */
  3907. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3908. av_free(buf2);
  3909. return -1;//buf_size;
  3910. }
  3911. /* skip b frames if we are in a hurry */
  3912. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3913. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3914. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3915. || avctx->skip_frame >= AVDISCARD_ALL) {
  3916. av_free(buf2);
  3917. return buf_size;
  3918. }
  3919. /* skip everything if we are in a hurry>=5 */
  3920. if(avctx->hurry_up>=5) {
  3921. av_free(buf2);
  3922. return -1;//buf_size;
  3923. }
  3924. if(s->next_p_frame_damaged){
  3925. if(s->pict_type==B_TYPE)
  3926. return buf_size;
  3927. else
  3928. s->next_p_frame_damaged=0;
  3929. }
  3930. if(MPV_frame_start(s, avctx) < 0) {
  3931. av_free(buf2);
  3932. return -1;
  3933. }
  3934. ff_er_frame_start(s);
  3935. v->bits = buf_size * 8;
  3936. vc1_decode_blocks(v);
  3937. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3938. // if(get_bits_count(&s->gb) > buf_size * 8)
  3939. // return -1;
  3940. ff_er_frame_end(s);
  3941. MPV_frame_end(s);
  3942. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3943. assert(s->current_picture.pict_type == s->pict_type);
  3944. if (s->pict_type == B_TYPE || s->low_delay) {
  3945. *pict= *(AVFrame*)s->current_picture_ptr;
  3946. } else if (s->last_picture_ptr != NULL) {
  3947. *pict= *(AVFrame*)s->last_picture_ptr;
  3948. }
  3949. if(s->last_picture_ptr || s->low_delay){
  3950. *data_size = sizeof(AVFrame);
  3951. ff_print_debug_info(s, pict);
  3952. }
  3953. /* Return the Picture timestamp as the frame number */
  3954. /* we substract 1 because it is added on utils.c */
  3955. avctx->frame_number = s->picture_number - 1;
  3956. av_free(buf2);
  3957. return buf_size;
  3958. }
  3959. /** Close a VC1/WMV3 decoder
  3960. * @warning Initial try at using MpegEncContext stuff
  3961. */
  3962. static int vc1_decode_end(AVCodecContext *avctx)
  3963. {
  3964. VC1Context *v = avctx->priv_data;
  3965. av_freep(&v->hrd_rate);
  3966. av_freep(&v->hrd_buffer);
  3967. MPV_common_end(&v->s);
  3968. av_freep(&v->mv_type_mb_plane);
  3969. av_freep(&v->direct_mb_plane);
  3970. av_freep(&v->acpred_plane);
  3971. av_freep(&v->over_flags_plane);
  3972. av_freep(&v->mb_type_base);
  3973. return 0;
  3974. }
  3975. AVCodec vc1_decoder = {
  3976. "vc1",
  3977. CODEC_TYPE_VIDEO,
  3978. CODEC_ID_VC1,
  3979. sizeof(VC1Context),
  3980. vc1_decode_init,
  3981. NULL,
  3982. vc1_decode_end,
  3983. vc1_decode_frame,
  3984. CODEC_CAP_DELAY,
  3985. NULL
  3986. };
  3987. AVCodec wmv3_decoder = {
  3988. "wmv3",
  3989. CODEC_TYPE_VIDEO,
  3990. CODEC_ID_WMV3,
  3991. sizeof(VC1Context),
  3992. vc1_decode_init,
  3993. NULL,
  3994. vc1_decode_end,
  3995. vc1_decode_frame,
  3996. CODEC_CAP_DELAY,
  3997. NULL
  3998. };