You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1182 lines
38KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  21. * the algorithm used
  22. */
  23. /**
  24. * @file huffyuv.c
  25. * huffyuv codec for libavcodec.
  26. */
  27. #include "common.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #ifndef INT64_MAX
  31. #define INT64_MAX 9223372036854775807LL
  32. #endif
  33. #define VLC_BITS 11
  34. typedef enum Predictor{
  35. LEFT= 0,
  36. PLANE,
  37. MEDIAN,
  38. } Predictor;
  39. typedef struct HYuvContext{
  40. AVCodecContext *avctx;
  41. Predictor predictor;
  42. GetBitContext gb;
  43. PutBitContext pb;
  44. int interlaced;
  45. int decorrelate;
  46. int bitstream_bpp;
  47. int version;
  48. int yuy2; //use yuy2 instead of 422P
  49. int bgr32; //use bgr32 instead of bgr24
  50. int width, height;
  51. int flags;
  52. int picture_number;
  53. int last_slice_end;
  54. uint8_t __align8 temp[3][2500];
  55. uint64_t stats[3][256];
  56. uint8_t len[3][256];
  57. uint32_t bits[3][256];
  58. VLC vlc[3];
  59. AVFrame picture;
  60. uint8_t __align8 bitstream_buffer[1024*1024*3]; //FIXME dynamic alloc or some other solution
  61. DSPContext dsp;
  62. }HYuvContext;
  63. static const unsigned char classic_shift_luma[] = {
  64. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  65. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  66. 69,68, 0
  67. };
  68. static const unsigned char classic_shift_chroma[] = {
  69. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  70. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  71. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  72. };
  73. static const unsigned char classic_add_luma[256] = {
  74. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  75. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  76. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  77. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  78. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  79. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  80. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  81. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  82. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  83. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  84. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  85. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  86. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  87. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  88. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  89. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  90. };
  91. static const unsigned char classic_add_chroma[256] = {
  92. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  93. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  94. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  95. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  96. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  97. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  98. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  99. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  100. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  101. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  102. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  103. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  104. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  105. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  106. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  107. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  108. };
  109. static inline void bswap_buf(uint32_t *dst, uint32_t *src, int w){
  110. int i;
  111. for(i=0; i+8<=w; i+=8){
  112. dst[i+0]= bswap_32(src[i+0]);
  113. dst[i+1]= bswap_32(src[i+1]);
  114. dst[i+2]= bswap_32(src[i+2]);
  115. dst[i+3]= bswap_32(src[i+3]);
  116. dst[i+4]= bswap_32(src[i+4]);
  117. dst[i+5]= bswap_32(src[i+5]);
  118. dst[i+6]= bswap_32(src[i+6]);
  119. dst[i+7]= bswap_32(src[i+7]);
  120. }
  121. for(;i<w; i++){
  122. dst[i+0]= bswap_32(src[i+0]);
  123. }
  124. }
  125. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  126. int i;
  127. for(i=0; i<w-1; i++){
  128. acc+= src[i];
  129. dst[i]= acc;
  130. i++;
  131. acc+= src[i];
  132. dst[i]= acc;
  133. }
  134. for(; i<w; i++){
  135. acc+= src[i];
  136. dst[i]= acc;
  137. }
  138. return acc;
  139. }
  140. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  141. int i;
  142. uint8_t l, lt;
  143. l= *left;
  144. lt= *left_top;
  145. for(i=0; i<w; i++){
  146. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  147. lt= src1[i];
  148. dst[i]= l;
  149. }
  150. *left= l;
  151. *left_top= lt;
  152. }
  153. #ifdef CONFIG_ENCODERS
  154. //FIXME optimize
  155. static inline void sub_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top){
  156. int i;
  157. uint8_t l, lt;
  158. l= *left;
  159. lt= *left_top;
  160. for(i=0; i<w; i++){
  161. const int pred= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF);
  162. lt= src1[i];
  163. l= src2[i];
  164. dst[i]= l - pred;
  165. }
  166. *left= l;
  167. *left_top= lt;
  168. }
  169. #endif //CONFIG_ENCODERS
  170. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  171. int i;
  172. int r,g,b;
  173. r= *red;
  174. g= *green;
  175. b= *blue;
  176. for(i=0; i<w; i++){
  177. b+= src[4*i+0];
  178. g+= src[4*i+1];
  179. r+= src[4*i+2];
  180. dst[4*i+0]= b;
  181. dst[4*i+1]= g;
  182. dst[4*i+2]= r;
  183. }
  184. *red= r;
  185. *green= g;
  186. *blue= b;
  187. }
  188. #ifdef CONFIG_ENCODERS
  189. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  190. int i;
  191. if(w<32){
  192. for(i=0; i<w; i++){
  193. const int temp= src[i];
  194. dst[i]= temp - left;
  195. left= temp;
  196. }
  197. return left;
  198. }else{
  199. for(i=0; i<16; i++){
  200. const int temp= src[i];
  201. dst[i]= temp - left;
  202. left= temp;
  203. }
  204. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  205. return src[w-1];
  206. }
  207. }
  208. #endif //CONFIG_ENCODERS
  209. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  210. int i, val, repeat;
  211. for(i=0; i<256;){
  212. repeat= get_bits(gb, 3);
  213. val = get_bits(gb, 5);
  214. if(repeat==0)
  215. repeat= get_bits(gb, 8);
  216. //printf("%d %d\n", val, repeat);
  217. while (repeat--)
  218. dst[i++] = val;
  219. }
  220. }
  221. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  222. int len, index;
  223. uint32_t bits=0;
  224. for(len=32; len>0; len--){
  225. int bit= 1<<(32-len);
  226. for(index=0; index<256; index++){
  227. if(len_table[index]==len){
  228. if(bits & (bit-1)){
  229. fprintf(stderr, "Error generating huffman table\n");
  230. return -1;
  231. }
  232. dst[index]= bits>>(32-len);
  233. bits+= bit;
  234. }
  235. }
  236. }
  237. return 0;
  238. }
  239. #ifdef CONFIG_ENCODERS
  240. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  241. uint64_t counts[2*size];
  242. int up[2*size];
  243. int offset, i, next;
  244. for(offset=1; ; offset<<=1){
  245. for(i=0; i<size; i++){
  246. counts[i]= stats[i] + offset - 1;
  247. }
  248. for(next=size; next<size*2; next++){
  249. uint64_t min1, min2;
  250. int min1_i, min2_i;
  251. min1=min2= INT64_MAX;
  252. min1_i= min2_i=-1;
  253. for(i=0; i<next; i++){
  254. if(min2 > counts[i]){
  255. if(min1 > counts[i]){
  256. min2= min1;
  257. min2_i= min1_i;
  258. min1= counts[i];
  259. min1_i= i;
  260. }else{
  261. min2= counts[i];
  262. min2_i= i;
  263. }
  264. }
  265. }
  266. if(min2==INT64_MAX) break;
  267. counts[next]= min1 + min2;
  268. counts[min1_i]=
  269. counts[min2_i]= INT64_MAX;
  270. up[min1_i]=
  271. up[min2_i]= next;
  272. up[next]= -1;
  273. }
  274. for(i=0; i<size; i++){
  275. int len;
  276. int index=i;
  277. for(len=0; up[index] != -1; len++)
  278. index= up[index];
  279. if(len > 32) break;
  280. dst[i]= len;
  281. }
  282. if(i==size) break;
  283. }
  284. }
  285. #endif //CONFIG_ENCODERS
  286. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  287. GetBitContext gb;
  288. int i;
  289. init_get_bits(&gb, src, length*8);
  290. for(i=0; i<3; i++){
  291. read_len_table(s->len[i], &gb);
  292. if(generate_bits_table(s->bits[i], s->len[i])<0){
  293. return -1;
  294. }
  295. #if 0
  296. for(j=0; j<256; j++){
  297. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  298. }
  299. #endif
  300. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  301. }
  302. return 0;
  303. }
  304. static int read_old_huffman_tables(HYuvContext *s){
  305. #if 1
  306. GetBitContext gb;
  307. int i;
  308. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  309. read_len_table(s->len[0], &gb);
  310. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  311. read_len_table(s->len[1], &gb);
  312. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  313. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  314. if(s->bitstream_bpp >= 24){
  315. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  316. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  317. }
  318. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  319. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  320. for(i=0; i<3; i++)
  321. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  322. return 0;
  323. #else
  324. fprintf(stderr, "v1 huffyuv is not supported \n");
  325. return -1;
  326. #endif
  327. }
  328. static int decode_init(AVCodecContext *avctx)
  329. {
  330. HYuvContext *s = avctx->priv_data;
  331. int width, height;
  332. s->avctx= avctx;
  333. s->flags= avctx->flags;
  334. dsputil_init(&s->dsp, avctx);
  335. width= s->width= avctx->width;
  336. height= s->height= avctx->height;
  337. avctx->coded_frame= &s->picture;
  338. s->bgr32=1;
  339. assert(width && height);
  340. //if(avctx->extradata)
  341. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  342. if(avctx->extradata_size){
  343. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  344. s->version=1; // do such files exist at all?
  345. else
  346. s->version=2;
  347. }else
  348. s->version=0;
  349. if(s->version==2){
  350. int method;
  351. method= ((uint8_t*)avctx->extradata)[0];
  352. s->decorrelate= method&64 ? 1 : 0;
  353. s->predictor= method&63;
  354. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  355. if(s->bitstream_bpp==0)
  356. s->bitstream_bpp= avctx->bits_per_sample&~7;
  357. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  358. return -1;
  359. }else{
  360. switch(avctx->bits_per_sample&7){
  361. case 1:
  362. s->predictor= LEFT;
  363. s->decorrelate= 0;
  364. break;
  365. case 2:
  366. s->predictor= LEFT;
  367. s->decorrelate= 1;
  368. break;
  369. case 3:
  370. s->predictor= PLANE;
  371. s->decorrelate= avctx->bits_per_sample >= 24;
  372. break;
  373. case 4:
  374. s->predictor= MEDIAN;
  375. s->decorrelate= 0;
  376. break;
  377. default:
  378. s->predictor= LEFT; //OLD
  379. s->decorrelate= 0;
  380. break;
  381. }
  382. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  383. if(read_old_huffman_tables(s) < 0)
  384. return -1;
  385. }
  386. s->interlaced= height > 288;
  387. switch(s->bitstream_bpp){
  388. case 12:
  389. avctx->pix_fmt = PIX_FMT_YUV420P;
  390. break;
  391. case 16:
  392. if(s->yuy2){
  393. avctx->pix_fmt = PIX_FMT_YUV422;
  394. }else{
  395. avctx->pix_fmt = PIX_FMT_YUV422P;
  396. }
  397. break;
  398. case 24:
  399. case 32:
  400. if(s->bgr32){
  401. avctx->pix_fmt = PIX_FMT_RGBA32;
  402. }else{
  403. avctx->pix_fmt = PIX_FMT_BGR24;
  404. }
  405. break;
  406. default:
  407. assert(0);
  408. }
  409. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  410. return 0;
  411. }
  412. #ifdef CONFIG_ENCODERS
  413. static void store_table(HYuvContext *s, uint8_t *len){
  414. int i;
  415. int index= s->avctx->extradata_size;
  416. for(i=0; i<256;){
  417. int cur=i;
  418. int val= len[i];
  419. int repeat;
  420. for(; i<256 && len[i]==val; i++);
  421. repeat= i - cur;
  422. if(repeat>7){
  423. ((uint8_t*)s->avctx->extradata)[index++]= val;
  424. ((uint8_t*)s->avctx->extradata)[index++]= repeat;
  425. }else{
  426. ((uint8_t*)s->avctx->extradata)[index++]= val | (repeat<<5);
  427. }
  428. }
  429. s->avctx->extradata_size= index;
  430. }
  431. static int encode_init(AVCodecContext *avctx)
  432. {
  433. HYuvContext *s = avctx->priv_data;
  434. int i, j, width, height;
  435. s->avctx= avctx;
  436. s->flags= avctx->flags;
  437. dsputil_init(&s->dsp, avctx);
  438. width= s->width= avctx->width;
  439. height= s->height= avctx->height;
  440. assert(width && height);
  441. avctx->extradata= av_mallocz(1024*10);
  442. avctx->stats_out= av_mallocz(1024*10);
  443. s->version=2;
  444. avctx->coded_frame= &s->picture;
  445. switch(avctx->pix_fmt){
  446. case PIX_FMT_YUV420P:
  447. if(avctx->strict_std_compliance>=0){
  448. fprintf(stderr, "YV12-huffyuv is experimental, there WILL be no compatbility! (use (v)strict=-1)\n");
  449. return -1;
  450. }
  451. s->bitstream_bpp= 12;
  452. break;
  453. case PIX_FMT_YUV422P:
  454. s->bitstream_bpp= 16;
  455. break;
  456. default:
  457. fprintf(stderr, "format not supported\n");
  458. return -1;
  459. }
  460. avctx->bits_per_sample= s->bitstream_bpp;
  461. s->decorrelate= s->bitstream_bpp >= 24;
  462. s->predictor= avctx->prediction_method;
  463. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  464. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  465. ((uint8_t*)avctx->extradata)[2]=
  466. ((uint8_t*)avctx->extradata)[3]= 0;
  467. s->avctx->extradata_size= 4;
  468. if(avctx->stats_in){
  469. char *p= avctx->stats_in;
  470. for(i=0; i<3; i++)
  471. for(j=0; j<256; j++)
  472. s->stats[i][j]= 1;
  473. for(;;){
  474. for(i=0; i<3; i++){
  475. char *next;
  476. for(j=0; j<256; j++){
  477. s->stats[i][j]+= strtol(p, &next, 0);
  478. if(next==p) return -1;
  479. p=next;
  480. }
  481. }
  482. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  483. }
  484. }else{
  485. for(i=0; i<3; i++)
  486. for(j=0; j<256; j++){
  487. int d= FFMIN(j, 256-j);
  488. s->stats[i][j]= 100000000/(d+1);
  489. }
  490. }
  491. for(i=0; i<3; i++){
  492. generate_len_table(s->len[i], s->stats[i], 256);
  493. if(generate_bits_table(s->bits[i], s->len[i])<0){
  494. return -1;
  495. }
  496. store_table(s, s->len[i]);
  497. }
  498. for(i=0; i<3; i++)
  499. for(j=0; j<256; j++)
  500. s->stats[i][j]= 0;
  501. s->interlaced= height > 288;
  502. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  503. s->picture_number=0;
  504. return 0;
  505. }
  506. #endif //CONFIG_ENCODERS
  507. static void decode_422_bitstream(HYuvContext *s, int count){
  508. int i;
  509. count/=2;
  510. for(i=0; i<count; i++){
  511. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  512. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  513. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  514. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  515. }
  516. }
  517. static void decode_gray_bitstream(HYuvContext *s, int count){
  518. int i;
  519. count/=2;
  520. for(i=0; i<count; i++){
  521. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  522. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  523. }
  524. }
  525. #ifdef CONFIG_ENCODERS
  526. static void encode_422_bitstream(HYuvContext *s, int count){
  527. int i;
  528. count/=2;
  529. if(s->flags&CODEC_FLAG_PASS1){
  530. for(i=0; i<count; i++){
  531. s->stats[0][ s->temp[0][2*i ] ]++;
  532. s->stats[1][ s->temp[1][ i ] ]++;
  533. s->stats[0][ s->temp[0][2*i+1] ]++;
  534. s->stats[2][ s->temp[2][ i ] ]++;
  535. }
  536. }else{
  537. for(i=0; i<count; i++){
  538. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  539. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  540. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  541. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  542. }
  543. }
  544. }
  545. static void encode_gray_bitstream(HYuvContext *s, int count){
  546. int i;
  547. count/=2;
  548. if(s->flags&CODEC_FLAG_PASS1){
  549. for(i=0; i<count; i++){
  550. s->stats[0][ s->temp[0][2*i ] ]++;
  551. s->stats[0][ s->temp[0][2*i+1] ]++;
  552. }
  553. }else{
  554. for(i=0; i<count; i++){
  555. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  556. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  557. }
  558. }
  559. }
  560. #endif //CONFIG_ENCODERS
  561. static void decode_bgr_bitstream(HYuvContext *s, int count){
  562. int i;
  563. if(s->decorrelate){
  564. if(s->bitstream_bpp==24){
  565. for(i=0; i<count; i++){
  566. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  567. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  568. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  569. }
  570. }else{
  571. for(i=0; i<count; i++){
  572. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  573. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  574. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  575. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  576. }
  577. }
  578. }else{
  579. if(s->bitstream_bpp==24){
  580. for(i=0; i<count; i++){
  581. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  582. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  583. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  584. }
  585. }else{
  586. for(i=0; i<count; i++){
  587. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  588. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  589. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  590. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  591. }
  592. }
  593. }
  594. }
  595. static void draw_slice(HYuvContext *s, int y){
  596. int h, cy;
  597. uint8_t *src_ptr[3];
  598. if(s->avctx->draw_horiz_band==NULL)
  599. return;
  600. h= y - s->last_slice_end;
  601. y -= h;
  602. if(s->bitstream_bpp==12){
  603. cy= y>>1;
  604. }else{
  605. cy= y;
  606. }
  607. src_ptr[0] = s->picture.data[0] + s->picture.linesize[0]*y;
  608. src_ptr[1] = s->picture.data[1] + s->picture.linesize[1]*cy;
  609. src_ptr[2] = s->picture.data[2] + s->picture.linesize[2]*cy;
  610. emms_c();
  611. s->avctx->draw_horiz_band(s->avctx, src_ptr, s->picture.linesize[0], y, s->width, h);
  612. s->last_slice_end= y + h;
  613. }
  614. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  615. HYuvContext *s = avctx->priv_data;
  616. const int width= s->width;
  617. const int width2= s->width>>1;
  618. const int height= s->height;
  619. int fake_ystride, fake_ustride, fake_vstride;
  620. AVFrame * const p= &s->picture;
  621. AVFrame *picture = data;
  622. *data_size = 0;
  623. /* no supplementary picture */
  624. if (buf_size == 0)
  625. return 0;
  626. bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  627. init_get_bits(&s->gb, s->bitstream_buffer, buf_size*8);
  628. if(p->data[0])
  629. avctx->release_buffer(avctx, p);
  630. p->reference= 0;
  631. if(avctx->get_buffer(avctx, p) < 0){
  632. fprintf(stderr, "get_buffer() failed\n");
  633. return -1;
  634. }
  635. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  636. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  637. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  638. s->last_slice_end= 0;
  639. if(s->bitstream_bpp<24){
  640. int y, cy;
  641. int lefty, leftu, leftv;
  642. int lefttopy, lefttopu, lefttopv;
  643. if(s->yuy2){
  644. p->data[0][3]= get_bits(&s->gb, 8);
  645. p->data[0][2]= get_bits(&s->gb, 8);
  646. p->data[0][1]= get_bits(&s->gb, 8);
  647. p->data[0][0]= get_bits(&s->gb, 8);
  648. fprintf(stderr, "YUY2 output isnt implemenetd yet\n");
  649. return -1;
  650. }else{
  651. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  652. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  653. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  654. p->data[0][0]= get_bits(&s->gb, 8);
  655. switch(s->predictor){
  656. case LEFT:
  657. case PLANE:
  658. decode_422_bitstream(s, width-2);
  659. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  660. if(!(s->flags&CODEC_FLAG_GRAY)){
  661. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  662. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  663. }
  664. for(cy=y=1; y<s->height; y++,cy++){
  665. uint8_t *ydst, *udst, *vdst;
  666. if(s->bitstream_bpp==12){
  667. decode_gray_bitstream(s, width);
  668. ydst= p->data[0] + p->linesize[0]*y;
  669. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  670. if(s->predictor == PLANE){
  671. if(y>s->interlaced)
  672. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  673. }
  674. y++;
  675. if(y>=s->height) break;
  676. }
  677. draw_slice(s, y);
  678. ydst= p->data[0] + p->linesize[0]*y;
  679. udst= p->data[1] + p->linesize[1]*cy;
  680. vdst= p->data[2] + p->linesize[2]*cy;
  681. decode_422_bitstream(s, width);
  682. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  683. if(!(s->flags&CODEC_FLAG_GRAY)){
  684. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  685. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  686. }
  687. if(s->predictor == PLANE){
  688. if(cy>s->interlaced){
  689. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  690. if(!(s->flags&CODEC_FLAG_GRAY)){
  691. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  692. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  693. }
  694. }
  695. }
  696. }
  697. draw_slice(s, height);
  698. break;
  699. case MEDIAN:
  700. /* first line except first 2 pixels is left predicted */
  701. decode_422_bitstream(s, width-2);
  702. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  703. if(!(s->flags&CODEC_FLAG_GRAY)){
  704. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  705. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  706. }
  707. cy=y=1;
  708. /* second line is left predicted for interlaced case */
  709. if(s->interlaced){
  710. decode_422_bitstream(s, width);
  711. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  712. if(!(s->flags&CODEC_FLAG_GRAY)){
  713. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  714. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  715. }
  716. y++; cy++;
  717. }
  718. /* next 4 pixels are left predicted too */
  719. decode_422_bitstream(s, 4);
  720. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  721. if(!(s->flags&CODEC_FLAG_GRAY)){
  722. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  723. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  724. }
  725. /* next line except the first 4 pixels is median predicted */
  726. lefttopy= p->data[0][3];
  727. decode_422_bitstream(s, width-4);
  728. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  729. if(!(s->flags&CODEC_FLAG_GRAY)){
  730. lefttopu= p->data[1][1];
  731. lefttopv= p->data[2][1];
  732. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  733. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  734. }
  735. y++; cy++;
  736. for(; y<height; y++,cy++){
  737. uint8_t *ydst, *udst, *vdst;
  738. if(s->bitstream_bpp==12){
  739. while(2*cy > y){
  740. decode_gray_bitstream(s, width);
  741. ydst= p->data[0] + p->linesize[0]*y;
  742. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  743. y++;
  744. }
  745. if(y>=height) break;
  746. }
  747. draw_slice(s, y);
  748. decode_422_bitstream(s, width);
  749. ydst= p->data[0] + p->linesize[0]*y;
  750. udst= p->data[1] + p->linesize[1]*cy;
  751. vdst= p->data[2] + p->linesize[2]*cy;
  752. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  753. if(!(s->flags&CODEC_FLAG_GRAY)){
  754. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  755. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  756. }
  757. }
  758. draw_slice(s, height);
  759. break;
  760. }
  761. }
  762. }else{
  763. int y;
  764. int leftr, leftg, leftb;
  765. const int last_line= (height-1)*p->linesize[0];
  766. if(s->bitstream_bpp==32){
  767. p->data[0][last_line+3]= get_bits(&s->gb, 8);
  768. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  769. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  770. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  771. }else{
  772. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  773. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  774. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  775. skip_bits(&s->gb, 8);
  776. }
  777. if(s->bgr32){
  778. switch(s->predictor){
  779. case LEFT:
  780. case PLANE:
  781. decode_bgr_bitstream(s, width-1);
  782. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  783. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  784. decode_bgr_bitstream(s, width);
  785. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  786. if(s->predictor == PLANE){
  787. if((y&s->interlaced)==0){
  788. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  789. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  790. }
  791. }
  792. }
  793. draw_slice(s, height); // just 1 large slice as this isnt possible in reverse order
  794. break;
  795. default:
  796. fprintf(stderr, "prediction type not supported!\n");
  797. }
  798. }else{
  799. fprintf(stderr, "BGR24 output isnt implemenetd yet\n");
  800. return -1;
  801. }
  802. }
  803. emms_c();
  804. *picture= *p;
  805. *data_size = sizeof(AVFrame);
  806. return (get_bits_count(&s->gb)+31)/32*4;
  807. }
  808. static int decode_end(AVCodecContext *avctx)
  809. {
  810. HYuvContext *s = avctx->priv_data;
  811. int i;
  812. for(i=0; i<3; i++){
  813. free_vlc(&s->vlc[i]);
  814. }
  815. avcodec_default_free_buffers(avctx);
  816. return 0;
  817. }
  818. #ifdef CONFIG_ENCODERS
  819. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  820. HYuvContext *s = avctx->priv_data;
  821. AVFrame *pict = data;
  822. const int width= s->width;
  823. const int width2= s->width>>1;
  824. const int height= s->height;
  825. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  826. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  827. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  828. AVFrame * const p= &s->picture;
  829. int i, size;
  830. init_put_bits(&s->pb, buf, buf_size, NULL, NULL);
  831. *p = *pict;
  832. p->pict_type= FF_I_TYPE;
  833. p->key_frame= 1;
  834. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  835. int lefty, leftu, leftv, y, cy;
  836. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  837. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  838. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  839. put_bits(&s->pb, 8, p->data[0][0]);
  840. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  841. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  842. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  843. encode_422_bitstream(s, width-2);
  844. if(s->predictor==MEDIAN){
  845. int lefttopy, lefttopu, lefttopv;
  846. cy=y=1;
  847. if(s->interlaced){
  848. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  849. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  850. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  851. encode_422_bitstream(s, width);
  852. y++; cy++;
  853. }
  854. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  855. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ystride, 2, leftu);
  856. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_ystride, 2, leftv);
  857. encode_422_bitstream(s, 4);
  858. lefttopy= p->data[0][3];
  859. lefttopu= p->data[1][1];
  860. lefttopv= p->data[2][1];
  861. sub_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  862. sub_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  863. sub_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  864. encode_422_bitstream(s, width-4);
  865. y++; cy++;
  866. for(; y<height; y++,cy++){
  867. uint8_t *ydst, *udst, *vdst;
  868. if(s->bitstream_bpp==12){
  869. while(2*cy > y){
  870. ydst= p->data[0] + p->linesize[0]*y;
  871. sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  872. encode_gray_bitstream(s, width);
  873. y++;
  874. }
  875. if(y>=height) break;
  876. }
  877. ydst= p->data[0] + p->linesize[0]*y;
  878. udst= p->data[1] + p->linesize[1]*cy;
  879. vdst= p->data[2] + p->linesize[2]*cy;
  880. sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  881. sub_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  882. sub_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  883. encode_422_bitstream(s, width);
  884. }
  885. }else{
  886. for(cy=y=1; y<height; y++,cy++){
  887. uint8_t *ydst, *udst, *vdst;
  888. /* encode a luma only line & y++ */
  889. if(s->bitstream_bpp==12){
  890. ydst= p->data[0] + p->linesize[0]*y;
  891. if(s->predictor == PLANE && s->interlaced < y){
  892. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  893. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  894. }else{
  895. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  896. }
  897. encode_gray_bitstream(s, width);
  898. y++;
  899. if(y>=height) break;
  900. }
  901. ydst= p->data[0] + p->linesize[0]*y;
  902. udst= p->data[1] + p->linesize[1]*cy;
  903. vdst= p->data[2] + p->linesize[2]*cy;
  904. if(s->predictor == PLANE && s->interlaced < cy){
  905. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  906. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  907. s->dsp.diff_bytes(s->temp[3], vdst, vdst - fake_vstride, width2);
  908. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  909. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  910. leftv= sub_left_prediction(s, s->temp[2], s->temp[3], width2, leftv);
  911. }else{
  912. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  913. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  914. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  915. }
  916. encode_422_bitstream(s, width);
  917. }
  918. }
  919. }else{
  920. fprintf(stderr, "Format not supported!\n");
  921. }
  922. emms_c();
  923. size= (get_bit_count(&s->pb)+31)/32;
  924. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  925. int j;
  926. char *p= avctx->stats_out;
  927. for(i=0; i<3; i++){
  928. for(j=0; j<256; j++){
  929. sprintf(p, "%Ld ", s->stats[i][j]);
  930. p+= strlen(p);
  931. s->stats[i][j]= 0;
  932. }
  933. sprintf(p, "\n");
  934. p++;
  935. }
  936. }else{
  937. flush_put_bits(&s->pb);
  938. bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  939. }
  940. s->picture_number++;
  941. return size*4;
  942. }
  943. static int encode_end(AVCodecContext *avctx)
  944. {
  945. // HYuvContext *s = avctx->priv_data;
  946. av_freep(&avctx->extradata);
  947. av_freep(&avctx->stats_out);
  948. return 0;
  949. }
  950. #endif //CONFIG_ENCODERS
  951. static const AVOption huffyuv_options[] =
  952. {
  953. AVOPTION_CODEC_INT("prediction_method", "prediction_method", prediction_method, 0, 2, 0),
  954. AVOPTION_END()
  955. };
  956. AVCodec huffyuv_decoder = {
  957. "huffyuv",
  958. CODEC_TYPE_VIDEO,
  959. CODEC_ID_HUFFYUV,
  960. sizeof(HYuvContext),
  961. decode_init,
  962. NULL,
  963. decode_end,
  964. decode_frame,
  965. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  966. NULL
  967. };
  968. #ifdef CONFIG_ENCODERS
  969. AVCodec huffyuv_encoder = {
  970. "huffyuv",
  971. CODEC_TYPE_VIDEO,
  972. CODEC_ID_HUFFYUV,
  973. sizeof(HYuvContext),
  974. encode_init,
  975. encode_frame,
  976. encode_end,
  977. .options = huffyuv_options,
  978. };
  979. #endif //CONFIG_ENCODERS