You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2122 lines
59KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} and @code{-af} options of the ff*
  16. tools, and by the @code{av_parse_graph()} function defined in
  17. @file{libavfilter/avfiltergraph}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section anull
  82. Pass the audio source unchanged to the output.
  83. @c man end AUDIO FILTERS
  84. @chapter Audio Sources
  85. @c man begin AUDIO SOURCES
  86. Below is a description of the currently available audio sources.
  87. @section anullsrc
  88. Null audio source, never return audio frames. It is mainly useful as a
  89. template and to be employed in analysis / debugging tools.
  90. It accepts as optional parameter a string of the form
  91. @var{sample_rate}:@var{channel_layout}.
  92. @var{sample_rate} specify the sample rate, and defaults to 44100.
  93. @var{channel_layout} specify the channel layout, and can be either an
  94. integer or a string representing a channel layout. The default value
  95. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  96. Check the channel_layout_map definition in
  97. @file{libavcodec/audioconvert.c} for the mapping between strings and
  98. channel layout values.
  99. Follow some examples:
  100. @example
  101. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  102. anullsrc=48000:4
  103. # same as
  104. anullsrc=48000:mono
  105. @end example
  106. @c man end AUDIO SOURCES
  107. @chapter Audio Sinks
  108. @c man begin AUDIO SINKS
  109. Below is a description of the currently available audio sinks.
  110. @section anullsink
  111. Null audio sink, do absolutely nothing with the input audio. It is
  112. mainly useful as a template and to be employed in analysis / debugging
  113. tools.
  114. @c man end AUDIO SINKS
  115. @chapter Video Filters
  116. @c man begin VIDEO FILTERS
  117. When you configure your FFmpeg build, you can disable any of the
  118. existing filters using --disable-filters.
  119. The configure output will show the video filters included in your
  120. build.
  121. Below is a description of the currently available video filters.
  122. @section blackframe
  123. Detect frames that are (almost) completely black. Can be useful to
  124. detect chapter transitions or commercials. Output lines consist of
  125. the frame number of the detected frame, the percentage of blackness,
  126. the position in the file if known or -1 and the timestamp in seconds.
  127. In order to display the output lines, you need to set the loglevel at
  128. least to the AV_LOG_INFO value.
  129. The filter accepts the syntax:
  130. @example
  131. blackframe[=@var{amount}:[@var{threshold}]]
  132. @end example
  133. @var{amount} is the percentage of the pixels that have to be below the
  134. threshold, and defaults to 98.
  135. @var{threshold} is the threshold below which a pixel value is
  136. considered black, and defaults to 32.
  137. @section boxblur
  138. Apply boxblur algorithm to the input video.
  139. This filter accepts the parameters:
  140. @var{luma_power}:@var{luma_radius}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  141. Chroma and alpha parameters are optional, if not specified they default
  142. to the corresponding values set for @var{luma_radius} and
  143. @var{luma_power}.
  144. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  145. the radius in pixels of the box used for blurring the corresponding
  146. input plane. They are expressions, and can contain the following
  147. constants:
  148. @table @option
  149. @item w, h
  150. the input width and heigth in pixels
  151. @item cw, ch
  152. the input chroma image width and height in pixels
  153. @item hsub, vsub
  154. horizontal and vertical chroma subsample values. For example for the
  155. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  156. @end table
  157. The radius must be a non-negative number, and must be not greater than
  158. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  159. and of @code{min(cw,ch)/2} for the chroma planes.
  160. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  161. how many times the boxblur filter is applied to the corresponding
  162. plane.
  163. Some examples follow:
  164. @itemize
  165. @item
  166. Apply a boxblur filter with luma, chroma, and alpha radius
  167. set to 2:
  168. @example
  169. boxblur=2:1
  170. @end example
  171. @item
  172. Set luma radius to 2, alpha and chroma radius to 0
  173. @example
  174. boxblur=2:1:0:0:0:0
  175. @end example
  176. @item
  177. Set luma and chroma radius to a fraction of the video dimension
  178. @example
  179. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  180. @end example
  181. @end itemize
  182. @section copy
  183. Copy the input source unchanged to the output. Mainly useful for
  184. testing purposes.
  185. @section crop
  186. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  187. The parameters are expressions containing the following constants:
  188. @table @option
  189. @item E, PI, PHI
  190. the corresponding mathematical approximated values for e
  191. (euler number), pi (greek PI), PHI (golden ratio)
  192. @item x, y
  193. the computed values for @var{x} and @var{y}. They are evaluated for
  194. each new frame.
  195. @item in_w, in_h
  196. the input width and heigth
  197. @item iw, ih
  198. same as @var{in_w} and @var{in_h}
  199. @item out_w, out_h
  200. the output (cropped) width and heigth
  201. @item ow, oh
  202. same as @var{out_w} and @var{out_h}
  203. @item n
  204. the number of input frame, starting from 0
  205. @item pos
  206. the position in the file of the input frame, NAN if unknown
  207. @item t
  208. timestamp expressed in seconds, NAN if the input timestamp is unknown
  209. @end table
  210. The @var{out_w} and @var{out_h} parameters specify the expressions for
  211. the width and height of the output (cropped) video. They are
  212. evaluated just at the configuration of the filter.
  213. The default value of @var{out_w} is "in_w", and the default value of
  214. @var{out_h} is "in_h".
  215. The expression for @var{out_w} may depend on the value of @var{out_h},
  216. and the expression for @var{out_h} may depend on @var{out_w}, but they
  217. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  218. evaluated after @var{out_w} and @var{out_h}.
  219. The @var{x} and @var{y} parameters specify the expressions for the
  220. position of the top-left corner of the output (non-cropped) area. They
  221. are evaluated for each frame. If the evaluated value is not valid, it
  222. is approximated to the nearest valid value.
  223. The default value of @var{x} is "(in_w-out_w)/2", and the default
  224. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  225. the center of the input image.
  226. The expression for @var{x} may depend on @var{y}, and the expression
  227. for @var{y} may depend on @var{x}.
  228. Follow some examples:
  229. @example
  230. # crop the central input area with size 100x100
  231. crop=100:100
  232. # crop the central input area with size 2/3 of the input video
  233. "crop=2/3*in_w:2/3*in_h"
  234. # crop the input video central square
  235. crop=in_h
  236. # delimit the rectangle with the top-left corner placed at position
  237. # 100:100 and the right-bottom corner corresponding to the right-bottom
  238. # corner of the input image.
  239. crop=in_w-100:in_h-100:100:100
  240. # crop 10 pixels from the left and right borders, and 20 pixels from
  241. # the top and bottom borders
  242. "crop=in_w-2*10:in_h-2*20"
  243. # keep only the bottom right quarter of the input image
  244. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  245. # crop height for getting Greek harmony
  246. "crop=in_w:1/PHI*in_w"
  247. # trembling effect
  248. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  249. # erratic camera effect depending on timestamp
  250. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  251. # set x depending on the value of y
  252. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  253. @end example
  254. @section cropdetect
  255. Auto-detect crop size.
  256. Calculate necessary cropping parameters and prints the recommended
  257. parameters through the logging system. The detected dimensions
  258. correspond to the non-black area of the input video.
  259. It accepts the syntax:
  260. @example
  261. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  262. @end example
  263. @table @option
  264. @item limit
  265. Threshold, which can be optionally specified from nothing (0) to
  266. everything (255), defaults to 24.
  267. @item round
  268. Value which the width/height should be divisible by, defaults to
  269. 16. The offset is automatically adjusted to center the video. Use 2 to
  270. get only even dimensions (needed for 4:2:2 video). 16 is best when
  271. encoding to most video codecs.
  272. @item reset
  273. Counter that determines after how many frames cropdetect will reset
  274. the previously detected largest video area and start over to detect
  275. the current optimal crop area. Defaults to 0.
  276. This can be useful when channel logos distort the video area. 0
  277. indicates never reset and return the largest area encountered during
  278. playback.
  279. @end table
  280. @section drawbox
  281. Draw a colored box on the input image.
  282. It accepts the syntax:
  283. @example
  284. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  285. @end example
  286. @table @option
  287. @item x, y
  288. Specify the top left corner coordinates of the box. Default to 0.
  289. @item width, height
  290. Specify the width and height of the box, if 0 they are interpreted as
  291. the input width and height. Default to 0.
  292. @item color
  293. Specify the color of the box to write, it can be the name of a color
  294. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  295. @end table
  296. Follow some examples:
  297. @example
  298. # draw a black box around the edge of the input image
  299. drawbox
  300. # draw a box with color red and an opacity of 50%
  301. drawbox=10:20:200:60:red@@0.5"
  302. @end example
  303. @section drawtext
  304. Draw text string or text from specified file on top of video using the
  305. libfreetype library.
  306. To enable compilation of this filter you need to configure FFmpeg with
  307. @code{--enable-libfreetype}.
  308. The filter also recognizes strftime() sequences in the provided text
  309. and expands them accordingly. Check the documentation of strftime().
  310. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  311. separated by ":".
  312. The description of the accepted parameters follows.
  313. @table @option
  314. @item fontfile
  315. The font file to be used for drawing text. Path must be included.
  316. This parameter is mandatory.
  317. @item text
  318. The text string to be drawn. The text must be a sequence of UTF-8
  319. encoded characters.
  320. This parameter is mandatory if no file is specified with the parameter
  321. @var{textfile}.
  322. @item textfile
  323. A text file containing text to be drawn. The text must be a sequence
  324. of UTF-8 encoded characters.
  325. This parameter is mandatory if no text string is specified with the
  326. parameter @var{text}.
  327. If both text and textfile are specified, an error is thrown.
  328. @item x, y
  329. The offsets where text will be drawn within the video frame.
  330. Relative to the top/left border of the output image.
  331. The default value of @var{x} and @var{y} is 0.
  332. @item fontsize
  333. The font size to be used for drawing text.
  334. The default value of @var{fontsize} is 16.
  335. @item fontcolor
  336. The color to be used for drawing fonts.
  337. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  338. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  339. The default value of @var{fontcolor} is "black".
  340. @item boxcolor
  341. The color to be used for drawing box around text.
  342. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  343. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  344. The default value of @var{boxcolor} is "white".
  345. @item box
  346. Used to draw a box around text using background color.
  347. Value should be either 1 (enable) or 0 (disable).
  348. The default value of @var{box} is 0.
  349. @item shadowx, shadowy
  350. The x and y offsets for the text shadow position with respect to the
  351. position of the text. They can be either positive or negative
  352. values. Default value for both is "0".
  353. @item shadowcolor
  354. The color to be used for drawing a shadow behind the drawn text. It
  355. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  356. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  357. The default value of @var{shadowcolor} is "black".
  358. @item ft_load_flags
  359. Flags to be used for loading the fonts.
  360. The flags map the corresponding flags supported by libfreetype, and are
  361. a combination of the following values:
  362. @table @var
  363. @item default
  364. @item no_scale
  365. @item no_hinting
  366. @item render
  367. @item no_bitmap
  368. @item vertical_layout
  369. @item force_autohint
  370. @item crop_bitmap
  371. @item pedantic
  372. @item ignore_global_advance_width
  373. @item no_recurse
  374. @item ignore_transform
  375. @item monochrome
  376. @item linear_design
  377. @item no_autohint
  378. @item end table
  379. @end table
  380. Default value is "render".
  381. For more information consult the documentation for the FT_LOAD_*
  382. libfreetype flags.
  383. @item tabsize
  384. The size in number of spaces to use for rendering the tab.
  385. Default value is 4.
  386. @end table
  387. For example the command:
  388. @example
  389. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  390. @end example
  391. will draw "Test Text" with font FreeSerif, using the default values
  392. for the optional parameters.
  393. The command:
  394. @example
  395. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  396. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  397. @end example
  398. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  399. and y=50 (counting from the top-left corner of the screen), text is
  400. yellow with a red box around it. Both the text and the box have an
  401. opacity of 20%.
  402. Note that the double quotes are not necessary if spaces are not used
  403. within the parameter list.
  404. For more information about libfreetype, check:
  405. @url{http://www.freetype.org/}.
  406. @section fade
  407. Apply fade-in/out effect to input video.
  408. It accepts the parameters:
  409. @var{type}:@var{start_frame}:@var{nb_frames}
  410. @var{type} specifies if the effect type, can be either "in" for
  411. fade-in, or "out" for a fade-out effect.
  412. @var{start_frame} specifies the number of the start frame for starting
  413. to apply the fade effect.
  414. @var{nb_frames} specifies the number of frames for which the fade
  415. effect has to last. At the end of the fade-in effect the output video
  416. will have the same intensity as the input video, at the end of the
  417. fade-out transition the output video will be completely black.
  418. A few usage examples follow, usable too as test scenarios.
  419. @example
  420. # fade in first 30 frames of video
  421. fade=in:0:30
  422. # fade out last 45 frames of a 200-frame video
  423. fade=out:155:45
  424. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  425. fade=in:0:25, fade=out:975:25
  426. # make first 5 frames black, then fade in from frame 5-24
  427. fade=in:5:20
  428. @end example
  429. @section fieldorder
  430. Transform the field order of the input video.
  431. It accepts one parameter which specifies the required field order that
  432. the input interlaced video will be transformed to. The parameter can
  433. assume one of the following values:
  434. @table @option
  435. @item 0 or bff
  436. output bottom field first
  437. @item 1 or tff
  438. output top field first
  439. @end table
  440. Default value is "tff".
  441. Transformation is achieved by shifting the picture content up or down
  442. by one line, and filling the remaining line with appropriate picture content.
  443. This method is consistent with most broadcast field order converters.
  444. If the input video is not flagged as being interlaced, or it is already
  445. flagged as being of the required output field order then this filter does
  446. not alter the incoming video.
  447. This filter is very useful when converting to or from PAL DV material,
  448. which is bottom field first.
  449. For example:
  450. @example
  451. ./ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  452. @end example
  453. @section fifo
  454. Buffer input images and send them when they are requested.
  455. This filter is mainly useful when auto-inserted by the libavfilter
  456. framework.
  457. The filter does not take parameters.
  458. @section format
  459. Convert the input video to one of the specified pixel formats.
  460. Libavfilter will try to pick one that is supported for the input to
  461. the next filter.
  462. The filter accepts a list of pixel format names, separated by ":",
  463. for example "yuv420p:monow:rgb24".
  464. Some examples follow:
  465. @example
  466. # convert the input video to the format "yuv420p"
  467. format=yuv420p
  468. # convert the input video to any of the formats in the list
  469. format=yuv420p:yuv444p:yuv410p
  470. @end example
  471. @anchor{frei0r}
  472. @section frei0r
  473. Apply a frei0r effect to the input video.
  474. To enable compilation of this filter you need to install the frei0r
  475. header and configure FFmpeg with --enable-frei0r.
  476. The filter supports the syntax:
  477. @example
  478. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  479. @end example
  480. @var{filter_name} is the name to the frei0r effect to load. If the
  481. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  482. is searched in each one of the directories specified by the colon
  483. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  484. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  485. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  486. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  487. for the frei0r effect.
  488. A frei0r effect parameter can be a boolean (whose values are specified
  489. with "y" and "n"), a double, a color (specified by the syntax
  490. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  491. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  492. description), a position (specified by the syntax @var{X}/@var{Y},
  493. @var{X} and @var{Y} being float numbers) and a string.
  494. The number and kind of parameters depend on the loaded effect. If an
  495. effect parameter is not specified the default value is set.
  496. Some examples follow:
  497. @example
  498. # apply the distort0r effect, set the first two double parameters
  499. frei0r=distort0r:0.5:0.01
  500. # apply the colordistance effect, takes a color as first parameter
  501. frei0r=colordistance:0.2/0.3/0.4
  502. frei0r=colordistance:violet
  503. frei0r=colordistance:0x112233
  504. # apply the perspective effect, specify the top left and top right
  505. # image positions
  506. frei0r=perspective:0.2/0.2:0.8/0.2
  507. @end example
  508. For more information see:
  509. @url{http://piksel.org/frei0r}
  510. @section gradfun
  511. Fix the banding artifacts that are sometimes introduced into nearly flat
  512. regions by truncation to 8bit colordepth.
  513. Interpolate the gradients that should go where the bands are, and
  514. dither them.
  515. This filter is designed for playback only. Do not use it prior to
  516. lossy compression, because compression tends to lose the dither and
  517. bring back the bands.
  518. The filter takes two optional parameters, separated by ':':
  519. @var{strength}:@var{radius}
  520. @var{strength} is the maximum amount by which the filter will change
  521. any one pixel. Also the threshold for detecting nearly flat
  522. regions. Acceptable values range from .51 to 255, default value is
  523. 1.2, out-of-range values will be clipped to the valid range.
  524. @var{radius} is the neighborhood to fit the gradient to. A larger
  525. radius makes for smoother gradients, but also prevents the filter from
  526. modifying the pixels near detailed regions. Acceptable values are
  527. 8-32, default value is 16, out-of-range values will be clipped to the
  528. valid range.
  529. @example
  530. # default parameters
  531. gradfun=1.2:16
  532. # omitting radius
  533. gradfun=1.2
  534. @end example
  535. @section hflip
  536. Flip the input video horizontally.
  537. For example to horizontally flip the video in input with
  538. @file{ffmpeg}:
  539. @example
  540. ffmpeg -i in.avi -vf "hflip" out.avi
  541. @end example
  542. @section hqdn3d
  543. High precision/quality 3d denoise filter. This filter aims to reduce
  544. image noise producing smooth images and making still images really
  545. still. It should enhance compressibility.
  546. It accepts the following optional parameters:
  547. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  548. @table @option
  549. @item luma_spatial
  550. a non-negative float number which specifies spatial luma strength,
  551. defaults to 4.0
  552. @item chroma_spatial
  553. a non-negative float number which specifies spatial chroma strength,
  554. defaults to 3.0*@var{luma_spatial}/4.0
  555. @item luma_tmp
  556. a float number which specifies luma temporal strength, defaults to
  557. 6.0*@var{luma_spatial}/4.0
  558. @item chroma_tmp
  559. a float number which specifies chroma temporal strength, defaults to
  560. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  561. @end table
  562. @section lut, lutrgb, lutyuv
  563. Compute a look-up table for binding each pixel component input value
  564. to an output value, and apply it to input video.
  565. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  566. to an RGB input video.
  567. These filters accept in input a ":"-separated list of options, which
  568. specify the expressions used for computing the lookup table for the
  569. corresponding pixel component values.
  570. The @var{lut} filter requires either YUV or RGB pixel formats in
  571. input, and accepts the options:
  572. @table @option
  573. @var{c0} (first pixel component)
  574. @var{c1} (second pixel component)
  575. @var{c2} (third pixel component)
  576. @var{c3} (fourth pixel component, corresponds to the alpha component)
  577. @end table
  578. The exact component associated to each option depends on the format in
  579. input.
  580. The @var{lutrgb} filter requires RGB pixel formats in input, and
  581. accepts the options:
  582. @table @option
  583. @var{r} (red component)
  584. @var{g} (green component)
  585. @var{b} (blue component)
  586. @var{a} (alpha component)
  587. @end table
  588. The @var{lutyuv} filter requires YUV pixel formats in input, and
  589. accepts the options:
  590. @table @option
  591. @var{y} (Y/luminance component)
  592. @var{u} (U/Cb component)
  593. @var{v} (V/Cr component)
  594. @var{a} (alpha component)
  595. @end table
  596. The expressions can contain the following constants and functions:
  597. @table @option
  598. @item E, PI, PHI
  599. the corresponding mathematical approximated values for e
  600. (euler number), pi (greek PI), PHI (golden ratio)
  601. @item w, h
  602. the input width and heigth
  603. @item val
  604. input value for the pixel component
  605. @item clipval
  606. the input value clipped in the @var{minval}-@var{maxval} range
  607. @item maxval
  608. maximum value for the pixel component
  609. @item minval
  610. minimum value for the pixel component
  611. @item negval
  612. the negated value for the pixel component value clipped in the
  613. @var{minval}-@var{maxval} range , it corresponds to the expression
  614. "maxval-clipval+minval"
  615. @item clip(val)
  616. the computed value in @var{val} clipped in the
  617. @var{minval}-@var{maxval} range
  618. @item gammaval(gamma)
  619. the computed gamma correction value of the pixel component value
  620. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  621. expression
  622. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  623. @end table
  624. All expressions default to "val".
  625. Some examples follow:
  626. @example
  627. # negate input video
  628. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  629. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  630. # the above is the same as
  631. lutrgb="r=negval:g=negval:b=negval"
  632. lutyuv="y=negval:u=negval:v=negval"
  633. # negate luminance
  634. lutyuv=negval
  635. # remove chroma components, turns the video into a graytone image
  636. lutyuv="u=128:v=128"
  637. # apply a luma burning effect
  638. lutyuv="y=2*val"
  639. # remove green and blue components
  640. lutrgb="g=0:b=0"
  641. # set a constant alpha channel value on input
  642. format=rgba,lutrgb=a="maxval-minval/2"
  643. # correct luminance gamma by a 0.5 factor
  644. lutyuv=y=gammaval(0.5)
  645. @end example
  646. @section mp
  647. Apply an MPlayer filter to the input video.
  648. This filter provides a wrapper around most of the filters of
  649. MPlayer/MEncoder.
  650. This wrapper is considered experimental. Some of the wrapped filters
  651. may not work properly and we may drop support for them, as they will
  652. be implemented natively into FFmpeg. Thus you should avoid
  653. depending on them when writing portable scripts.
  654. The filters accepts the parameters:
  655. @var{filter_name}[:=]@var{filter_params}
  656. @var{filter_name} is the name of a supported MPlayer filter,
  657. @var{filter_params} is a string containing the parameters accepted by
  658. the named filter.
  659. The list of the currently supported filters follows:
  660. @table @var
  661. @item 2xsai
  662. @item blackframe
  663. @item cropdetect
  664. @item decimate
  665. @item delogo
  666. @item denoise3d
  667. @item detc
  668. @item dint
  669. @item divtc
  670. @item down3dright
  671. @item dsize
  672. @item eq2
  673. @item eq
  674. @item field
  675. @item fil
  676. @item fixpts
  677. @item framestep
  678. @item fspp
  679. @item geq
  680. @item gradfun
  681. @item harddup
  682. @item hqdn3d
  683. @item hue
  684. @item il
  685. @item ilpack
  686. @item ivtc
  687. @item kerndeint
  688. @item mcdeint
  689. @item mirror
  690. @item noise
  691. @item ow
  692. @item palette
  693. @item perspective
  694. @item phase
  695. @item pp7
  696. @item pullup
  697. @item qp
  698. @item rectangle
  699. @item remove-logo
  700. @item rotate
  701. @item sab
  702. @item screenshot
  703. @item smartblur
  704. @item softpulldown
  705. @item softskip
  706. @item spp
  707. @item swapuv
  708. @item telecine
  709. @item test
  710. @item tile
  711. @item tinterlace
  712. @item unsharp
  713. @item uspp
  714. @item yuvcsp
  715. @item yvu9
  716. @end table
  717. The parameter syntax and behavior for the listed filters are the same
  718. of the corresponding MPlayer filters. For detailed instructions check
  719. the "VIDEO FILTERS" section in the MPlayer manual.
  720. Some examples follow:
  721. @example
  722. # remove a logo by interpolating the surrounding pixels
  723. mp=delogo=200:200:80:20:1
  724. # adjust gamma, brightness, contrast
  725. mp=eq2=1.0:2:0.5
  726. # tweak hue and saturation
  727. mp=hue=100:-10
  728. @end example
  729. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  730. @section negate
  731. Negate input video.
  732. This filter accepts an integer in input, if non-zero it negates the
  733. alpha component (if available). The default value in input is 0.
  734. @section noformat
  735. Force libavfilter not to use any of the specified pixel formats for the
  736. input to the next filter.
  737. The filter accepts a list of pixel format names, separated by ":",
  738. for example "yuv420p:monow:rgb24".
  739. Some examples follow:
  740. @example
  741. # force libavfilter to use a format different from "yuv420p" for the
  742. # input to the vflip filter
  743. noformat=yuv420p,vflip
  744. # convert the input video to any of the formats not contained in the list
  745. noformat=yuv420p:yuv444p:yuv410p
  746. @end example
  747. @section null
  748. Pass the video source unchanged to the output.
  749. @section ocv
  750. Apply video transform using libopencv.
  751. To enable this filter install libopencv library and headers and
  752. configure FFmpeg with --enable-libopencv.
  753. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  754. @var{filter_name} is the name of the libopencv filter to apply.
  755. @var{filter_params} specifies the parameters to pass to the libopencv
  756. filter. If not specified the default values are assumed.
  757. Refer to the official libopencv documentation for more precise
  758. informations:
  759. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  760. Follows the list of supported libopencv filters.
  761. @anchor{dilate}
  762. @subsection dilate
  763. Dilate an image by using a specific structuring element.
  764. This filter corresponds to the libopencv function @code{cvDilate}.
  765. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  766. @var{struct_el} represents a structuring element, and has the syntax:
  767. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  768. @var{cols} and @var{rows} represent the number of colums and rows of
  769. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  770. point, and @var{shape} the shape for the structuring element, and
  771. can be one of the values "rect", "cross", "ellipse", "custom".
  772. If the value for @var{shape} is "custom", it must be followed by a
  773. string of the form "=@var{filename}". The file with name
  774. @var{filename} is assumed to represent a binary image, with each
  775. printable character corresponding to a bright pixel. When a custom
  776. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  777. or columns and rows of the read file are assumed instead.
  778. The default value for @var{struct_el} is "3x3+0x0/rect".
  779. @var{nb_iterations} specifies the number of times the transform is
  780. applied to the image, and defaults to 1.
  781. Follow some example:
  782. @example
  783. # use the default values
  784. ocv=dilate
  785. # dilate using a structuring element with a 5x5 cross, iterate two times
  786. ocv=dilate=5x5+2x2/cross:2
  787. # read the shape from the file diamond.shape, iterate two times
  788. # the file diamond.shape may contain a pattern of characters like this:
  789. # *
  790. # ***
  791. # *****
  792. # ***
  793. # *
  794. # the specified cols and rows are ignored (but not the anchor point coordinates)
  795. ocv=0x0+2x2/custom=diamond.shape:2
  796. @end example
  797. @subsection erode
  798. Erode an image by using a specific structuring element.
  799. This filter corresponds to the libopencv function @code{cvErode}.
  800. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  801. with the same syntax and semantics as the @ref{dilate} filter.
  802. @subsection smooth
  803. Smooth the input video.
  804. The filter takes the following parameters:
  805. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  806. @var{type} is the type of smooth filter to apply, and can be one of
  807. the following values: "blur", "blur_no_scale", "median", "gaussian",
  808. "bilateral". The default value is "gaussian".
  809. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  810. parameters whose meanings depend on smooth type. @var{param1} and
  811. @var{param2} accept integer positive values or 0, @var{param3} and
  812. @var{param4} accept float values.
  813. The default value for @var{param1} is 3, the default value for the
  814. other parameters is 0.
  815. These parameters correspond to the parameters assigned to the
  816. libopencv function @code{cvSmooth}.
  817. @section overlay
  818. Overlay one video on top of another.
  819. It takes two inputs and one output, the first input is the "main"
  820. video on which the second input is overlayed.
  821. It accepts the parameters: @var{x}:@var{y}.
  822. @var{x} is the x coordinate of the overlayed video on the main video,
  823. @var{y} is the y coordinate. The parameters are expressions containing
  824. the following parameters:
  825. @table @option
  826. @item main_w, main_h
  827. main input width and height
  828. @item W, H
  829. same as @var{main_w} and @var{main_h}
  830. @item overlay_w, overlay_h
  831. overlay input width and height
  832. @item w, h
  833. same as @var{overlay_w} and @var{overlay_h}
  834. @end table
  835. Be aware that frames are taken from each input video in timestamp
  836. order, hence, if their initial timestamps differ, it is a a good idea
  837. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  838. have them begin in the same zero timestamp, as it does the example for
  839. the @var{movie} filter.
  840. Follow some examples:
  841. @example
  842. # draw the overlay at 10 pixels from the bottom right
  843. # corner of the main video.
  844. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  845. # insert a transparent PNG logo in the bottom left corner of the input
  846. movie=logo.png [logo];
  847. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  848. # insert 2 different transparent PNG logos (second logo on bottom
  849. # right corner):
  850. movie=logo1.png [logo1];
  851. movie=logo2.png [logo2];
  852. [in][logo1] overlay=10:H-h-10 [in+logo1];
  853. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  854. # add a transparent color layer on top of the main video,
  855. # WxH specifies the size of the main input to the overlay filter
  856. color=red@.3:WxH [over]; [in][over] overlay [out]
  857. @end example
  858. You can chain togheter more overlays but the efficiency of such
  859. approach is yet to be tested.
  860. @section pad
  861. Add paddings to the input image, and places the original input at the
  862. given coordinates @var{x}, @var{y}.
  863. It accepts the following parameters:
  864. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  865. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  866. expressions containing the following constants:
  867. @table @option
  868. @item E, PI, PHI
  869. the corresponding mathematical approximated values for e
  870. (euler number), pi (greek PI), phi (golden ratio)
  871. @item in_w, in_h
  872. the input video width and heigth
  873. @item iw, ih
  874. same as @var{in_w} and @var{in_h}
  875. @item out_w, out_h
  876. the output width and heigth, that is the size of the padded area as
  877. specified by the @var{width} and @var{height} expressions
  878. @item ow, oh
  879. same as @var{out_w} and @var{out_h}
  880. @item x, y
  881. x and y offsets as specified by the @var{x} and @var{y}
  882. expressions, or NAN if not yet specified
  883. @item dar, a
  884. input display aspect ratio, same as @var{iw} / @var{ih}
  885. @item sar
  886. input sample aspect ratio
  887. @item hsub, vsub
  888. horizontal and vertical chroma subsample values. For example for the
  889. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  890. @end table
  891. Follows the description of the accepted parameters.
  892. @table @option
  893. @item width, height
  894. Specify the size of the output image with the paddings added. If the
  895. value for @var{width} or @var{height} is 0, the corresponding input size
  896. is used for the output.
  897. The @var{width} expression can reference the value set by the
  898. @var{height} expression, and viceversa.
  899. The default value of @var{width} and @var{height} is 0.
  900. @item x, y
  901. Specify the offsets where to place the input image in the padded area
  902. with respect to the top/left border of the output image.
  903. The @var{x} expression can reference the value set by the @var{y}
  904. expression, and viceversa.
  905. The default value of @var{x} and @var{y} is 0.
  906. @item color
  907. Specify the color of the padded area, it can be the name of a color
  908. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  909. The default value of @var{color} is "black".
  910. @end table
  911. Some examples follow:
  912. @example
  913. # Add paddings with color "violet" to the input video. Output video
  914. # size is 640x480, the top-left corner of the input video is placed at
  915. # column 0, row 40.
  916. pad=640:480:0:40:violet
  917. # pad the input to get an output with dimensions increased bt 3/2,
  918. # and put the input video at the center of the padded area
  919. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  920. # pad the input to get a squared output with size equal to the maximum
  921. # value between the input width and height, and put the input video at
  922. # the center of the padded area
  923. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  924. # pad the input to get a final w/h ratio of 16:9
  925. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  926. # double output size and put the input video in the bottom-right
  927. # corner of the output padded area
  928. pad="2*iw:2*ih:ow-iw:oh-ih"
  929. @end example
  930. @section pixdesctest
  931. Pixel format descriptor test filter, mainly useful for internal
  932. testing. The output video should be equal to the input video.
  933. For example:
  934. @example
  935. format=monow, pixdesctest
  936. @end example
  937. can be used to test the monowhite pixel format descriptor definition.
  938. @section scale
  939. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  940. The parameters @var{width} and @var{height} are expressions containing
  941. the following constants:
  942. @table @option
  943. @item E, PI, PHI
  944. the corresponding mathematical approximated values for e
  945. (euler number), pi (greek PI), phi (golden ratio)
  946. @item in_w, in_h
  947. the input width and heigth
  948. @item iw, ih
  949. same as @var{in_w} and @var{in_h}
  950. @item out_w, out_h
  951. the output (cropped) width and heigth
  952. @item ow, oh
  953. same as @var{out_w} and @var{out_h}
  954. @item dar, a
  955. input display aspect ratio, same as @var{iw} / @var{ih}
  956. @item sar
  957. input sample aspect ratio
  958. @item hsub, vsub
  959. horizontal and vertical chroma subsample values. For example for the
  960. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  961. @end table
  962. If the input image format is different from the format requested by
  963. the next filter, the scale filter will convert the input to the
  964. requested format.
  965. If the value for @var{width} or @var{height} is 0, the respective input
  966. size is used for the output.
  967. If the value for @var{width} or @var{height} is -1, the scale filter will
  968. use, for the respective output size, a value that maintains the aspect
  969. ratio of the input image.
  970. The default value of @var{width} and @var{height} is 0.
  971. Some examples follow:
  972. @example
  973. # scale the input video to a size of 200x100.
  974. scale=200:100
  975. # scale the input to 2x
  976. scale=2*iw:2*ih
  977. # the above is the same as
  978. scale=2*in_w:2*in_h
  979. # scale the input to half size
  980. scale=iw/2:ih/2
  981. # increase the width, and set the height to the same size
  982. scale=3/2*iw:ow
  983. # seek for Greek harmony
  984. scale=iw:1/PHI*iw
  985. scale=ih*PHI:ih
  986. # increase the height, and set the width to 3/2 of the height
  987. scale=3/2*oh:3/5*ih
  988. # increase the size, but make the size a multiple of the chroma
  989. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  990. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  991. scale='min(500\, iw*3/2):-1'
  992. @end example
  993. @section select
  994. Select frames to pass in output.
  995. It accepts in input an expression, which is evaluated for each input
  996. frame. If the expression is evaluated to a non-zero value, the frame
  997. is selected and passed to the output, otherwise it is discarded.
  998. The expression can contain the following constants:
  999. @table @option
  1000. @item PI
  1001. Greek PI
  1002. @item PHI
  1003. golden ratio
  1004. @item E
  1005. Euler number
  1006. @item n
  1007. the sequential number of the filtered frame, starting from 0
  1008. @item selected_n
  1009. the sequential number of the selected frame, starting from 0
  1010. @item prev_selected_n
  1011. the sequential number of the last selected frame, NAN if undefined
  1012. @item TB
  1013. timebase of the input timestamps
  1014. @item pts
  1015. the PTS (Presentation TimeStamp) of the filtered video frame,
  1016. expressed in @var{TB} units, NAN if undefined
  1017. @item t
  1018. the PTS (Presentation TimeStamp) of the filtered video frame,
  1019. expressed in seconds, NAN if undefined
  1020. @item prev_pts
  1021. the PTS of the previously filtered video frame, NAN if undefined
  1022. @item prev_selected_pts
  1023. the PTS of the last previously filtered video frame, NAN if undefined
  1024. @item prev_selected_t
  1025. the PTS of the last previously selected video frame, NAN if undefined
  1026. @item start_pts
  1027. the PTS of the first video frame in the video, NAN if undefined
  1028. @item start_t
  1029. the time of the first video frame in the video, NAN if undefined
  1030. @item pict_type
  1031. the picture type of the filtered frame, can assume one of the following
  1032. values:
  1033. @table @option
  1034. @item PICT_TYPE_I
  1035. @item PICT_TYPE_P
  1036. @item PICT_TYPE_B
  1037. @item PICT_TYPE_S
  1038. @item PICT_TYPE_SI
  1039. @item PICT_TYPE_SP
  1040. @item PICT_TYPE_BI
  1041. @end table
  1042. @item interlace_type
  1043. the frame interlace type, can assume one of the following values:
  1044. @table @option
  1045. @item INTERLACE_TYPE_P
  1046. the frame is progressive (not interlaced)
  1047. @item INTERLACE_TYPE_T
  1048. the frame is top-field-first
  1049. @item INTERLACE_TYPE_B
  1050. the frame is bottom-field-first
  1051. @end table
  1052. @item key
  1053. 1 if the filtered frame is a key-frame, 0 otherwise
  1054. @item pos
  1055. the position in the file of the filtered frame, -1 if the information
  1056. is not available (e.g. for synthetic video)
  1057. @end table
  1058. The default value of the select expression is "1".
  1059. Some examples follow:
  1060. @example
  1061. # select all frames in input
  1062. select
  1063. # the above is the same as:
  1064. select=1
  1065. # skip all frames:
  1066. select=0
  1067. # select only I-frames
  1068. select='eq(pict_type\,PICT_TYPE_I)'
  1069. # select one frame every 100
  1070. select='not(mod(n\,100))'
  1071. # select only frames contained in the 10-20 time interval
  1072. select='gte(t\,10)*lte(t\,20)'
  1073. # select only I frames contained in the 10-20 time interval
  1074. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,PICT_TYPE_I)'
  1075. # select frames with a minimum distance of 10 seconds
  1076. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1077. @end example
  1078. @anchor{setdar}
  1079. @section setdar
  1080. Set the Display Aspect Ratio for the filter output video.
  1081. This is done by changing the specified Sample (aka Pixel) Aspect
  1082. Ratio, according to the following equation:
  1083. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1084. Keep in mind that this filter does not modify the pixel dimensions of
  1085. the video frame. Also the display aspect ratio set by this filter may
  1086. be changed by later filters in the filterchain, e.g. in case of
  1087. scaling or if another "setdar" or a "setsar" filter is applied.
  1088. The filter accepts a parameter string which represents the wanted
  1089. display aspect ratio.
  1090. The parameter can be a floating point number string, or an expression
  1091. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1092. numerator and denominator of the aspect ratio.
  1093. If the parameter is not specified, it is assumed the value "0:1".
  1094. For example to change the display aspect ratio to 16:9, specify:
  1095. @example
  1096. setdar=16:9
  1097. # the above is equivalent to
  1098. setdar=1.77777
  1099. @end example
  1100. See also the @ref{setsar} filter documentation.
  1101. @section setpts
  1102. Change the PTS (presentation timestamp) of the input video frames.
  1103. Accept in input an expression evaluated through the eval API, which
  1104. can contain the following constants:
  1105. @table @option
  1106. @item PTS
  1107. the presentation timestamp in input
  1108. @item PI
  1109. Greek PI
  1110. @item PHI
  1111. golden ratio
  1112. @item E
  1113. Euler number
  1114. @item N
  1115. the count of the input frame, starting from 0.
  1116. @item STARTPTS
  1117. the PTS of the first video frame
  1118. @item INTERLACED
  1119. tell if the current frame is interlaced
  1120. @item POS
  1121. original position in the file of the frame, or undefined if undefined
  1122. for the current frame
  1123. @item PREV_INPTS
  1124. previous input PTS
  1125. @item PREV_OUTPTS
  1126. previous output PTS
  1127. @end table
  1128. Some examples follow:
  1129. @example
  1130. # start counting PTS from zero
  1131. setpts=PTS-STARTPTS
  1132. # fast motion
  1133. setpts=0.5*PTS
  1134. # slow motion
  1135. setpts=2.0*PTS
  1136. # fixed rate 25 fps
  1137. setpts=N/(25*TB)
  1138. # fixed rate 25 fps with some jitter
  1139. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1140. @end example
  1141. @anchor{setsar}
  1142. @section setsar
  1143. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1144. Note that as a consequence of the application of this filter, the
  1145. output display aspect ratio will change according to the following
  1146. equation:
  1147. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1148. Keep in mind that the sample aspect ratio set by this filter may be
  1149. changed by later filters in the filterchain, e.g. if another "setsar"
  1150. or a "setdar" filter is applied.
  1151. The filter accepts a parameter string which represents the wanted
  1152. sample aspect ratio.
  1153. The parameter can be a floating point number string, or an expression
  1154. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1155. numerator and denominator of the aspect ratio.
  1156. If the parameter is not specified, it is assumed the value "0:1".
  1157. For example to change the sample aspect ratio to 10:11, specify:
  1158. @example
  1159. setsar=10:11
  1160. @end example
  1161. @section settb
  1162. Set the timebase to use for the output frames timestamps.
  1163. It is mainly useful for testing timebase configuration.
  1164. It accepts in input an arithmetic expression representing a rational.
  1165. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1166. default timebase), and "intb" (the input timebase).
  1167. The default value for the input is "intb".
  1168. Follow some examples.
  1169. @example
  1170. # set the timebase to 1/25
  1171. settb=1/25
  1172. # set the timebase to 1/10
  1173. settb=0.1
  1174. #set the timebase to 1001/1000
  1175. settb=1+0.001
  1176. #set the timebase to 2*intb
  1177. settb=2*intb
  1178. #set the default timebase value
  1179. settb=AVTB
  1180. @end example
  1181. @section showinfo
  1182. Show a line containing various information for each input video frame.
  1183. The input video is not modified.
  1184. The shown line contains a sequence of key/value pairs of the form
  1185. @var{key}:@var{value}.
  1186. A description of each shown parameter follows:
  1187. @table @option
  1188. @item n
  1189. sequential number of the input frame, starting from 0
  1190. @item pts
  1191. Presentation TimeStamp of the input frame, expressed as a number of
  1192. time base units. The time base unit depends on the filter input pad.
  1193. @item pts_time
  1194. Presentation TimeStamp of the input frame, expressed as a number of
  1195. seconds
  1196. @item pos
  1197. position of the frame in the input stream, -1 if this information in
  1198. unavailable and/or meanigless (for example in case of synthetic video)
  1199. @item fmt
  1200. pixel format name
  1201. @item sar
  1202. sample aspect ratio of the input frame, expressed in the form
  1203. @var{num}/@var{den}
  1204. @item s
  1205. size of the input frame, expressed in the form
  1206. @var{width}x@var{height}
  1207. @item i
  1208. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1209. for bottom field first)
  1210. @item iskey
  1211. 1 if the frame is a key frame, 0 otherwise
  1212. @item type
  1213. picture type of the input frame ("I" for an I-frame, "P" for a
  1214. P-frame, "B" for a B-frame, "?" for unknown type).
  1215. Check also the documentation of the @code{AVPictureType} enum and of
  1216. the @code{av_get_picture_type_char} function defined in
  1217. @file{libavutil/avutil.h}.
  1218. @item checksum
  1219. Adler-32 checksum of all the planes of the input frame
  1220. @item plane_checksum
  1221. Adler-32 checksum of each plane of the input frame, expressed in the form
  1222. "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1223. @end table
  1224. @section slicify
  1225. Pass the images of input video on to next video filter as multiple
  1226. slices.
  1227. @example
  1228. ./ffmpeg -i in.avi -vf "slicify=32" out.avi
  1229. @end example
  1230. The filter accepts the slice height as parameter. If the parameter is
  1231. not specified it will use the default value of 16.
  1232. Adding this in the beginning of filter chains should make filtering
  1233. faster due to better use of the memory cache.
  1234. @section split
  1235. Pass on the input video to two outputs. Both outputs are identical to
  1236. the input video.
  1237. For example:
  1238. @example
  1239. [in] split [splitout1][splitout2];
  1240. [splitout1] crop=100:100:0:0 [cropout];
  1241. [splitout2] pad=200:200:100:100 [padout];
  1242. @end example
  1243. will create two separate outputs from the same input, one cropped and
  1244. one padded.
  1245. @section transpose
  1246. Transpose rows with columns in the input video and optionally flip it.
  1247. It accepts a parameter representing an integer, which can assume the
  1248. values:
  1249. @table @samp
  1250. @item 0
  1251. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1252. @example
  1253. L.R L.l
  1254. . . -> . .
  1255. l.r R.r
  1256. @end example
  1257. @item 1
  1258. Rotate by 90 degrees clockwise, that is:
  1259. @example
  1260. L.R l.L
  1261. . . -> . .
  1262. l.r r.R
  1263. @end example
  1264. @item 2
  1265. Rotate by 90 degrees counterclockwise, that is:
  1266. @example
  1267. L.R R.r
  1268. . . -> . .
  1269. l.r L.l
  1270. @end example
  1271. @item 3
  1272. Rotate by 90 degrees clockwise and vertically flip, that is:
  1273. @example
  1274. L.R r.R
  1275. . . -> . .
  1276. l.r l.L
  1277. @end example
  1278. @end table
  1279. @section unsharp
  1280. Sharpen or blur the input video.
  1281. It accepts the following parameters:
  1282. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1283. Negative values for the amount will blur the input video, while positive
  1284. values will sharpen. All parameters are optional and default to the
  1285. equivalent of the string '5:5:1.0:0:0:0.0'.
  1286. @table @option
  1287. @item luma_msize_x
  1288. Set the luma matrix horizontal size. It can be an integer between 3
  1289. and 13, default value is 5.
  1290. @item luma_msize_y
  1291. Set the luma matrix vertical size. It can be an integer between 3
  1292. and 13, default value is 5.
  1293. @item luma_amount
  1294. Set the luma effect strength. It can be a float number between -2.0
  1295. and 5.0, default value is 1.0.
  1296. @item chroma_msize_x
  1297. Set the chroma matrix horizontal size. It can be an integer between 3
  1298. and 13, default value is 0.
  1299. @item chroma_msize_y
  1300. Set the chroma matrix vertical size. It can be an integer between 3
  1301. and 13, default value is 0.
  1302. @item luma_amount
  1303. Set the chroma effect strength. It can be a float number between -2.0
  1304. and 5.0, default value is 0.0.
  1305. @end table
  1306. @example
  1307. # Strong luma sharpen effect parameters
  1308. unsharp=7:7:2.5
  1309. # Strong blur of both luma and chroma parameters
  1310. unsharp=7:7:-2:7:7:-2
  1311. # Use the default values with @command{ffmpeg}
  1312. ./ffmpeg -i in.avi -vf "unsharp" out.mp4
  1313. @end example
  1314. @section vflip
  1315. Flip the input video vertically.
  1316. @example
  1317. ./ffmpeg -i in.avi -vf "vflip" out.avi
  1318. @end example
  1319. @section yadif
  1320. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1321. filter").
  1322. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1323. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1324. following values:
  1325. @table @option
  1326. @item 0
  1327. output 1 frame for each frame
  1328. @item 1
  1329. output 1 frame for each field
  1330. @item 2
  1331. like 0 but skips spatial interlacing check
  1332. @item 3
  1333. like 1 but skips spatial interlacing check
  1334. @end table
  1335. Default value is 0.
  1336. @var{parity} specifies the picture field parity assumed for the input
  1337. interlaced video, accepts one of the following values:
  1338. @table @option
  1339. @item 0
  1340. assume bottom field first
  1341. @item 1
  1342. assume top field first
  1343. @item -1
  1344. enable automatic detection
  1345. @end table
  1346. Default value is -1.
  1347. If interlacing is unknown or decoder does not export this information,
  1348. top field first will be assumed.
  1349. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1350. and only deinterlace frames marked as interlaced
  1351. @table @option
  1352. @item 0
  1353. deinterlace all frames
  1354. @item 1
  1355. only deinterlace frames marked as interlaced
  1356. @end table
  1357. Default value is 0.
  1358. @c man end VIDEO FILTERS
  1359. @chapter Video Sources
  1360. @c man begin VIDEO SOURCES
  1361. Below is a description of the currently available video sources.
  1362. @section buffer
  1363. Buffer video frames, and make them available to the filter chain.
  1364. This source is mainly intended for a programmatic use, in particular
  1365. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1366. It accepts the following parameters:
  1367. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  1368. All the parameters but @var{scale_params} need to be explicitely
  1369. defined.
  1370. Follows the list of the accepted parameters.
  1371. @table @option
  1372. @item width, height
  1373. Specify the width and height of the buffered video frames.
  1374. @item pix_fmt_string
  1375. A string representing the pixel format of the buffered video frames.
  1376. It may be a number corresponding to a pixel format, or a pixel format
  1377. name.
  1378. @item timebase_num, timebase_den
  1379. Specify numerator and denomitor of the timebase assumed by the
  1380. timestamps of the buffered frames.
  1381. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1382. Specify numerator and denominator of the sample aspect ratio assumed
  1383. by the video frames.
  1384. @item scale_params
  1385. Specify the optional parameters to be used for the scale filter which
  1386. is automatically inserted when an input change is detected in the
  1387. input size or format.
  1388. @end table
  1389. For example:
  1390. @example
  1391. buffer=320:240:yuv410p:1:24:1:1
  1392. @end example
  1393. will instruct the source to accept video frames with size 320x240 and
  1394. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1395. square pixels (1:1 sample aspect ratio).
  1396. Since the pixel format with name "yuv410p" corresponds to the number 6
  1397. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1398. this example corresponds to:
  1399. @example
  1400. buffer=320:240:6:1:24:1:1
  1401. @end example
  1402. @section color
  1403. Provide an uniformly colored input.
  1404. It accepts the following parameters:
  1405. @var{color}:@var{frame_size}:@var{frame_rate}
  1406. Follows the description of the accepted parameters.
  1407. @table @option
  1408. @item color
  1409. Specify the color of the source. It can be the name of a color (case
  1410. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1411. alpha specifier. The default value is "black".
  1412. @item frame_size
  1413. Specify the size of the sourced video, it may be a string of the form
  1414. @var{width}x@var{heigth}, or the name of a size abbreviation. The
  1415. default value is "320x240".
  1416. @item frame_rate
  1417. Specify the frame rate of the sourced video, as the number of frames
  1418. generated per second. It has to be a string in the format
  1419. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1420. number or a valid video frame rate abbreviation. The default value is
  1421. "25".
  1422. @end table
  1423. For example the following graph description will generate a red source
  1424. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1425. frames per second, which will be overlayed over the source connected
  1426. to the pad with identifier "in".
  1427. @example
  1428. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1429. @end example
  1430. @section movie
  1431. Read a video stream from a movie container.
  1432. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1433. @var{movie_name} is the name of the resource to read (not necessarily
  1434. a file but also a device or a stream accessed through some protocol),
  1435. and @var{options} is an optional sequence of @var{key}=@var{value}
  1436. pairs, separated by ":".
  1437. The description of the accepted options follows.
  1438. @table @option
  1439. @item format_name, f
  1440. Specifies the format assumed for the movie to read, and can be either
  1441. the name of a container or an input device. If not specified the
  1442. format is guessed from @var{movie_name} or by probing.
  1443. @item seek_point, sp
  1444. Specifies the seek point in seconds, the frames will be output
  1445. starting from this seek point, the parameter is evaluated with
  1446. @code{av_strtod} so the numerical value may be suffixed by an IS
  1447. postfix. Default value is "0".
  1448. @item stream_index, si
  1449. Specifies the index of the video stream to read. If the value is -1,
  1450. the best suited video stream will be automatically selected. Default
  1451. value is "-1".
  1452. @end table
  1453. This filter allows to overlay a second video on top of main input of
  1454. a filtergraph as shown in this graph:
  1455. @example
  1456. input -----------> deltapts0 --> overlay --> output
  1457. ^
  1458. |
  1459. movie --> scale--> deltapts1 -------+
  1460. @end example
  1461. Some examples follow:
  1462. @example
  1463. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1464. # on top of the input labelled as "in".
  1465. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1466. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1467. # read from a video4linux2 device, and overlay it on top of the input
  1468. # labelled as "in"
  1469. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1470. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1471. @end example
  1472. @section nullsrc
  1473. Null video source, never return images. It is mainly useful as a
  1474. template and to be employed in analysis / debugging tools.
  1475. It accepts as optional parameter a string of the form
  1476. @var{width}:@var{height}:@var{timebase}.
  1477. @var{width} and @var{height} specify the size of the configured
  1478. source. The default values of @var{width} and @var{height} are
  1479. respectively 352 and 288 (corresponding to the CIF size format).
  1480. @var{timebase} specifies an arithmetic expression representing a
  1481. timebase. The expression can contain the constants "PI", "E", "PHI",
  1482. "AVTB" (the default timebase), and defaults to the value "AVTB".
  1483. @section frei0r_src
  1484. Provide a frei0r source.
  1485. To enable compilation of this filter you need to install the frei0r
  1486. header and configure FFmpeg with --enable-frei0r.
  1487. The source supports the syntax:
  1488. @example
  1489. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  1490. @end example
  1491. @var{size} is the size of the video to generate, may be a string of the
  1492. form @var{width}x@var{height} or a frame size abbreviation.
  1493. @var{rate} is the rate of the video to generate, may be a string of
  1494. the form @var{num}/@var{den} or a frame rate abbreviation.
  1495. @var{src_name} is the name to the frei0r source to load. For more
  1496. information regarding frei0r and how to set the parameters read the
  1497. section @ref{frei0r} in the description of the video filters.
  1498. Some examples follow:
  1499. @example
  1500. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1501. # which is overlayed on the overlay filter main input
  1502. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  1503. @end example
  1504. @section rgbtestsrc, testsrc
  1505. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  1506. detecting RGB vs BGR issues. You should see a red, green and blue
  1507. stripe from top to bottom.
  1508. The @code{testsrc} source generates a test video pattern, showing a
  1509. color pattern, a scrolling gradient and a timestamp. This is mainly
  1510. intended for testing purposes.
  1511. Both sources accept an optional sequence of @var{key}=@var{value} pairs,
  1512. separated by ":". The description of the accepted options follows.
  1513. @table @option
  1514. @item size, s
  1515. Specify the size of the sourced video, it may be a string of the form
  1516. @var{width}x@var{heigth}, or the name of a size abbreviation. The
  1517. default value is "320x240".
  1518. @item rate, r
  1519. Specify the frame rate of the sourced video, as the number of frames
  1520. generated per second. It has to be a string in the format
  1521. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1522. number or a valid video frame rate abbreviation. The default value is
  1523. "25".
  1524. @item duration
  1525. Set the video duration of the sourced video. The accepted syntax is:
  1526. @example
  1527. [-]HH[:MM[:SS[.m...]]]
  1528. [-]S+[.m...]
  1529. @end example
  1530. See also the function @code{av_parse_time()}.
  1531. If not specified, or the expressed duration is negative, the video is
  1532. supposed to be generated forever.
  1533. @end table
  1534. For example the following:
  1535. @example
  1536. testsrc=duration=5.3:size=qcif:rate=10
  1537. @end example
  1538. will generate a video with a duration of 5.3 seconds, with size
  1539. 176x144 and a framerate of 10 frames per second.
  1540. @c man end VIDEO SOURCES
  1541. @chapter Video Sinks
  1542. @c man begin VIDEO SINKS
  1543. Below is a description of the currently available video sinks.
  1544. @section buffersink
  1545. Buffer video frames, and make them available to the end of the filter
  1546. graph.
  1547. This sink is mainly intended for a programmatic use, in particular
  1548. through the interface defined in @file{libavfilter/vsink_buffer.h}.
  1549. It does not require a string parameter in input, but you need to
  1550. specify a pointer to a list of supported pixel formats terminated by
  1551. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  1552. when initializing this sink.
  1553. @section nullsink
  1554. Null video sink, do absolutely nothing with the input video. It is
  1555. mainly useful as a template and to be employed in analysis / debugging
  1556. tools.
  1557. @c man end VIDEO SINKS