You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

564 lines
21KB

  1. /*
  2. * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/intmath.h"
  21. #include "libavutil/log.h"
  22. #include "libavutil/opt.h"
  23. #include "avcodec.h"
  24. #include "dsputil.h"
  25. #include "dwt.h"
  26. #include "snow.h"
  27. #include "rangecoder.h"
  28. #include "mathops.h"
  29. #include "mpegvideo.h"
  30. #include "h263.h"
  31. #undef NDEBUG
  32. #include <assert.h>
  33. static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, IDWTELEM * old_buffer, int plane_index, int add, int mb_y){
  34. Plane *p= &s->plane[plane_index];
  35. const int mb_w= s->b_width << s->block_max_depth;
  36. const int mb_h= s->b_height << s->block_max_depth;
  37. int x, y, mb_x;
  38. int block_size = MB_SIZE >> s->block_max_depth;
  39. int block_w = plane_index ? block_size/2 : block_size;
  40. const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+1] : ff_obmc_tab[s->block_max_depth];
  41. int obmc_stride= plane_index ? block_size : 2*block_size;
  42. int ref_stride= s->current_picture.linesize[plane_index];
  43. uint8_t *dst8= s->current_picture.data[plane_index];
  44. int w= p->width;
  45. int h= p->height;
  46. if(s->keyframe || (s->avctx->debug&512)){
  47. if(mb_y==mb_h)
  48. return;
  49. if(add){
  50. for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++){
  51. // DWTELEM * line = slice_buffer_get_line(sb, y);
  52. IDWTELEM * line = sb->line[y];
  53. for(x=0; x<w; x++){
  54. // int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
  55. int v= line[x] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
  56. v >>= FRAC_BITS;
  57. if(v&(~255)) v= ~(v>>31);
  58. dst8[x + y*ref_stride]= v;
  59. }
  60. }
  61. }else{
  62. for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++){
  63. // DWTELEM * line = slice_buffer_get_line(sb, y);
  64. IDWTELEM * line = sb->line[y];
  65. for(x=0; x<w; x++){
  66. line[x] -= 128 << FRAC_BITS;
  67. // buf[x + y*w]-= 128<<FRAC_BITS;
  68. }
  69. }
  70. }
  71. return;
  72. }
  73. for(mb_x=0; mb_x<=mb_w; mb_x++){
  74. add_yblock(s, 1, sb, old_buffer, dst8, obmc,
  75. block_w*mb_x - block_w/2,
  76. block_w*mb_y - block_w/2,
  77. block_w, block_w,
  78. w, h,
  79. w, ref_stride, obmc_stride,
  80. mb_x - 1, mb_y - 1,
  81. add, 0, plane_index);
  82. }
  83. }
  84. static inline void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer * sb, int start_y, int h, int save_state[1]){
  85. const int w= b->width;
  86. int y;
  87. const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
  88. int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
  89. int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
  90. int new_index = 0;
  91. if(b->ibuf == s->spatial_idwt_buffer || s->qlog == LOSSLESS_QLOG){
  92. qadd= 0;
  93. qmul= 1<<QEXPSHIFT;
  94. }
  95. /* If we are on the second or later slice, restore our index. */
  96. if (start_y != 0)
  97. new_index = save_state[0];
  98. for(y=start_y; y<h; y++){
  99. int x = 0;
  100. int v;
  101. IDWTELEM * line = slice_buffer_get_line(sb, y * b->stride_line + b->buf_y_offset) + b->buf_x_offset;
  102. memset(line, 0, b->width*sizeof(IDWTELEM));
  103. v = b->x_coeff[new_index].coeff;
  104. x = b->x_coeff[new_index++].x;
  105. while(x < w){
  106. register int t= ( (v>>1)*qmul + qadd)>>QEXPSHIFT;
  107. register int u= -(v&1);
  108. line[x] = (t^u) - u;
  109. v = b->x_coeff[new_index].coeff;
  110. x = b->x_coeff[new_index++].x;
  111. }
  112. }
  113. /* Save our variables for the next slice. */
  114. save_state[0] = new_index;
  115. return;
  116. }
  117. static int decode_q_branch(SnowContext *s, int level, int x, int y){
  118. const int w= s->b_width << s->block_max_depth;
  119. const int rem_depth= s->block_max_depth - level;
  120. const int index= (x + y*w) << rem_depth;
  121. int trx= (x+1)<<rem_depth;
  122. const BlockNode *left = x ? &s->block[index-1] : &null_block;
  123. const BlockNode *top = y ? &s->block[index-w] : &null_block;
  124. const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
  125. const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
  126. int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
  127. int res;
  128. if(s->keyframe){
  129. set_blocks(s, level, x, y, null_block.color[0], null_block.color[1], null_block.color[2], null_block.mx, null_block.my, null_block.ref, BLOCK_INTRA);
  130. return 0;
  131. }
  132. if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){
  133. int type, mx, my;
  134. int l = left->color[0];
  135. int cb= left->color[1];
  136. int cr= left->color[2];
  137. int ref = 0;
  138. int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
  139. int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 0*av_log2(2*FFABS(tr->mx - top->mx));
  140. int my_context= av_log2(2*FFABS(left->my - top->my)) + 0*av_log2(2*FFABS(tr->my - top->my));
  141. type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0;
  142. if(type){
  143. pred_mv(s, &mx, &my, 0, left, top, tr);
  144. l += get_symbol(&s->c, &s->block_state[32], 1);
  145. cb+= get_symbol(&s->c, &s->block_state[64], 1);
  146. cr+= get_symbol(&s->c, &s->block_state[96], 1);
  147. }else{
  148. if(s->ref_frames > 1)
  149. ref= get_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], 0);
  150. if (ref >= s->ref_frames) {
  151. av_log(s->avctx, AV_LOG_ERROR, "Invalid ref\n");
  152. return AVERROR_INVALIDDATA;
  153. }
  154. pred_mv(s, &mx, &my, ref, left, top, tr);
  155. mx+= get_symbol(&s->c, &s->block_state[128 + 32*(mx_context + 16*!!ref)], 1);
  156. my+= get_symbol(&s->c, &s->block_state[128 + 32*(my_context + 16*!!ref)], 1);
  157. }
  158. set_blocks(s, level, x, y, l, cb, cr, mx, my, ref, type);
  159. }else{
  160. if ((res = decode_q_branch(s, level+1, 2*x+0, 2*y+0)) < 0 ||
  161. (res = decode_q_branch(s, level+1, 2*x+1, 2*y+0)) < 0 ||
  162. (res = decode_q_branch(s, level+1, 2*x+0, 2*y+1)) < 0 ||
  163. (res = decode_q_branch(s, level+1, 2*x+1, 2*y+1)) < 0)
  164. return res;
  165. }
  166. return 0;
  167. }
  168. static void dequantize_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int start_y, int end_y){
  169. const int w= b->width;
  170. const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
  171. const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
  172. const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
  173. int x,y;
  174. if(s->qlog == LOSSLESS_QLOG) return;
  175. for(y=start_y; y<end_y; y++){
  176. // DWTELEM * line = slice_buffer_get_line_from_address(sb, src + (y * stride));
  177. IDWTELEM * line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
  178. for(x=0; x<w; x++){
  179. int i= line[x];
  180. if(i<0){
  181. line[x]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
  182. }else if(i>0){
  183. line[x]= (( i*qmul + qadd)>>(QEXPSHIFT));
  184. }
  185. }
  186. }
  187. }
  188. static void correlate_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y){
  189. const int w= b->width;
  190. int x,y;
  191. IDWTELEM * line=0; // silence silly "could be used without having been initialized" warning
  192. IDWTELEM * prev;
  193. if (start_y != 0)
  194. line = slice_buffer_get_line(sb, ((start_y - 1) * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
  195. for(y=start_y; y<end_y; y++){
  196. prev = line;
  197. // line = slice_buffer_get_line_from_address(sb, src + (y * stride));
  198. line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
  199. for(x=0; x<w; x++){
  200. if(x){
  201. if(use_median){
  202. if(y && x+1<w) line[x] += mid_pred(line[x - 1], prev[x], prev[x + 1]);
  203. else line[x] += line[x - 1];
  204. }else{
  205. if(y) line[x] += mid_pred(line[x - 1], prev[x], line[x - 1] + prev[x] - prev[x - 1]);
  206. else line[x] += line[x - 1];
  207. }
  208. }else{
  209. if(y) line[x] += prev[x];
  210. }
  211. }
  212. }
  213. }
  214. static void decode_qlogs(SnowContext *s){
  215. int plane_index, level, orientation;
  216. for(plane_index=0; plane_index<3; plane_index++){
  217. for(level=0; level<s->spatial_decomposition_count; level++){
  218. for(orientation=level ? 1:0; orientation<4; orientation++){
  219. int q;
  220. if (plane_index==2) q= s->plane[1].band[level][orientation].qlog;
  221. else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog;
  222. else q= get_symbol(&s->c, s->header_state, 1);
  223. s->plane[plane_index].band[level][orientation].qlog= q;
  224. }
  225. }
  226. }
  227. }
  228. #define GET_S(dst, check) \
  229. tmp= get_symbol(&s->c, s->header_state, 0);\
  230. if(!(check)){\
  231. av_log(s->avctx, AV_LOG_ERROR, "Error " #dst " is %d\n", tmp);\
  232. return -1;\
  233. }\
  234. dst= tmp;
  235. static int decode_header(SnowContext *s){
  236. int plane_index, tmp;
  237. uint8_t kstate[32];
  238. memset(kstate, MID_STATE, sizeof(kstate));
  239. s->keyframe= get_rac(&s->c, kstate);
  240. if(s->keyframe || s->always_reset){
  241. ff_snow_reset_contexts(s);
  242. s->spatial_decomposition_type=
  243. s->qlog=
  244. s->qbias=
  245. s->mv_scale=
  246. s->block_max_depth= 0;
  247. }
  248. if(s->keyframe){
  249. GET_S(s->version, tmp <= 0U)
  250. s->always_reset= get_rac(&s->c, s->header_state);
  251. s->temporal_decomposition_type= get_symbol(&s->c, s->header_state, 0);
  252. s->temporal_decomposition_count= get_symbol(&s->c, s->header_state, 0);
  253. GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
  254. s->colorspace_type= get_symbol(&s->c, s->header_state, 0);
  255. s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0);
  256. s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0);
  257. s->spatial_scalability= get_rac(&s->c, s->header_state);
  258. // s->rate_scalability= get_rac(&s->c, s->header_state);
  259. GET_S(s->max_ref_frames, tmp < (unsigned)MAX_REF_FRAMES)
  260. s->max_ref_frames++;
  261. decode_qlogs(s);
  262. }
  263. if(!s->keyframe){
  264. if(get_rac(&s->c, s->header_state)){
  265. for(plane_index=0; plane_index<2; plane_index++){
  266. int htaps, i, sum=0;
  267. Plane *p= &s->plane[plane_index];
  268. p->diag_mc= get_rac(&s->c, s->header_state);
  269. htaps= get_symbol(&s->c, s->header_state, 0)*2 + 2;
  270. if((unsigned)htaps > HTAPS_MAX || htaps==0)
  271. return -1;
  272. p->htaps= htaps;
  273. for(i= htaps/2; i; i--){
  274. p->hcoeff[i]= get_symbol(&s->c, s->header_state, 0) * (1-2*(i&1));
  275. sum += p->hcoeff[i];
  276. }
  277. p->hcoeff[0]= 32-sum;
  278. }
  279. s->plane[2].diag_mc= s->plane[1].diag_mc;
  280. s->plane[2].htaps = s->plane[1].htaps;
  281. memcpy(s->plane[2].hcoeff, s->plane[1].hcoeff, sizeof(s->plane[1].hcoeff));
  282. }
  283. if(get_rac(&s->c, s->header_state)){
  284. GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
  285. decode_qlogs(s);
  286. }
  287. }
  288. s->spatial_decomposition_type+= get_symbol(&s->c, s->header_state, 1);
  289. if(s->spatial_decomposition_type > 1U){
  290. av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported", s->spatial_decomposition_type);
  291. return -1;
  292. }
  293. if(FFMIN(s->avctx-> width>>s->chroma_h_shift,
  294. s->avctx->height>>s->chroma_v_shift) >> (s->spatial_decomposition_count-1) <= 0){
  295. av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_count %d too large for size", s->spatial_decomposition_count);
  296. return -1;
  297. }
  298. if (s->chroma_h_shift != 1 || s->chroma_v_shift != 1) {
  299. av_log(s->avctx, AV_LOG_ERROR, "Invalid chroma shift\n");
  300. return AVERROR_PATCHWELCOME;
  301. }
  302. s->qlog += get_symbol(&s->c, s->header_state, 1);
  303. s->mv_scale += get_symbol(&s->c, s->header_state, 1);
  304. s->qbias += get_symbol(&s->c, s->header_state, 1);
  305. s->block_max_depth+= get_symbol(&s->c, s->header_state, 1);
  306. if(s->block_max_depth > 1 || s->block_max_depth < 0){
  307. av_log(s->avctx, AV_LOG_ERROR, "block_max_depth= %d is too large", s->block_max_depth);
  308. s->block_max_depth= 0;
  309. return -1;
  310. }
  311. return 0;
  312. }
  313. static av_cold int decode_init(AVCodecContext *avctx)
  314. {
  315. avctx->pix_fmt= PIX_FMT_YUV420P;
  316. ff_snow_common_init(avctx);
  317. return 0;
  318. }
  319. static int decode_blocks(SnowContext *s){
  320. int x, y;
  321. int w= s->b_width;
  322. int h= s->b_height;
  323. int res;
  324. for(y=0; y<h; y++){
  325. for(x=0; x<w; x++){
  326. if ((res = decode_q_branch(s, 0, x, y)) < 0)
  327. return res;
  328. }
  329. }
  330. return 0;
  331. }
  332. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  333. const uint8_t *buf = avpkt->data;
  334. int buf_size = avpkt->size;
  335. SnowContext *s = avctx->priv_data;
  336. RangeCoder * const c= &s->c;
  337. int bytes_read;
  338. AVFrame *picture = data;
  339. int level, orientation, plane_index;
  340. int res;
  341. ff_init_range_decoder(c, buf, buf_size);
  342. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  343. s->current_picture.pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
  344. if(decode_header(s)<0)
  345. return -1;
  346. ff_snow_common_init_after_header(avctx);
  347. // realloc slice buffer for the case that spatial_decomposition_count changed
  348. ff_slice_buffer_destroy(&s->sb);
  349. ff_slice_buffer_init(&s->sb, s->plane[0].height, (MB_SIZE >> s->block_max_depth) + s->spatial_decomposition_count * 8 + 1, s->plane[0].width, s->spatial_idwt_buffer);
  350. for(plane_index=0; plane_index<3; plane_index++){
  351. Plane *p= &s->plane[plane_index];
  352. p->fast_mc= p->diag_mc && p->htaps==6 && p->hcoeff[0]==40
  353. && p->hcoeff[1]==-10
  354. && p->hcoeff[2]==2;
  355. }
  356. ff_snow_alloc_blocks(s);
  357. if(ff_snow_frame_start(s) < 0)
  358. return -1;
  359. //keyframe flag duplication mess FIXME
  360. if(avctx->debug&FF_DEBUG_PICT_INFO)
  361. av_log(avctx, AV_LOG_ERROR, "keyframe:%d qlog:%d\n", s->keyframe, s->qlog);
  362. if ((res = decode_blocks(s)) < 0)
  363. return res;
  364. for(plane_index=0; plane_index<3; plane_index++){
  365. Plane *p= &s->plane[plane_index];
  366. int w= p->width;
  367. int h= p->height;
  368. int x, y;
  369. int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */
  370. if(s->avctx->debug&2048){
  371. memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h);
  372. predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
  373. for(y=0; y<h; y++){
  374. for(x=0; x<w; x++){
  375. int v= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x];
  376. s->mconly_picture.data[plane_index][y*s->mconly_picture.linesize[plane_index] + x]= v;
  377. }
  378. }
  379. }
  380. {
  381. for(level=0; level<s->spatial_decomposition_count; level++){
  382. for(orientation=level ? 1 : 0; orientation<4; orientation++){
  383. SubBand *b= &p->band[level][orientation];
  384. unpack_coeffs(s, b, b->parent, orientation);
  385. }
  386. }
  387. }
  388. {
  389. const int mb_h= s->b_height << s->block_max_depth;
  390. const int block_size = MB_SIZE >> s->block_max_depth;
  391. const int block_w = plane_index ? block_size/2 : block_size;
  392. int mb_y;
  393. DWTCompose cs[MAX_DECOMPOSITIONS];
  394. int yd=0, yq=0;
  395. int y;
  396. int end_y;
  397. ff_spatial_idwt_buffered_init(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count);
  398. for(mb_y=0; mb_y<=mb_h; mb_y++){
  399. int slice_starty = block_w*mb_y;
  400. int slice_h = block_w*(mb_y+1);
  401. if (!(s->keyframe || s->avctx->debug&512)){
  402. slice_starty = FFMAX(0, slice_starty - (block_w >> 1));
  403. slice_h -= (block_w >> 1);
  404. }
  405. for(level=0; level<s->spatial_decomposition_count; level++){
  406. for(orientation=level ? 1 : 0; orientation<4; orientation++){
  407. SubBand *b= &p->band[level][orientation];
  408. int start_y;
  409. int end_y;
  410. int our_mb_start = mb_y;
  411. int our_mb_end = (mb_y + 1);
  412. const int extra= 3;
  413. start_y = (mb_y ? ((block_w * our_mb_start) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra: 0);
  414. end_y = (((block_w * our_mb_end) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra);
  415. if (!(s->keyframe || s->avctx->debug&512)){
  416. start_y = FFMAX(0, start_y - (block_w >> (1+s->spatial_decomposition_count - level)));
  417. end_y = FFMAX(0, end_y - (block_w >> (1+s->spatial_decomposition_count - level)));
  418. }
  419. start_y = FFMIN(b->height, start_y);
  420. end_y = FFMIN(b->height, end_y);
  421. if (start_y != end_y){
  422. if (orientation == 0){
  423. SubBand * correlate_band = &p->band[0][0];
  424. int correlate_end_y = FFMIN(b->height, end_y + 1);
  425. int correlate_start_y = FFMIN(b->height, (start_y ? start_y + 1 : 0));
  426. decode_subband_slice_buffered(s, correlate_band, &s->sb, correlate_start_y, correlate_end_y, decode_state[0][0]);
  427. correlate_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, 1, 0, correlate_start_y, correlate_end_y);
  428. dequantize_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, start_y, end_y);
  429. }
  430. else
  431. decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]);
  432. }
  433. }
  434. }
  435. for(; yd<slice_h; yd+=4){
  436. ff_spatial_idwt_buffered_slice(&s->dwt, cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count, yd);
  437. }
  438. if(s->qlog == LOSSLESS_QLOG){
  439. for(; yq<slice_h && yq<h; yq++){
  440. IDWTELEM * line = slice_buffer_get_line(&s->sb, yq);
  441. for(x=0; x<w; x++){
  442. line[x] <<= FRAC_BITS;
  443. }
  444. }
  445. }
  446. predict_slice_buffered(s, &s->sb, s->spatial_idwt_buffer, plane_index, 1, mb_y);
  447. y = FFMIN(p->height, slice_starty);
  448. end_y = FFMIN(p->height, slice_h);
  449. while(y < end_y)
  450. ff_slice_buffer_release(&s->sb, y++);
  451. }
  452. ff_slice_buffer_flush(&s->sb);
  453. }
  454. }
  455. emms_c();
  456. ff_snow_release_buffer(avctx);
  457. if(!(s->avctx->debug&2048))
  458. *picture= s->current_picture;
  459. else
  460. *picture= s->mconly_picture;
  461. *data_size = sizeof(AVFrame);
  462. bytes_read= c->bytestream - c->bytestream_start;
  463. if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME
  464. return bytes_read;
  465. }
  466. static av_cold int decode_end(AVCodecContext *avctx)
  467. {
  468. SnowContext *s = avctx->priv_data;
  469. ff_slice_buffer_destroy(&s->sb);
  470. ff_snow_common_end(s);
  471. return 0;
  472. }
  473. AVCodec ff_snow_decoder = {
  474. .name = "snow",
  475. .type = AVMEDIA_TYPE_VIDEO,
  476. .id = CODEC_ID_SNOW,
  477. .priv_data_size = sizeof(SnowContext),
  478. .init = decode_init,
  479. .close = decode_end,
  480. .decode = decode_frame,
  481. .capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/,
  482. .long_name = NULL_IF_CONFIG_SMALL("Snow"),
  483. };