You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1045 lines
38KB

  1. /*
  2. * MPEG-4 Parametric Stereo decoding functions
  3. * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <stdint.h>
  22. #include "libavutil/common.h"
  23. #include "libavutil/mathematics.h"
  24. #include "avcodec.h"
  25. #include "get_bits.h"
  26. #include "aacps.h"
  27. #include "aacps_tablegen.h"
  28. #include "aacpsdata.c"
  29. #define PS_BASELINE 0 ///< Operate in Baseline PS mode
  30. ///< Baseline implies 10 or 20 stereo bands,
  31. ///< mixing mode A, and no ipd/opd
  32. #define numQMFSlots 32 //numTimeSlots * RATE
  33. static const int8_t num_env_tab[2][4] = {
  34. { 0, 1, 2, 4, },
  35. { 1, 2, 3, 4, },
  36. };
  37. static const int8_t nr_iidicc_par_tab[] = {
  38. 10, 20, 34, 10, 20, 34,
  39. };
  40. static const int8_t nr_iidopd_par_tab[] = {
  41. 5, 11, 17, 5, 11, 17,
  42. };
  43. enum {
  44. huff_iid_df1,
  45. huff_iid_dt1,
  46. huff_iid_df0,
  47. huff_iid_dt0,
  48. huff_icc_df,
  49. huff_icc_dt,
  50. huff_ipd_df,
  51. huff_ipd_dt,
  52. huff_opd_df,
  53. huff_opd_dt,
  54. };
  55. static const int huff_iid[] = {
  56. huff_iid_df0,
  57. huff_iid_df1,
  58. huff_iid_dt0,
  59. huff_iid_dt1,
  60. };
  61. static VLC vlc_ps[10];
  62. #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
  63. /** \
  64. * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \
  65. * Inter-channel Phase Difference/Overall Phase Difference parameters from the \
  66. * bitstream. \
  67. * \
  68. * @param avctx contains the current codec context \
  69. * @param gb pointer to the input bitstream \
  70. * @param ps pointer to the Parametric Stereo context \
  71. * @param PAR pointer to the parameter to be read \
  72. * @param e envelope to decode \
  73. * @param dt 1: time delta-coded, 0: frequency delta-coded \
  74. */ \
  75. static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
  76. int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
  77. { \
  78. int b, num = ps->nr_ ## PAR ## _par; \
  79. VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
  80. if (dt) { \
  81. int e_prev = e ? e - 1 : ps->num_env_old - 1; \
  82. e_prev = FFMAX(e_prev, 0); \
  83. for (b = 0; b < num; b++) { \
  84. int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  85. if (MASK) val &= MASK; \
  86. PAR[e][b] = val; \
  87. if (ERR_CONDITION) \
  88. goto err; \
  89. } \
  90. } else { \
  91. int val = 0; \
  92. for (b = 0; b < num; b++) { \
  93. val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  94. if (MASK) val &= MASK; \
  95. PAR[e][b] = val; \
  96. if (ERR_CONDITION) \
  97. goto err; \
  98. } \
  99. } \
  100. return 0; \
  101. err: \
  102. av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
  103. return -1; \
  104. }
  105. READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
  106. READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U)
  107. READ_PAR_DATA(ipdopd, 0, 0x07, 0)
  108. static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
  109. {
  110. int e;
  111. int count = get_bits_count(gb);
  112. if (ps_extension_id)
  113. return 0;
  114. ps->enable_ipdopd = get_bits1(gb);
  115. if (ps->enable_ipdopd) {
  116. for (e = 0; e < ps->num_env; e++) {
  117. int dt = get_bits1(gb);
  118. read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
  119. dt = get_bits1(gb);
  120. read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
  121. }
  122. }
  123. skip_bits1(gb); //reserved_ps
  124. return get_bits_count(gb) - count;
  125. }
  126. static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist)
  127. {
  128. int i;
  129. for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
  130. opd_hist[i] = 0;
  131. ipd_hist[i] = 0;
  132. }
  133. }
  134. int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
  135. {
  136. int e;
  137. int bit_count_start = get_bits_count(gb_host);
  138. int header;
  139. int bits_consumed;
  140. GetBitContext gbc = *gb_host, *gb = &gbc;
  141. header = get_bits1(gb);
  142. if (header) { //enable_ps_header
  143. ps->enable_iid = get_bits1(gb);
  144. if (ps->enable_iid) {
  145. int iid_mode = get_bits(gb, 3);
  146. if (iid_mode > 5) {
  147. av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
  148. iid_mode);
  149. goto err;
  150. }
  151. ps->nr_iid_par = nr_iidicc_par_tab[iid_mode];
  152. ps->iid_quant = iid_mode > 2;
  153. ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
  154. }
  155. ps->enable_icc = get_bits1(gb);
  156. if (ps->enable_icc) {
  157. ps->icc_mode = get_bits(gb, 3);
  158. if (ps->icc_mode > 5) {
  159. av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
  160. ps->icc_mode);
  161. goto err;
  162. }
  163. ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
  164. }
  165. ps->enable_ext = get_bits1(gb);
  166. }
  167. ps->frame_class = get_bits1(gb);
  168. ps->num_env_old = ps->num_env;
  169. ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)];
  170. ps->border_position[0] = -1;
  171. if (ps->frame_class) {
  172. for (e = 1; e <= ps->num_env; e++)
  173. ps->border_position[e] = get_bits(gb, 5);
  174. } else
  175. for (e = 1; e <= ps->num_env; e++)
  176. ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
  177. if (ps->enable_iid) {
  178. for (e = 0; e < ps->num_env; e++) {
  179. int dt = get_bits1(gb);
  180. if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
  181. goto err;
  182. }
  183. } else
  184. memset(ps->iid_par, 0, sizeof(ps->iid_par));
  185. if (ps->enable_icc)
  186. for (e = 0; e < ps->num_env; e++) {
  187. int dt = get_bits1(gb);
  188. if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
  189. goto err;
  190. }
  191. else
  192. memset(ps->icc_par, 0, sizeof(ps->icc_par));
  193. if (ps->enable_ext) {
  194. int cnt = get_bits(gb, 4);
  195. if (cnt == 15) {
  196. cnt += get_bits(gb, 8);
  197. }
  198. cnt *= 8;
  199. while (cnt > 7) {
  200. int ps_extension_id = get_bits(gb, 2);
  201. cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
  202. }
  203. if (cnt < 0) {
  204. av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt);
  205. goto err;
  206. }
  207. skip_bits(gb, cnt);
  208. }
  209. ps->enable_ipdopd &= !PS_BASELINE;
  210. //Fix up envelopes
  211. if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
  212. //Create a fake envelope
  213. int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
  214. if (source >= 0 && source != ps->num_env) {
  215. if (ps->enable_iid) {
  216. memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
  217. }
  218. if (ps->enable_icc) {
  219. memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
  220. }
  221. if (ps->enable_ipdopd) {
  222. memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
  223. memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
  224. }
  225. }
  226. ps->num_env++;
  227. ps->border_position[ps->num_env] = numQMFSlots - 1;
  228. }
  229. ps->is34bands_old = ps->is34bands;
  230. if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
  231. ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
  232. (ps->enable_icc && ps->nr_icc_par == 34);
  233. //Baseline
  234. if (!ps->enable_ipdopd) {
  235. memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  236. memset(ps->opd_par, 0, sizeof(ps->opd_par));
  237. }
  238. if (header)
  239. ps->start = 1;
  240. bits_consumed = get_bits_count(gb) - bit_count_start;
  241. if (bits_consumed <= bits_left) {
  242. skip_bits_long(gb_host, bits_consumed);
  243. return bits_consumed;
  244. }
  245. av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
  246. err:
  247. ps->start = 0;
  248. skip_bits_long(gb_host, bits_left);
  249. memset(ps->iid_par, 0, sizeof(ps->iid_par));
  250. memset(ps->icc_par, 0, sizeof(ps->icc_par));
  251. memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  252. memset(ps->opd_par, 0, sizeof(ps->opd_par));
  253. return bits_left;
  254. }
  255. /** Split one subband into 2 subsubbands with a symmetric real filter.
  256. * The filter must have its non-center even coefficients equal to zero. */
  257. static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[7], int len, int reverse)
  258. {
  259. int i, j;
  260. for (i = 0; i < len; i++, in++) {
  261. float re_in = filter[6] * in[6][0]; //real inphase
  262. float re_op = 0.0f; //real out of phase
  263. float im_in = filter[6] * in[6][1]; //imag inphase
  264. float im_op = 0.0f; //imag out of phase
  265. for (j = 0; j < 6; j += 2) {
  266. re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
  267. im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
  268. }
  269. out[ reverse][i][0] = re_in + re_op;
  270. out[ reverse][i][1] = im_in + im_op;
  271. out[!reverse][i][0] = re_in - re_op;
  272. out[!reverse][i][1] = im_in - im_op;
  273. }
  274. }
  275. /** Split one subband into 6 subsubbands with a complex filter */
  276. static void hybrid6_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int len)
  277. {
  278. int i, j, ssb;
  279. int N = 8;
  280. float temp[8][2];
  281. for (i = 0; i < len; i++, in++) {
  282. for (ssb = 0; ssb < N; ssb++) {
  283. float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1];
  284. for (j = 0; j < 6; j++) {
  285. float in0_re = in[j][0];
  286. float in0_im = in[j][1];
  287. float in1_re = in[12-j][0];
  288. float in1_im = in[12-j][1];
  289. sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
  290. sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
  291. }
  292. temp[ssb][0] = sum_re;
  293. temp[ssb][1] = sum_im;
  294. }
  295. out[0][i][0] = temp[6][0];
  296. out[0][i][1] = temp[6][1];
  297. out[1][i][0] = temp[7][0];
  298. out[1][i][1] = temp[7][1];
  299. out[2][i][0] = temp[0][0];
  300. out[2][i][1] = temp[0][1];
  301. out[3][i][0] = temp[1][0];
  302. out[3][i][1] = temp[1][1];
  303. out[4][i][0] = temp[2][0] + temp[5][0];
  304. out[4][i][1] = temp[2][1] + temp[5][1];
  305. out[5][i][0] = temp[3][0] + temp[4][0];
  306. out[5][i][1] = temp[3][1] + temp[4][1];
  307. }
  308. }
  309. static void hybrid4_8_12_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int N, int len)
  310. {
  311. int i, j, ssb;
  312. for (i = 0; i < len; i++, in++) {
  313. for (ssb = 0; ssb < N; ssb++) {
  314. float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1];
  315. for (j = 0; j < 6; j++) {
  316. float in0_re = in[j][0];
  317. float in0_im = in[j][1];
  318. float in1_re = in[12-j][0];
  319. float in1_im = in[12-j][1];
  320. sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
  321. sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
  322. }
  323. out[ssb][i][0] = sum_re;
  324. out[ssb][i][1] = sum_im;
  325. }
  326. }
  327. }
  328. static void hybrid_analysis(float out[91][32][2], float in[5][44][2], float L[2][38][64], int is34, int len)
  329. {
  330. int i, j;
  331. for (i = 0; i < 5; i++) {
  332. for (j = 0; j < 38; j++) {
  333. in[i][j+6][0] = L[0][j][i];
  334. in[i][j+6][1] = L[1][j][i];
  335. }
  336. }
  337. if (is34) {
  338. hybrid4_8_12_cx(in[0], out, f34_0_12, 12, len);
  339. hybrid4_8_12_cx(in[1], out+12, f34_1_8, 8, len);
  340. hybrid4_8_12_cx(in[2], out+20, f34_2_4, 4, len);
  341. hybrid4_8_12_cx(in[3], out+24, f34_2_4, 4, len);
  342. hybrid4_8_12_cx(in[4], out+28, f34_2_4, 4, len);
  343. for (i = 0; i < 59; i++) {
  344. for (j = 0; j < len; j++) {
  345. out[i+32][j][0] = L[0][j][i+5];
  346. out[i+32][j][1] = L[1][j][i+5];
  347. }
  348. }
  349. } else {
  350. hybrid6_cx(in[0], out, f20_0_8, len);
  351. hybrid2_re(in[1], out+6, g1_Q2, len, 1);
  352. hybrid2_re(in[2], out+8, g1_Q2, len, 0);
  353. for (i = 0; i < 61; i++) {
  354. for (j = 0; j < len; j++) {
  355. out[i+10][j][0] = L[0][j][i+3];
  356. out[i+10][j][1] = L[1][j][i+3];
  357. }
  358. }
  359. }
  360. //update in_buf
  361. for (i = 0; i < 5; i++) {
  362. memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
  363. }
  364. }
  365. static void hybrid_synthesis(float out[2][38][64], float in[91][32][2], int is34, int len)
  366. {
  367. int i, n;
  368. if (is34) {
  369. for (n = 0; n < len; n++) {
  370. memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
  371. memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
  372. for (i = 0; i < 12; i++) {
  373. out[0][n][0] += in[ i][n][0];
  374. out[1][n][0] += in[ i][n][1];
  375. }
  376. for (i = 0; i < 8; i++) {
  377. out[0][n][1] += in[12+i][n][0];
  378. out[1][n][1] += in[12+i][n][1];
  379. }
  380. for (i = 0; i < 4; i++) {
  381. out[0][n][2] += in[20+i][n][0];
  382. out[1][n][2] += in[20+i][n][1];
  383. out[0][n][3] += in[24+i][n][0];
  384. out[1][n][3] += in[24+i][n][1];
  385. out[0][n][4] += in[28+i][n][0];
  386. out[1][n][4] += in[28+i][n][1];
  387. }
  388. }
  389. for (i = 0; i < 59; i++) {
  390. for (n = 0; n < len; n++) {
  391. out[0][n][i+5] = in[i+32][n][0];
  392. out[1][n][i+5] = in[i+32][n][1];
  393. }
  394. }
  395. } else {
  396. for (n = 0; n < len; n++) {
  397. out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
  398. in[3][n][0] + in[4][n][0] + in[5][n][0];
  399. out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
  400. in[3][n][1] + in[4][n][1] + in[5][n][1];
  401. out[0][n][1] = in[6][n][0] + in[7][n][0];
  402. out[1][n][1] = in[6][n][1] + in[7][n][1];
  403. out[0][n][2] = in[8][n][0] + in[9][n][0];
  404. out[1][n][2] = in[8][n][1] + in[9][n][1];
  405. }
  406. for (i = 0; i < 61; i++) {
  407. for (n = 0; n < len; n++) {
  408. out[0][n][i+3] = in[i+10][n][0];
  409. out[1][n][i+3] = in[i+10][n][1];
  410. }
  411. }
  412. }
  413. }
  414. /// All-pass filter decay slope
  415. #define DECAY_SLOPE 0.05f
  416. /// Number of frequency bands that can be addressed by the parameter index, b(k)
  417. static const int NR_PAR_BANDS[] = { 20, 34 };
  418. /// Number of frequency bands that can be addressed by the sub subband index, k
  419. static const int NR_BANDS[] = { 71, 91 };
  420. /// Start frequency band for the all-pass filter decay slope
  421. static const int DECAY_CUTOFF[] = { 10, 32 };
  422. /// Number of all-pass filer bands
  423. static const int NR_ALLPASS_BANDS[] = { 30, 50 };
  424. /// First stereo band using the short one sample delay
  425. static const int SHORT_DELAY_BAND[] = { 42, 62 };
  426. /** Table 8.46 */
  427. static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
  428. {
  429. int b;
  430. if (full)
  431. b = 9;
  432. else {
  433. b = 4;
  434. par_mapped[10] = 0;
  435. }
  436. for (; b >= 0; b--) {
  437. par_mapped[2*b+1] = par_mapped[2*b] = par[b];
  438. }
  439. }
  440. static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
  441. {
  442. par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
  443. par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
  444. par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
  445. par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
  446. par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
  447. par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
  448. par_mapped[ 6] = par[10];
  449. par_mapped[ 7] = par[11];
  450. par_mapped[ 8] = ( par[12] + par[13]) / 2;
  451. par_mapped[ 9] = ( par[14] + par[15]) / 2;
  452. par_mapped[10] = par[16];
  453. if (full) {
  454. par_mapped[11] = par[17];
  455. par_mapped[12] = par[18];
  456. par_mapped[13] = par[19];
  457. par_mapped[14] = ( par[20] + par[21]) / 2;
  458. par_mapped[15] = ( par[22] + par[23]) / 2;
  459. par_mapped[16] = ( par[24] + par[25]) / 2;
  460. par_mapped[17] = ( par[26] + par[27]) / 2;
  461. par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
  462. par_mapped[19] = ( par[32] + par[33]) / 2;
  463. }
  464. }
  465. static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
  466. {
  467. par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
  468. par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
  469. par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
  470. par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
  471. par[ 4] = ( par[ 6] + par[ 7]) * 0.5f;
  472. par[ 5] = ( par[ 8] + par[ 9]) * 0.5f;
  473. par[ 6] = par[10];
  474. par[ 7] = par[11];
  475. par[ 8] = ( par[12] + par[13]) * 0.5f;
  476. par[ 9] = ( par[14] + par[15]) * 0.5f;
  477. par[10] = par[16];
  478. par[11] = par[17];
  479. par[12] = par[18];
  480. par[13] = par[19];
  481. par[14] = ( par[20] + par[21]) * 0.5f;
  482. par[15] = ( par[22] + par[23]) * 0.5f;
  483. par[16] = ( par[24] + par[25]) * 0.5f;
  484. par[17] = ( par[26] + par[27]) * 0.5f;
  485. par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
  486. par[19] = ( par[32] + par[33]) * 0.5f;
  487. }
  488. static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
  489. {
  490. if (full) {
  491. par_mapped[33] = par[9];
  492. par_mapped[32] = par[9];
  493. par_mapped[31] = par[9];
  494. par_mapped[30] = par[9];
  495. par_mapped[29] = par[9];
  496. par_mapped[28] = par[9];
  497. par_mapped[27] = par[8];
  498. par_mapped[26] = par[8];
  499. par_mapped[25] = par[8];
  500. par_mapped[24] = par[8];
  501. par_mapped[23] = par[7];
  502. par_mapped[22] = par[7];
  503. par_mapped[21] = par[7];
  504. par_mapped[20] = par[7];
  505. par_mapped[19] = par[6];
  506. par_mapped[18] = par[6];
  507. par_mapped[17] = par[5];
  508. par_mapped[16] = par[5];
  509. } else {
  510. par_mapped[16] = 0;
  511. }
  512. par_mapped[15] = par[4];
  513. par_mapped[14] = par[4];
  514. par_mapped[13] = par[4];
  515. par_mapped[12] = par[4];
  516. par_mapped[11] = par[3];
  517. par_mapped[10] = par[3];
  518. par_mapped[ 9] = par[2];
  519. par_mapped[ 8] = par[2];
  520. par_mapped[ 7] = par[2];
  521. par_mapped[ 6] = par[2];
  522. par_mapped[ 5] = par[1];
  523. par_mapped[ 4] = par[1];
  524. par_mapped[ 3] = par[1];
  525. par_mapped[ 2] = par[0];
  526. par_mapped[ 1] = par[0];
  527. par_mapped[ 0] = par[0];
  528. }
  529. static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
  530. {
  531. if (full) {
  532. par_mapped[33] = par[19];
  533. par_mapped[32] = par[19];
  534. par_mapped[31] = par[18];
  535. par_mapped[30] = par[18];
  536. par_mapped[29] = par[18];
  537. par_mapped[28] = par[18];
  538. par_mapped[27] = par[17];
  539. par_mapped[26] = par[17];
  540. par_mapped[25] = par[16];
  541. par_mapped[24] = par[16];
  542. par_mapped[23] = par[15];
  543. par_mapped[22] = par[15];
  544. par_mapped[21] = par[14];
  545. par_mapped[20] = par[14];
  546. par_mapped[19] = par[13];
  547. par_mapped[18] = par[12];
  548. par_mapped[17] = par[11];
  549. }
  550. par_mapped[16] = par[10];
  551. par_mapped[15] = par[ 9];
  552. par_mapped[14] = par[ 9];
  553. par_mapped[13] = par[ 8];
  554. par_mapped[12] = par[ 8];
  555. par_mapped[11] = par[ 7];
  556. par_mapped[10] = par[ 6];
  557. par_mapped[ 9] = par[ 5];
  558. par_mapped[ 8] = par[ 5];
  559. par_mapped[ 7] = par[ 4];
  560. par_mapped[ 6] = par[ 4];
  561. par_mapped[ 5] = par[ 3];
  562. par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
  563. par_mapped[ 3] = par[ 2];
  564. par_mapped[ 2] = par[ 1];
  565. par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
  566. par_mapped[ 0] = par[ 0];
  567. }
  568. static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
  569. {
  570. par[33] = par[19];
  571. par[32] = par[19];
  572. par[31] = par[18];
  573. par[30] = par[18];
  574. par[29] = par[18];
  575. par[28] = par[18];
  576. par[27] = par[17];
  577. par[26] = par[17];
  578. par[25] = par[16];
  579. par[24] = par[16];
  580. par[23] = par[15];
  581. par[22] = par[15];
  582. par[21] = par[14];
  583. par[20] = par[14];
  584. par[19] = par[13];
  585. par[18] = par[12];
  586. par[17] = par[11];
  587. par[16] = par[10];
  588. par[15] = par[ 9];
  589. par[14] = par[ 9];
  590. par[13] = par[ 8];
  591. par[12] = par[ 8];
  592. par[11] = par[ 7];
  593. par[10] = par[ 6];
  594. par[ 9] = par[ 5];
  595. par[ 8] = par[ 5];
  596. par[ 7] = par[ 4];
  597. par[ 6] = par[ 4];
  598. par[ 5] = par[ 3];
  599. par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
  600. par[ 3] = par[ 2];
  601. par[ 2] = par[ 1];
  602. par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
  603. par[ 0] = par[ 0];
  604. }
  605. static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
  606. {
  607. float power[34][PS_QMF_TIME_SLOTS] = {{0}};
  608. float transient_gain[34][PS_QMF_TIME_SLOTS];
  609. float *peak_decay_nrg = ps->peak_decay_nrg;
  610. float *power_smooth = ps->power_smooth;
  611. float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
  612. float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
  613. float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
  614. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  615. const float peak_decay_factor = 0.76592833836465f;
  616. const float transient_impact = 1.5f;
  617. const float a_smooth = 0.25f; ///< Smoothing coefficient
  618. int i, k, m, n;
  619. int n0 = 0, nL = 32;
  620. static const int link_delay[] = { 3, 4, 5 };
  621. static const float a[] = { 0.65143905753106f,
  622. 0.56471812200776f,
  623. 0.48954165955695f };
  624. if (is34 != ps->is34bands_old) {
  625. memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
  626. memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
  627. memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
  628. memset(ps->delay, 0, sizeof(ps->delay));
  629. memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
  630. }
  631. for (n = n0; n < nL; n++) {
  632. for (k = 0; k < NR_BANDS[is34]; k++) {
  633. int i = k_to_i[k];
  634. power[i][n] += s[k][n][0] * s[k][n][0] + s[k][n][1] * s[k][n][1];
  635. }
  636. }
  637. //Transient detection
  638. for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
  639. for (n = n0; n < nL; n++) {
  640. float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
  641. float denom;
  642. peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
  643. power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
  644. peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
  645. denom = transient_impact * peak_decay_diff_smooth[i];
  646. transient_gain[i][n] = (denom > power_smooth[i]) ?
  647. power_smooth[i] / denom : 1.0f;
  648. }
  649. }
  650. //Decorrelation and transient reduction
  651. // PS_AP_LINKS - 1
  652. // -----
  653. // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
  654. //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
  655. // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
  656. // m = 0
  657. //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
  658. for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
  659. int b = k_to_i[k];
  660. float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
  661. float ag[PS_AP_LINKS];
  662. g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
  663. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  664. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  665. for (m = 0; m < PS_AP_LINKS; m++) {
  666. memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
  667. ag[m] = a[m] * g_decay_slope;
  668. }
  669. for (n = n0; n < nL; n++) {
  670. float in_re = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][0] -
  671. delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][1];
  672. float in_im = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][1] +
  673. delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][0];
  674. for (m = 0; m < PS_AP_LINKS; m++) {
  675. float a_re = ag[m] * in_re;
  676. float a_im = ag[m] * in_im;
  677. float link_delay_re = ap_delay[k][m][n+5-link_delay[m]][0];
  678. float link_delay_im = ap_delay[k][m][n+5-link_delay[m]][1];
  679. float fractional_delay_re = Q_fract_allpass[is34][k][m][0];
  680. float fractional_delay_im = Q_fract_allpass[is34][k][m][1];
  681. ap_delay[k][m][n+5][0] = in_re;
  682. ap_delay[k][m][n+5][1] = in_im;
  683. in_re = link_delay_re * fractional_delay_re - link_delay_im * fractional_delay_im - a_re;
  684. in_im = link_delay_re * fractional_delay_im + link_delay_im * fractional_delay_re - a_im;
  685. ap_delay[k][m][n+5][0] += ag[m] * in_re;
  686. ap_delay[k][m][n+5][1] += ag[m] * in_im;
  687. }
  688. out[k][n][0] = transient_gain[b][n] * in_re;
  689. out[k][n][1] = transient_gain[b][n] * in_im;
  690. }
  691. }
  692. for (; k < SHORT_DELAY_BAND[is34]; k++) {
  693. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  694. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  695. for (n = n0; n < nL; n++) {
  696. //H = delay 14
  697. out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][0];
  698. out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][1];
  699. }
  700. }
  701. for (; k < NR_BANDS[is34]; k++) {
  702. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  703. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  704. for (n = n0; n < nL; n++) {
  705. //H = delay 1
  706. out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][0];
  707. out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][1];
  708. }
  709. }
  710. }
  711. static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  712. int8_t (*par)[PS_MAX_NR_IIDICC],
  713. int num_par, int num_env, int full)
  714. {
  715. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  716. int e;
  717. if (num_par == 20 || num_par == 11) {
  718. for (e = 0; e < num_env; e++) {
  719. map_idx_20_to_34(par_mapped[e], par[e], full);
  720. }
  721. } else if (num_par == 10 || num_par == 5) {
  722. for (e = 0; e < num_env; e++) {
  723. map_idx_10_to_34(par_mapped[e], par[e], full);
  724. }
  725. } else {
  726. *p_par_mapped = par;
  727. }
  728. }
  729. static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  730. int8_t (*par)[PS_MAX_NR_IIDICC],
  731. int num_par, int num_env, int full)
  732. {
  733. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  734. int e;
  735. if (num_par == 34 || num_par == 17) {
  736. for (e = 0; e < num_env; e++) {
  737. map_idx_34_to_20(par_mapped[e], par[e], full);
  738. }
  739. } else if (num_par == 10 || num_par == 5) {
  740. for (e = 0; e < num_env; e++) {
  741. map_idx_10_to_20(par_mapped[e], par[e], full);
  742. }
  743. } else {
  744. *p_par_mapped = par;
  745. }
  746. }
  747. static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
  748. {
  749. int e, b, k, n;
  750. float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
  751. float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
  752. float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
  753. float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
  754. int8_t *opd_hist = ps->opd_hist;
  755. int8_t *ipd_hist = ps->ipd_hist;
  756. int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  757. int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  758. int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  759. int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  760. int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
  761. int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
  762. int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
  763. int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
  764. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  765. const float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
  766. //Remapping
  767. if (ps->num_env_old) {
  768. memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
  769. memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
  770. memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
  771. memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
  772. memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
  773. memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
  774. memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
  775. memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
  776. }
  777. if (is34) {
  778. remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  779. remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  780. if (ps->enable_ipdopd) {
  781. remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  782. remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  783. }
  784. if (!ps->is34bands_old) {
  785. map_val_20_to_34(H11[0][0]);
  786. map_val_20_to_34(H11[1][0]);
  787. map_val_20_to_34(H12[0][0]);
  788. map_val_20_to_34(H12[1][0]);
  789. map_val_20_to_34(H21[0][0]);
  790. map_val_20_to_34(H21[1][0]);
  791. map_val_20_to_34(H22[0][0]);
  792. map_val_20_to_34(H22[1][0]);
  793. ipdopd_reset(ipd_hist, opd_hist);
  794. }
  795. } else {
  796. remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  797. remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  798. if (ps->enable_ipdopd) {
  799. remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  800. remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  801. }
  802. if (ps->is34bands_old) {
  803. map_val_34_to_20(H11[0][0]);
  804. map_val_34_to_20(H11[1][0]);
  805. map_val_34_to_20(H12[0][0]);
  806. map_val_34_to_20(H12[1][0]);
  807. map_val_34_to_20(H21[0][0]);
  808. map_val_34_to_20(H21[1][0]);
  809. map_val_34_to_20(H22[0][0]);
  810. map_val_34_to_20(H22[1][0]);
  811. ipdopd_reset(ipd_hist, opd_hist);
  812. }
  813. }
  814. //Mixing
  815. for (e = 0; e < ps->num_env; e++) {
  816. for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
  817. float h11, h12, h21, h22;
  818. h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
  819. h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
  820. h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
  821. h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
  822. if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) {
  823. //The spec say says to only run this smoother when enable_ipdopd
  824. //is set but the reference decoder appears to run it constantly
  825. float h11i, h12i, h21i, h22i;
  826. float ipd_adj_re, ipd_adj_im;
  827. int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
  828. int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
  829. float opd_re = pd_re_smooth[opd_idx];
  830. float opd_im = pd_im_smooth[opd_idx];
  831. float ipd_re = pd_re_smooth[ipd_idx];
  832. float ipd_im = pd_im_smooth[ipd_idx];
  833. opd_hist[b] = opd_idx & 0x3F;
  834. ipd_hist[b] = ipd_idx & 0x3F;
  835. ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
  836. ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
  837. h11i = h11 * opd_im;
  838. h11 = h11 * opd_re;
  839. h12i = h12 * ipd_adj_im;
  840. h12 = h12 * ipd_adj_re;
  841. h21i = h21 * opd_im;
  842. h21 = h21 * opd_re;
  843. h22i = h22 * ipd_adj_im;
  844. h22 = h22 * ipd_adj_re;
  845. H11[1][e+1][b] = h11i;
  846. H12[1][e+1][b] = h12i;
  847. H21[1][e+1][b] = h21i;
  848. H22[1][e+1][b] = h22i;
  849. }
  850. H11[0][e+1][b] = h11;
  851. H12[0][e+1][b] = h12;
  852. H21[0][e+1][b] = h21;
  853. H22[0][e+1][b] = h22;
  854. }
  855. for (k = 0; k < NR_BANDS[is34]; k++) {
  856. float h11r, h12r, h21r, h22r;
  857. float h11i, h12i, h21i, h22i;
  858. float h11r_step, h12r_step, h21r_step, h22r_step;
  859. float h11i_step, h12i_step, h21i_step, h22i_step;
  860. int start = ps->border_position[e];
  861. int stop = ps->border_position[e+1];
  862. float width = 1.f / (stop - start);
  863. b = k_to_i[k];
  864. h11r = H11[0][e][b];
  865. h12r = H12[0][e][b];
  866. h21r = H21[0][e][b];
  867. h22r = H22[0][e][b];
  868. if (!PS_BASELINE && ps->enable_ipdopd) {
  869. //Is this necessary? ps_04_new seems unchanged
  870. if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
  871. h11i = -H11[1][e][b];
  872. h12i = -H12[1][e][b];
  873. h21i = -H21[1][e][b];
  874. h22i = -H22[1][e][b];
  875. } else {
  876. h11i = H11[1][e][b];
  877. h12i = H12[1][e][b];
  878. h21i = H21[1][e][b];
  879. h22i = H22[1][e][b];
  880. }
  881. }
  882. //Interpolation
  883. h11r_step = (H11[0][e+1][b] - h11r) * width;
  884. h12r_step = (H12[0][e+1][b] - h12r) * width;
  885. h21r_step = (H21[0][e+1][b] - h21r) * width;
  886. h22r_step = (H22[0][e+1][b] - h22r) * width;
  887. if (!PS_BASELINE && ps->enable_ipdopd) {
  888. h11i_step = (H11[1][e+1][b] - h11i) * width;
  889. h12i_step = (H12[1][e+1][b] - h12i) * width;
  890. h21i_step = (H21[1][e+1][b] - h21i) * width;
  891. h22i_step = (H22[1][e+1][b] - h22i) * width;
  892. }
  893. for (n = start + 1; n <= stop; n++) {
  894. //l is s, r is d
  895. float l_re = l[k][n][0];
  896. float l_im = l[k][n][1];
  897. float r_re = r[k][n][0];
  898. float r_im = r[k][n][1];
  899. h11r += h11r_step;
  900. h12r += h12r_step;
  901. h21r += h21r_step;
  902. h22r += h22r_step;
  903. if (!PS_BASELINE && ps->enable_ipdopd) {
  904. h11i += h11i_step;
  905. h12i += h12i_step;
  906. h21i += h21i_step;
  907. h22i += h22i_step;
  908. l[k][n][0] = h11r*l_re + h21r*r_re - h11i*l_im - h21i*r_im;
  909. l[k][n][1] = h11r*l_im + h21r*r_im + h11i*l_re + h21i*r_re;
  910. r[k][n][0] = h12r*l_re + h22r*r_re - h12i*l_im - h22i*r_im;
  911. r[k][n][1] = h12r*l_im + h22r*r_im + h12i*l_re + h22i*r_re;
  912. } else {
  913. l[k][n][0] = h11r*l_re + h21r*r_re;
  914. l[k][n][1] = h11r*l_im + h21r*r_im;
  915. r[k][n][0] = h12r*l_re + h22r*r_re;
  916. r[k][n][1] = h12r*l_im + h22r*r_im;
  917. }
  918. }
  919. }
  920. }
  921. }
  922. int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
  923. {
  924. float Lbuf[91][32][2];
  925. float Rbuf[91][32][2];
  926. const int len = 32;
  927. int is34 = ps->is34bands;
  928. top += NR_BANDS[is34] - 64;
  929. memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
  930. if (top < NR_ALLPASS_BANDS[is34])
  931. memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
  932. hybrid_analysis(Lbuf, ps->in_buf, L, is34, len);
  933. decorrelation(ps, Rbuf, Lbuf, is34);
  934. stereo_processing(ps, Lbuf, Rbuf, is34);
  935. hybrid_synthesis(L, Lbuf, is34, len);
  936. hybrid_synthesis(R, Rbuf, is34, len);
  937. return 0;
  938. }
  939. #define PS_INIT_VLC_STATIC(num, size) \
  940. INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \
  941. ps_tmp[num].ps_bits, 1, 1, \
  942. ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
  943. size);
  944. #define PS_VLC_ROW(name) \
  945. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  946. av_cold void ff_ps_init(void) {
  947. // Syntax initialization
  948. static const struct {
  949. const void *ps_codes, *ps_bits;
  950. const unsigned int table_size, elem_size;
  951. } ps_tmp[] = {
  952. PS_VLC_ROW(huff_iid_df1),
  953. PS_VLC_ROW(huff_iid_dt1),
  954. PS_VLC_ROW(huff_iid_df0),
  955. PS_VLC_ROW(huff_iid_dt0),
  956. PS_VLC_ROW(huff_icc_df),
  957. PS_VLC_ROW(huff_icc_dt),
  958. PS_VLC_ROW(huff_ipd_df),
  959. PS_VLC_ROW(huff_ipd_dt),
  960. PS_VLC_ROW(huff_opd_df),
  961. PS_VLC_ROW(huff_opd_dt),
  962. };
  963. PS_INIT_VLC_STATIC(0, 1544);
  964. PS_INIT_VLC_STATIC(1, 832);
  965. PS_INIT_VLC_STATIC(2, 1024);
  966. PS_INIT_VLC_STATIC(3, 1036);
  967. PS_INIT_VLC_STATIC(4, 544);
  968. PS_INIT_VLC_STATIC(5, 544);
  969. PS_INIT_VLC_STATIC(6, 512);
  970. PS_INIT_VLC_STATIC(7, 512);
  971. PS_INIT_VLC_STATIC(8, 512);
  972. PS_INIT_VLC_STATIC(9, 512);
  973. ps_tableinit();
  974. }
  975. av_cold void ff_ps_ctx_init(PSContext *ps)
  976. {
  977. }