You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

926 lines
35KB

  1. /*
  2. * AAC encoder
  3. * Copyright (C) 2008 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AAC encoder
  24. */
  25. /***********************************
  26. * TODOs:
  27. * add sane pulse detection
  28. ***********************************/
  29. #include "libavutil/float_dsp.h"
  30. #include "libavutil/opt.h"
  31. #include "avcodec.h"
  32. #include "put_bits.h"
  33. #include "internal.h"
  34. #include "mpeg4audio.h"
  35. #include "kbdwin.h"
  36. #include "sinewin.h"
  37. #include "aac.h"
  38. #include "aactab.h"
  39. #include "aacenc.h"
  40. #include "aacenctab.h"
  41. #include "aacenc_utils.h"
  42. #include "psymodel.h"
  43. /**
  44. * Make AAC audio config object.
  45. * @see 1.6.2.1 "Syntax - AudioSpecificConfig"
  46. */
  47. static void put_audio_specific_config(AVCodecContext *avctx)
  48. {
  49. PutBitContext pb;
  50. AACEncContext *s = avctx->priv_data;
  51. init_put_bits(&pb, avctx->extradata, avctx->extradata_size);
  52. put_bits(&pb, 5, s->profile+1); //profile
  53. put_bits(&pb, 4, s->samplerate_index); //sample rate index
  54. put_bits(&pb, 4, s->channels);
  55. //GASpecificConfig
  56. put_bits(&pb, 1, 0); //frame length - 1024 samples
  57. put_bits(&pb, 1, 0); //does not depend on core coder
  58. put_bits(&pb, 1, 0); //is not extension
  59. //Explicitly Mark SBR absent
  60. put_bits(&pb, 11, 0x2b7); //sync extension
  61. put_bits(&pb, 5, AOT_SBR);
  62. put_bits(&pb, 1, 0);
  63. flush_put_bits(&pb);
  64. }
  65. #define WINDOW_FUNC(type) \
  66. static void apply_ ##type ##_window(AVFloatDSPContext *fdsp, \
  67. SingleChannelElement *sce, \
  68. const float *audio)
  69. WINDOW_FUNC(only_long)
  70. {
  71. const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  72. const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  73. float *out = sce->ret_buf;
  74. fdsp->vector_fmul (out, audio, lwindow, 1024);
  75. fdsp->vector_fmul_reverse(out + 1024, audio + 1024, pwindow, 1024);
  76. }
  77. WINDOW_FUNC(long_start)
  78. {
  79. const float *lwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  80. const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  81. float *out = sce->ret_buf;
  82. fdsp->vector_fmul(out, audio, lwindow, 1024);
  83. memcpy(out + 1024, audio + 1024, sizeof(out[0]) * 448);
  84. fdsp->vector_fmul_reverse(out + 1024 + 448, audio + 1024 + 448, swindow, 128);
  85. memset(out + 1024 + 576, 0, sizeof(out[0]) * 448);
  86. }
  87. WINDOW_FUNC(long_stop)
  88. {
  89. const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  90. const float *swindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  91. float *out = sce->ret_buf;
  92. memset(out, 0, sizeof(out[0]) * 448);
  93. fdsp->vector_fmul(out + 448, audio + 448, swindow, 128);
  94. memcpy(out + 576, audio + 576, sizeof(out[0]) * 448);
  95. fdsp->vector_fmul_reverse(out + 1024, audio + 1024, lwindow, 1024);
  96. }
  97. WINDOW_FUNC(eight_short)
  98. {
  99. const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  100. const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  101. const float *in = audio + 448;
  102. float *out = sce->ret_buf;
  103. int w;
  104. for (w = 0; w < 8; w++) {
  105. fdsp->vector_fmul (out, in, w ? pwindow : swindow, 128);
  106. out += 128;
  107. in += 128;
  108. fdsp->vector_fmul_reverse(out, in, swindow, 128);
  109. out += 128;
  110. }
  111. }
  112. static void (*const apply_window[4])(AVFloatDSPContext *fdsp,
  113. SingleChannelElement *sce,
  114. const float *audio) = {
  115. [ONLY_LONG_SEQUENCE] = apply_only_long_window,
  116. [LONG_START_SEQUENCE] = apply_long_start_window,
  117. [EIGHT_SHORT_SEQUENCE] = apply_eight_short_window,
  118. [LONG_STOP_SEQUENCE] = apply_long_stop_window
  119. };
  120. static void apply_window_and_mdct(AACEncContext *s, SingleChannelElement *sce,
  121. float *audio)
  122. {
  123. int i;
  124. float *output = sce->ret_buf;
  125. apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, audio);
  126. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE)
  127. s->mdct1024.mdct_calc(&s->mdct1024, sce->coeffs, output);
  128. else
  129. for (i = 0; i < 1024; i += 128)
  130. s->mdct128.mdct_calc(&s->mdct128, &sce->coeffs[i], output + i*2);
  131. memcpy(audio, audio + 1024, sizeof(audio[0]) * 1024);
  132. memcpy(sce->pcoeffs, sce->coeffs, sizeof(sce->pcoeffs));
  133. }
  134. /**
  135. * Encode ics_info element.
  136. * @see Table 4.6 (syntax of ics_info)
  137. */
  138. static void put_ics_info(AACEncContext *s, IndividualChannelStream *info)
  139. {
  140. int w;
  141. put_bits(&s->pb, 1, 0); // ics_reserved bit
  142. put_bits(&s->pb, 2, info->window_sequence[0]);
  143. put_bits(&s->pb, 1, info->use_kb_window[0]);
  144. if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  145. put_bits(&s->pb, 6, info->max_sfb);
  146. put_bits(&s->pb, 1, !!info->predictor_present);
  147. } else {
  148. put_bits(&s->pb, 4, info->max_sfb);
  149. for (w = 1; w < 8; w++)
  150. put_bits(&s->pb, 1, !info->group_len[w]);
  151. }
  152. }
  153. /**
  154. * Encode MS data.
  155. * @see 4.6.8.1 "Joint Coding - M/S Stereo"
  156. */
  157. static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe)
  158. {
  159. int i, w;
  160. put_bits(pb, 2, cpe->ms_mode);
  161. if (cpe->ms_mode == 1)
  162. for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w])
  163. for (i = 0; i < cpe->ch[0].ics.max_sfb; i++)
  164. put_bits(pb, 1, cpe->ms_mask[w*16 + i]);
  165. }
  166. /**
  167. * Produce integer coefficients from scalefactors provided by the model.
  168. */
  169. static void adjust_frame_information(ChannelElement *cpe, int chans)
  170. {
  171. int i, w, w2, g, ch;
  172. int maxsfb, cmaxsfb;
  173. for (ch = 0; ch < chans; ch++) {
  174. IndividualChannelStream *ics = &cpe->ch[ch].ics;
  175. maxsfb = 0;
  176. cpe->ch[ch].pulse.num_pulse = 0;
  177. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  178. for (w2 = 0; w2 < ics->group_len[w]; w2++) {
  179. for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w*16+cmaxsfb-1]; cmaxsfb--)
  180. ;
  181. maxsfb = FFMAX(maxsfb, cmaxsfb);
  182. }
  183. }
  184. ics->max_sfb = maxsfb;
  185. //adjust zero bands for window groups
  186. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  187. for (g = 0; g < ics->max_sfb; g++) {
  188. i = 1;
  189. for (w2 = w; w2 < w + ics->group_len[w]; w2++) {
  190. if (!cpe->ch[ch].zeroes[w2*16 + g]) {
  191. i = 0;
  192. break;
  193. }
  194. }
  195. cpe->ch[ch].zeroes[w*16 + g] = i;
  196. }
  197. }
  198. }
  199. if (chans > 1 && cpe->common_window) {
  200. IndividualChannelStream *ics0 = &cpe->ch[0].ics;
  201. IndividualChannelStream *ics1 = &cpe->ch[1].ics;
  202. int msc = 0;
  203. ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb);
  204. ics1->max_sfb = ics0->max_sfb;
  205. for (w = 0; w < ics0->num_windows*16; w += 16)
  206. for (i = 0; i < ics0->max_sfb; i++)
  207. if (cpe->ms_mask[w+i])
  208. msc++;
  209. if (msc == 0 || ics0->max_sfb == 0)
  210. cpe->ms_mode = 0;
  211. else
  212. cpe->ms_mode = msc < ics0->max_sfb * ics0->num_windows ? 1 : 2;
  213. }
  214. }
  215. static void apply_intensity_stereo(ChannelElement *cpe)
  216. {
  217. int w, w2, g, i;
  218. IndividualChannelStream *ics = &cpe->ch[0].ics;
  219. if (!cpe->common_window)
  220. return;
  221. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  222. for (w2 = 0; w2 < ics->group_len[w]; w2++) {
  223. int start = (w+w2) * 128;
  224. for (g = 0; g < ics->num_swb; g++) {
  225. int p = -1 + 2 * (cpe->ch[1].band_type[w*16+g] - 14);
  226. float scale = cpe->ch[0].is_ener[w*16+g];
  227. if (!cpe->is_mask[w*16 + g]) {
  228. start += ics->swb_sizes[g];
  229. continue;
  230. }
  231. for (i = 0; i < ics->swb_sizes[g]; i++) {
  232. float sum = (cpe->ch[0].coeffs[start+i] + p*cpe->ch[1].coeffs[start+i])*scale;
  233. cpe->ch[0].coeffs[start+i] = sum;
  234. cpe->ch[1].coeffs[start+i] = 0.0f;
  235. }
  236. start += ics->swb_sizes[g];
  237. }
  238. }
  239. }
  240. }
  241. static void apply_mid_side_stereo(ChannelElement *cpe)
  242. {
  243. int w, w2, g, i;
  244. IndividualChannelStream *ics = &cpe->ch[0].ics;
  245. if (!cpe->common_window)
  246. return;
  247. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  248. for (w2 = 0; w2 < ics->group_len[w]; w2++) {
  249. int start = (w+w2) * 128;
  250. for (g = 0; g < ics->num_swb; g++) {
  251. if (!cpe->ms_mask[w*16 + g]) {
  252. start += ics->swb_sizes[g];
  253. continue;
  254. }
  255. for (i = 0; i < ics->swb_sizes[g]; i++) {
  256. float L = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) * 0.5f;
  257. float R = L - cpe->ch[1].coeffs[start+i];
  258. cpe->ch[0].coeffs[start+i] = L;
  259. cpe->ch[1].coeffs[start+i] = R;
  260. }
  261. start += ics->swb_sizes[g];
  262. }
  263. }
  264. }
  265. }
  266. /**
  267. * Encode scalefactor band coding type.
  268. */
  269. static void encode_band_info(AACEncContext *s, SingleChannelElement *sce)
  270. {
  271. int w;
  272. if (s->coder->set_special_band_scalefactors)
  273. s->coder->set_special_band_scalefactors(s, sce);
  274. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
  275. s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda);
  276. }
  277. /**
  278. * Encode scalefactors.
  279. */
  280. static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s,
  281. SingleChannelElement *sce)
  282. {
  283. int diff, off_sf = sce->sf_idx[0], off_pns = sce->sf_idx[0] - NOISE_OFFSET;
  284. int off_is = 0, noise_flag = 1;
  285. int i, w;
  286. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  287. for (i = 0; i < sce->ics.max_sfb; i++) {
  288. if (!sce->zeroes[w*16 + i]) {
  289. if (sce->band_type[w*16 + i] == NOISE_BT) {
  290. diff = sce->sf_idx[w*16 + i] - off_pns;
  291. off_pns = sce->sf_idx[w*16 + i];
  292. if (noise_flag-- > 0) {
  293. put_bits(&s->pb, NOISE_PRE_BITS, diff + NOISE_PRE);
  294. continue;
  295. }
  296. } else if (sce->band_type[w*16 + i] == INTENSITY_BT ||
  297. sce->band_type[w*16 + i] == INTENSITY_BT2) {
  298. diff = sce->sf_idx[w*16 + i] - off_is;
  299. off_is = sce->sf_idx[w*16 + i];
  300. } else {
  301. diff = sce->sf_idx[w*16 + i] - off_sf;
  302. off_sf = sce->sf_idx[w*16 + i];
  303. }
  304. diff += SCALE_DIFF_ZERO;
  305. av_assert0(diff >= 0 && diff <= 120);
  306. put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
  307. }
  308. }
  309. }
  310. }
  311. /**
  312. * Encode pulse data.
  313. */
  314. static void encode_pulses(AACEncContext *s, Pulse *pulse)
  315. {
  316. int i;
  317. put_bits(&s->pb, 1, !!pulse->num_pulse);
  318. if (!pulse->num_pulse)
  319. return;
  320. put_bits(&s->pb, 2, pulse->num_pulse - 1);
  321. put_bits(&s->pb, 6, pulse->start);
  322. for (i = 0; i < pulse->num_pulse; i++) {
  323. put_bits(&s->pb, 5, pulse->pos[i]);
  324. put_bits(&s->pb, 4, pulse->amp[i]);
  325. }
  326. }
  327. /**
  328. * Encode spectral coefficients processed by psychoacoustic model.
  329. */
  330. static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
  331. {
  332. int start, i, w, w2;
  333. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  334. start = 0;
  335. for (i = 0; i < sce->ics.max_sfb; i++) {
  336. if (sce->zeroes[w*16 + i]) {
  337. start += sce->ics.swb_sizes[i];
  338. continue;
  339. }
  340. for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++) {
  341. s->coder->quantize_and_encode_band(s, &s->pb,
  342. &sce->coeffs[start + w2*128],
  343. NULL, sce->ics.swb_sizes[i],
  344. sce->sf_idx[w*16 + i],
  345. sce->band_type[w*16 + i],
  346. s->lambda,
  347. sce->ics.window_clipping[w]);
  348. }
  349. start += sce->ics.swb_sizes[i];
  350. }
  351. }
  352. }
  353. /**
  354. * Downscale spectral coefficients for near-clipping windows to avoid artifacts
  355. */
  356. static void avoid_clipping(AACEncContext *s, SingleChannelElement *sce)
  357. {
  358. int start, i, j, w;
  359. if (sce->ics.clip_avoidance_factor < 1.0f) {
  360. for (w = 0; w < sce->ics.num_windows; w++) {
  361. start = 0;
  362. for (i = 0; i < sce->ics.max_sfb; i++) {
  363. float *swb_coeffs = &sce->coeffs[start + w*128];
  364. for (j = 0; j < sce->ics.swb_sizes[i]; j++)
  365. swb_coeffs[j] *= sce->ics.clip_avoidance_factor;
  366. start += sce->ics.swb_sizes[i];
  367. }
  368. }
  369. }
  370. }
  371. /**
  372. * Encode one channel of audio data.
  373. */
  374. static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s,
  375. SingleChannelElement *sce,
  376. int common_window)
  377. {
  378. put_bits(&s->pb, 8, sce->sf_idx[0]);
  379. if (!common_window) {
  380. put_ics_info(s, &sce->ics);
  381. if (s->coder->encode_main_pred)
  382. s->coder->encode_main_pred(s, sce);
  383. }
  384. encode_band_info(s, sce);
  385. encode_scale_factors(avctx, s, sce);
  386. encode_pulses(s, &sce->pulse);
  387. put_bits(&s->pb, 1, !!sce->tns.present);
  388. if (s->coder->encode_tns_info)
  389. s->coder->encode_tns_info(s, sce);
  390. put_bits(&s->pb, 1, 0); //ssr
  391. encode_spectral_coeffs(s, sce);
  392. return 0;
  393. }
  394. /**
  395. * Write some auxiliary information about the created AAC file.
  396. */
  397. static void put_bitstream_info(AACEncContext *s, const char *name)
  398. {
  399. int i, namelen, padbits;
  400. namelen = strlen(name) + 2;
  401. put_bits(&s->pb, 3, TYPE_FIL);
  402. put_bits(&s->pb, 4, FFMIN(namelen, 15));
  403. if (namelen >= 15)
  404. put_bits(&s->pb, 8, namelen - 14);
  405. put_bits(&s->pb, 4, 0); //extension type - filler
  406. padbits = -put_bits_count(&s->pb) & 7;
  407. avpriv_align_put_bits(&s->pb);
  408. for (i = 0; i < namelen - 2; i++)
  409. put_bits(&s->pb, 8, name[i]);
  410. put_bits(&s->pb, 12 - padbits, 0);
  411. }
  412. /*
  413. * Copy input samples.
  414. * Channels are reordered from libavcodec's default order to AAC order.
  415. */
  416. static void copy_input_samples(AACEncContext *s, const AVFrame *frame)
  417. {
  418. int ch;
  419. int end = 2048 + (frame ? frame->nb_samples : 0);
  420. const uint8_t *channel_map = aac_chan_maps[s->channels - 1];
  421. /* copy and remap input samples */
  422. for (ch = 0; ch < s->channels; ch++) {
  423. /* copy last 1024 samples of previous frame to the start of the current frame */
  424. memcpy(&s->planar_samples[ch][1024], &s->planar_samples[ch][2048], 1024 * sizeof(s->planar_samples[0][0]));
  425. /* copy new samples and zero any remaining samples */
  426. if (frame) {
  427. memcpy(&s->planar_samples[ch][2048],
  428. frame->extended_data[channel_map[ch]],
  429. frame->nb_samples * sizeof(s->planar_samples[0][0]));
  430. }
  431. memset(&s->planar_samples[ch][end], 0,
  432. (3072 - end) * sizeof(s->planar_samples[0][0]));
  433. }
  434. }
  435. static int aac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  436. const AVFrame *frame, int *got_packet_ptr)
  437. {
  438. AACEncContext *s = avctx->priv_data;
  439. float **samples = s->planar_samples, *samples2, *la, *overlap;
  440. ChannelElement *cpe;
  441. SingleChannelElement *sce;
  442. int i, ch, w, chans, tag, start_ch, ret;
  443. int ms_mode = 0, is_mode = 0, tns_mode = 0, pred_mode = 0;
  444. int chan_el_counter[4];
  445. FFPsyWindowInfo windows[AAC_MAX_CHANNELS];
  446. if (s->last_frame == 2)
  447. return 0;
  448. /* add current frame to queue */
  449. if (frame) {
  450. if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
  451. return ret;
  452. }
  453. copy_input_samples(s, frame);
  454. if (s->psypp)
  455. ff_psy_preprocess(s->psypp, s->planar_samples, s->channels);
  456. if (!avctx->frame_number)
  457. return 0;
  458. start_ch = 0;
  459. for (i = 0; i < s->chan_map[0]; i++) {
  460. FFPsyWindowInfo* wi = windows + start_ch;
  461. tag = s->chan_map[i+1];
  462. chans = tag == TYPE_CPE ? 2 : 1;
  463. cpe = &s->cpe[i];
  464. for (ch = 0; ch < chans; ch++) {
  465. IndividualChannelStream *ics = &cpe->ch[ch].ics;
  466. int cur_channel = start_ch + ch;
  467. float clip_avoidance_factor;
  468. overlap = &samples[cur_channel][0];
  469. samples2 = overlap + 1024;
  470. la = samples2 + (448+64);
  471. if (!frame)
  472. la = NULL;
  473. if (tag == TYPE_LFE) {
  474. wi[ch].window_type[0] = ONLY_LONG_SEQUENCE;
  475. wi[ch].window_shape = 0;
  476. wi[ch].num_windows = 1;
  477. wi[ch].grouping[0] = 1;
  478. /* Only the lowest 12 coefficients are used in a LFE channel.
  479. * The expression below results in only the bottom 8 coefficients
  480. * being used for 11.025kHz to 16kHz sample rates.
  481. */
  482. ics->num_swb = s->samplerate_index >= 8 ? 1 : 3;
  483. } else {
  484. wi[ch] = s->psy.model->window(&s->psy, samples2, la, cur_channel,
  485. ics->window_sequence[0]);
  486. }
  487. ics->window_sequence[1] = ics->window_sequence[0];
  488. ics->window_sequence[0] = wi[ch].window_type[0];
  489. ics->use_kb_window[1] = ics->use_kb_window[0];
  490. ics->use_kb_window[0] = wi[ch].window_shape;
  491. ics->num_windows = wi[ch].num_windows;
  492. ics->swb_sizes = s->psy.bands [ics->num_windows == 8];
  493. ics->num_swb = tag == TYPE_LFE ? ics->num_swb : s->psy.num_bands[ics->num_windows == 8];
  494. ics->swb_offset = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
  495. ff_swb_offset_128 [s->samplerate_index]:
  496. ff_swb_offset_1024[s->samplerate_index];
  497. ics->tns_max_bands = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
  498. ff_tns_max_bands_128 [s->samplerate_index]:
  499. ff_tns_max_bands_1024[s->samplerate_index];
  500. clip_avoidance_factor = 0.0f;
  501. for (w = 0; w < ics->num_windows; w++)
  502. ics->group_len[w] = wi[ch].grouping[w];
  503. for (w = 0; w < ics->num_windows; w++) {
  504. if (wi[ch].clipping[w] > CLIP_AVOIDANCE_FACTOR) {
  505. ics->window_clipping[w] = 1;
  506. clip_avoidance_factor = FFMAX(clip_avoidance_factor, wi[ch].clipping[w]);
  507. } else {
  508. ics->window_clipping[w] = 0;
  509. }
  510. }
  511. if (clip_avoidance_factor > CLIP_AVOIDANCE_FACTOR) {
  512. ics->clip_avoidance_factor = CLIP_AVOIDANCE_FACTOR / clip_avoidance_factor;
  513. } else {
  514. ics->clip_avoidance_factor = 1.0f;
  515. }
  516. apply_window_and_mdct(s, &cpe->ch[ch], overlap);
  517. if (isnan(cpe->ch->coeffs[0])) {
  518. av_log(avctx, AV_LOG_ERROR, "Input contains NaN\n");
  519. return AVERROR(EINVAL);
  520. }
  521. avoid_clipping(s, &cpe->ch[ch]);
  522. }
  523. start_ch += chans;
  524. }
  525. if ((ret = ff_alloc_packet2(avctx, avpkt, 8192 * s->channels, 0)) < 0)
  526. return ret;
  527. do {
  528. int frame_bits;
  529. init_put_bits(&s->pb, avpkt->data, avpkt->size);
  530. if ((avctx->frame_number & 0xFF)==1 && !(avctx->flags & AV_CODEC_FLAG_BITEXACT))
  531. put_bitstream_info(s, LIBAVCODEC_IDENT);
  532. start_ch = 0;
  533. memset(chan_el_counter, 0, sizeof(chan_el_counter));
  534. for (i = 0; i < s->chan_map[0]; i++) {
  535. FFPsyWindowInfo* wi = windows + start_ch;
  536. const float *coeffs[2];
  537. tag = s->chan_map[i+1];
  538. chans = tag == TYPE_CPE ? 2 : 1;
  539. cpe = &s->cpe[i];
  540. cpe->common_window = 0;
  541. memset(cpe->is_mask, 0, sizeof(cpe->is_mask));
  542. memset(cpe->ms_mask, 0, sizeof(cpe->ms_mask));
  543. put_bits(&s->pb, 3, tag);
  544. put_bits(&s->pb, 4, chan_el_counter[tag]++);
  545. for (ch = 0; ch < chans; ch++) {
  546. sce = &cpe->ch[ch];
  547. coeffs[ch] = sce->coeffs;
  548. sce->ics.predictor_present = 0;
  549. memset(&sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
  550. memset(&sce->tns, 0, sizeof(TemporalNoiseShaping));
  551. for (w = 0; w < 128; w++)
  552. if (sce->band_type[w] > RESERVED_BT)
  553. sce->band_type[w] = 0;
  554. }
  555. s->psy.model->analyze(&s->psy, start_ch, coeffs, wi);
  556. for (ch = 0; ch < chans; ch++) {
  557. s->cur_channel = start_ch + ch;
  558. s->coder->search_for_quantizers(avctx, s, &cpe->ch[ch], s->lambda);
  559. }
  560. if (chans > 1
  561. && wi[0].window_type[0] == wi[1].window_type[0]
  562. && wi[0].window_shape == wi[1].window_shape) {
  563. cpe->common_window = 1;
  564. for (w = 0; w < wi[0].num_windows; w++) {
  565. if (wi[0].grouping[w] != wi[1].grouping[w]) {
  566. cpe->common_window = 0;
  567. break;
  568. }
  569. }
  570. }
  571. for (ch = 0; ch < chans; ch++) { /* TNS and PNS */
  572. sce = &cpe->ch[ch];
  573. s->cur_channel = start_ch + ch;
  574. if (s->options.pns && s->coder->search_for_pns)
  575. s->coder->search_for_pns(s, avctx, sce);
  576. if (s->options.tns && s->coder->search_for_tns)
  577. s->coder->search_for_tns(s, sce);
  578. if (s->options.tns && s->coder->apply_tns_filt)
  579. s->coder->apply_tns_filt(s, sce);
  580. if (sce->tns.present)
  581. tns_mode = 1;
  582. }
  583. s->cur_channel = start_ch;
  584. if (s->options.intensity_stereo) { /* Intensity Stereo */
  585. if (s->coder->search_for_is)
  586. s->coder->search_for_is(s, avctx, cpe);
  587. if (cpe->is_mode) is_mode = 1;
  588. apply_intensity_stereo(cpe);
  589. }
  590. if (s->options.pred) { /* Prediction */
  591. for (ch = 0; ch < chans; ch++) {
  592. sce = &cpe->ch[ch];
  593. s->cur_channel = start_ch + ch;
  594. if (s->options.pred && s->coder->search_for_pred)
  595. s->coder->search_for_pred(s, sce);
  596. if (cpe->ch[ch].ics.predictor_present) pred_mode = 1;
  597. }
  598. if (s->coder->adjust_common_prediction)
  599. s->coder->adjust_common_prediction(s, cpe);
  600. for (ch = 0; ch < chans; ch++) {
  601. sce = &cpe->ch[ch];
  602. s->cur_channel = start_ch + ch;
  603. if (s->options.pred && s->coder->apply_main_pred)
  604. s->coder->apply_main_pred(s, sce);
  605. }
  606. s->cur_channel = start_ch;
  607. }
  608. if (s->options.stereo_mode) { /* Mid/Side stereo */
  609. if (s->options.stereo_mode == -1 && s->coder->search_for_ms)
  610. s->coder->search_for_ms(s, cpe);
  611. else if (cpe->common_window)
  612. memset(cpe->ms_mask, 1, sizeof(cpe->ms_mask));
  613. for (w = 0; w < 128; w++)
  614. cpe->ms_mask[w] = cpe->is_mask[w] ? 0 : cpe->ms_mask[w];
  615. apply_mid_side_stereo(cpe);
  616. }
  617. adjust_frame_information(cpe, chans);
  618. if (chans == 2) {
  619. put_bits(&s->pb, 1, cpe->common_window);
  620. if (cpe->common_window) {
  621. put_ics_info(s, &cpe->ch[0].ics);
  622. if (s->coder->encode_main_pred)
  623. s->coder->encode_main_pred(s, &cpe->ch[0]);
  624. encode_ms_info(&s->pb, cpe);
  625. if (cpe->ms_mode) ms_mode = 1;
  626. }
  627. }
  628. for (ch = 0; ch < chans; ch++) {
  629. s->cur_channel = start_ch + ch;
  630. encode_individual_channel(avctx, s, &cpe->ch[ch], cpe->common_window);
  631. }
  632. start_ch += chans;
  633. }
  634. frame_bits = put_bits_count(&s->pb);
  635. if (frame_bits <= 6144 * s->channels - 3) {
  636. s->psy.bitres.bits = frame_bits / s->channels;
  637. break;
  638. }
  639. if (is_mode || ms_mode || tns_mode || pred_mode) {
  640. for (i = 0; i < s->chan_map[0]; i++) {
  641. // Must restore coeffs
  642. chans = tag == TYPE_CPE ? 2 : 1;
  643. cpe = &s->cpe[i];
  644. for (ch = 0; ch < chans; ch++)
  645. memcpy(cpe->ch[ch].coeffs, cpe->ch[ch].pcoeffs, sizeof(cpe->ch[ch].coeffs));
  646. }
  647. }
  648. s->lambda *= avctx->bit_rate * 1024.0f / avctx->sample_rate / frame_bits;
  649. } while (1);
  650. put_bits(&s->pb, 3, TYPE_END);
  651. flush_put_bits(&s->pb);
  652. avctx->frame_bits = put_bits_count(&s->pb);
  653. // rate control stuff
  654. if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) {
  655. float ratio = avctx->bit_rate * 1024.0f / avctx->sample_rate / avctx->frame_bits;
  656. s->lambda *= ratio;
  657. s->lambda = FFMIN(s->lambda, 65536.f);
  658. }
  659. if (!frame)
  660. s->last_frame++;
  661. ff_af_queue_remove(&s->afq, avctx->frame_size, &avpkt->pts,
  662. &avpkt->duration);
  663. avpkt->size = put_bits_count(&s->pb) >> 3;
  664. *got_packet_ptr = 1;
  665. return 0;
  666. }
  667. static av_cold int aac_encode_end(AVCodecContext *avctx)
  668. {
  669. AACEncContext *s = avctx->priv_data;
  670. ff_mdct_end(&s->mdct1024);
  671. ff_mdct_end(&s->mdct128);
  672. ff_psy_end(&s->psy);
  673. ff_lpc_end(&s->lpc);
  674. if (s->psypp)
  675. ff_psy_preprocess_end(s->psypp);
  676. av_freep(&s->buffer.samples);
  677. av_freep(&s->cpe);
  678. av_freep(&s->fdsp);
  679. ff_af_queue_close(&s->afq);
  680. return 0;
  681. }
  682. static av_cold int dsp_init(AVCodecContext *avctx, AACEncContext *s)
  683. {
  684. int ret = 0;
  685. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
  686. if (!s->fdsp)
  687. return AVERROR(ENOMEM);
  688. // window init
  689. ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
  690. ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
  691. ff_init_ff_sine_windows(10);
  692. ff_init_ff_sine_windows(7);
  693. if ((ret = ff_mdct_init(&s->mdct1024, 11, 0, 32768.0)) < 0)
  694. return ret;
  695. if ((ret = ff_mdct_init(&s->mdct128, 8, 0, 32768.0)) < 0)
  696. return ret;
  697. return 0;
  698. }
  699. static av_cold int alloc_buffers(AVCodecContext *avctx, AACEncContext *s)
  700. {
  701. int ch;
  702. FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->buffer.samples, s->channels, 3 * 1024 * sizeof(s->buffer.samples[0]), alloc_fail);
  703. FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->cpe, s->chan_map[0], sizeof(ChannelElement), alloc_fail);
  704. FF_ALLOCZ_OR_GOTO(avctx, avctx->extradata, 5 + AV_INPUT_BUFFER_PADDING_SIZE, alloc_fail);
  705. for(ch = 0; ch < s->channels; ch++)
  706. s->planar_samples[ch] = s->buffer.samples + 3 * 1024 * ch;
  707. return 0;
  708. alloc_fail:
  709. return AVERROR(ENOMEM);
  710. }
  711. static av_cold int aac_encode_init(AVCodecContext *avctx)
  712. {
  713. AACEncContext *s = avctx->priv_data;
  714. int i, ret = 0;
  715. const uint8_t *sizes[2];
  716. uint8_t grouping[AAC_MAX_CHANNELS];
  717. int lengths[2];
  718. avctx->frame_size = 1024;
  719. for (i = 0; i < 16; i++)
  720. if (avctx->sample_rate == avpriv_mpeg4audio_sample_rates[i])
  721. break;
  722. s->channels = avctx->channels;
  723. ERROR_IF(i == 16 || i >= ff_aac_swb_size_1024_len || i >= ff_aac_swb_size_128_len,
  724. "Unsupported sample rate %d\n", avctx->sample_rate);
  725. ERROR_IF(s->channels > AAC_MAX_CHANNELS,
  726. "Unsupported number of channels: %d\n", s->channels);
  727. WARN_IF(1024.0 * avctx->bit_rate / avctx->sample_rate > 6144 * s->channels,
  728. "Too many bits per frame requested, clamping to max\n");
  729. if (avctx->profile == FF_PROFILE_AAC_MAIN) {
  730. s->options.pred = 1;
  731. } else if ((avctx->profile == FF_PROFILE_AAC_LOW ||
  732. avctx->profile == FF_PROFILE_UNKNOWN) && s->options.pred) {
  733. s->profile = 0; /* Main */
  734. WARN_IF(1, "Prediction requested, changing profile to AAC-Main\n");
  735. } else if (avctx->profile == FF_PROFILE_AAC_LOW ||
  736. avctx->profile == FF_PROFILE_UNKNOWN) {
  737. s->profile = 1; /* Low */
  738. } else {
  739. ERROR_IF(1, "Unsupported profile %d\n", avctx->profile);
  740. }
  741. if (s->options.aac_coder != AAC_CODER_TWOLOOP) {
  742. s->options.intensity_stereo = 0;
  743. s->options.pns = 0;
  744. }
  745. avctx->bit_rate = (int)FFMIN(
  746. 6144 * s->channels / 1024.0 * avctx->sample_rate,
  747. avctx->bit_rate);
  748. s->samplerate_index = i;
  749. s->chan_map = aac_chan_configs[s->channels-1];
  750. if ((ret = dsp_init(avctx, s)) < 0)
  751. goto fail;
  752. if ((ret = alloc_buffers(avctx, s)) < 0)
  753. goto fail;
  754. avctx->extradata_size = 5;
  755. put_audio_specific_config(avctx);
  756. sizes[0] = ff_aac_swb_size_1024[i];
  757. sizes[1] = ff_aac_swb_size_128[i];
  758. lengths[0] = ff_aac_num_swb_1024[i];
  759. lengths[1] = ff_aac_num_swb_128[i];
  760. for (i = 0; i < s->chan_map[0]; i++)
  761. grouping[i] = s->chan_map[i + 1] == TYPE_CPE;
  762. if ((ret = ff_psy_init(&s->psy, avctx, 2, sizes, lengths,
  763. s->chan_map[0], grouping)) < 0)
  764. goto fail;
  765. s->psypp = ff_psy_preprocess_init(avctx);
  766. s->coder = &ff_aac_coders[s->options.aac_coder];
  767. ff_lpc_init(&s->lpc, 2*avctx->frame_size, TNS_MAX_ORDER, FF_LPC_TYPE_LEVINSON);
  768. if (HAVE_MIPSDSPR1)
  769. ff_aac_coder_init_mips(s);
  770. s->lambda = avctx->global_quality > 0 ? avctx->global_quality : 120;
  771. s->random_state = 0x1f2e3d4c;
  772. ff_aac_tableinit();
  773. avctx->initial_padding = 1024;
  774. ff_af_queue_init(avctx, &s->afq);
  775. return 0;
  776. fail:
  777. aac_encode_end(avctx);
  778. return ret;
  779. }
  780. #define AACENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
  781. static const AVOption aacenc_options[] = {
  782. {"stereo_mode", "Stereo coding method", offsetof(AACEncContext, options.stereo_mode), AV_OPT_TYPE_INT, {.i64 = 0}, -1, 1, AACENC_FLAGS, "stereo_mode"},
  783. {"auto", "Selected by the Encoder", 0, AV_OPT_TYPE_CONST, {.i64 = -1 }, INT_MIN, INT_MAX, AACENC_FLAGS, "stereo_mode"},
  784. {"ms_off", "Disable Mid/Side coding", 0, AV_OPT_TYPE_CONST, {.i64 = 0 }, INT_MIN, INT_MAX, AACENC_FLAGS, "stereo_mode"},
  785. {"ms_force", "Force Mid/Side for the whole frame if possible", 0, AV_OPT_TYPE_CONST, {.i64 = 1 }, INT_MIN, INT_MAX, AACENC_FLAGS, "stereo_mode"},
  786. {"aac_coder", "Coding algorithm", offsetof(AACEncContext, options.aac_coder), AV_OPT_TYPE_INT, {.i64 = AAC_CODER_TWOLOOP}, 0, AAC_CODER_NB-1, AACENC_FLAGS, "aac_coder"},
  787. {"faac", "FAAC-inspired method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAAC}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
  788. {"anmr", "ANMR method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_ANMR}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
  789. {"twoloop", "Two loop searching method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_TWOLOOP}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
  790. {"fast", "Constant quantizer", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAST}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
  791. {"aac_pns", "Perceptual Noise Substitution", offsetof(AACEncContext, options.pns), AV_OPT_TYPE_INT, {.i64 = 1}, 0, 1, AACENC_FLAGS, "aac_pns"},
  792. {"disable", "Disable perceptual noise substitution", 0, AV_OPT_TYPE_CONST, {.i64 = 0 }, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_pns"},
  793. {"enable", "Enable perceptual noise substitution", 0, AV_OPT_TYPE_CONST, {.i64 = 1 }, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_pns"},
  794. {"aac_is", "Intensity stereo coding", offsetof(AACEncContext, options.intensity_stereo), AV_OPT_TYPE_INT, {.i64 = 1}, 0, 1, AACENC_FLAGS, "intensity_stereo"},
  795. {"disable", "Disable intensity stereo coding", 0, AV_OPT_TYPE_CONST, {.i64 = 0}, INT_MIN, INT_MAX, AACENC_FLAGS, "intensity_stereo"},
  796. {"enable", "Enable intensity stereo coding", 0, AV_OPT_TYPE_CONST, {.i64 = 1}, INT_MIN, INT_MAX, AACENC_FLAGS, "intensity_stereo"},
  797. {"aac_tns", "Temporal noise shaping", offsetof(AACEncContext, options.tns), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, AACENC_FLAGS, "aac_tns"},
  798. {"disable", "Disable temporal noise shaping", 0, AV_OPT_TYPE_CONST, {.i64 = 0}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_tns"},
  799. {"enable", "Enable temporal noise shaping", 0, AV_OPT_TYPE_CONST, {.i64 = 1}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_tns"},
  800. {"aac_pred", "AAC-Main prediction", offsetof(AACEncContext, options.pred), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, AACENC_FLAGS, "aac_pred"},
  801. {"disable", "Disable AAC-Main prediction", 0, AV_OPT_TYPE_CONST, {.i64 = 0}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_pred"},
  802. {"enable", "Enable AAC-Main prediction", 0, AV_OPT_TYPE_CONST, {.i64 = 1}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_pred"},
  803. {NULL}
  804. };
  805. static const AVClass aacenc_class = {
  806. "AAC encoder",
  807. av_default_item_name,
  808. aacenc_options,
  809. LIBAVUTIL_VERSION_INT,
  810. };
  811. AVCodec ff_aac_encoder = {
  812. .name = "aac",
  813. .long_name = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"),
  814. .type = AVMEDIA_TYPE_AUDIO,
  815. .id = AV_CODEC_ID_AAC,
  816. .priv_data_size = sizeof(AACEncContext),
  817. .init = aac_encode_init,
  818. .encode2 = aac_encode_frame,
  819. .close = aac_encode_end,
  820. .supported_samplerates = mpeg4audio_sample_rates,
  821. .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY |
  822. AV_CODEC_CAP_EXPERIMENTAL,
  823. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
  824. AV_SAMPLE_FMT_NONE },
  825. .priv_class = &aacenc_class,
  826. };