You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

446 lines
13KB

  1. /*
  2. * TTA (The Lossless True Audio) decoder
  3. * Copyright (c) 2006 Alex Beregszaszi
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * TTA (The Lossless True Audio) decoder
  24. * @see http://www.true-audio.com/
  25. * @see http://tta.corecodec.org/
  26. * @author Alex Beregszaszi
  27. */
  28. #define BITSTREAM_READER_LE
  29. //#define DEBUG
  30. #include <limits.h>
  31. #include "avcodec.h"
  32. #include "get_bits.h"
  33. #define FORMAT_SIMPLE 1
  34. #define FORMAT_ENCRYPTED 2
  35. #define MAX_ORDER 16
  36. typedef struct TTAFilter {
  37. int32_t shift, round, error, mode;
  38. int32_t qm[MAX_ORDER];
  39. int32_t dx[MAX_ORDER];
  40. int32_t dl[MAX_ORDER];
  41. } TTAFilter;
  42. typedef struct TTARice {
  43. uint32_t k0, k1, sum0, sum1;
  44. } TTARice;
  45. typedef struct TTAChannel {
  46. int32_t predictor;
  47. TTAFilter filter;
  48. TTARice rice;
  49. } TTAChannel;
  50. typedef struct TTAContext {
  51. AVCodecContext *avctx;
  52. AVFrame frame;
  53. GetBitContext gb;
  54. int format, channels, bps, data_length;
  55. int frame_length, last_frame_length, total_frames;
  56. int32_t *decode_buffer;
  57. TTAChannel *ch_ctx;
  58. } TTAContext;
  59. static const uint32_t shift_1[] = {
  60. 0x00000001, 0x00000002, 0x00000004, 0x00000008,
  61. 0x00000010, 0x00000020, 0x00000040, 0x00000080,
  62. 0x00000100, 0x00000200, 0x00000400, 0x00000800,
  63. 0x00001000, 0x00002000, 0x00004000, 0x00008000,
  64. 0x00010000, 0x00020000, 0x00040000, 0x00080000,
  65. 0x00100000, 0x00200000, 0x00400000, 0x00800000,
  66. 0x01000000, 0x02000000, 0x04000000, 0x08000000,
  67. 0x10000000, 0x20000000, 0x40000000, 0x80000000,
  68. 0x80000000, 0x80000000, 0x80000000, 0x80000000,
  69. 0x80000000, 0x80000000, 0x80000000, 0x80000000
  70. };
  71. static const uint32_t * const shift_16 = shift_1 + 4;
  72. static const int32_t ttafilter_configs[4][2] = {
  73. {10, 1},
  74. {9, 1},
  75. {10, 1},
  76. {12, 0}
  77. };
  78. static void ttafilter_init(TTAFilter *c, int32_t shift, int32_t mode) {
  79. memset(c, 0, sizeof(TTAFilter));
  80. c->shift = shift;
  81. c->round = shift_1[shift-1];
  82. // c->round = 1 << (shift - 1);
  83. c->mode = mode;
  84. }
  85. // FIXME: copy paste from original
  86. static inline void memshl(register int32_t *a, register int32_t *b) {
  87. *a++ = *b++;
  88. *a++ = *b++;
  89. *a++ = *b++;
  90. *a++ = *b++;
  91. *a++ = *b++;
  92. *a++ = *b++;
  93. *a++ = *b++;
  94. *a = *b;
  95. }
  96. // FIXME: copy paste from original
  97. // mode=1 encoder, mode=0 decoder
  98. static inline void ttafilter_process(TTAFilter *c, int32_t *in, int32_t mode) {
  99. register int32_t *dl = c->dl, *qm = c->qm, *dx = c->dx, sum = c->round;
  100. if (!c->error) {
  101. sum += *dl++ * *qm, qm++;
  102. sum += *dl++ * *qm, qm++;
  103. sum += *dl++ * *qm, qm++;
  104. sum += *dl++ * *qm, qm++;
  105. sum += *dl++ * *qm, qm++;
  106. sum += *dl++ * *qm, qm++;
  107. sum += *dl++ * *qm, qm++;
  108. sum += *dl++ * *qm, qm++;
  109. dx += 8;
  110. } else if(c->error < 0) {
  111. sum += *dl++ * (*qm -= *dx++), qm++;
  112. sum += *dl++ * (*qm -= *dx++), qm++;
  113. sum += *dl++ * (*qm -= *dx++), qm++;
  114. sum += *dl++ * (*qm -= *dx++), qm++;
  115. sum += *dl++ * (*qm -= *dx++), qm++;
  116. sum += *dl++ * (*qm -= *dx++), qm++;
  117. sum += *dl++ * (*qm -= *dx++), qm++;
  118. sum += *dl++ * (*qm -= *dx++), qm++;
  119. } else {
  120. sum += *dl++ * (*qm += *dx++), qm++;
  121. sum += *dl++ * (*qm += *dx++), qm++;
  122. sum += *dl++ * (*qm += *dx++), qm++;
  123. sum += *dl++ * (*qm += *dx++), qm++;
  124. sum += *dl++ * (*qm += *dx++), qm++;
  125. sum += *dl++ * (*qm += *dx++), qm++;
  126. sum += *dl++ * (*qm += *dx++), qm++;
  127. sum += *dl++ * (*qm += *dx++), qm++;
  128. }
  129. *(dx-0) = ((*(dl-1) >> 30) | 1) << 2;
  130. *(dx-1) = ((*(dl-2) >> 30) | 1) << 1;
  131. *(dx-2) = ((*(dl-3) >> 30) | 1) << 1;
  132. *(dx-3) = ((*(dl-4) >> 30) | 1);
  133. // compress
  134. if (mode) {
  135. *dl = *in;
  136. *in -= (sum >> c->shift);
  137. c->error = *in;
  138. } else {
  139. c->error = *in;
  140. *in += (sum >> c->shift);
  141. *dl = *in;
  142. }
  143. if (c->mode) {
  144. *(dl-1) = *dl - *(dl-1);
  145. *(dl-2) = *(dl-1) - *(dl-2);
  146. *(dl-3) = *(dl-2) - *(dl-3);
  147. }
  148. memshl(c->dl, c->dl + 1);
  149. memshl(c->dx, c->dx + 1);
  150. }
  151. static void rice_init(TTARice *c, uint32_t k0, uint32_t k1)
  152. {
  153. c->k0 = k0;
  154. c->k1 = k1;
  155. c->sum0 = shift_16[k0];
  156. c->sum1 = shift_16[k1];
  157. }
  158. static int tta_get_unary(GetBitContext *gb)
  159. {
  160. int ret = 0;
  161. // count ones
  162. while (get_bits_left(gb) > 0 && get_bits1(gb))
  163. ret++;
  164. return ret;
  165. }
  166. static av_cold int tta_decode_init(AVCodecContext * avctx)
  167. {
  168. TTAContext *s = avctx->priv_data;
  169. int i;
  170. s->avctx = avctx;
  171. // 30bytes includes a seektable with one frame
  172. if (avctx->extradata_size < 30)
  173. return -1;
  174. init_get_bits(&s->gb, avctx->extradata, avctx->extradata_size * 8);
  175. if (show_bits_long(&s->gb, 32) == AV_RL32("TTA1"))
  176. {
  177. /* signature */
  178. skip_bits(&s->gb, 32);
  179. s->format = get_bits(&s->gb, 16);
  180. if (s->format > 2) {
  181. av_log(s->avctx, AV_LOG_ERROR, "Invalid format\n");
  182. return -1;
  183. }
  184. if (s->format == FORMAT_ENCRYPTED) {
  185. av_log_missing_feature(s->avctx, "Encrypted TTA", 0);
  186. return AVERROR(EINVAL);
  187. }
  188. avctx->channels = s->channels = get_bits(&s->gb, 16);
  189. avctx->bits_per_coded_sample = get_bits(&s->gb, 16);
  190. s->bps = (avctx->bits_per_coded_sample + 7) / 8;
  191. avctx->sample_rate = get_bits_long(&s->gb, 32);
  192. s->data_length = get_bits_long(&s->gb, 32);
  193. skip_bits(&s->gb, 32); // CRC32 of header
  194. if (s->channels == 0) {
  195. av_log(s->avctx, AV_LOG_ERROR, "Invalid number of channels\n");
  196. return AVERROR_INVALIDDATA;
  197. }
  198. switch(s->bps) {
  199. case 2:
  200. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  201. avctx->bits_per_raw_sample = 16;
  202. break;
  203. case 3:
  204. avctx->sample_fmt = AV_SAMPLE_FMT_S32;
  205. avctx->bits_per_raw_sample = 24;
  206. break;
  207. default:
  208. av_log(avctx, AV_LOG_ERROR, "Invalid/unsupported sample format.\n");
  209. return AVERROR_INVALIDDATA;
  210. }
  211. // prevent overflow
  212. if (avctx->sample_rate > 0x7FFFFF) {
  213. av_log(avctx, AV_LOG_ERROR, "sample_rate too large\n");
  214. return AVERROR(EINVAL);
  215. }
  216. s->frame_length = 256 * avctx->sample_rate / 245;
  217. s->last_frame_length = s->data_length % s->frame_length;
  218. s->total_frames = s->data_length / s->frame_length +
  219. (s->last_frame_length ? 1 : 0);
  220. av_log(s->avctx, AV_LOG_DEBUG, "format: %d chans: %d bps: %d rate: %d block: %d\n",
  221. s->format, avctx->channels, avctx->bits_per_coded_sample, avctx->sample_rate,
  222. avctx->block_align);
  223. av_log(s->avctx, AV_LOG_DEBUG, "data_length: %d frame_length: %d last: %d total: %d\n",
  224. s->data_length, s->frame_length, s->last_frame_length, s->total_frames);
  225. // FIXME: seek table
  226. for (i = 0; i < s->total_frames; i++)
  227. skip_bits(&s->gb, 32);
  228. skip_bits(&s->gb, 32); // CRC32 of seektable
  229. if(s->frame_length >= UINT_MAX / (s->channels * sizeof(int32_t))){
  230. av_log(avctx, AV_LOG_ERROR, "frame_length too large\n");
  231. return -1;
  232. }
  233. if (s->bps == 2) {
  234. s->decode_buffer = av_mallocz(sizeof(int32_t)*s->frame_length*s->channels);
  235. if (!s->decode_buffer)
  236. return AVERROR(ENOMEM);
  237. }
  238. s->ch_ctx = av_malloc(avctx->channels * sizeof(*s->ch_ctx));
  239. if (!s->ch_ctx) {
  240. av_freep(&s->decode_buffer);
  241. return AVERROR(ENOMEM);
  242. }
  243. } else {
  244. av_log(avctx, AV_LOG_ERROR, "Wrong extradata present\n");
  245. return -1;
  246. }
  247. avcodec_get_frame_defaults(&s->frame);
  248. avctx->coded_frame = &s->frame;
  249. return 0;
  250. }
  251. static int tta_decode_frame(AVCodecContext *avctx, void *data,
  252. int *got_frame_ptr, AVPacket *avpkt)
  253. {
  254. const uint8_t *buf = avpkt->data;
  255. int buf_size = avpkt->size;
  256. TTAContext *s = avctx->priv_data;
  257. int i, ret;
  258. int cur_chan = 0, framelen = s->frame_length;
  259. int32_t *p;
  260. init_get_bits(&s->gb, buf, buf_size*8);
  261. // FIXME: seeking
  262. s->total_frames--;
  263. if (!s->total_frames && s->last_frame_length)
  264. framelen = s->last_frame_length;
  265. /* get output buffer */
  266. s->frame.nb_samples = framelen;
  267. if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
  268. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  269. return ret;
  270. }
  271. // decode directly to output buffer for 24-bit sample format
  272. if (s->bps == 3)
  273. s->decode_buffer = (int32_t *)s->frame.data[0];
  274. // init per channel states
  275. for (i = 0; i < s->channels; i++) {
  276. s->ch_ctx[i].predictor = 0;
  277. ttafilter_init(&s->ch_ctx[i].filter, ttafilter_configs[s->bps-1][0], ttafilter_configs[s->bps-1][1]);
  278. rice_init(&s->ch_ctx[i].rice, 10, 10);
  279. }
  280. for (p = s->decode_buffer; p < s->decode_buffer + (framelen * s->channels); p++) {
  281. int32_t *predictor = &s->ch_ctx[cur_chan].predictor;
  282. TTAFilter *filter = &s->ch_ctx[cur_chan].filter;
  283. TTARice *rice = &s->ch_ctx[cur_chan].rice;
  284. uint32_t unary, depth, k;
  285. int32_t value;
  286. unary = tta_get_unary(&s->gb);
  287. if (unary == 0) {
  288. depth = 0;
  289. k = rice->k0;
  290. } else {
  291. depth = 1;
  292. k = rice->k1;
  293. unary--;
  294. }
  295. if (get_bits_left(&s->gb) < k)
  296. return -1;
  297. if (k) {
  298. if (k > MIN_CACHE_BITS)
  299. return -1;
  300. value = (unary << k) + get_bits(&s->gb, k);
  301. } else
  302. value = unary;
  303. // FIXME: copy paste from original
  304. switch (depth) {
  305. case 1:
  306. rice->sum1 += value - (rice->sum1 >> 4);
  307. if (rice->k1 > 0 && rice->sum1 < shift_16[rice->k1])
  308. rice->k1--;
  309. else if(rice->sum1 > shift_16[rice->k1 + 1])
  310. rice->k1++;
  311. value += shift_1[rice->k0];
  312. default:
  313. rice->sum0 += value - (rice->sum0 >> 4);
  314. if (rice->k0 > 0 && rice->sum0 < shift_16[rice->k0])
  315. rice->k0--;
  316. else if(rice->sum0 > shift_16[rice->k0 + 1])
  317. rice->k0++;
  318. }
  319. // extract coded value
  320. #define UNFOLD(x) (((x)&1) ? (++(x)>>1) : (-(x)>>1))
  321. *p = UNFOLD(value);
  322. // run hybrid filter
  323. ttafilter_process(filter, p, 0);
  324. // fixed order prediction
  325. #define PRED(x, k) (int32_t)((((uint64_t)x << k) - x) >> k)
  326. switch (s->bps) {
  327. case 1: *p += PRED(*predictor, 4); break;
  328. case 2:
  329. case 3: *p += PRED(*predictor, 5); break;
  330. case 4: *p += *predictor; break;
  331. }
  332. *predictor = *p;
  333. // flip channels
  334. if (cur_chan < (s->channels-1))
  335. cur_chan++;
  336. else {
  337. // decorrelate in case of stereo integer
  338. if (s->channels > 1) {
  339. int32_t *r = p - 1;
  340. for (*p += *r / 2; r > p - s->channels; r--)
  341. *r = *(r + 1) - *r;
  342. }
  343. cur_chan = 0;
  344. }
  345. }
  346. if (get_bits_left(&s->gb) < 32)
  347. return -1;
  348. skip_bits(&s->gb, 32); // frame crc
  349. // convert to output buffer
  350. if (s->bps == 2) {
  351. int16_t *samples = (int16_t *)s->frame.data[0];
  352. for (p = s->decode_buffer; p < s->decode_buffer + (framelen * s->channels); p++)
  353. *samples++ = *p;
  354. } else {
  355. // shift samples for 24-bit sample format
  356. int32_t *samples = (int32_t *)s->frame.data[0];
  357. for (i = 0; i < framelen * s->channels; i++)
  358. *samples++ <<= 8;
  359. // reset decode buffer
  360. s->decode_buffer = NULL;
  361. }
  362. *got_frame_ptr = 1;
  363. *(AVFrame *)data = s->frame;
  364. return buf_size;
  365. }
  366. static av_cold int tta_decode_close(AVCodecContext *avctx) {
  367. TTAContext *s = avctx->priv_data;
  368. av_free(s->decode_buffer);
  369. av_freep(&s->ch_ctx);
  370. return 0;
  371. }
  372. AVCodec ff_tta_decoder = {
  373. .name = "tta",
  374. .type = AVMEDIA_TYPE_AUDIO,
  375. .id = CODEC_ID_TTA,
  376. .priv_data_size = sizeof(TTAContext),
  377. .init = tta_decode_init,
  378. .close = tta_decode_close,
  379. .decode = tta_decode_frame,
  380. .capabilities = CODEC_CAP_DR1,
  381. .long_name = NULL_IF_CONFIG_SMALL("True Audio (TTA)"),
  382. };