You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

505 lines
18KB

  1. /*
  2. * Copyright (C) 2011 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/audioconvert.h"
  25. #define C30DB M_SQRT2
  26. #define C15DB 1.189207115
  27. #define C__0DB 1.0
  28. #define C_15DB 0.840896415
  29. #define C_30DB M_SQRT1_2
  30. #define C_45DB 0.594603558
  31. #define C_60DB 0.5
  32. //TODO split options array out?
  33. #define OFFSET(x) offsetof(SwrContext,x)
  34. static const AVOption options[]={
  35. {"ich", "input channel count", OFFSET( in.ch_count ), AV_OPT_TYPE_INT, {.dbl=2}, 1, SWR_CH_MAX, 0},
  36. {"och", "output channel count", OFFSET(out.ch_count ), AV_OPT_TYPE_INT, {.dbl=2}, 1, SWR_CH_MAX, 0},
  37. {"uch", "used channel count", OFFSET(used_ch_count ), AV_OPT_TYPE_INT, {.dbl=0}, 0, SWR_CH_MAX, 0},
  38. {"isr", "input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT, {.dbl=48000}, 1, INT_MAX, 0},
  39. {"osr", "output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT, {.dbl=48000}, 1, INT_MAX, 0},
  40. //{"ip" , "input planar" , OFFSET( in.planar ), AV_OPT_TYPE_INT, {.dbl=0}, 0, 1, 0},
  41. //{"op" , "output planar" , OFFSET(out.planar ), AV_OPT_TYPE_INT, {.dbl=0}, 0, 1, 0},
  42. {"isf", "input sample format", OFFSET( in_sample_fmt ), AV_OPT_TYPE_INT, {.dbl=AV_SAMPLE_FMT_S16}, 0, AV_SAMPLE_FMT_NB-1+256, 0},
  43. {"osf", "output sample format", OFFSET(out_sample_fmt ), AV_OPT_TYPE_INT, {.dbl=AV_SAMPLE_FMT_S16}, 0, AV_SAMPLE_FMT_NB-1+256, 0},
  44. {"tsf", "internal sample format", OFFSET(int_sample_fmt ), AV_OPT_TYPE_INT, {.dbl=AV_SAMPLE_FMT_NONE}, -1, AV_SAMPLE_FMT_FLT, 0},
  45. {"icl", "input channel layout" , OFFSET( in_ch_layout), AV_OPT_TYPE_INT64, {.dbl=0}, 0, INT64_MAX, 0, "channel_layout"},
  46. {"ocl", "output channel layout", OFFSET(out_ch_layout), AV_OPT_TYPE_INT64, {.dbl=0}, 0, INT64_MAX, 0, "channel_layout"},
  47. {"clev", "center mix level" , OFFSET(clev) , AV_OPT_TYPE_FLOAT, {.dbl=C_30DB}, 0, 4, 0},
  48. {"slev", "sourround mix level" , OFFSET(slev) , AV_OPT_TYPE_FLOAT, {.dbl=C_30DB}, 0, 4, 0},
  49. {"rmvol", "rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0}, -1000, 1000, 0},
  50. {"flags", NULL , OFFSET(flags) , AV_OPT_TYPE_FLAGS, {.dbl=0}, 0, UINT_MAX, 0, "flags"},
  51. {"res", "force resampling", 0, AV_OPT_TYPE_CONST, {.dbl=SWR_FLAG_RESAMPLE}, INT_MIN, INT_MAX, 0, "flags"},
  52. {0}
  53. };
  54. static const char* context_to_name(void* ptr) {
  55. return "SWR";
  56. }
  57. static const AVClass av_class = {
  58. .class_name = "SwrContext",
  59. .item_name = context_to_name,
  60. .option = options,
  61. .version = LIBAVUTIL_VERSION_INT,
  62. .log_level_offset_offset = OFFSET(log_level_offset),
  63. .parent_log_context_offset = OFFSET(log_ctx),
  64. };
  65. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  66. if(!s || s->in_convert) // s needs to be allocated but not initialized
  67. return AVERROR(EINVAL);
  68. s->channel_map = channel_map;
  69. return 0;
  70. }
  71. struct SwrContext *swr_alloc(void){
  72. SwrContext *s= av_mallocz(sizeof(SwrContext));
  73. if(s){
  74. s->av_class= &av_class;
  75. av_opt_set_defaults(s);
  76. }
  77. return s;
  78. }
  79. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  80. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  81. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  82. int log_offset, void *log_ctx){
  83. if(!s) s= swr_alloc();
  84. if(!s) return NULL;
  85. s->log_level_offset= log_offset;
  86. s->log_ctx= log_ctx;
  87. av_opt_set_int(s, "ocl", out_ch_layout, 0);
  88. av_opt_set_int(s, "osf", out_sample_fmt, 0);
  89. av_opt_set_int(s, "osr", out_sample_rate, 0);
  90. av_opt_set_int(s, "icl", in_ch_layout, 0);
  91. av_opt_set_int(s, "isf", in_sample_fmt, 0);
  92. av_opt_set_int(s, "isr", in_sample_rate, 0);
  93. av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_S16, 0);
  94. av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
  95. av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
  96. return s;
  97. }
  98. static void free_temp(AudioData *a){
  99. av_free(a->data);
  100. memset(a, 0, sizeof(*a));
  101. }
  102. void swr_free(SwrContext **ss){
  103. SwrContext *s= *ss;
  104. if(s){
  105. free_temp(&s->postin);
  106. free_temp(&s->midbuf);
  107. free_temp(&s->preout);
  108. free_temp(&s->in_buffer);
  109. swri_audio_convert_free(&s-> in_convert);
  110. swri_audio_convert_free(&s->out_convert);
  111. swri_audio_convert_free(&s->full_convert);
  112. swri_resample_free(&s->resample);
  113. }
  114. av_freep(ss);
  115. }
  116. int swr_init(struct SwrContext *s){
  117. s->in_buffer_index= 0;
  118. s->in_buffer_count= 0;
  119. s->resample_in_constraint= 0;
  120. free_temp(&s->postin);
  121. free_temp(&s->midbuf);
  122. free_temp(&s->preout);
  123. free_temp(&s->in_buffer);
  124. swri_audio_convert_free(&s-> in_convert);
  125. swri_audio_convert_free(&s->out_convert);
  126. swri_audio_convert_free(&s->full_convert);
  127. s-> in.planar= s-> in_sample_fmt >= 0x100;
  128. s->out.planar= s->out_sample_fmt >= 0x100;
  129. s-> in_sample_fmt &= 0xFF;
  130. s->out_sample_fmt &= 0xFF;
  131. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  132. av_log(s, AV_LOG_ERROR, "Requested sample format %s is invalid\n", av_get_sample_fmt_name(s->in_sample_fmt));
  133. return AVERROR(EINVAL);
  134. }
  135. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  136. av_log(s, AV_LOG_ERROR, "Requested sample format %s is invalid\n", av_get_sample_fmt_name(s->out_sample_fmt));
  137. return AVERROR(EINVAL);
  138. }
  139. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16
  140. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLT){
  141. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, only float & S16 is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  142. return AVERROR(EINVAL);
  143. }
  144. //FIXME should we allow/support using FLT on material that doesnt need it ?
  145. if(s->in_sample_fmt <= AV_SAMPLE_FMT_S16 || s->int_sample_fmt==AV_SAMPLE_FMT_S16){
  146. s->int_sample_fmt= AV_SAMPLE_FMT_S16;
  147. }else
  148. s->int_sample_fmt= AV_SAMPLE_FMT_FLT;
  149. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  150. s->resample = swri_resample_init(s->resample, s->out_sample_rate, s->in_sample_rate, 16, 10, 0, 0.8);
  151. }else
  152. swri_resample_free(&s->resample);
  153. if(s->int_sample_fmt != AV_SAMPLE_FMT_S16 && s->resample){
  154. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16 currently\n"); //FIXME
  155. return -1;
  156. }
  157. if(!s->used_ch_count)
  158. s->used_ch_count= s->in.ch_count;
  159. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  160. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  161. s-> in_ch_layout= 0;
  162. }
  163. if(!s-> in_ch_layout)
  164. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  165. if(!s->out_ch_layout)
  166. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  167. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0;
  168. #define RSC 1 //FIXME finetune
  169. if(!s-> in.ch_count)
  170. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  171. if(!s->used_ch_count)
  172. s->used_ch_count= s->in.ch_count;
  173. if(!s->out.ch_count)
  174. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  175. av_assert0(s-> in.ch_count);
  176. av_assert0(s->used_ch_count);
  177. av_assert0(s->out.ch_count);
  178. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  179. s-> in.bps= av_get_bytes_per_sample(s-> in_sample_fmt);
  180. s->int_bps= av_get_bytes_per_sample(s->int_sample_fmt);
  181. s->out.bps= av_get_bytes_per_sample(s->out_sample_fmt);
  182. if(!s->resample && !s->rematrix && !s->channel_map){
  183. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  184. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  185. return 0;
  186. }
  187. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  188. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  189. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  190. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  191. s->postin= s->in;
  192. s->preout= s->out;
  193. s->midbuf= s->in;
  194. s->in_buffer= s->in;
  195. if(s->channel_map){
  196. s->postin.ch_count=
  197. s->midbuf.ch_count=
  198. s->in_buffer.ch_count= s->used_ch_count;
  199. }
  200. if(!s->resample_first){
  201. s->midbuf.ch_count= s->out.ch_count;
  202. s->in_buffer.ch_count = s->out.ch_count;
  203. }
  204. s->in_buffer.bps = s->postin.bps = s->midbuf.bps = s->preout.bps = s->int_bps;
  205. s->in_buffer.planar = s->postin.planar = s->midbuf.planar = s->preout.planar = 1;
  206. if(s->rematrix)
  207. return swri_rematrix_init(s);
  208. return 0;
  209. }
  210. static int realloc_audio(AudioData *a, int count){
  211. int i, countb;
  212. AudioData old;
  213. if(a->count >= count)
  214. return 0;
  215. count*=2;
  216. countb= FFALIGN(count*a->bps, 32);
  217. old= *a;
  218. av_assert0(a->planar);
  219. av_assert0(a->bps);
  220. av_assert0(a->ch_count);
  221. a->data= av_malloc(countb*a->ch_count);
  222. if(!a->data)
  223. return AVERROR(ENOMEM);
  224. for(i=0; i<a->ch_count; i++){
  225. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  226. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  227. }
  228. av_free(old.data);
  229. a->count= count;
  230. return 1;
  231. }
  232. static void copy(AudioData *out, AudioData *in,
  233. int count){
  234. av_assert0(out->planar == in->planar);
  235. av_assert0(out->bps == in->bps);
  236. av_assert0(out->ch_count == in->ch_count);
  237. if(out->planar){
  238. int ch;
  239. for(ch=0; ch<out->ch_count; ch++)
  240. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  241. }else
  242. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  243. }
  244. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  245. int i;
  246. if(out->planar){
  247. for(i=0; i<out->ch_count; i++)
  248. out->ch[i]= in_arg[i];
  249. }else{
  250. for(i=0; i<out->ch_count; i++)
  251. out->ch[i]= in_arg[0] + i*out->bps;
  252. }
  253. }
  254. /**
  255. *
  256. * out may be equal in.
  257. */
  258. static void buf_set(AudioData *out, AudioData *in, int count){
  259. if(in->planar){
  260. int ch;
  261. for(ch=0; ch<out->ch_count; ch++)
  262. out->ch[ch]= in->ch[ch] + count*out->bps;
  263. }else
  264. out->ch[0]= in->ch[0] + count*out->ch_count*out->bps;
  265. }
  266. /**
  267. *
  268. * @return number of samples output per channel
  269. */
  270. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  271. const AudioData * in_param, int in_count){
  272. AudioData in, out, tmp;
  273. int ret_sum=0;
  274. int border=0;
  275. tmp=out=*out_param;
  276. in = *in_param;
  277. do{
  278. int ret, size, consumed;
  279. if(!s->resample_in_constraint && s->in_buffer_count){
  280. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  281. ret= swri_multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  282. out_count -= ret;
  283. ret_sum += ret;
  284. buf_set(&out, &out, ret);
  285. s->in_buffer_count -= consumed;
  286. s->in_buffer_index += consumed;
  287. if(!in_count)
  288. break;
  289. if(s->in_buffer_count <= border){
  290. buf_set(&in, &in, -s->in_buffer_count);
  291. in_count += s->in_buffer_count;
  292. s->in_buffer_count=0;
  293. s->in_buffer_index=0;
  294. border = 0;
  295. }
  296. }
  297. if(in_count && !s->in_buffer_count){
  298. s->in_buffer_index=0;
  299. ret= swri_multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
  300. out_count -= ret;
  301. ret_sum += ret;
  302. buf_set(&out, &out, ret);
  303. in_count -= consumed;
  304. buf_set(&in, &in, consumed);
  305. }
  306. //TODO is this check sane considering the advanced copy avoidance below
  307. size= s->in_buffer_index + s->in_buffer_count + in_count;
  308. if( size > s->in_buffer.count
  309. && s->in_buffer_count + in_count <= s->in_buffer_index){
  310. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  311. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  312. s->in_buffer_index=0;
  313. }else
  314. if((ret=realloc_audio(&s->in_buffer, size)) < 0)
  315. return ret;
  316. if(in_count){
  317. int count= in_count;
  318. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  319. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  320. copy(&tmp, &in, /*in_*/count);
  321. s->in_buffer_count += count;
  322. in_count -= count;
  323. border += count;
  324. buf_set(&in, &in, count);
  325. s->resample_in_constraint= 0;
  326. if(s->in_buffer_count != count || in_count)
  327. continue;
  328. }
  329. break;
  330. }while(1);
  331. s->resample_in_constraint= !!out_count;
  332. return ret_sum;
  333. }
  334. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  335. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  336. AudioData *postin, *midbuf, *preout;
  337. int ret/*, in_max*/;
  338. AudioData * in= &s->in;
  339. AudioData *out= &s->out;
  340. AudioData preout_tmp, midbuf_tmp;
  341. if(!s->resample){
  342. if(in_count > out_count)
  343. return -1;
  344. out_count = in_count;
  345. }
  346. if(!in_arg){
  347. if(s->in_buffer_count){
  348. AudioData *a= &s->in_buffer;
  349. int i, j, ret;
  350. if((ret=realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
  351. return ret;
  352. av_assert0(a->planar);
  353. for(i=0; i<a->ch_count; i++){
  354. for(j=0; j<s->in_buffer_count; j++){
  355. memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j )*a->bps,
  356. a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
  357. }
  358. }
  359. s->in_buffer_count += (s->in_buffer_count+1)/2;
  360. s->resample_in_constraint = 0;
  361. }else{
  362. return 0;
  363. }
  364. }else
  365. fill_audiodata(in , (void*)in_arg);
  366. fill_audiodata(out, out_arg);
  367. if(s->full_convert){
  368. av_assert0(!s->resample);
  369. swri_audio_convert(s->full_convert, out, in, in_count);
  370. return out_count;
  371. }
  372. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  373. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  374. if((ret=realloc_audio(&s->postin, in_count))<0)
  375. return ret;
  376. if(s->resample_first){
  377. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  378. if((ret=realloc_audio(&s->midbuf, out_count))<0)
  379. return ret;
  380. }else{
  381. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  382. if((ret=realloc_audio(&s->midbuf, in_count))<0)
  383. return ret;
  384. }
  385. if((ret=realloc_audio(&s->preout, out_count))<0)
  386. return ret;
  387. postin= &s->postin;
  388. midbuf_tmp= s->midbuf;
  389. midbuf= &midbuf_tmp;
  390. preout_tmp= s->preout;
  391. preout= &preout_tmp;
  392. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar)
  393. postin= in;
  394. if(s->resample_first ? !s->resample : !s->rematrix)
  395. midbuf= postin;
  396. if(s->resample_first ? !s->rematrix : !s->resample)
  397. preout= midbuf;
  398. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
  399. if(preout==in){
  400. out_count= FFMIN(out_count, in_count); //TODO check at teh end if this is needed or redundant
  401. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  402. copy(out, in, out_count);
  403. return out_count;
  404. }
  405. else if(preout==postin) preout= midbuf= postin= out;
  406. else if(preout==midbuf) preout= midbuf= out;
  407. else preout= out;
  408. }
  409. if(in != postin){
  410. swri_audio_convert(s->in_convert, postin, in, in_count);
  411. }
  412. if(s->resample_first){
  413. if(postin != midbuf)
  414. out_count= resample(s, midbuf, out_count, postin, in_count);
  415. if(midbuf != preout)
  416. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  417. }else{
  418. if(postin != midbuf)
  419. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  420. if(midbuf != preout)
  421. out_count= resample(s, preout, out_count, midbuf, in_count);
  422. }
  423. if(preout != out){
  424. //FIXME packed doesnt need more than 1 chan here!
  425. swri_audio_convert(s->out_convert, out, preout, out_count);
  426. }
  427. if(!in_arg)
  428. s->in_buffer_count = 0;
  429. return out_count;
  430. }