You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1511 lines
55KB

  1. /*
  2. * RV30/40 decoder common data
  3. * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * RV30/40 decoder common data
  24. */
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. #include "golomb.h"
  29. #include "mathops.h"
  30. #include "rectangle.h"
  31. #include "rv34vlc.h"
  32. #include "rv34data.h"
  33. #include "rv34.h"
  34. //#define DEBUG
  35. static inline void ZERO8x2(void* dst, int stride)
  36. {
  37. fill_rectangle(dst, 1, 2, stride, 0, 4);
  38. fill_rectangle(((uint8_t*)(dst))+4, 1, 2, stride, 0, 4);
  39. }
  40. /** translation of RV30/40 macroblock types to lavc ones */
  41. static const int rv34_mb_type_to_lavc[12] = {
  42. MB_TYPE_INTRA,
  43. MB_TYPE_INTRA16x16 | MB_TYPE_SEPARATE_DC,
  44. MB_TYPE_16x16 | MB_TYPE_L0,
  45. MB_TYPE_8x8 | MB_TYPE_L0,
  46. MB_TYPE_16x16 | MB_TYPE_L0,
  47. MB_TYPE_16x16 | MB_TYPE_L1,
  48. MB_TYPE_SKIP,
  49. MB_TYPE_DIRECT2 | MB_TYPE_16x16,
  50. MB_TYPE_16x8 | MB_TYPE_L0,
  51. MB_TYPE_8x16 | MB_TYPE_L0,
  52. MB_TYPE_16x16 | MB_TYPE_L0L1,
  53. MB_TYPE_16x16 | MB_TYPE_L0 | MB_TYPE_SEPARATE_DC
  54. };
  55. static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES];
  56. static int rv34_decode_mv(RV34DecContext *r, int block_type);
  57. /**
  58. * @name RV30/40 VLC generating functions
  59. * @{
  60. */
  61. static const int table_offs[] = {
  62. 0, 1818, 3622, 4144, 4698, 5234, 5804, 5868, 5900, 5932,
  63. 5996, 6252, 6316, 6348, 6380, 7674, 8944, 10274, 11668, 12250,
  64. 14060, 15846, 16372, 16962, 17512, 18148, 18180, 18212, 18244, 18308,
  65. 18564, 18628, 18660, 18692, 20036, 21314, 22648, 23968, 24614, 26384,
  66. 28190, 28736, 29366, 29938, 30608, 30640, 30672, 30704, 30768, 31024,
  67. 31088, 31120, 31184, 32570, 33898, 35236, 36644, 37286, 39020, 40802,
  68. 41368, 42052, 42692, 43348, 43380, 43412, 43444, 43476, 43604, 43668,
  69. 43700, 43732, 45100, 46430, 47778, 49160, 49802, 51550, 53340, 53972,
  70. 54648, 55348, 55994, 56122, 56154, 56186, 56218, 56346, 56410, 56442,
  71. 56474, 57878, 59290, 60636, 62036, 62682, 64460, 64524, 64588, 64716,
  72. 64844, 66076, 67466, 67978, 68542, 69064, 69648, 70296, 72010, 72074,
  73. 72138, 72202, 72330, 73572, 74936, 75454, 76030, 76566, 77176, 77822,
  74. 79582, 79646, 79678, 79742, 79870, 81180, 82536, 83064, 83672, 84242,
  75. 84934, 85576, 87384, 87448, 87480, 87544, 87672, 88982, 90340, 90902,
  76. 91598, 92182, 92846, 93488, 95246, 95278, 95310, 95374, 95502, 96878,
  77. 98266, 98848, 99542, 100234, 100884, 101524, 103320, 103352, 103384, 103416,
  78. 103480, 104874, 106222, 106910, 107584, 108258, 108902, 109544, 111366, 111398,
  79. 111430, 111462, 111494, 112878, 114320, 114988, 115660, 116310, 116950, 117592
  80. };
  81. static VLC_TYPE table_data[117592][2];
  82. /**
  83. * Generate VLC from codeword lengths.
  84. * @param bits codeword lengths (zeroes are accepted)
  85. * @param size length of input data
  86. * @param vlc output VLC
  87. * @param insyms symbols for input codes (NULL for default ones)
  88. * @param num VLC table number (for static initialization)
  89. */
  90. static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms,
  91. const int num)
  92. {
  93. int i;
  94. int counts[17] = {0}, codes[17];
  95. uint16_t cw[MAX_VLC_SIZE], syms[MAX_VLC_SIZE];
  96. uint8_t bits2[MAX_VLC_SIZE];
  97. int maxbits = 0, realsize = 0;
  98. for(i = 0; i < size; i++){
  99. if(bits[i]){
  100. bits2[realsize] = bits[i];
  101. syms[realsize] = insyms ? insyms[i] : i;
  102. realsize++;
  103. maxbits = FFMAX(maxbits, bits[i]);
  104. counts[bits[i]]++;
  105. }
  106. }
  107. codes[0] = 0;
  108. for(i = 0; i < 16; i++)
  109. codes[i+1] = (codes[i] + counts[i]) << 1;
  110. for(i = 0; i < realsize; i++)
  111. cw[i] = codes[bits2[i]]++;
  112. vlc->table = &table_data[table_offs[num]];
  113. vlc->table_allocated = table_offs[num + 1] - table_offs[num];
  114. init_vlc_sparse(vlc, FFMIN(maxbits, 9), realsize,
  115. bits2, 1, 1,
  116. cw, 2, 2,
  117. syms, 2, 2, INIT_VLC_USE_NEW_STATIC);
  118. }
  119. /**
  120. * Initialize all tables.
  121. */
  122. static av_cold void rv34_init_tables(void)
  123. {
  124. int i, j, k;
  125. for(i = 0; i < NUM_INTRA_TABLES; i++){
  126. for(j = 0; j < 2; j++){
  127. rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL, 19*i + 0 + j);
  128. rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL, 19*i + 2 + j);
  129. rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL, 19*i + 4 + j);
  130. for(k = 0; k < 4; k++){
  131. rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code, 19*i + 6 + j*4 + k);
  132. }
  133. }
  134. for(j = 0; j < 4; j++){
  135. rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL, 19*i + 14 + j);
  136. }
  137. rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL, 19*i + 18);
  138. }
  139. for(i = 0; i < NUM_INTER_TABLES; i++){
  140. rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL, i*12 + 95);
  141. for(j = 0; j < 4; j++){
  142. rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code, i*12 + 96 + j);
  143. }
  144. for(j = 0; j < 2; j++){
  145. rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL, i*12 + 100 + j);
  146. rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL, i*12 + 102 + j);
  147. rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL, i*12 + 104 + j);
  148. }
  149. rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL, i*12 + 106);
  150. }
  151. }
  152. /** @} */ // vlc group
  153. /**
  154. * @name RV30/40 4x4 block decoding functions
  155. * @{
  156. */
  157. /**
  158. * Decode coded block pattern.
  159. */
  160. static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
  161. {
  162. int pattern, code, cbp=0;
  163. int ones;
  164. static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
  165. static const int shifts[4] = { 0, 2, 8, 10 };
  166. const int *curshift = shifts;
  167. int i, t, mask;
  168. code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
  169. pattern = code & 0xF;
  170. code >>= 4;
  171. ones = rv34_count_ones[pattern];
  172. for(mask = 8; mask; mask >>= 1, curshift++){
  173. if(pattern & mask)
  174. cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
  175. }
  176. for(i = 0; i < 4; i++){
  177. t = modulo_three_table[code][i];
  178. if(t == 1)
  179. cbp |= cbp_masks[get_bits1(gb)] << i;
  180. if(t == 2)
  181. cbp |= cbp_masks[2] << i;
  182. }
  183. return cbp;
  184. }
  185. /**
  186. * Get one coefficient value from the bistream and store it.
  187. */
  188. static inline void decode_coeff(DCTELEM *dst, int coef, int esc, GetBitContext *gb, VLC* vlc)
  189. {
  190. if(coef){
  191. if(coef == esc){
  192. coef = get_vlc2(gb, vlc->table, 9, 2);
  193. if(coef > 23){
  194. coef -= 23;
  195. coef = 22 + ((1 << coef) | get_bits(gb, coef));
  196. }
  197. coef += esc;
  198. }
  199. if(get_bits1(gb))
  200. coef = -coef;
  201. *dst = coef;
  202. }
  203. }
  204. /**
  205. * Decode 2x2 subblock of coefficients.
  206. */
  207. static inline void decode_subblock(DCTELEM *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc)
  208. {
  209. int coeffs[4];
  210. coeffs[0] = modulo_three_table[code][0];
  211. coeffs[1] = modulo_three_table[code][1];
  212. coeffs[2] = modulo_three_table[code][2];
  213. coeffs[3] = modulo_three_table[code][3];
  214. decode_coeff(dst , coeffs[0], 3, gb, vlc);
  215. if(is_block2){
  216. decode_coeff(dst+8, coeffs[1], 2, gb, vlc);
  217. decode_coeff(dst+1, coeffs[2], 2, gb, vlc);
  218. }else{
  219. decode_coeff(dst+1, coeffs[1], 2, gb, vlc);
  220. decode_coeff(dst+8, coeffs[2], 2, gb, vlc);
  221. }
  222. decode_coeff(dst+9, coeffs[3], 2, gb, vlc);
  223. }
  224. /**
  225. * Decode coefficients for 4x4 block.
  226. *
  227. * This is done by filling 2x2 subblocks with decoded coefficients
  228. * in this order (the same for subblocks and subblock coefficients):
  229. * o--o
  230. * /
  231. * /
  232. * o--o
  233. */
  234. static inline void rv34_decode_block(DCTELEM *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc)
  235. {
  236. int code, pattern;
  237. code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
  238. pattern = code & 0x7;
  239. code >>= 3;
  240. decode_subblock(dst, code, 0, gb, &rvlc->coefficient);
  241. if(pattern & 4){
  242. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  243. decode_subblock(dst + 2, code, 0, gb, &rvlc->coefficient);
  244. }
  245. if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
  246. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  247. decode_subblock(dst + 8*2, code, 1, gb, &rvlc->coefficient);
  248. }
  249. if(pattern & 1){
  250. code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
  251. decode_subblock(dst + 8*2+2, code, 0, gb, &rvlc->coefficient);
  252. }
  253. }
  254. /**
  255. * Dequantize ordinary 4x4 block.
  256. * @todo optimize
  257. */
  258. static inline void rv34_dequant4x4(DCTELEM *block, int Qdc, int Q)
  259. {
  260. int i, j;
  261. block[0] = (block[0] * Qdc + 8) >> 4;
  262. for(i = 0; i < 4; i++)
  263. for(j = !i; j < 4; j++)
  264. block[j + i*8] = (block[j + i*8] * Q + 8) >> 4;
  265. }
  266. /**
  267. * Dequantize 4x4 block of DC values for 16x16 macroblock.
  268. * @todo optimize
  269. */
  270. static inline void rv34_dequant4x4_16x16(DCTELEM *block, int Qdc, int Q)
  271. {
  272. int i;
  273. for(i = 0; i < 3; i++)
  274. block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Qdc + 8) >> 4;
  275. for(; i < 16; i++)
  276. block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Q + 8) >> 4;
  277. }
  278. /** @} */ //block functions
  279. /**
  280. * @name RV30/40 bitstream parsing
  281. * @{
  282. */
  283. /**
  284. * Decode starting slice position.
  285. * @todo Maybe replace with ff_h263_decode_mba() ?
  286. */
  287. int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
  288. {
  289. int i;
  290. for(i = 0; i < 5; i++)
  291. if(rv34_mb_max_sizes[i] >= mb_size - 1)
  292. break;
  293. return rv34_mb_bits_sizes[i];
  294. }
  295. /**
  296. * Select VLC set for decoding from current quantizer, modifier and frame type.
  297. */
  298. static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
  299. {
  300. if(mod == 2 && quant < 19) quant += 10;
  301. else if(mod && quant < 26) quant += 5;
  302. return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][av_clip(quant, 0, 30)]]
  303. : &intra_vlcs[rv34_quant_to_vlc_set[0][av_clip(quant, 0, 30)]];
  304. }
  305. /**
  306. * Decode macroblock header and return CBP in case of success, -1 otherwise.
  307. */
  308. static int rv34_decode_mb_header(RV34DecContext *r, int8_t *intra_types)
  309. {
  310. MpegEncContext *s = &r->s;
  311. GetBitContext *gb = &s->gb;
  312. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  313. int i, t;
  314. if(!r->si.type){
  315. r->is16 = get_bits1(gb);
  316. if(!r->is16 && !r->rv30){
  317. if(!get_bits1(gb))
  318. av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
  319. }
  320. s->current_picture_ptr->f.mb_type[mb_pos] = r->is16 ? MB_TYPE_INTRA16x16 : MB_TYPE_INTRA;
  321. r->block_type = r->is16 ? RV34_MB_TYPE_INTRA16x16 : RV34_MB_TYPE_INTRA;
  322. }else{
  323. r->block_type = r->decode_mb_info(r);
  324. if(r->block_type == -1)
  325. return -1;
  326. s->current_picture_ptr->f.mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
  327. r->mb_type[mb_pos] = r->block_type;
  328. if(r->block_type == RV34_MB_SKIP){
  329. if(s->pict_type == AV_PICTURE_TYPE_P)
  330. r->mb_type[mb_pos] = RV34_MB_P_16x16;
  331. if(s->pict_type == AV_PICTURE_TYPE_B)
  332. r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
  333. }
  334. r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->f.mb_type[mb_pos]);
  335. rv34_decode_mv(r, r->block_type);
  336. if(r->block_type == RV34_MB_SKIP){
  337. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, 0, sizeof(intra_types[0]));
  338. return 0;
  339. }
  340. r->chroma_vlc = 1;
  341. r->luma_vlc = 0;
  342. }
  343. if(IS_INTRA(s->current_picture_ptr->f.mb_type[mb_pos])){
  344. if(r->is16){
  345. t = get_bits(gb, 2);
  346. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
  347. r->luma_vlc = 2;
  348. }else{
  349. if(r->decode_intra_types(r, gb, intra_types) < 0)
  350. return -1;
  351. r->luma_vlc = 1;
  352. }
  353. r->chroma_vlc = 0;
  354. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  355. }else{
  356. for(i = 0; i < 16; i++)
  357. intra_types[(i & 3) + (i>>2) * r->intra_types_stride] = 0;
  358. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  359. if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
  360. r->is16 = 1;
  361. r->chroma_vlc = 1;
  362. r->luma_vlc = 2;
  363. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  364. }
  365. }
  366. return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
  367. }
  368. /** @} */ //bitstream functions
  369. /**
  370. * @name motion vector related code (prediction, reconstruction, motion compensation)
  371. * @{
  372. */
  373. /** macroblock partition width in 8x8 blocks */
  374. static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
  375. /** macroblock partition height in 8x8 blocks */
  376. static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
  377. /** availability index for subblocks */
  378. static const uint8_t avail_indexes[4] = { 6, 7, 10, 11 };
  379. /**
  380. * motion vector prediction
  381. *
  382. * Motion prediction performed for the block by using median prediction of
  383. * motion vectors from the left, top and right top blocks but in corner cases
  384. * some other vectors may be used instead.
  385. */
  386. static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
  387. {
  388. MpegEncContext *s = &r->s;
  389. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  390. int A[2] = {0}, B[2], C[2];
  391. int i, j;
  392. int mx, my;
  393. int avail_index = avail_indexes[subblock_no];
  394. int c_off = part_sizes_w[block_type];
  395. mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
  396. if(subblock_no == 3)
  397. c_off = -1;
  398. if(r->avail_cache[avail_index - 1]){
  399. A[0] = s->current_picture_ptr->f.motion_val[0][mv_pos-1][0];
  400. A[1] = s->current_picture_ptr->f.motion_val[0][mv_pos-1][1];
  401. }
  402. if(r->avail_cache[avail_index - 4]){
  403. B[0] = s->current_picture_ptr->f.motion_val[0][mv_pos-s->b8_stride][0];
  404. B[1] = s->current_picture_ptr->f.motion_val[0][mv_pos-s->b8_stride][1];
  405. }else{
  406. B[0] = A[0];
  407. B[1] = A[1];
  408. }
  409. if(!r->avail_cache[avail_index - 4 + c_off]){
  410. if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1] || r->rv30)){
  411. C[0] = s->current_picture_ptr->f.motion_val[0][mv_pos-s->b8_stride-1][0];
  412. C[1] = s->current_picture_ptr->f.motion_val[0][mv_pos-s->b8_stride-1][1];
  413. }else{
  414. C[0] = A[0];
  415. C[1] = A[1];
  416. }
  417. }else{
  418. C[0] = s->current_picture_ptr->f.motion_val[0][mv_pos-s->b8_stride+c_off][0];
  419. C[1] = s->current_picture_ptr->f.motion_val[0][mv_pos-s->b8_stride+c_off][1];
  420. }
  421. mx = mid_pred(A[0], B[0], C[0]);
  422. my = mid_pred(A[1], B[1], C[1]);
  423. mx += r->dmv[dmv_no][0];
  424. my += r->dmv[dmv_no][1];
  425. for(j = 0; j < part_sizes_h[block_type]; j++){
  426. for(i = 0; i < part_sizes_w[block_type]; i++){
  427. s->current_picture_ptr->f.motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
  428. s->current_picture_ptr->f.motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
  429. }
  430. }
  431. }
  432. #define GET_PTS_DIFF(a, b) ((a - b + 8192) & 0x1FFF)
  433. /**
  434. * Calculate motion vector component that should be added for direct blocks.
  435. */
  436. static int calc_add_mv(RV34DecContext *r, int dir, int val)
  437. {
  438. int mul = dir ? -r->weight2 : r->weight1;
  439. return (val * mul + 0x2000) >> 14;
  440. }
  441. /**
  442. * Predict motion vector for B-frame macroblock.
  443. */
  444. static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
  445. int A_avail, int B_avail, int C_avail,
  446. int *mx, int *my)
  447. {
  448. if(A_avail + B_avail + C_avail != 3){
  449. *mx = A[0] + B[0] + C[0];
  450. *my = A[1] + B[1] + C[1];
  451. if(A_avail + B_avail + C_avail == 2){
  452. *mx /= 2;
  453. *my /= 2;
  454. }
  455. }else{
  456. *mx = mid_pred(A[0], B[0], C[0]);
  457. *my = mid_pred(A[1], B[1], C[1]);
  458. }
  459. }
  460. /**
  461. * motion vector prediction for B-frames
  462. */
  463. static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
  464. {
  465. MpegEncContext *s = &r->s;
  466. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  467. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  468. int A[2], B[2], C[2];
  469. int has_A = 0, has_B = 0, has_C = 0;
  470. int mx, my;
  471. int i, j;
  472. Picture *cur_pic = s->current_picture_ptr;
  473. const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
  474. int type = cur_pic->f.mb_type[mb_pos];
  475. memset(A, 0, sizeof(A));
  476. memset(B, 0, sizeof(B));
  477. memset(C, 0, sizeof(C));
  478. if((r->avail_cache[6-1] & type) & mask){
  479. A[0] = cur_pic->f.motion_val[dir][mv_pos - 1][0];
  480. A[1] = cur_pic->f.motion_val[dir][mv_pos - 1][1];
  481. has_A = 1;
  482. }
  483. if((r->avail_cache[6-4] & type) & mask){
  484. B[0] = cur_pic->f.motion_val[dir][mv_pos - s->b8_stride][0];
  485. B[1] = cur_pic->f.motion_val[dir][mv_pos - s->b8_stride][1];
  486. has_B = 1;
  487. }
  488. if(r->avail_cache[6-4] && (r->avail_cache[6-2] & type) & mask){
  489. C[0] = cur_pic->f.motion_val[dir][mv_pos - s->b8_stride + 2][0];
  490. C[1] = cur_pic->f.motion_val[dir][mv_pos - s->b8_stride + 2][1];
  491. has_C = 1;
  492. }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[6-5] & type) & mask){
  493. C[0] = cur_pic->f.motion_val[dir][mv_pos - s->b8_stride - 1][0];
  494. C[1] = cur_pic->f.motion_val[dir][mv_pos - s->b8_stride - 1][1];
  495. has_C = 1;
  496. }
  497. rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
  498. mx += r->dmv[dir][0];
  499. my += r->dmv[dir][1];
  500. for(j = 0; j < 2; j++){
  501. for(i = 0; i < 2; i++){
  502. cur_pic->f.motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
  503. cur_pic->f.motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
  504. }
  505. }
  506. if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD){
  507. ZERO8x2(cur_pic->f.motion_val[!dir][mv_pos], s->b8_stride);
  508. }
  509. }
  510. /**
  511. * motion vector prediction - RV3 version
  512. */
  513. static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
  514. {
  515. MpegEncContext *s = &r->s;
  516. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  517. int A[2] = {0}, B[2], C[2];
  518. int i, j, k;
  519. int mx, my;
  520. int avail_index = avail_indexes[0];
  521. if(r->avail_cache[avail_index - 1]){
  522. A[0] = s->current_picture_ptr->f.motion_val[0][mv_pos - 1][0];
  523. A[1] = s->current_picture_ptr->f.motion_val[0][mv_pos - 1][1];
  524. }
  525. if(r->avail_cache[avail_index - 4]){
  526. B[0] = s->current_picture_ptr->f.motion_val[0][mv_pos - s->b8_stride][0];
  527. B[1] = s->current_picture_ptr->f.motion_val[0][mv_pos - s->b8_stride][1];
  528. }else{
  529. B[0] = A[0];
  530. B[1] = A[1];
  531. }
  532. if(!r->avail_cache[avail_index - 4 + 2]){
  533. if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1])){
  534. C[0] = s->current_picture_ptr->f.motion_val[0][mv_pos - s->b8_stride - 1][0];
  535. C[1] = s->current_picture_ptr->f.motion_val[0][mv_pos - s->b8_stride - 1][1];
  536. }else{
  537. C[0] = A[0];
  538. C[1] = A[1];
  539. }
  540. }else{
  541. C[0] = s->current_picture_ptr->f.motion_val[0][mv_pos - s->b8_stride + 2][0];
  542. C[1] = s->current_picture_ptr->f.motion_val[0][mv_pos - s->b8_stride + 2][1];
  543. }
  544. mx = mid_pred(A[0], B[0], C[0]);
  545. my = mid_pred(A[1], B[1], C[1]);
  546. mx += r->dmv[0][0];
  547. my += r->dmv[0][1];
  548. for(j = 0; j < 2; j++){
  549. for(i = 0; i < 2; i++){
  550. for(k = 0; k < 2; k++){
  551. s->current_picture_ptr->f.motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
  552. s->current_picture_ptr->f.motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
  553. }
  554. }
  555. }
  556. }
  557. static const int chroma_coeffs[3] = { 0, 3, 5 };
  558. /**
  559. * generic motion compensation function
  560. *
  561. * @param r decoder context
  562. * @param block_type type of the current block
  563. * @param xoff horizontal offset from the start of the current block
  564. * @param yoff vertical offset from the start of the current block
  565. * @param mv_off offset to the motion vector information
  566. * @param width width of the current partition in 8x8 blocks
  567. * @param height height of the current partition in 8x8 blocks
  568. * @param dir motion compensation direction (i.e. from the last or the next reference frame)
  569. * @param thirdpel motion vectors are specified in 1/3 of pixel
  570. * @param qpel_mc a set of functions used to perform luma motion compensation
  571. * @param chroma_mc a set of functions used to perform chroma motion compensation
  572. */
  573. static inline void rv34_mc(RV34DecContext *r, const int block_type,
  574. const int xoff, const int yoff, int mv_off,
  575. const int width, const int height, int dir,
  576. const int thirdpel, int weighted,
  577. qpel_mc_func (*qpel_mc)[16],
  578. h264_chroma_mc_func (*chroma_mc))
  579. {
  580. MpegEncContext *s = &r->s;
  581. uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
  582. int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  583. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
  584. int is16x16 = 1;
  585. if(thirdpel){
  586. int chroma_mx, chroma_my;
  587. mx = (s->current_picture_ptr->f.motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
  588. my = (s->current_picture_ptr->f.motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
  589. lx = (s->current_picture_ptr->f.motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
  590. ly = (s->current_picture_ptr->f.motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
  591. chroma_mx = s->current_picture_ptr->f.motion_val[dir][mv_pos][0] / 2;
  592. chroma_my = s->current_picture_ptr->f.motion_val[dir][mv_pos][1] / 2;
  593. umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
  594. umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
  595. uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
  596. uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
  597. }else{
  598. int cx, cy;
  599. mx = s->current_picture_ptr->f.motion_val[dir][mv_pos][0] >> 2;
  600. my = s->current_picture_ptr->f.motion_val[dir][mv_pos][1] >> 2;
  601. lx = s->current_picture_ptr->f.motion_val[dir][mv_pos][0] & 3;
  602. ly = s->current_picture_ptr->f.motion_val[dir][mv_pos][1] & 3;
  603. cx = s->current_picture_ptr->f.motion_val[dir][mv_pos][0] / 2;
  604. cy = s->current_picture_ptr->f.motion_val[dir][mv_pos][1] / 2;
  605. umx = cx >> 2;
  606. umy = cy >> 2;
  607. uvmx = (cx & 3) << 1;
  608. uvmy = (cy & 3) << 1;
  609. //due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
  610. if(uvmx == 6 && uvmy == 6)
  611. uvmx = uvmy = 4;
  612. }
  613. dxy = ly*4 + lx;
  614. srcY = dir ? s->next_picture_ptr->f.data[0] : s->last_picture_ptr->f.data[0];
  615. srcU = dir ? s->next_picture_ptr->f.data[1] : s->last_picture_ptr->f.data[1];
  616. srcV = dir ? s->next_picture_ptr->f.data[2] : s->last_picture_ptr->f.data[2];
  617. src_x = s->mb_x * 16 + xoff + mx;
  618. src_y = s->mb_y * 16 + yoff + my;
  619. uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
  620. uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
  621. srcY += src_y * s->linesize + src_x;
  622. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  623. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  624. if( (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4
  625. || (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4){
  626. uint8_t *uvbuf = s->edge_emu_buffer + 22 * s->linesize;
  627. srcY -= 2 + 2*s->linesize;
  628. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, (width<<3)+6, (height<<3)+6,
  629. src_x - 2, src_y - 2, s->h_edge_pos, s->v_edge_pos);
  630. srcY = s->edge_emu_buffer + 2 + 2*s->linesize;
  631. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, (width<<2)+1, (height<<2)+1,
  632. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  633. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, (width<<2)+1, (height<<2)+1,
  634. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  635. srcU = uvbuf;
  636. srcV = uvbuf + 16;
  637. }
  638. if(!weighted){
  639. Y = s->dest[0] + xoff + yoff *s->linesize;
  640. U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  641. V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  642. }else{
  643. Y = r->tmp_b_block_y [dir] + xoff + yoff *s->linesize;
  644. U = r->tmp_b_block_uv[dir*2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  645. V = r->tmp_b_block_uv[dir*2+1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  646. }
  647. if(block_type == RV34_MB_P_16x8){
  648. qpel_mc[1][dxy](Y, srcY, s->linesize);
  649. Y += 8;
  650. srcY += 8;
  651. }else if(block_type == RV34_MB_P_8x16){
  652. qpel_mc[1][dxy](Y, srcY, s->linesize);
  653. Y += 8 * s->linesize;
  654. srcY += 8 * s->linesize;
  655. }
  656. is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
  657. qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
  658. chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
  659. chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
  660. }
  661. static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
  662. const int xoff, const int yoff, int mv_off,
  663. const int width, const int height, int dir)
  664. {
  665. rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30, 0,
  666. r->rdsp.put_pixels_tab,
  667. r->rdsp.put_chroma_pixels_tab);
  668. }
  669. static void rv4_weight(RV34DecContext *r)
  670. {
  671. r->rdsp.rv40_weight_pixels_tab[0](r->s.dest[0],
  672. r->tmp_b_block_y[0],
  673. r->tmp_b_block_y[1],
  674. r->weight1,
  675. r->weight2,
  676. r->s.linesize);
  677. r->rdsp.rv40_weight_pixels_tab[1](r->s.dest[1],
  678. r->tmp_b_block_uv[0],
  679. r->tmp_b_block_uv[2],
  680. r->weight1,
  681. r->weight2,
  682. r->s.uvlinesize);
  683. r->rdsp.rv40_weight_pixels_tab[1](r->s.dest[2],
  684. r->tmp_b_block_uv[1],
  685. r->tmp_b_block_uv[3],
  686. r->weight1,
  687. r->weight2,
  688. r->s.uvlinesize);
  689. }
  690. static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
  691. {
  692. int weighted = !r->rv30 && block_type != RV34_MB_B_BIDIR && r->weight1 != 8192;
  693. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30, weighted,
  694. r->rdsp.put_pixels_tab,
  695. r->rdsp.put_chroma_pixels_tab);
  696. if(!weighted){
  697. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 0,
  698. r->rdsp.avg_pixels_tab,
  699. r->rdsp.avg_chroma_pixels_tab);
  700. }else{
  701. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 1,
  702. r->rdsp.put_pixels_tab,
  703. r->rdsp.put_chroma_pixels_tab);
  704. rv4_weight(r);
  705. }
  706. }
  707. static void rv34_mc_2mv_skip(RV34DecContext *r)
  708. {
  709. int i, j;
  710. int weighted = !r->rv30 && r->weight1 != 8192;
  711. for(j = 0; j < 2; j++)
  712. for(i = 0; i < 2; i++){
  713. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
  714. weighted,
  715. r->rdsp.put_pixels_tab,
  716. r->rdsp.put_chroma_pixels_tab);
  717. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
  718. weighted,
  719. weighted ? r->rdsp.put_pixels_tab : r->rdsp.avg_pixels_tab,
  720. weighted ? r->rdsp.put_chroma_pixels_tab : r->rdsp.avg_chroma_pixels_tab);
  721. }
  722. if(weighted)
  723. rv4_weight(r);
  724. }
  725. /** number of motion vectors in each macroblock type */
  726. static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
  727. /**
  728. * Decode motion vector differences
  729. * and perform motion vector reconstruction and motion compensation.
  730. */
  731. static int rv34_decode_mv(RV34DecContext *r, int block_type)
  732. {
  733. MpegEncContext *s = &r->s;
  734. GetBitContext *gb = &s->gb;
  735. int i, j, k, l;
  736. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  737. int next_bt;
  738. memset(r->dmv, 0, sizeof(r->dmv));
  739. for(i = 0; i < num_mvs[block_type]; i++){
  740. r->dmv[i][0] = svq3_get_se_golomb(gb);
  741. r->dmv[i][1] = svq3_get_se_golomb(gb);
  742. }
  743. switch(block_type){
  744. case RV34_MB_TYPE_INTRA:
  745. case RV34_MB_TYPE_INTRA16x16:
  746. ZERO8x2(s->current_picture_ptr->f.motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  747. return 0;
  748. case RV34_MB_SKIP:
  749. if(s->pict_type == AV_PICTURE_TYPE_P){
  750. ZERO8x2(s->current_picture_ptr->f.motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  751. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  752. break;
  753. }
  754. case RV34_MB_B_DIRECT:
  755. //surprisingly, it uses motion scheme from next reference frame
  756. next_bt = s->next_picture_ptr->f.mb_type[s->mb_x + s->mb_y * s->mb_stride];
  757. if(IS_INTRA(next_bt) || IS_SKIP(next_bt)){
  758. ZERO8x2(s->current_picture_ptr->f.motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  759. ZERO8x2(s->current_picture_ptr->f.motion_val[1][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  760. }else
  761. for(j = 0; j < 2; j++)
  762. for(i = 0; i < 2; i++)
  763. for(k = 0; k < 2; k++)
  764. for(l = 0; l < 2; l++)
  765. s->current_picture_ptr->f.motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->f.motion_val[0][mv_pos + i + j*s->b8_stride][k]);
  766. if(!(IS_16X8(next_bt) || IS_8X16(next_bt) || IS_8X8(next_bt))) //we can use whole macroblock MC
  767. rv34_mc_2mv(r, block_type);
  768. else
  769. rv34_mc_2mv_skip(r);
  770. ZERO8x2(s->current_picture_ptr->f.motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  771. break;
  772. case RV34_MB_P_16x16:
  773. case RV34_MB_P_MIX16x16:
  774. rv34_pred_mv(r, block_type, 0, 0);
  775. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  776. break;
  777. case RV34_MB_B_FORWARD:
  778. case RV34_MB_B_BACKWARD:
  779. r->dmv[1][0] = r->dmv[0][0];
  780. r->dmv[1][1] = r->dmv[0][1];
  781. if(r->rv30)
  782. rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
  783. else
  784. rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
  785. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
  786. break;
  787. case RV34_MB_P_16x8:
  788. case RV34_MB_P_8x16:
  789. rv34_pred_mv(r, block_type, 0, 0);
  790. rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
  791. if(block_type == RV34_MB_P_16x8){
  792. rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
  793. rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
  794. }
  795. if(block_type == RV34_MB_P_8x16){
  796. rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
  797. rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
  798. }
  799. break;
  800. case RV34_MB_B_BIDIR:
  801. rv34_pred_mv_b (r, block_type, 0);
  802. rv34_pred_mv_b (r, block_type, 1);
  803. rv34_mc_2mv (r, block_type);
  804. break;
  805. case RV34_MB_P_8x8:
  806. for(i=0;i< 4;i++){
  807. rv34_pred_mv(r, block_type, i, i);
  808. rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
  809. }
  810. break;
  811. }
  812. return 0;
  813. }
  814. /** @} */ // mv group
  815. /**
  816. * @name Macroblock reconstruction functions
  817. * @{
  818. */
  819. /** mapping of RV30/40 intra prediction types to standard H.264 types */
  820. static const int ittrans[9] = {
  821. DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED,
  822. VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED,
  823. };
  824. /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
  825. static const int ittrans16[4] = {
  826. DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8,
  827. };
  828. /**
  829. * Perform 4x4 intra prediction.
  830. */
  831. static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
  832. {
  833. uint8_t *prev = dst - stride + 4;
  834. uint32_t topleft;
  835. if(!up && !left)
  836. itype = DC_128_PRED;
  837. else if(!up){
  838. if(itype == VERT_PRED) itype = HOR_PRED;
  839. if(itype == DC_PRED) itype = LEFT_DC_PRED;
  840. }else if(!left){
  841. if(itype == HOR_PRED) itype = VERT_PRED;
  842. if(itype == DC_PRED) itype = TOP_DC_PRED;
  843. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  844. }
  845. if(!down){
  846. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  847. if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
  848. if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
  849. }
  850. if(!right && up){
  851. topleft = dst[-stride + 3] * 0x01010101;
  852. prev = (uint8_t*)&topleft;
  853. }
  854. r->h.pred4x4[itype](dst, prev, stride);
  855. }
  856. /** add_pixels_clamped for 4x4 block */
  857. static void rv34_add_4x4_block(uint8_t *dst, int stride, DCTELEM block[64], int off)
  858. {
  859. int x, y;
  860. for(y = 0; y < 4; y++)
  861. for(x = 0; x < 4; x++)
  862. dst[x + y*stride] = av_clip_uint8(dst[x + y*stride] + block[off + x+y*8]);
  863. }
  864. static inline int adjust_pred16(int itype, int up, int left)
  865. {
  866. if(!up && !left)
  867. itype = DC_128_PRED8x8;
  868. else if(!up){
  869. if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
  870. if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
  871. if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
  872. }else if(!left){
  873. if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
  874. if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
  875. if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
  876. }
  877. return itype;
  878. }
  879. static void rv34_output_macroblock(RV34DecContext *r, int8_t *intra_types, int cbp, int is16)
  880. {
  881. MpegEncContext *s = &r->s;
  882. DSPContext *dsp = &s->dsp;
  883. int i, j;
  884. uint8_t *Y, *U, *V;
  885. int itype;
  886. int avail[6*8] = {0};
  887. int idx;
  888. // Set neighbour information.
  889. if(r->avail_cache[1])
  890. avail[0] = 1;
  891. if(r->avail_cache[2])
  892. avail[1] = avail[2] = 1;
  893. if(r->avail_cache[3])
  894. avail[3] = avail[4] = 1;
  895. if(r->avail_cache[4])
  896. avail[5] = 1;
  897. if(r->avail_cache[5])
  898. avail[8] = avail[16] = 1;
  899. if(r->avail_cache[9])
  900. avail[24] = avail[32] = 1;
  901. Y = s->dest[0];
  902. U = s->dest[1];
  903. V = s->dest[2];
  904. if(!is16){
  905. for(j = 0; j < 4; j++){
  906. idx = 9 + j*8;
  907. for(i = 0; i < 4; i++, cbp >>= 1, Y += 4, idx++){
  908. rv34_pred_4x4_block(r, Y, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
  909. avail[idx] = 1;
  910. if(cbp & 1)
  911. rv34_add_4x4_block(Y, s->linesize, s->block[(i>>1)+(j&2)], (i&1)*4+(j&1)*32);
  912. }
  913. Y += s->linesize * 4 - 4*4;
  914. intra_types += r->intra_types_stride;
  915. }
  916. intra_types -= r->intra_types_stride * 4;
  917. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 0, 4);
  918. for(j = 0; j < 2; j++){
  919. idx = 6 + j*4;
  920. for(i = 0; i < 2; i++, cbp >>= 1, idx++){
  921. rv34_pred_4x4_block(r, U + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*r->intra_types_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
  922. rv34_pred_4x4_block(r, V + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*r->intra_types_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
  923. r->avail_cache[idx] = 1;
  924. if(cbp & 0x01)
  925. rv34_add_4x4_block(U + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[4], i*4+j*32);
  926. if(cbp & 0x10)
  927. rv34_add_4x4_block(V + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[5], i*4+j*32);
  928. }
  929. }
  930. }else{
  931. itype = ittrans16[intra_types[0]];
  932. itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
  933. r->h.pred16x16[itype](Y, s->linesize);
  934. dsp->add_pixels_clamped(s->block[0], Y, s->linesize);
  935. dsp->add_pixels_clamped(s->block[1], Y + 8, s->linesize);
  936. Y += s->linesize * 8;
  937. dsp->add_pixels_clamped(s->block[2], Y, s->linesize);
  938. dsp->add_pixels_clamped(s->block[3], Y + 8, s->linesize);
  939. itype = ittrans16[intra_types[0]];
  940. if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
  941. itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
  942. r->h.pred8x8[itype](U, s->uvlinesize);
  943. dsp->add_pixels_clamped(s->block[4], U, s->uvlinesize);
  944. r->h.pred8x8[itype](V, s->uvlinesize);
  945. dsp->add_pixels_clamped(s->block[5], V, s->uvlinesize);
  946. }
  947. }
  948. /**
  949. * mask for retrieving all bits in coded block pattern
  950. * corresponding to one 8x8 block
  951. */
  952. #define LUMA_CBP_BLOCK_MASK 0x33
  953. #define U_CBP_MASK 0x0F0000
  954. #define V_CBP_MASK 0xF00000
  955. /** @} */ // recons group
  956. static void rv34_apply_differences(RV34DecContext *r, int cbp)
  957. {
  958. static const int shifts[4] = { 0, 2, 8, 10 };
  959. MpegEncContext *s = &r->s;
  960. int i;
  961. for(i = 0; i < 4; i++)
  962. if((cbp & (LUMA_CBP_BLOCK_MASK << shifts[i])) || r->block_type == RV34_MB_P_MIX16x16)
  963. s->dsp.add_pixels_clamped(s->block[i], s->dest[0] + (i & 1)*8 + (i&2)*4*s->linesize, s->linesize);
  964. if(cbp & U_CBP_MASK)
  965. s->dsp.add_pixels_clamped(s->block[4], s->dest[1], s->uvlinesize);
  966. if(cbp & V_CBP_MASK)
  967. s->dsp.add_pixels_clamped(s->block[5], s->dest[2], s->uvlinesize);
  968. }
  969. static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
  970. {
  971. int d;
  972. d = motion_val[0][0] - motion_val[-step][0];
  973. if(d < -3 || d > 3)
  974. return 1;
  975. d = motion_val[0][1] - motion_val[-step][1];
  976. if(d < -3 || d > 3)
  977. return 1;
  978. return 0;
  979. }
  980. static int rv34_set_deblock_coef(RV34DecContext *r)
  981. {
  982. MpegEncContext *s = &r->s;
  983. int hmvmask = 0, vmvmask = 0, i, j;
  984. int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  985. int16_t (*motion_val)[2] = &s->current_picture_ptr->f.motion_val[0][midx];
  986. for(j = 0; j < 16; j += 8){
  987. for(i = 0; i < 2; i++){
  988. if(is_mv_diff_gt_3(motion_val + i, 1))
  989. vmvmask |= 0x11 << (j + i*2);
  990. if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
  991. hmvmask |= 0x03 << (j + i*2);
  992. }
  993. motion_val += s->b8_stride;
  994. }
  995. if(s->first_slice_line)
  996. hmvmask &= ~0x000F;
  997. if(!s->mb_x)
  998. vmvmask &= ~0x1111;
  999. if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
  1000. vmvmask |= (vmvmask & 0x4444) >> 1;
  1001. hmvmask |= (hmvmask & 0x0F00) >> 4;
  1002. if(s->mb_x)
  1003. r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
  1004. if(!s->first_slice_line)
  1005. r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
  1006. }
  1007. return hmvmask | vmvmask;
  1008. }
  1009. static int rv34_decode_macroblock(RV34DecContext *r, int8_t *intra_types)
  1010. {
  1011. MpegEncContext *s = &r->s;
  1012. GetBitContext *gb = &s->gb;
  1013. int cbp, cbp2;
  1014. int i, blknum, blkoff;
  1015. DCTELEM block16[64];
  1016. int luma_dc_quant;
  1017. int dist;
  1018. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1019. // Calculate which neighbours are available. Maybe it's worth optimizing too.
  1020. memset(r->avail_cache, 0, sizeof(r->avail_cache));
  1021. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
  1022. dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
  1023. if(s->mb_x && dist)
  1024. r->avail_cache[5] =
  1025. r->avail_cache[9] = s->current_picture_ptr->f.mb_type[mb_pos - 1];
  1026. if(dist >= s->mb_width)
  1027. r->avail_cache[2] =
  1028. r->avail_cache[3] = s->current_picture_ptr->f.mb_type[mb_pos - s->mb_stride];
  1029. if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
  1030. r->avail_cache[4] = s->current_picture_ptr->f.mb_type[mb_pos - s->mb_stride + 1];
  1031. if(s->mb_x && dist > s->mb_width)
  1032. r->avail_cache[1] = s->current_picture_ptr->f.mb_type[mb_pos - s->mb_stride - 1];
  1033. s->qscale = r->si.quant;
  1034. cbp = cbp2 = rv34_decode_mb_header(r, intra_types);
  1035. r->cbp_luma [mb_pos] = cbp;
  1036. r->cbp_chroma[mb_pos] = cbp >> 16;
  1037. if(s->pict_type == AV_PICTURE_TYPE_I)
  1038. r->deblock_coefs[mb_pos] = 0xFFFF;
  1039. else
  1040. r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
  1041. s->current_picture_ptr->f.qscale_table[mb_pos] = s->qscale;
  1042. if(cbp == -1)
  1043. return -1;
  1044. luma_dc_quant = r->block_type == RV34_MB_P_MIX16x16 ? r->luma_dc_quant_p[s->qscale] : r->luma_dc_quant_i[s->qscale];
  1045. if(r->is16){
  1046. memset(block16, 0, sizeof(block16));
  1047. rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0);
  1048. rv34_dequant4x4_16x16(block16, rv34_qscale_tab[luma_dc_quant],rv34_qscale_tab[s->qscale]);
  1049. r->rdsp.rv34_inv_transform_tab[1](block16);
  1050. }
  1051. for(i = 0; i < 16; i++, cbp >>= 1){
  1052. if(!r->is16 && !(cbp & 1)) continue;
  1053. blknum = ((i & 2) >> 1) + ((i & 8) >> 2);
  1054. blkoff = ((i & 1) << 2) + ((i & 4) << 3);
  1055. if(cbp & 1)
  1056. rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->luma_vlc, 0);
  1057. rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[s->qscale],rv34_qscale_tab[s->qscale]);
  1058. if(r->is16) //FIXME: optimize
  1059. s->block[blknum][blkoff] = block16[(i & 3) | ((i & 0xC) << 1)];
  1060. r->rdsp.rv34_inv_transform_tab[0](s->block[blknum] + blkoff);
  1061. }
  1062. if(r->block_type == RV34_MB_P_MIX16x16)
  1063. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  1064. for(; i < 24; i++, cbp >>= 1){
  1065. if(!(cbp & 1)) continue;
  1066. blknum = ((i & 4) >> 2) + 4;
  1067. blkoff = ((i & 1) << 2) + ((i & 2) << 4);
  1068. rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->chroma_vlc, 1);
  1069. rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]],rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]]);
  1070. r->rdsp.rv34_inv_transform_tab[0](s->block[blknum] + blkoff);
  1071. }
  1072. if (IS_INTRA(s->current_picture_ptr->f.mb_type[mb_pos]))
  1073. rv34_output_macroblock(r, intra_types, cbp2, r->is16);
  1074. else
  1075. rv34_apply_differences(r, cbp2);
  1076. return 0;
  1077. }
  1078. static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
  1079. {
  1080. int bits;
  1081. if(s->mb_y >= s->mb_height)
  1082. return 1;
  1083. if(!s->mb_num_left)
  1084. return 1;
  1085. if(r->s.mb_skip_run > 1)
  1086. return 0;
  1087. bits = r->bits - get_bits_count(&s->gb);
  1088. if(bits < 0 || (bits < 8 && !show_bits(&s->gb, bits)))
  1089. return 1;
  1090. return 0;
  1091. }
  1092. static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
  1093. {
  1094. MpegEncContext *s = &r->s;
  1095. GetBitContext *gb = &s->gb;
  1096. int mb_pos;
  1097. int res;
  1098. init_get_bits(&r->s.gb, buf, buf_size*8);
  1099. res = r->parse_slice_header(r, gb, &r->si);
  1100. if(res < 0){
  1101. av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
  1102. return -1;
  1103. }
  1104. if ((s->mb_x == 0 && s->mb_y == 0) || s->current_picture_ptr==NULL) {
  1105. if(s->width != r->si.width || s->height != r->si.height){
  1106. av_log(s->avctx, AV_LOG_DEBUG, "Changing dimensions to %dx%d\n", r->si.width,r->si.height);
  1107. MPV_common_end(s);
  1108. s->width = r->si.width;
  1109. s->height = r->si.height;
  1110. avcodec_set_dimensions(s->avctx, s->width, s->height);
  1111. if(MPV_common_init(s) < 0)
  1112. return -1;
  1113. r->intra_types_stride = s->mb_width*4 + 4;
  1114. r->intra_types_hist = av_realloc(r->intra_types_hist, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1115. r->intra_types = r->intra_types_hist + r->intra_types_stride * 4;
  1116. r->mb_type = av_realloc(r->mb_type, r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
  1117. r->cbp_luma = av_realloc(r->cbp_luma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
  1118. r->cbp_chroma = av_realloc(r->cbp_chroma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
  1119. r->deblock_coefs = av_realloc(r->deblock_coefs, r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs));
  1120. av_freep(&r->tmp_b_block_base);
  1121. }
  1122. s->pict_type = r->si.type ? r->si.type : AV_PICTURE_TYPE_I;
  1123. if(MPV_frame_start(s, s->avctx) < 0)
  1124. return -1;
  1125. ff_er_frame_start(s);
  1126. if (!r->tmp_b_block_base) {
  1127. int i;
  1128. r->tmp_b_block_base = av_malloc(s->linesize * 48);
  1129. for (i = 0; i < 2; i++)
  1130. r->tmp_b_block_y[i] = r->tmp_b_block_base + i * 16 * s->linesize;
  1131. for (i = 0; i < 4; i++)
  1132. r->tmp_b_block_uv[i] = r->tmp_b_block_base + 32 * s->linesize
  1133. + (i >> 1) * 8 * s->uvlinesize + (i & 1) * 16;
  1134. }
  1135. r->cur_pts = r->si.pts;
  1136. if(s->pict_type != AV_PICTURE_TYPE_B){
  1137. r->last_pts = r->next_pts;
  1138. r->next_pts = r->cur_pts;
  1139. }else{
  1140. int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
  1141. int dist0 = GET_PTS_DIFF(r->cur_pts, r->last_pts);
  1142. int dist1 = GET_PTS_DIFF(r->next_pts, r->cur_pts);
  1143. if(!refdist){
  1144. r->weight1 = r->weight2 = 8192;
  1145. }else{
  1146. r->weight1 = (dist0 << 14) / refdist;
  1147. r->weight2 = (dist1 << 14) / refdist;
  1148. }
  1149. }
  1150. s->mb_x = s->mb_y = 0;
  1151. } else {
  1152. int slice_type = r->si.type ? r->si.type : AV_PICTURE_TYPE_I;
  1153. if (slice_type != s->pict_type) {
  1154. av_log(s->avctx, AV_LOG_ERROR, "Slice type mismatch\n");
  1155. return AVERROR_INVALIDDATA;
  1156. }
  1157. if (s->width != r->si.width || s->height != r->si.height) {
  1158. av_log(s->avctx, AV_LOG_ERROR, "Size mismatch\n");
  1159. return AVERROR_INVALIDDATA;
  1160. }
  1161. }
  1162. r->si.end = end;
  1163. s->qscale = r->si.quant;
  1164. r->bits = buf_size*8;
  1165. s->mb_num_left = r->si.end - r->si.start;
  1166. r->s.mb_skip_run = 0;
  1167. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  1168. if(r->si.start != mb_pos){
  1169. av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
  1170. s->mb_x = r->si.start % s->mb_width;
  1171. s->mb_y = r->si.start / s->mb_width;
  1172. }
  1173. memset(r->intra_types_hist, -1, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1174. s->first_slice_line = 1;
  1175. s->resync_mb_x = s->mb_x;
  1176. s->resync_mb_y = s->mb_y;
  1177. ff_init_block_index(s);
  1178. while(!check_slice_end(r, s)) {
  1179. ff_update_block_index(s);
  1180. s->dsp.clear_blocks(s->block[0]);
  1181. if(rv34_decode_macroblock(r, r->intra_types + s->mb_x * 4 + 4) < 0){
  1182. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_ERROR|DC_ERROR|MV_ERROR);
  1183. return -1;
  1184. }
  1185. if (++s->mb_x == s->mb_width) {
  1186. s->mb_x = 0;
  1187. s->mb_y++;
  1188. ff_init_block_index(s);
  1189. memmove(r->intra_types_hist, r->intra_types, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
  1190. memset(r->intra_types, -1, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
  1191. if(r->loop_filter && s->mb_y >= 2)
  1192. r->loop_filter(r, s->mb_y - 2);
  1193. }
  1194. if(s->mb_x == s->resync_mb_x)
  1195. s->first_slice_line=0;
  1196. s->mb_num_left--;
  1197. }
  1198. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_END|DC_END|MV_END);
  1199. return s->mb_y == s->mb_height;
  1200. }
  1201. /** @} */ // recons group end
  1202. /**
  1203. * Initialize decoder.
  1204. */
  1205. av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
  1206. {
  1207. RV34DecContext *r = avctx->priv_data;
  1208. MpegEncContext *s = &r->s;
  1209. MPV_decode_defaults(s);
  1210. s->avctx = avctx;
  1211. s->out_format = FMT_H263;
  1212. s->codec_id = avctx->codec_id;
  1213. s->width = avctx->width;
  1214. s->height = avctx->height;
  1215. r->s.avctx = avctx;
  1216. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  1217. r->s.flags |= CODEC_FLAG_EMU_EDGE;
  1218. avctx->pix_fmt = PIX_FMT_YUV420P;
  1219. avctx->has_b_frames = 1;
  1220. s->low_delay = 0;
  1221. if (MPV_common_init(s) < 0)
  1222. return -1;
  1223. ff_h264_pred_init(&r->h, CODEC_ID_RV40, 8, 1);
  1224. #if CONFIG_RV30_DECODER
  1225. if (avctx->codec_id == CODEC_ID_RV30)
  1226. ff_rv30dsp_init(&r->rdsp, &r->s.dsp);
  1227. #endif
  1228. #if CONFIG_RV40_DECODER
  1229. if (avctx->codec_id == CODEC_ID_RV40)
  1230. ff_rv40dsp_init(&r->rdsp, &r->s.dsp);
  1231. #endif
  1232. r->intra_types_stride = 4*s->mb_stride + 4;
  1233. r->intra_types_hist = av_malloc(r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1234. r->intra_types = r->intra_types_hist + r->intra_types_stride * 4;
  1235. r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
  1236. r->cbp_luma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
  1237. r->cbp_chroma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
  1238. r->deblock_coefs = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs));
  1239. if(!intra_vlcs[0].cbppattern[0].bits)
  1240. rv34_init_tables();
  1241. return 0;
  1242. }
  1243. static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n)
  1244. {
  1245. if(avctx->slice_count) return avctx->slice_offset[n];
  1246. else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
  1247. }
  1248. int ff_rv34_decode_frame(AVCodecContext *avctx,
  1249. void *data, int *data_size,
  1250. AVPacket *avpkt)
  1251. {
  1252. const uint8_t *buf = avpkt->data;
  1253. int buf_size = avpkt->size;
  1254. RV34DecContext *r = avctx->priv_data;
  1255. MpegEncContext *s = &r->s;
  1256. AVFrame *pict = data;
  1257. SliceInfo si;
  1258. int i;
  1259. int slice_count;
  1260. const uint8_t *slices_hdr = NULL;
  1261. int last = 0;
  1262. /* no supplementary picture */
  1263. if (buf_size == 0) {
  1264. /* special case for last picture */
  1265. if (s->low_delay==0 && s->next_picture_ptr) {
  1266. *pict = *(AVFrame*)s->next_picture_ptr;
  1267. s->next_picture_ptr = NULL;
  1268. *data_size = sizeof(AVFrame);
  1269. }
  1270. return 0;
  1271. }
  1272. if(!avctx->slice_count){
  1273. slice_count = (*buf++) + 1;
  1274. slices_hdr = buf + 4;
  1275. buf += 8 * slice_count;
  1276. buf_size -= 1 + 8 * slice_count;
  1277. }else
  1278. slice_count = avctx->slice_count;
  1279. //parse first slice header to check whether this frame can be decoded
  1280. if(get_slice_offset(avctx, slices_hdr, 0) < 0 ||
  1281. get_slice_offset(avctx, slices_hdr, 0) > buf_size){
  1282. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1283. return -1;
  1284. }
  1285. init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, 0), (buf_size-get_slice_offset(avctx, slices_hdr, 0))*8);
  1286. if(r->parse_slice_header(r, &r->s.gb, &si) < 0 || si.start){
  1287. av_log(avctx, AV_LOG_ERROR, "First slice header is incorrect\n");
  1288. return -1;
  1289. }
  1290. if ((!s->last_picture_ptr || !s->last_picture_ptr->f.data[0]) && si.type == AV_PICTURE_TYPE_B)
  1291. return -1;
  1292. if( (avctx->skip_frame >= AVDISCARD_NONREF && si.type==AV_PICTURE_TYPE_B)
  1293. || (avctx->skip_frame >= AVDISCARD_NONKEY && si.type!=AV_PICTURE_TYPE_I)
  1294. || avctx->skip_frame >= AVDISCARD_ALL)
  1295. return avpkt->size;
  1296. for(i = 0; i < slice_count; i++){
  1297. int offset = get_slice_offset(avctx, slices_hdr, i);
  1298. int size;
  1299. if(i+1 == slice_count)
  1300. size = buf_size - offset;
  1301. else
  1302. size = get_slice_offset(avctx, slices_hdr, i+1) - offset;
  1303. if(offset < 0 || offset > buf_size){
  1304. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1305. break;
  1306. }
  1307. r->si.end = s->mb_width * s->mb_height;
  1308. if(i+1 < slice_count){
  1309. if (get_slice_offset(avctx, slices_hdr, i+1) < 0 ||
  1310. get_slice_offset(avctx, slices_hdr, i+1) > buf_size) {
  1311. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1312. break;
  1313. }
  1314. init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, i+1), (buf_size-get_slice_offset(avctx, slices_hdr, i+1))*8);
  1315. if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
  1316. if(i+2 < slice_count)
  1317. size = get_slice_offset(avctx, slices_hdr, i+2) - offset;
  1318. else
  1319. size = buf_size - offset;
  1320. }else
  1321. r->si.end = si.start;
  1322. }
  1323. if (size < 0 || size > buf_size - offset) {
  1324. av_log(avctx, AV_LOG_ERROR, "Slice size is invalid\n");
  1325. break;
  1326. }
  1327. last = rv34_decode_slice(r, r->si.end, buf + offset, size);
  1328. s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
  1329. if(last)
  1330. break;
  1331. }
  1332. if(last && s->current_picture_ptr){
  1333. if(r->loop_filter)
  1334. r->loop_filter(r, s->mb_height - 1);
  1335. ff_er_frame_end(s);
  1336. MPV_frame_end(s);
  1337. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  1338. *pict = *(AVFrame*)s->current_picture_ptr;
  1339. } else if (s->last_picture_ptr != NULL) {
  1340. *pict = *(AVFrame*)s->last_picture_ptr;
  1341. }
  1342. if(s->last_picture_ptr || s->low_delay){
  1343. *data_size = sizeof(AVFrame);
  1344. ff_print_debug_info(s, pict);
  1345. }
  1346. s->current_picture_ptr = NULL; //so we can detect if frame_end wasnt called (find some nicer solution...)
  1347. }
  1348. return avpkt->size;
  1349. }
  1350. av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
  1351. {
  1352. RV34DecContext *r = avctx->priv_data;
  1353. MPV_common_end(&r->s);
  1354. av_freep(&r->intra_types_hist);
  1355. r->intra_types = NULL;
  1356. av_freep(&r->tmp_b_block_base);
  1357. av_freep(&r->mb_type);
  1358. av_freep(&r->cbp_luma);
  1359. av_freep(&r->cbp_chroma);
  1360. av_freep(&r->deblock_coefs);
  1361. return 0;
  1362. }