You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4301 lines
166KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "libavutil/imgutils.h"
  27. #include "libavutil/opt.h"
  28. #include "internal.h"
  29. #include "dsputil.h"
  30. #include "avcodec.h"
  31. #include "mpegvideo.h"
  32. #include "h264.h"
  33. #include "h264data.h"
  34. #include "h264_mvpred.h"
  35. #include "golomb.h"
  36. #include "mathops.h"
  37. #include "rectangle.h"
  38. #include "thread.h"
  39. #include "vdpau_internal.h"
  40. #include "libavutil/avassert.h"
  41. #include "cabac.h"
  42. //#undef NDEBUG
  43. #include <assert.h>
  44. static const uint8_t rem6[QP_MAX_NUM+1]={
  45. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  46. };
  47. static const uint8_t div6[QP_MAX_NUM+1]={
  48. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10,10,10,10,
  49. };
  50. static const enum PixelFormat hwaccel_pixfmt_list_h264_jpeg_420[] = {
  51. PIX_FMT_DXVA2_VLD,
  52. PIX_FMT_VAAPI_VLD,
  53. PIX_FMT_VDA_VLD,
  54. PIX_FMT_YUVJ420P,
  55. PIX_FMT_NONE
  56. };
  57. /**
  58. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  59. */
  60. int ff_h264_check_intra4x4_pred_mode(H264Context *h){
  61. MpegEncContext * const s = &h->s;
  62. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  63. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  64. int i;
  65. if(!(h->top_samples_available&0x8000)){
  66. for(i=0; i<4; i++){
  67. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  68. if(status<0){
  69. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  70. return -1;
  71. } else if(status){
  72. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  73. }
  74. }
  75. }
  76. if((h->left_samples_available&0x8888)!=0x8888){
  77. static const int mask[4]={0x8000,0x2000,0x80,0x20};
  78. for(i=0; i<4; i++){
  79. if(!(h->left_samples_available&mask[i])){
  80. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  81. if(status<0){
  82. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  83. return -1;
  84. } else if(status){
  85. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  86. }
  87. }
  88. }
  89. }
  90. return 0;
  91. } //FIXME cleanup like check_intra_pred_mode
  92. static int check_intra_pred_mode(H264Context *h, int mode, int is_chroma){
  93. MpegEncContext * const s = &h->s;
  94. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  95. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  96. if(mode > 6U) {
  97. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  98. return -1;
  99. }
  100. if(!(h->top_samples_available&0x8000)){
  101. mode= top[ mode ];
  102. if(mode<0){
  103. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  104. return -1;
  105. }
  106. }
  107. if((h->left_samples_available&0x8080) != 0x8080){
  108. mode= left[ mode ];
  109. if(is_chroma && (h->left_samples_available&0x8080)){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
  110. mode= ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available&0x8000)) + 2*(mode == DC_128_PRED8x8);
  111. }
  112. if(mode<0){
  113. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  114. return -1;
  115. }
  116. }
  117. return mode;
  118. }
  119. /**
  120. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  121. */
  122. int ff_h264_check_intra16x16_pred_mode(H264Context *h, int mode)
  123. {
  124. return check_intra_pred_mode(h, mode, 0);
  125. }
  126. /**
  127. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  128. */
  129. int ff_h264_check_intra_chroma_pred_mode(H264Context *h, int mode)
  130. {
  131. return check_intra_pred_mode(h, mode, 1);
  132. }
  133. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
  134. int i, si, di;
  135. uint8_t *dst;
  136. int bufidx;
  137. // src[0]&0x80; //forbidden bit
  138. h->nal_ref_idc= src[0]>>5;
  139. h->nal_unit_type= src[0]&0x1F;
  140. src++; length--;
  141. #if HAVE_FAST_UNALIGNED
  142. # if HAVE_FAST_64BIT
  143. # define RS 7
  144. for(i=0; i+1<length; i+=9){
  145. if(!((~AV_RN64A(src+i) & (AV_RN64A(src+i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL))
  146. # else
  147. # define RS 3
  148. for(i=0; i+1<length; i+=5){
  149. if(!((~AV_RN32A(src+i) & (AV_RN32A(src+i) - 0x01000101U)) & 0x80008080U))
  150. # endif
  151. continue;
  152. if(i>0 && !src[i]) i--;
  153. while(src[i]) i++;
  154. #else
  155. # define RS 0
  156. for(i=0; i+1<length; i+=2){
  157. if(src[i]) continue;
  158. if(i>0 && src[i-1]==0) i--;
  159. #endif
  160. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  161. if(src[i+2]!=3){
  162. /* startcode, so we must be past the end */
  163. length=i;
  164. }
  165. break;
  166. }
  167. i-= RS;
  168. }
  169. bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
  170. si=h->rbsp_buffer_size[bufidx];
  171. av_fast_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+FF_INPUT_BUFFER_PADDING_SIZE+MAX_MBPAIR_SIZE);
  172. dst= h->rbsp_buffer[bufidx];
  173. if(si != h->rbsp_buffer_size[bufidx])
  174. memset(dst + length, 0, FF_INPUT_BUFFER_PADDING_SIZE+MAX_MBPAIR_SIZE);
  175. if (dst == NULL){
  176. return NULL;
  177. }
  178. if(i>=length-1){ //no escaped 0
  179. *dst_length= length;
  180. *consumed= length+1; //+1 for the header
  181. if(h->s.avctx->flags2 & CODEC_FLAG2_FAST){
  182. return src;
  183. }else{
  184. memcpy(dst, src, length);
  185. return dst;
  186. }
  187. }
  188. //printf("decoding esc\n");
  189. memcpy(dst, src, i);
  190. si=di=i;
  191. while(si+2<length){
  192. //remove escapes (very rare 1:2^22)
  193. if(src[si+2]>3){
  194. dst[di++]= src[si++];
  195. dst[di++]= src[si++];
  196. }else if(src[si]==0 && src[si+1]==0){
  197. if(src[si+2]==3){ //escape
  198. dst[di++]= 0;
  199. dst[di++]= 0;
  200. si+=3;
  201. continue;
  202. }else //next start code
  203. goto nsc;
  204. }
  205. dst[di++]= src[si++];
  206. }
  207. while(si<length)
  208. dst[di++]= src[si++];
  209. nsc:
  210. memset(dst+di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  211. *dst_length= di;
  212. *consumed= si + 1;//+1 for the header
  213. //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
  214. return dst;
  215. }
  216. /**
  217. * Identify the exact end of the bitstream
  218. * @return the length of the trailing, or 0 if damaged
  219. */
  220. static int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src){
  221. int v= *src;
  222. int r;
  223. tprintf(h->s.avctx, "rbsp trailing %X\n", v);
  224. for(r=1; r<9; r++){
  225. if(v&1) return r;
  226. v>>=1;
  227. }
  228. return 0;
  229. }
  230. static inline int get_lowest_part_list_y(H264Context *h, Picture *pic, int n, int height,
  231. int y_offset, int list){
  232. int raw_my= h->mv_cache[list][ scan8[n] ][1];
  233. int filter_height= (raw_my&3) ? 2 : 0;
  234. int full_my= (raw_my>>2) + y_offset;
  235. int top = full_my - filter_height, bottom = full_my + height + filter_height;
  236. return FFMAX(abs(top), bottom);
  237. }
  238. static inline void get_lowest_part_y(H264Context *h, int refs[2][48], int n, int height,
  239. int y_offset, int list0, int list1, int *nrefs){
  240. MpegEncContext * const s = &h->s;
  241. int my;
  242. y_offset += 16*(s->mb_y >> MB_FIELD);
  243. if(list0){
  244. int ref_n = h->ref_cache[0][ scan8[n] ];
  245. Picture *ref= &h->ref_list[0][ref_n];
  246. // Error resilience puts the current picture in the ref list.
  247. // Don't try to wait on these as it will cause a deadlock.
  248. // Fields can wait on each other, though.
  249. if (ref->f.thread_opaque != s->current_picture.f.thread_opaque ||
  250. (ref->f.reference & 3) != s->picture_structure) {
  251. my = get_lowest_part_list_y(h, ref, n, height, y_offset, 0);
  252. if (refs[0][ref_n] < 0) nrefs[0] += 1;
  253. refs[0][ref_n] = FFMAX(refs[0][ref_n], my);
  254. }
  255. }
  256. if(list1){
  257. int ref_n = h->ref_cache[1][ scan8[n] ];
  258. Picture *ref= &h->ref_list[1][ref_n];
  259. if (ref->f.thread_opaque != s->current_picture.f.thread_opaque ||
  260. (ref->f.reference & 3) != s->picture_structure) {
  261. my = get_lowest_part_list_y(h, ref, n, height, y_offset, 1);
  262. if (refs[1][ref_n] < 0) nrefs[1] += 1;
  263. refs[1][ref_n] = FFMAX(refs[1][ref_n], my);
  264. }
  265. }
  266. }
  267. /**
  268. * Wait until all reference frames are available for MC operations.
  269. *
  270. * @param h the H264 context
  271. */
  272. static void await_references(H264Context *h){
  273. MpegEncContext * const s = &h->s;
  274. const int mb_xy= h->mb_xy;
  275. const int mb_type = s->current_picture.f.mb_type[mb_xy];
  276. int refs[2][48];
  277. int nrefs[2] = {0};
  278. int ref, list;
  279. memset(refs, -1, sizeof(refs));
  280. if(IS_16X16(mb_type)){
  281. get_lowest_part_y(h, refs, 0, 16, 0,
  282. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
  283. }else if(IS_16X8(mb_type)){
  284. get_lowest_part_y(h, refs, 0, 8, 0,
  285. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
  286. get_lowest_part_y(h, refs, 8, 8, 8,
  287. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
  288. }else if(IS_8X16(mb_type)){
  289. get_lowest_part_y(h, refs, 0, 16, 0,
  290. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
  291. get_lowest_part_y(h, refs, 4, 16, 0,
  292. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
  293. }else{
  294. int i;
  295. assert(IS_8X8(mb_type));
  296. for(i=0; i<4; i++){
  297. const int sub_mb_type= h->sub_mb_type[i];
  298. const int n= 4*i;
  299. int y_offset= (i&2)<<2;
  300. if(IS_SUB_8X8(sub_mb_type)){
  301. get_lowest_part_y(h, refs, n , 8, y_offset,
  302. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
  303. }else if(IS_SUB_8X4(sub_mb_type)){
  304. get_lowest_part_y(h, refs, n , 4, y_offset,
  305. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
  306. get_lowest_part_y(h, refs, n+2, 4, y_offset+4,
  307. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
  308. }else if(IS_SUB_4X8(sub_mb_type)){
  309. get_lowest_part_y(h, refs, n , 8, y_offset,
  310. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
  311. get_lowest_part_y(h, refs, n+1, 8, y_offset,
  312. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
  313. }else{
  314. int j;
  315. assert(IS_SUB_4X4(sub_mb_type));
  316. for(j=0; j<4; j++){
  317. int sub_y_offset= y_offset + 2*(j&2);
  318. get_lowest_part_y(h, refs, n+j, 4, sub_y_offset,
  319. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
  320. }
  321. }
  322. }
  323. }
  324. for(list=h->list_count-1; list>=0; list--){
  325. for(ref=0; ref<48 && nrefs[list]; ref++){
  326. int row = refs[list][ref];
  327. if(row >= 0){
  328. Picture *ref_pic = &h->ref_list[list][ref];
  329. int ref_field = ref_pic->f.reference - 1;
  330. int ref_field_picture = ref_pic->field_picture;
  331. int pic_height = 16*s->mb_height >> ref_field_picture;
  332. row <<= MB_MBAFF;
  333. nrefs[list]--;
  334. if(!FIELD_PICTURE && ref_field_picture){ // frame referencing two fields
  335. ff_thread_await_progress((AVFrame*)ref_pic, FFMIN((row >> 1) - !(row&1), pic_height-1), 1);
  336. ff_thread_await_progress((AVFrame*)ref_pic, FFMIN((row >> 1) , pic_height-1), 0);
  337. }else if(FIELD_PICTURE && !ref_field_picture){ // field referencing one field of a frame
  338. ff_thread_await_progress((AVFrame*)ref_pic, FFMIN(row*2 + ref_field , pic_height-1), 0);
  339. }else if(FIELD_PICTURE){
  340. ff_thread_await_progress((AVFrame*)ref_pic, FFMIN(row, pic_height-1), ref_field);
  341. }else{
  342. ff_thread_await_progress((AVFrame*)ref_pic, FFMIN(row, pic_height-1), 0);
  343. }
  344. }
  345. }
  346. }
  347. }
  348. #if 0
  349. /**
  350. * DCT transforms the 16 dc values.
  351. * @param qp quantization parameter ??? FIXME
  352. */
  353. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  354. // const int qmul= dequant_coeff[qp][0];
  355. int i;
  356. int temp[16]; //FIXME check if this is a good idea
  357. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  358. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  359. for(i=0; i<4; i++){
  360. const int offset= y_offset[i];
  361. const int z0= block[offset+stride*0] + block[offset+stride*4];
  362. const int z1= block[offset+stride*0] - block[offset+stride*4];
  363. const int z2= block[offset+stride*1] - block[offset+stride*5];
  364. const int z3= block[offset+stride*1] + block[offset+stride*5];
  365. temp[4*i+0]= z0+z3;
  366. temp[4*i+1]= z1+z2;
  367. temp[4*i+2]= z1-z2;
  368. temp[4*i+3]= z0-z3;
  369. }
  370. for(i=0; i<4; i++){
  371. const int offset= x_offset[i];
  372. const int z0= temp[4*0+i] + temp[4*2+i];
  373. const int z1= temp[4*0+i] - temp[4*2+i];
  374. const int z2= temp[4*1+i] - temp[4*3+i];
  375. const int z3= temp[4*1+i] + temp[4*3+i];
  376. block[stride*0 +offset]= (z0 + z3)>>1;
  377. block[stride*2 +offset]= (z1 + z2)>>1;
  378. block[stride*8 +offset]= (z1 - z2)>>1;
  379. block[stride*10+offset]= (z0 - z3)>>1;
  380. }
  381. }
  382. #endif
  383. #undef xStride
  384. #undef stride
  385. #if 0
  386. static void chroma_dc_dct_c(DCTELEM *block){
  387. const int stride= 16*2;
  388. const int xStride= 16;
  389. int a,b,c,d,e;
  390. a= block[stride*0 + xStride*0];
  391. b= block[stride*0 + xStride*1];
  392. c= block[stride*1 + xStride*0];
  393. d= block[stride*1 + xStride*1];
  394. e= a-b;
  395. a= a+b;
  396. b= c-d;
  397. c= c+d;
  398. block[stride*0 + xStride*0]= (a+c);
  399. block[stride*0 + xStride*1]= (e+b);
  400. block[stride*1 + xStride*0]= (a-c);
  401. block[stride*1 + xStride*1]= (e-b);
  402. }
  403. #endif
  404. static av_always_inline void
  405. mc_dir_part(H264Context *h, Picture *pic, int n, int square,
  406. int height, int delta, int list,
  407. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  408. int src_x_offset, int src_y_offset,
  409. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op,
  410. int pixel_shift, int chroma_idc)
  411. {
  412. MpegEncContext * const s = &h->s;
  413. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  414. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  415. const int luma_xy= (mx&3) + ((my&3)<<2);
  416. int offset = ((mx>>2) << pixel_shift) + (my>>2)*h->mb_linesize;
  417. uint8_t * src_y = pic->f.data[0] + offset;
  418. uint8_t * src_cb, * src_cr;
  419. int extra_width= h->emu_edge_width;
  420. int extra_height= h->emu_edge_height;
  421. int emu=0;
  422. const int full_mx= mx>>2;
  423. const int full_my= my>>2;
  424. const int pic_width = 16*s->mb_width;
  425. const int pic_height = 16*s->mb_height >> MB_FIELD;
  426. int ysh;
  427. if(mx&7) extra_width -= 3;
  428. if(my&7) extra_height -= 3;
  429. if( full_mx < 0-extra_width
  430. || full_my < 0-extra_height
  431. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  432. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  433. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_y - (2 << pixel_shift) - 2*h->mb_linesize, h->mb_linesize,
  434. 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  435. src_y= s->edge_emu_buffer + (2 << pixel_shift) + 2*h->mb_linesize;
  436. emu=1;
  437. }
  438. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  439. if(!square){
  440. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  441. }
  442. if(CONFIG_GRAY && s->flags&CODEC_FLAG_GRAY) return;
  443. if(chroma_idc == 3 /* yuv444 */){
  444. src_cb = pic->f.data[1] + offset;
  445. if(emu){
  446. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cb - (2 << pixel_shift) - 2*h->mb_linesize, h->mb_linesize,
  447. 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  448. src_cb= s->edge_emu_buffer + (2 << pixel_shift) + 2*h->mb_linesize;
  449. }
  450. qpix_op[luma_xy](dest_cb, src_cb, h->mb_linesize); //FIXME try variable height perhaps?
  451. if(!square){
  452. qpix_op[luma_xy](dest_cb + delta, src_cb + delta, h->mb_linesize);
  453. }
  454. src_cr = pic->f.data[2] + offset;
  455. if(emu){
  456. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cr - (2 << pixel_shift) - 2*h->mb_linesize, h->mb_linesize,
  457. 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  458. src_cr= s->edge_emu_buffer + (2 << pixel_shift) + 2*h->mb_linesize;
  459. }
  460. qpix_op[luma_xy](dest_cr, src_cr, h->mb_linesize); //FIXME try variable height perhaps?
  461. if(!square){
  462. qpix_op[luma_xy](dest_cr + delta, src_cr + delta, h->mb_linesize);
  463. }
  464. return;
  465. }
  466. ysh = 3 - (chroma_idc == 2 /* yuv422 */);
  467. if(chroma_idc == 1 /* yuv420 */ && MB_FIELD){
  468. // chroma offset when predicting from a field of opposite parity
  469. my += 2 * ((s->mb_y & 1) - (pic->f.reference - 1));
  470. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  471. }
  472. src_cb = pic->f.data[1] + ((mx >> 3) << pixel_shift) + (my >> ysh) * h->mb_uvlinesize;
  473. src_cr = pic->f.data[2] + ((mx >> 3) << pixel_shift) + (my >> ysh) * h->mb_uvlinesize;
  474. if(emu){
  475. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize,
  476. 9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh),
  477. pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */));
  478. src_cb= s->edge_emu_buffer;
  479. }
  480. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, height >> (chroma_idc == 1 /* yuv420 */),
  481. mx&7, (my << (chroma_idc == 2 /* yuv422 */)) &7);
  482. if(emu){
  483. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize,
  484. 9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh),
  485. pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */));
  486. src_cr= s->edge_emu_buffer;
  487. }
  488. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, height >> (chroma_idc == 1 /* yuv420 */),
  489. mx&7, (my << (chroma_idc == 2 /* yuv422 */)) &7);
  490. }
  491. static av_always_inline void
  492. mc_part_std(H264Context *h, int n, int square, int height, int delta,
  493. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  494. int x_offset, int y_offset,
  495. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  496. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  497. int list0, int list1, int pixel_shift, int chroma_idc)
  498. {
  499. MpegEncContext * const s = &h->s;
  500. qpel_mc_func *qpix_op= qpix_put;
  501. h264_chroma_mc_func chroma_op= chroma_put;
  502. dest_y += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
  503. if (chroma_idc == 3 /* yuv444 */) {
  504. dest_cb += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
  505. dest_cr += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
  506. } else if (chroma_idc == 2 /* yuv422 */) {
  507. dest_cb += ( x_offset << pixel_shift) + 2*y_offset*h->mb_uvlinesize;
  508. dest_cr += ( x_offset << pixel_shift) + 2*y_offset*h->mb_uvlinesize;
  509. } else /* yuv420 */ {
  510. dest_cb += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
  511. dest_cr += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
  512. }
  513. x_offset += 8*s->mb_x;
  514. y_offset += 8*(s->mb_y >> MB_FIELD);
  515. if(list0){
  516. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  517. mc_dir_part(h, ref, n, square, height, delta, 0,
  518. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  519. qpix_op, chroma_op, pixel_shift, chroma_idc);
  520. qpix_op= qpix_avg;
  521. chroma_op= chroma_avg;
  522. }
  523. if(list1){
  524. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  525. mc_dir_part(h, ref, n, square, height, delta, 1,
  526. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  527. qpix_op, chroma_op, pixel_shift, chroma_idc);
  528. }
  529. }
  530. static av_always_inline void
  531. mc_part_weighted(H264Context *h, int n, int square, int height, int delta,
  532. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  533. int x_offset, int y_offset,
  534. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  535. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  536. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  537. int list0, int list1, int pixel_shift, int chroma_idc){
  538. MpegEncContext * const s = &h->s;
  539. int chroma_height;
  540. dest_y += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
  541. if (chroma_idc == 3 /* yuv444 */) {
  542. chroma_height = height;
  543. chroma_weight_avg = luma_weight_avg;
  544. chroma_weight_op = luma_weight_op;
  545. dest_cb += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
  546. dest_cr += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
  547. } else if (chroma_idc == 2 /* yuv422 */) {
  548. chroma_height = height;
  549. dest_cb += ( x_offset << pixel_shift) + 2*y_offset*h->mb_uvlinesize;
  550. dest_cr += ( x_offset << pixel_shift) + 2*y_offset*h->mb_uvlinesize;
  551. } else /* yuv420 */ {
  552. chroma_height = height >> 1;
  553. dest_cb += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
  554. dest_cr += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
  555. }
  556. x_offset += 8*s->mb_x;
  557. y_offset += 8*(s->mb_y >> MB_FIELD);
  558. if(list0 && list1){
  559. /* don't optimize for luma-only case, since B-frames usually
  560. * use implicit weights => chroma too. */
  561. uint8_t *tmp_cb = s->obmc_scratchpad;
  562. uint8_t *tmp_cr = s->obmc_scratchpad + (16 << pixel_shift);
  563. uint8_t *tmp_y = s->obmc_scratchpad + 16*h->mb_uvlinesize;
  564. int refn0 = h->ref_cache[0][ scan8[n] ];
  565. int refn1 = h->ref_cache[1][ scan8[n] ];
  566. mc_dir_part(h, &h->ref_list[0][refn0], n, square, height, delta, 0,
  567. dest_y, dest_cb, dest_cr,
  568. x_offset, y_offset, qpix_put, chroma_put,
  569. pixel_shift, chroma_idc);
  570. mc_dir_part(h, &h->ref_list[1][refn1], n, square, height, delta, 1,
  571. tmp_y, tmp_cb, tmp_cr,
  572. x_offset, y_offset, qpix_put, chroma_put,
  573. pixel_shift, chroma_idc);
  574. if(h->use_weight == 2){
  575. int weight0 = h->implicit_weight[refn0][refn1][s->mb_y&1];
  576. int weight1 = 64 - weight0;
  577. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize,
  578. height, 5, weight0, weight1, 0);
  579. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize,
  580. chroma_height, 5, weight0, weight1, 0);
  581. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize,
  582. chroma_height, 5, weight0, weight1, 0);
  583. }else{
  584. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, height, h->luma_log2_weight_denom,
  585. h->luma_weight[refn0][0][0] , h->luma_weight[refn1][1][0],
  586. h->luma_weight[refn0][0][1] + h->luma_weight[refn1][1][1]);
  587. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, chroma_height, h->chroma_log2_weight_denom,
  588. h->chroma_weight[refn0][0][0][0] , h->chroma_weight[refn1][1][0][0],
  589. h->chroma_weight[refn0][0][0][1] + h->chroma_weight[refn1][1][0][1]);
  590. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, chroma_height, h->chroma_log2_weight_denom,
  591. h->chroma_weight[refn0][0][1][0] , h->chroma_weight[refn1][1][1][0],
  592. h->chroma_weight[refn0][0][1][1] + h->chroma_weight[refn1][1][1][1]);
  593. }
  594. }else{
  595. int list = list1 ? 1 : 0;
  596. int refn = h->ref_cache[list][ scan8[n] ];
  597. Picture *ref= &h->ref_list[list][refn];
  598. mc_dir_part(h, ref, n, square, height, delta, list,
  599. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  600. qpix_put, chroma_put, pixel_shift, chroma_idc);
  601. luma_weight_op(dest_y, h->mb_linesize, height, h->luma_log2_weight_denom,
  602. h->luma_weight[refn][list][0], h->luma_weight[refn][list][1]);
  603. if(h->use_weight_chroma){
  604. chroma_weight_op(dest_cb, h->mb_uvlinesize, chroma_height, h->chroma_log2_weight_denom,
  605. h->chroma_weight[refn][list][0][0], h->chroma_weight[refn][list][0][1]);
  606. chroma_weight_op(dest_cr, h->mb_uvlinesize, chroma_height, h->chroma_log2_weight_denom,
  607. h->chroma_weight[refn][list][1][0], h->chroma_weight[refn][list][1][1]);
  608. }
  609. }
  610. }
  611. static av_always_inline void
  612. mc_part(H264Context *h, int n, int square, int height, int delta,
  613. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  614. int x_offset, int y_offset,
  615. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  616. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  617. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  618. int list0, int list1, int pixel_shift, int chroma_idc)
  619. {
  620. if((h->use_weight==2 && list0 && list1
  621. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ][h->s.mb_y&1] != 32))
  622. || h->use_weight==1)
  623. mc_part_weighted(h, n, square, height, delta, dest_y, dest_cb, dest_cr,
  624. x_offset, y_offset, qpix_put, chroma_put,
  625. weight_op[0], weight_op[1], weight_avg[0],
  626. weight_avg[1], list0, list1, pixel_shift, chroma_idc);
  627. else
  628. mc_part_std(h, n, square, height, delta, dest_y, dest_cb, dest_cr,
  629. x_offset, y_offset, qpix_put, chroma_put, qpix_avg,
  630. chroma_avg, list0, list1, pixel_shift, chroma_idc);
  631. }
  632. static av_always_inline void
  633. prefetch_motion(H264Context *h, int list, int pixel_shift, int chroma_idc)
  634. {
  635. /* fetch pixels for estimated mv 4 macroblocks ahead
  636. * optimized for 64byte cache lines */
  637. MpegEncContext * const s = &h->s;
  638. const int refn = h->ref_cache[list][scan8[0]];
  639. if(refn >= 0){
  640. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  641. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  642. uint8_t **src = h->ref_list[list][refn].f.data;
  643. int off= (mx << pixel_shift) + (my + (s->mb_x&3)*4)*h->mb_linesize + (64 << pixel_shift);
  644. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  645. if (chroma_idc == 3 /* yuv444 */) {
  646. s->dsp.prefetch(src[1]+off, s->linesize, 4);
  647. s->dsp.prefetch(src[2]+off, s->linesize, 4);
  648. }else{
  649. off= (((mx>>1)+64)<<pixel_shift) + ((my>>1) + (s->mb_x&7))*s->uvlinesize;
  650. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  651. }
  652. }
  653. }
  654. static av_always_inline void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  655. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  656. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  657. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  658. int pixel_shift, int chroma_idc)
  659. {
  660. MpegEncContext * const s = &h->s;
  661. const int mb_xy= h->mb_xy;
  662. const int mb_type = s->current_picture.f.mb_type[mb_xy];
  663. assert(IS_INTER(mb_type));
  664. if(HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
  665. await_references(h);
  666. prefetch_motion(h, 0, pixel_shift, chroma_idc);
  667. if(IS_16X16(mb_type)){
  668. mc_part(h, 0, 1, 16, 0, dest_y, dest_cb, dest_cr, 0, 0,
  669. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  670. weight_op, weight_avg,
  671. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
  672. pixel_shift, chroma_idc);
  673. }else if(IS_16X8(mb_type)){
  674. mc_part(h, 0, 0, 8, 8 << pixel_shift, dest_y, dest_cb, dest_cr, 0, 0,
  675. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  676. weight_op, weight_avg,
  677. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
  678. pixel_shift, chroma_idc);
  679. mc_part(h, 8, 0, 8, 8 << pixel_shift, dest_y, dest_cb, dest_cr, 0, 4,
  680. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  681. weight_op, weight_avg,
  682. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1),
  683. pixel_shift, chroma_idc);
  684. }else if(IS_8X16(mb_type)){
  685. mc_part(h, 0, 0, 16, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  686. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  687. &weight_op[1], &weight_avg[1],
  688. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
  689. pixel_shift, chroma_idc);
  690. mc_part(h, 4, 0, 16, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  691. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  692. &weight_op[1], &weight_avg[1],
  693. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1),
  694. pixel_shift, chroma_idc);
  695. }else{
  696. int i;
  697. assert(IS_8X8(mb_type));
  698. for(i=0; i<4; i++){
  699. const int sub_mb_type= h->sub_mb_type[i];
  700. const int n= 4*i;
  701. int x_offset= (i&1)<<2;
  702. int y_offset= (i&2)<<1;
  703. if(IS_SUB_8X8(sub_mb_type)){
  704. mc_part(h, n, 1, 8, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  705. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  706. &weight_op[1], &weight_avg[1],
  707. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
  708. pixel_shift, chroma_idc);
  709. }else if(IS_SUB_8X4(sub_mb_type)){
  710. mc_part(h, n , 0, 4, 4 << pixel_shift, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  711. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  712. &weight_op[1], &weight_avg[1],
  713. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
  714. pixel_shift, chroma_idc);
  715. mc_part(h, n+2, 0, 4, 4 << pixel_shift, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  716. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  717. &weight_op[1], &weight_avg[1],
  718. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
  719. pixel_shift, chroma_idc);
  720. }else if(IS_SUB_4X8(sub_mb_type)){
  721. mc_part(h, n , 0, 8, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  722. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  723. &weight_op[2], &weight_avg[2],
  724. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
  725. pixel_shift, chroma_idc);
  726. mc_part(h, n+1, 0, 8, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  727. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  728. &weight_op[2], &weight_avg[2],
  729. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
  730. pixel_shift, chroma_idc);
  731. }else{
  732. int j;
  733. assert(IS_SUB_4X4(sub_mb_type));
  734. for(j=0; j<4; j++){
  735. int sub_x_offset= x_offset + 2*(j&1);
  736. int sub_y_offset= y_offset + (j&2);
  737. mc_part(h, n+j, 1, 4, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  738. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  739. &weight_op[2], &weight_avg[2],
  740. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
  741. pixel_shift, chroma_idc);
  742. }
  743. }
  744. }
  745. }
  746. prefetch_motion(h, 1, pixel_shift, chroma_idc);
  747. }
  748. static av_always_inline void
  749. hl_motion_420(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  750. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  751. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  752. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  753. int pixel_shift)
  754. {
  755. hl_motion(h, dest_y, dest_cb, dest_cr, qpix_put, chroma_put,
  756. qpix_avg, chroma_avg, weight_op, weight_avg, pixel_shift, 1);
  757. }
  758. static av_always_inline void
  759. hl_motion_422(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  760. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  761. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  762. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  763. int pixel_shift)
  764. {
  765. hl_motion(h, dest_y, dest_cb, dest_cr, qpix_put, chroma_put,
  766. qpix_avg, chroma_avg, weight_op, weight_avg, pixel_shift, 2);
  767. }
  768. static void free_tables(H264Context *h, int free_rbsp){
  769. int i;
  770. H264Context *hx;
  771. av_freep(&h->intra4x4_pred_mode);
  772. av_freep(&h->chroma_pred_mode_table);
  773. av_freep(&h->cbp_table);
  774. av_freep(&h->mvd_table[0]);
  775. av_freep(&h->mvd_table[1]);
  776. av_freep(&h->direct_table);
  777. av_freep(&h->non_zero_count);
  778. av_freep(&h->slice_table_base);
  779. h->slice_table= NULL;
  780. av_freep(&h->list_counts);
  781. av_freep(&h->mb2b_xy);
  782. av_freep(&h->mb2br_xy);
  783. for(i = 0; i < MAX_THREADS; i++) {
  784. hx = h->thread_context[i];
  785. if(!hx) continue;
  786. av_freep(&hx->top_borders[1]);
  787. av_freep(&hx->top_borders[0]);
  788. av_freep(&hx->s.obmc_scratchpad);
  789. if (free_rbsp){
  790. av_freep(&hx->rbsp_buffer[1]);
  791. av_freep(&hx->rbsp_buffer[0]);
  792. hx->rbsp_buffer_size[0] = 0;
  793. hx->rbsp_buffer_size[1] = 0;
  794. }
  795. if (i) av_freep(&h->thread_context[i]);
  796. }
  797. }
  798. static void init_dequant8_coeff_table(H264Context *h){
  799. int i,j,q,x;
  800. const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8);
  801. for(i=0; i<6; i++ ){
  802. h->dequant8_coeff[i] = h->dequant8_buffer[i];
  803. for(j=0; j<i; j++){
  804. if(!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i], 64*sizeof(uint8_t))){
  805. h->dequant8_coeff[i] = h->dequant8_buffer[j];
  806. break;
  807. }
  808. }
  809. if(j<i)
  810. continue;
  811. for(q=0; q<max_qp+1; q++){
  812. int shift = div6[q];
  813. int idx = rem6[q];
  814. for(x=0; x<64; x++)
  815. h->dequant8_coeff[i][q][(x>>3)|((x&7)<<3)] =
  816. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  817. h->pps.scaling_matrix8[i][x]) << shift;
  818. }
  819. }
  820. }
  821. static void init_dequant4_coeff_table(H264Context *h){
  822. int i,j,q,x;
  823. const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8);
  824. for(i=0; i<6; i++ ){
  825. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  826. for(j=0; j<i; j++){
  827. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  828. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  829. break;
  830. }
  831. }
  832. if(j<i)
  833. continue;
  834. for(q=0; q<max_qp+1; q++){
  835. int shift = div6[q] + 2;
  836. int idx = rem6[q];
  837. for(x=0; x<16; x++)
  838. h->dequant4_coeff[i][q][(x>>2)|((x<<2)&0xF)] =
  839. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  840. h->pps.scaling_matrix4[i][x]) << shift;
  841. }
  842. }
  843. }
  844. static void init_dequant_tables(H264Context *h){
  845. int i,x;
  846. init_dequant4_coeff_table(h);
  847. if(h->pps.transform_8x8_mode)
  848. init_dequant8_coeff_table(h);
  849. if(h->sps.transform_bypass){
  850. for(i=0; i<6; i++)
  851. for(x=0; x<16; x++)
  852. h->dequant4_coeff[i][0][x] = 1<<6;
  853. if(h->pps.transform_8x8_mode)
  854. for(i=0; i<6; i++)
  855. for(x=0; x<64; x++)
  856. h->dequant8_coeff[i][0][x] = 1<<6;
  857. }
  858. }
  859. int ff_h264_alloc_tables(H264Context *h){
  860. MpegEncContext * const s = &h->s;
  861. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  862. const int row_mb_num= 2*s->mb_stride*s->avctx->thread_count;
  863. int x,y;
  864. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->intra4x4_pred_mode, row_mb_num * 8 * sizeof(uint8_t), fail)
  865. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count , big_mb_num * 48 * sizeof(uint8_t), fail)
  866. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base), fail)
  867. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail)
  868. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t), fail)
  869. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[0], 16*row_mb_num * sizeof(uint8_t), fail);
  870. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[1], 16*row_mb_num * sizeof(uint8_t), fail);
  871. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->direct_table, 4*big_mb_num * sizeof(uint8_t) , fail);
  872. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->list_counts, big_mb_num * sizeof(uint8_t), fail)
  873. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base));
  874. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  875. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b_xy , big_mb_num * sizeof(uint32_t), fail);
  876. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2br_xy , big_mb_num * sizeof(uint32_t), fail);
  877. for(y=0; y<s->mb_height; y++){
  878. for(x=0; x<s->mb_width; x++){
  879. const int mb_xy= x + y*s->mb_stride;
  880. const int b_xy = 4*x + 4*y*h->b_stride;
  881. h->mb2b_xy [mb_xy]= b_xy;
  882. h->mb2br_xy[mb_xy]= 8*(FMO ? mb_xy : (mb_xy % (2*s->mb_stride)));
  883. }
  884. }
  885. s->obmc_scratchpad = NULL;
  886. if(!h->dequant4_coeff[0])
  887. init_dequant_tables(h);
  888. return 0;
  889. fail:
  890. free_tables(h, 1);
  891. return -1;
  892. }
  893. /**
  894. * Mimic alloc_tables(), but for every context thread.
  895. */
  896. static void clone_tables(H264Context *dst, H264Context *src, int i){
  897. MpegEncContext * const s = &src->s;
  898. dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i*8*2*s->mb_stride;
  899. dst->non_zero_count = src->non_zero_count;
  900. dst->slice_table = src->slice_table;
  901. dst->cbp_table = src->cbp_table;
  902. dst->mb2b_xy = src->mb2b_xy;
  903. dst->mb2br_xy = src->mb2br_xy;
  904. dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
  905. dst->mvd_table[0] = src->mvd_table[0] + i*8*2*s->mb_stride;
  906. dst->mvd_table[1] = src->mvd_table[1] + i*8*2*s->mb_stride;
  907. dst->direct_table = src->direct_table;
  908. dst->list_counts = src->list_counts;
  909. dst->s.obmc_scratchpad = NULL;
  910. ff_h264_pred_init(&dst->hpc, src->s.codec_id, src->sps.bit_depth_luma, src->sps.chroma_format_idc);
  911. }
  912. /**
  913. * Init context
  914. * Allocate buffers which are not shared amongst multiple threads.
  915. */
  916. static int context_init(H264Context *h){
  917. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[0], h->s.mb_width * 16*3 * sizeof(uint8_t)*2, fail)
  918. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[1], h->s.mb_width * 16*3 * sizeof(uint8_t)*2, fail)
  919. h->ref_cache[0][scan8[5 ]+1] = h->ref_cache[0][scan8[7 ]+1] = h->ref_cache[0][scan8[13]+1] =
  920. h->ref_cache[1][scan8[5 ]+1] = h->ref_cache[1][scan8[7 ]+1] = h->ref_cache[1][scan8[13]+1] = PART_NOT_AVAILABLE;
  921. return 0;
  922. fail:
  923. return -1; // free_tables will clean up for us
  924. }
  925. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size);
  926. static av_cold void common_init(H264Context *h){
  927. MpegEncContext * const s = &h->s;
  928. s->width = s->avctx->width;
  929. s->height = s->avctx->height;
  930. s->codec_id= s->avctx->codec->id;
  931. s->avctx->bits_per_raw_sample = 8;
  932. h->cur_chroma_format_idc = 1;
  933. ff_h264dsp_init(&h->h264dsp,
  934. s->avctx->bits_per_raw_sample, h->cur_chroma_format_idc);
  935. ff_h264_pred_init(&h->hpc, s->codec_id,
  936. s->avctx->bits_per_raw_sample, h->cur_chroma_format_idc);
  937. h->dequant_coeff_pps= -1;
  938. s->unrestricted_mv=1;
  939. s->dsp.dct_bits = 16;
  940. dsputil_init(&s->dsp, s->avctx); // needed so that idct permutation is known early
  941. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  942. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  943. }
  944. int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size)
  945. {
  946. AVCodecContext *avctx = h->s.avctx;
  947. if(!buf || size <= 0)
  948. return -1;
  949. if(buf[0] == 1){
  950. int i, cnt, nalsize;
  951. const unsigned char *p = buf;
  952. h->is_avc = 1;
  953. if(size < 7) {
  954. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  955. return -1;
  956. }
  957. /* sps and pps in the avcC always have length coded with 2 bytes,
  958. so put a fake nal_length_size = 2 while parsing them */
  959. h->nal_length_size = 2;
  960. // Decode sps from avcC
  961. cnt = *(p+5) & 0x1f; // Number of sps
  962. p += 6;
  963. for (i = 0; i < cnt; i++) {
  964. nalsize = AV_RB16(p) + 2;
  965. if(nalsize > size - (p-buf))
  966. return -1;
  967. if(decode_nal_units(h, p, nalsize) < 0) {
  968. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  969. return -1;
  970. }
  971. p += nalsize;
  972. }
  973. // Decode pps from avcC
  974. cnt = *(p++); // Number of pps
  975. for (i = 0; i < cnt; i++) {
  976. nalsize = AV_RB16(p) + 2;
  977. if(nalsize > size - (p-buf))
  978. return -1;
  979. if (decode_nal_units(h, p, nalsize) < 0) {
  980. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  981. return -1;
  982. }
  983. p += nalsize;
  984. }
  985. // Now store right nal length size, that will be use to parse all other nals
  986. h->nal_length_size = (buf[4] & 0x03) + 1;
  987. } else {
  988. h->is_avc = 0;
  989. if(decode_nal_units(h, buf, size) < 0)
  990. return -1;
  991. }
  992. return 0;
  993. }
  994. av_cold int ff_h264_decode_init(AVCodecContext *avctx){
  995. H264Context *h= avctx->priv_data;
  996. MpegEncContext * const s = &h->s;
  997. int i;
  998. MPV_decode_defaults(s);
  999. s->avctx = avctx;
  1000. common_init(h);
  1001. s->out_format = FMT_H264;
  1002. s->workaround_bugs= avctx->workaround_bugs;
  1003. // set defaults
  1004. // s->decode_mb= ff_h263_decode_mb;
  1005. s->quarter_sample = 1;
  1006. if(!avctx->has_b_frames)
  1007. s->low_delay= 1;
  1008. avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
  1009. ff_h264_decode_init_vlc();
  1010. h->pixel_shift = 0;
  1011. h->sps.bit_depth_luma = avctx->bits_per_raw_sample = 8;
  1012. h->thread_context[0] = h;
  1013. h->outputed_poc = h->next_outputed_poc = INT_MIN;
  1014. for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++)
  1015. h->last_pocs[i] = INT_MIN;
  1016. h->prev_poc_msb= 1<<16;
  1017. h->x264_build = -1;
  1018. ff_h264_reset_sei(h);
  1019. if(avctx->codec_id == CODEC_ID_H264){
  1020. if(avctx->ticks_per_frame == 1){
  1021. s->avctx->time_base.den *=2;
  1022. }
  1023. avctx->ticks_per_frame = 2;
  1024. }
  1025. if(avctx->extradata_size > 0 && avctx->extradata &&
  1026. ff_h264_decode_extradata(h, avctx->extradata, avctx->extradata_size))
  1027. return -1;
  1028. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  1029. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  1030. s->low_delay = 0;
  1031. }
  1032. return 0;
  1033. }
  1034. #define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b)+(size))))
  1035. static void copy_picture_range(Picture **to, Picture **from, int count, MpegEncContext *new_base, MpegEncContext *old_base)
  1036. {
  1037. int i;
  1038. for (i=0; i<count; i++){
  1039. assert((IN_RANGE(from[i], old_base, sizeof(*old_base)) ||
  1040. IN_RANGE(from[i], old_base->picture, sizeof(Picture) * old_base->picture_count) ||
  1041. !from[i]));
  1042. to[i] = REBASE_PICTURE(from[i], new_base, old_base);
  1043. }
  1044. }
  1045. static void copy_parameter_set(void **to, void **from, int count, int size)
  1046. {
  1047. int i;
  1048. for (i=0; i<count; i++){
  1049. if (to[i] && !from[i]) av_freep(&to[i]);
  1050. else if (from[i] && !to[i]) to[i] = av_malloc(size);
  1051. if (from[i]) memcpy(to[i], from[i], size);
  1052. }
  1053. }
  1054. static int decode_init_thread_copy(AVCodecContext *avctx){
  1055. H264Context *h= avctx->priv_data;
  1056. if (!avctx->is_copy) return 0;
  1057. memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
  1058. memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
  1059. return 0;
  1060. }
  1061. #define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field)
  1062. static int decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src){
  1063. H264Context *h= dst->priv_data, *h1= src->priv_data;
  1064. MpegEncContext * const s = &h->s, * const s1 = &h1->s;
  1065. int inited = s->context_initialized, err;
  1066. int i;
  1067. if(dst == src || !s1->context_initialized) return 0;
  1068. err = ff_mpeg_update_thread_context(dst, src);
  1069. if(err) return err;
  1070. //FIXME handle width/height changing
  1071. if(!inited){
  1072. for(i = 0; i < MAX_SPS_COUNT; i++)
  1073. av_freep(h->sps_buffers + i);
  1074. for(i = 0; i < MAX_PPS_COUNT; i++)
  1075. av_freep(h->pps_buffers + i);
  1076. memcpy(&h->s + 1, &h1->s + 1, sizeof(H264Context) - sizeof(MpegEncContext)); //copy all fields after MpegEnc
  1077. memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
  1078. memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
  1079. if (ff_h264_alloc_tables(h) < 0) {
  1080. av_log(dst, AV_LOG_ERROR, "Could not allocate memory for h264\n");
  1081. return AVERROR(ENOMEM);
  1082. }
  1083. context_init(h);
  1084. for(i=0; i<2; i++){
  1085. h->rbsp_buffer[i] = NULL;
  1086. h->rbsp_buffer_size[i] = 0;
  1087. }
  1088. h->thread_context[0] = h;
  1089. // frame_start may not be called for the next thread (if it's decoding a bottom field)
  1090. // so this has to be allocated here
  1091. h->s.obmc_scratchpad = av_malloc(16*6*s->linesize);
  1092. s->dsp.clear_blocks(h->mb);
  1093. s->dsp.clear_blocks(h->mb+(24*16<<h->pixel_shift));
  1094. }
  1095. //extradata/NAL handling
  1096. h->is_avc = h1->is_avc;
  1097. //SPS/PPS
  1098. copy_parameter_set((void**)h->sps_buffers, (void**)h1->sps_buffers, MAX_SPS_COUNT, sizeof(SPS));
  1099. h->sps = h1->sps;
  1100. copy_parameter_set((void**)h->pps_buffers, (void**)h1->pps_buffers, MAX_PPS_COUNT, sizeof(PPS));
  1101. h->pps = h1->pps;
  1102. //Dequantization matrices
  1103. //FIXME these are big - can they be only copied when PPS changes?
  1104. copy_fields(h, h1, dequant4_buffer, dequant4_coeff);
  1105. for(i=0; i<6; i++)
  1106. h->dequant4_coeff[i] = h->dequant4_buffer[0] + (h1->dequant4_coeff[i] - h1->dequant4_buffer[0]);
  1107. for(i=0; i<6; i++)
  1108. h->dequant8_coeff[i] = h->dequant8_buffer[0] + (h1->dequant8_coeff[i] - h1->dequant8_buffer[0]);
  1109. h->dequant_coeff_pps = h1->dequant_coeff_pps;
  1110. //POC timing
  1111. copy_fields(h, h1, poc_lsb, redundant_pic_count);
  1112. //reference lists
  1113. copy_fields(h, h1, ref_count, list_count);
  1114. copy_fields(h, h1, ref_list, intra_gb);
  1115. copy_fields(h, h1, short_ref, cabac_init_idc);
  1116. copy_picture_range(h->short_ref, h1->short_ref, 32, s, s1);
  1117. copy_picture_range(h->long_ref, h1->long_ref, 32, s, s1);
  1118. copy_picture_range(h->delayed_pic, h1->delayed_pic, MAX_DELAYED_PIC_COUNT+2, s, s1);
  1119. h->last_slice_type = h1->last_slice_type;
  1120. h->sync = h1->sync;
  1121. if(!s->current_picture_ptr) return 0;
  1122. if(!s->dropable) {
  1123. err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  1124. h->prev_poc_msb = h->poc_msb;
  1125. h->prev_poc_lsb = h->poc_lsb;
  1126. }
  1127. h->prev_frame_num_offset= h->frame_num_offset;
  1128. h->prev_frame_num = h->frame_num;
  1129. h->outputed_poc = h->next_outputed_poc;
  1130. return err;
  1131. }
  1132. int ff_h264_frame_start(H264Context *h){
  1133. MpegEncContext * const s = &h->s;
  1134. int i;
  1135. const int pixel_shift = h->pixel_shift;
  1136. int thread_count = (s->avctx->active_thread_type & FF_THREAD_SLICE) ? s->avctx->thread_count : 1;
  1137. if(MPV_frame_start(s, s->avctx) < 0)
  1138. return -1;
  1139. ff_er_frame_start(s);
  1140. /*
  1141. * MPV_frame_start uses pict_type to derive key_frame.
  1142. * This is incorrect for H.264; IDR markings must be used.
  1143. * Zero here; IDR markings per slice in frame or fields are ORed in later.
  1144. * See decode_nal_units().
  1145. */
  1146. s->current_picture_ptr->f.key_frame = 0;
  1147. s->current_picture_ptr->mmco_reset= 0;
  1148. assert(s->linesize && s->uvlinesize);
  1149. for(i=0; i<16; i++){
  1150. h->block_offset[i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  1151. h->block_offset[48+i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  1152. }
  1153. for(i=0; i<16; i++){
  1154. h->block_offset[16+i]=
  1155. h->block_offset[32+i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1156. h->block_offset[48+16+i]=
  1157. h->block_offset[48+32+i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1158. }
  1159. /* can't be in alloc_tables because linesize isn't known there.
  1160. * FIXME: redo bipred weight to not require extra buffer? */
  1161. for(i = 0; i < thread_count; i++)
  1162. if(h->thread_context[i] && !h->thread_context[i]->s.obmc_scratchpad)
  1163. h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*6*s->linesize);
  1164. /* some macroblocks can be accessed before they're available in case of lost slices, mbaff or threading*/
  1165. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(*h->slice_table));
  1166. // s->decode = (s->flags & CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.f.reference /*|| h->contains_intra*/ || 1;
  1167. // We mark the current picture as non-reference after allocating it, so
  1168. // that if we break out due to an error it can be released automatically
  1169. // in the next MPV_frame_start().
  1170. // SVQ3 as well as most other codecs have only last/next/current and thus
  1171. // get released even with set reference, besides SVQ3 and others do not
  1172. // mark frames as reference later "naturally".
  1173. if(s->codec_id != CODEC_ID_SVQ3)
  1174. s->current_picture_ptr->f.reference = 0;
  1175. s->current_picture_ptr->field_poc[0]=
  1176. s->current_picture_ptr->field_poc[1]= INT_MAX;
  1177. h->next_output_pic = NULL;
  1178. assert(s->current_picture_ptr->long_ref==0);
  1179. return 0;
  1180. }
  1181. /**
  1182. * Run setup operations that must be run after slice header decoding.
  1183. * This includes finding the next displayed frame.
  1184. *
  1185. * @param h h264 master context
  1186. * @param setup_finished enough NALs have been read that we can call
  1187. * ff_thread_finish_setup()
  1188. */
  1189. static void decode_postinit(H264Context *h, int setup_finished){
  1190. MpegEncContext * const s = &h->s;
  1191. Picture *out = s->current_picture_ptr;
  1192. Picture *cur = s->current_picture_ptr;
  1193. int i, pics, out_of_order, out_idx;
  1194. s->current_picture_ptr->f.qscale_type = FF_QSCALE_TYPE_H264;
  1195. s->current_picture_ptr->f.pict_type = s->pict_type;
  1196. if (h->next_output_pic) return;
  1197. if (cur->field_poc[0]==INT_MAX || cur->field_poc[1]==INT_MAX) {
  1198. //FIXME: if we have two PAFF fields in one packet, we can't start the next thread here.
  1199. //If we have one field per packet, we can. The check in decode_nal_units() is not good enough
  1200. //to find this yet, so we assume the worst for now.
  1201. //if (setup_finished)
  1202. // ff_thread_finish_setup(s->avctx);
  1203. return;
  1204. }
  1205. cur->f.interlaced_frame = 0;
  1206. cur->f.repeat_pict = 0;
  1207. /* Signal interlacing information externally. */
  1208. /* Prioritize picture timing SEI information over used decoding process if it exists. */
  1209. if(h->sps.pic_struct_present_flag){
  1210. switch (h->sei_pic_struct)
  1211. {
  1212. case SEI_PIC_STRUCT_FRAME:
  1213. break;
  1214. case SEI_PIC_STRUCT_TOP_FIELD:
  1215. case SEI_PIC_STRUCT_BOTTOM_FIELD:
  1216. cur->f.interlaced_frame = 1;
  1217. break;
  1218. case SEI_PIC_STRUCT_TOP_BOTTOM:
  1219. case SEI_PIC_STRUCT_BOTTOM_TOP:
  1220. if (FIELD_OR_MBAFF_PICTURE)
  1221. cur->f.interlaced_frame = 1;
  1222. else
  1223. // try to flag soft telecine progressive
  1224. cur->f.interlaced_frame = h->prev_interlaced_frame;
  1225. break;
  1226. case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
  1227. case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
  1228. // Signal the possibility of telecined film externally (pic_struct 5,6)
  1229. // From these hints, let the applications decide if they apply deinterlacing.
  1230. cur->f.repeat_pict = 1;
  1231. break;
  1232. case SEI_PIC_STRUCT_FRAME_DOUBLING:
  1233. // Force progressive here, as doubling interlaced frame is a bad idea.
  1234. cur->f.repeat_pict = 2;
  1235. break;
  1236. case SEI_PIC_STRUCT_FRAME_TRIPLING:
  1237. cur->f.repeat_pict = 4;
  1238. break;
  1239. }
  1240. if ((h->sei_ct_type & 3) && h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP)
  1241. cur->f.interlaced_frame = (h->sei_ct_type & (1 << 1)) != 0;
  1242. }else{
  1243. /* Derive interlacing flag from used decoding process. */
  1244. cur->f.interlaced_frame = FIELD_OR_MBAFF_PICTURE;
  1245. }
  1246. h->prev_interlaced_frame = cur->f.interlaced_frame;
  1247. if (cur->field_poc[0] != cur->field_poc[1]){
  1248. /* Derive top_field_first from field pocs. */
  1249. cur->f.top_field_first = cur->field_poc[0] < cur->field_poc[1];
  1250. }else{
  1251. if (cur->f.interlaced_frame || h->sps.pic_struct_present_flag) {
  1252. /* Use picture timing SEI information. Even if it is a information of a past frame, better than nothing. */
  1253. if(h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM
  1254. || h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
  1255. cur->f.top_field_first = 1;
  1256. else
  1257. cur->f.top_field_first = 0;
  1258. }else{
  1259. /* Most likely progressive */
  1260. cur->f.top_field_first = 0;
  1261. }
  1262. }
  1263. //FIXME do something with unavailable reference frames
  1264. /* Sort B-frames into display order */
  1265. if(h->sps.bitstream_restriction_flag
  1266. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  1267. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  1268. s->low_delay = 0;
  1269. }
  1270. if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT
  1271. && !h->sps.bitstream_restriction_flag){
  1272. s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT;
  1273. s->low_delay= 0;
  1274. }
  1275. for (i = 0; 1; i++) {
  1276. if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){
  1277. if(i)
  1278. h->last_pocs[i-1] = cur->poc;
  1279. break;
  1280. } else if(i) {
  1281. h->last_pocs[i-1]= h->last_pocs[i];
  1282. }
  1283. }
  1284. out_of_order = MAX_DELAYED_PIC_COUNT - i;
  1285. if( cur->f.pict_type == AV_PICTURE_TYPE_B
  1286. || (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2))
  1287. out_of_order = FFMAX(out_of_order, 1);
  1288. if(s->avctx->has_b_frames < out_of_order && !h->sps.bitstream_restriction_flag){
  1289. av_log(s->avctx, AV_LOG_WARNING, "Increasing reorder buffer to %d\n", out_of_order);
  1290. s->avctx->has_b_frames = out_of_order;
  1291. s->low_delay = 0;
  1292. }
  1293. pics = 0;
  1294. while(h->delayed_pic[pics]) pics++;
  1295. av_assert0(pics <= MAX_DELAYED_PIC_COUNT);
  1296. h->delayed_pic[pics++] = cur;
  1297. if (cur->f.reference == 0)
  1298. cur->f.reference = DELAYED_PIC_REF;
  1299. out = h->delayed_pic[0];
  1300. out_idx = 0;
  1301. for (i = 1; h->delayed_pic[i] && !h->delayed_pic[i]->f.key_frame && !h->delayed_pic[i]->mmco_reset; i++)
  1302. if(h->delayed_pic[i]->poc < out->poc){
  1303. out = h->delayed_pic[i];
  1304. out_idx = i;
  1305. }
  1306. if (s->avctx->has_b_frames == 0 && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset))
  1307. h->next_outputed_poc= INT_MIN;
  1308. out_of_order = out->poc < h->next_outputed_poc;
  1309. if(out_of_order || pics > s->avctx->has_b_frames){
  1310. out->f.reference &= ~DELAYED_PIC_REF;
  1311. out->owner2 = s; // for frame threading, the owner must be the second field's thread
  1312. // or else the first thread can release the picture and reuse it unsafely
  1313. for(i=out_idx; h->delayed_pic[i]; i++)
  1314. h->delayed_pic[i] = h->delayed_pic[i+1];
  1315. }
  1316. if(!out_of_order && pics > s->avctx->has_b_frames){
  1317. h->next_output_pic = out;
  1318. if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset)) {
  1319. h->next_outputed_poc = INT_MIN;
  1320. } else
  1321. h->next_outputed_poc = out->poc;
  1322. }else{
  1323. av_log(s->avctx, AV_LOG_DEBUG, "no picture\n");
  1324. }
  1325. if (h->next_output_pic && h->next_output_pic->sync) {
  1326. h->sync |= 2;
  1327. }
  1328. if (setup_finished)
  1329. ff_thread_finish_setup(s->avctx);
  1330. }
  1331. static av_always_inline void backup_mb_border(H264Context *h, uint8_t *src_y,
  1332. uint8_t *src_cb, uint8_t *src_cr,
  1333. int linesize, int uvlinesize, int simple)
  1334. {
  1335. MpegEncContext * const s = &h->s;
  1336. uint8_t *top_border;
  1337. int top_idx = 1;
  1338. const int pixel_shift = h->pixel_shift;
  1339. int chroma444 = CHROMA444;
  1340. int chroma422 = CHROMA422;
  1341. src_y -= linesize;
  1342. src_cb -= uvlinesize;
  1343. src_cr -= uvlinesize;
  1344. if(!simple && FRAME_MBAFF){
  1345. if(s->mb_y&1){
  1346. if(!MB_MBAFF){
  1347. top_border = h->top_borders[0][s->mb_x];
  1348. AV_COPY128(top_border, src_y + 15*linesize);
  1349. if (pixel_shift)
  1350. AV_COPY128(top_border+16, src_y+15*linesize+16);
  1351. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1352. if(chroma444){
  1353. if (pixel_shift){
  1354. AV_COPY128(top_border+32, src_cb + 15*uvlinesize);
  1355. AV_COPY128(top_border+48, src_cb + 15*uvlinesize+16);
  1356. AV_COPY128(top_border+64, src_cr + 15*uvlinesize);
  1357. AV_COPY128(top_border+80, src_cr + 15*uvlinesize+16);
  1358. } else {
  1359. AV_COPY128(top_border+16, src_cb + 15*uvlinesize);
  1360. AV_COPY128(top_border+32, src_cr + 15*uvlinesize);
  1361. }
  1362. } else if(chroma422){
  1363. if (pixel_shift) {
  1364. AV_COPY128(top_border+32, src_cb + 15*uvlinesize);
  1365. AV_COPY128(top_border+48, src_cr + 15*uvlinesize);
  1366. } else {
  1367. AV_COPY64(top_border+16, src_cb + 15*uvlinesize);
  1368. AV_COPY64(top_border+24, src_cr + 15*uvlinesize);
  1369. }
  1370. } else {
  1371. if (pixel_shift) {
  1372. AV_COPY128(top_border+32, src_cb+7*uvlinesize);
  1373. AV_COPY128(top_border+48, src_cr+7*uvlinesize);
  1374. } else {
  1375. AV_COPY64(top_border+16, src_cb+7*uvlinesize);
  1376. AV_COPY64(top_border+24, src_cr+7*uvlinesize);
  1377. }
  1378. }
  1379. }
  1380. }
  1381. }else if(MB_MBAFF){
  1382. top_idx = 0;
  1383. }else
  1384. return;
  1385. }
  1386. top_border = h->top_borders[top_idx][s->mb_x];
  1387. // There are two lines saved, the line above the the top macroblock of a pair,
  1388. // and the line above the bottom macroblock
  1389. AV_COPY128(top_border, src_y + 16*linesize);
  1390. if (pixel_shift)
  1391. AV_COPY128(top_border+16, src_y+16*linesize+16);
  1392. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1393. if(chroma444){
  1394. if (pixel_shift){
  1395. AV_COPY128(top_border+32, src_cb + 16*linesize);
  1396. AV_COPY128(top_border+48, src_cb + 16*linesize+16);
  1397. AV_COPY128(top_border+64, src_cr + 16*linesize);
  1398. AV_COPY128(top_border+80, src_cr + 16*linesize+16);
  1399. } else {
  1400. AV_COPY128(top_border+16, src_cb + 16*linesize);
  1401. AV_COPY128(top_border+32, src_cr + 16*linesize);
  1402. }
  1403. } else if(chroma422) {
  1404. if (pixel_shift) {
  1405. AV_COPY128(top_border+32, src_cb+16*uvlinesize);
  1406. AV_COPY128(top_border+48, src_cr+16*uvlinesize);
  1407. } else {
  1408. AV_COPY64(top_border+16, src_cb+16*uvlinesize);
  1409. AV_COPY64(top_border+24, src_cr+16*uvlinesize);
  1410. }
  1411. } else {
  1412. if (pixel_shift) {
  1413. AV_COPY128(top_border+32, src_cb+8*uvlinesize);
  1414. AV_COPY128(top_border+48, src_cr+8*uvlinesize);
  1415. } else {
  1416. AV_COPY64(top_border+16, src_cb+8*uvlinesize);
  1417. AV_COPY64(top_border+24, src_cr+8*uvlinesize);
  1418. }
  1419. }
  1420. }
  1421. }
  1422. static av_always_inline void xchg_mb_border(H264Context *h, uint8_t *src_y,
  1423. uint8_t *src_cb, uint8_t *src_cr,
  1424. int linesize, int uvlinesize,
  1425. int xchg, int chroma444,
  1426. int simple, int pixel_shift){
  1427. MpegEncContext * const s = &h->s;
  1428. int deblock_topleft;
  1429. int deblock_top;
  1430. int top_idx = 1;
  1431. uint8_t *top_border_m1;
  1432. uint8_t *top_border;
  1433. if(!simple && FRAME_MBAFF){
  1434. if(s->mb_y&1){
  1435. if(!MB_MBAFF)
  1436. return;
  1437. }else{
  1438. top_idx = MB_MBAFF ? 0 : 1;
  1439. }
  1440. }
  1441. if(h->deblocking_filter == 2) {
  1442. deblock_topleft = h->slice_table[h->mb_xy - 1 - s->mb_stride] == h->slice_num;
  1443. deblock_top = h->top_type;
  1444. } else {
  1445. deblock_topleft = (s->mb_x > 0);
  1446. deblock_top = (s->mb_y > !!MB_FIELD);
  1447. }
  1448. src_y -= linesize + 1 + pixel_shift;
  1449. src_cb -= uvlinesize + 1 + pixel_shift;
  1450. src_cr -= uvlinesize + 1 + pixel_shift;
  1451. top_border_m1 = h->top_borders[top_idx][s->mb_x-1];
  1452. top_border = h->top_borders[top_idx][s->mb_x];
  1453. #define XCHG(a,b,xchg)\
  1454. if (pixel_shift) {\
  1455. if (xchg) {\
  1456. AV_SWAP64(b+0,a+0);\
  1457. AV_SWAP64(b+8,a+8);\
  1458. } else {\
  1459. AV_COPY128(b,a); \
  1460. }\
  1461. } else \
  1462. if (xchg) AV_SWAP64(b,a);\
  1463. else AV_COPY64(b,a);
  1464. if(deblock_top){
  1465. if(deblock_topleft){
  1466. XCHG(top_border_m1 + (8 << pixel_shift), src_y - (7 << pixel_shift), 1);
  1467. }
  1468. XCHG(top_border + (0 << pixel_shift), src_y + (1 << pixel_shift), xchg);
  1469. XCHG(top_border + (8 << pixel_shift), src_y + (9 << pixel_shift), 1);
  1470. if(s->mb_x+1 < s->mb_width){
  1471. XCHG(h->top_borders[top_idx][s->mb_x+1], src_y + (17 << pixel_shift), 1);
  1472. }
  1473. }
  1474. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1475. if(chroma444){
  1476. if(deblock_topleft){
  1477. XCHG(top_border_m1 + (24 << pixel_shift), src_cb - (7 << pixel_shift), 1);
  1478. XCHG(top_border_m1 + (40 << pixel_shift), src_cr - (7 << pixel_shift), 1);
  1479. }
  1480. XCHG(top_border + (16 << pixel_shift), src_cb + (1 << pixel_shift), xchg);
  1481. XCHG(top_border + (24 << pixel_shift), src_cb + (9 << pixel_shift), 1);
  1482. XCHG(top_border + (32 << pixel_shift), src_cr + (1 << pixel_shift), xchg);
  1483. XCHG(top_border + (40 << pixel_shift), src_cr + (9 << pixel_shift), 1);
  1484. if(s->mb_x+1 < s->mb_width){
  1485. XCHG(h->top_borders[top_idx][s->mb_x+1] + (16 << pixel_shift), src_cb + (17 << pixel_shift), 1);
  1486. XCHG(h->top_borders[top_idx][s->mb_x+1] + (32 << pixel_shift), src_cr + (17 << pixel_shift), 1);
  1487. }
  1488. } else {
  1489. if(deblock_top){
  1490. if(deblock_topleft){
  1491. XCHG(top_border_m1 + (16 << pixel_shift), src_cb - (7 << pixel_shift), 1);
  1492. XCHG(top_border_m1 + (24 << pixel_shift), src_cr - (7 << pixel_shift), 1);
  1493. }
  1494. XCHG(top_border + (16 << pixel_shift), src_cb+1+pixel_shift, 1);
  1495. XCHG(top_border + (24 << pixel_shift), src_cr+1+pixel_shift, 1);
  1496. }
  1497. }
  1498. }
  1499. }
  1500. static av_always_inline int dctcoef_get(DCTELEM *mb, int high_bit_depth, int index) {
  1501. if (high_bit_depth) {
  1502. return AV_RN32A(((int32_t*)mb) + index);
  1503. } else
  1504. return AV_RN16A(mb + index);
  1505. }
  1506. static av_always_inline void dctcoef_set(DCTELEM *mb, int high_bit_depth, int index, int value) {
  1507. if (high_bit_depth) {
  1508. AV_WN32A(((int32_t*)mb) + index, value);
  1509. } else
  1510. AV_WN16A(mb + index, value);
  1511. }
  1512. static av_always_inline void hl_decode_mb_predict_luma(H264Context *h, int mb_type, int is_h264, int simple, int transform_bypass,
  1513. int pixel_shift, int *block_offset, int linesize, uint8_t *dest_y, int p)
  1514. {
  1515. MpegEncContext * const s = &h->s;
  1516. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  1517. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  1518. int i;
  1519. int qscale = p == 0 ? s->qscale : h->chroma_qp[p-1];
  1520. block_offset += 16*p;
  1521. if(IS_INTRA4x4(mb_type)){
  1522. if(simple || !s->encoding){
  1523. if(IS_8x8DCT(mb_type)){
  1524. if(transform_bypass){
  1525. idct_dc_add =
  1526. idct_add = s->dsp.add_pixels8;
  1527. }else{
  1528. idct_dc_add = h->h264dsp.h264_idct8_dc_add;
  1529. idct_add = h->h264dsp.h264_idct8_add;
  1530. }
  1531. for(i=0; i<16; i+=4){
  1532. uint8_t * const ptr= dest_y + block_offset[i];
  1533. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  1534. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  1535. h->hpc.pred8x8l_add[dir](ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
  1536. }else{
  1537. const int nnz = h->non_zero_count_cache[ scan8[i+p*16] ];
  1538. h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  1539. (h->topright_samples_available<<i)&0x4000, linesize);
  1540. if(nnz){
  1541. if(nnz == 1 && dctcoef_get(h->mb, pixel_shift, i*16+p*256))
  1542. idct_dc_add(ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
  1543. else
  1544. idct_add (ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
  1545. }
  1546. }
  1547. }
  1548. }else{
  1549. if(transform_bypass){
  1550. idct_dc_add =
  1551. idct_add = s->dsp.add_pixels4;
  1552. }else{
  1553. idct_dc_add = h->h264dsp.h264_idct_dc_add;
  1554. idct_add = h->h264dsp.h264_idct_add;
  1555. }
  1556. for(i=0; i<16; i++){
  1557. uint8_t * const ptr= dest_y + block_offset[i];
  1558. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  1559. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  1560. h->hpc.pred4x4_add[dir](ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
  1561. }else{
  1562. uint8_t *topright;
  1563. int nnz, tr;
  1564. uint64_t tr_high;
  1565. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  1566. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  1567. assert(s->mb_y || linesize <= block_offset[i]);
  1568. if(!topright_avail){
  1569. if (pixel_shift) {
  1570. tr_high= ((uint16_t*)ptr)[3 - linesize/2]*0x0001000100010001ULL;
  1571. topright= (uint8_t*) &tr_high;
  1572. } else {
  1573. tr= ptr[3 - linesize]*0x01010101u;
  1574. topright= (uint8_t*) &tr;
  1575. }
  1576. }else
  1577. topright= ptr + (4 << pixel_shift) - linesize;
  1578. }else
  1579. topright= NULL;
  1580. h->hpc.pred4x4[ dir ](ptr, topright, linesize);
  1581. nnz = h->non_zero_count_cache[ scan8[i+p*16] ];
  1582. if(nnz){
  1583. if(is_h264){
  1584. if(nnz == 1 && dctcoef_get(h->mb, pixel_shift, i*16+p*256))
  1585. idct_dc_add(ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
  1586. else
  1587. idct_add (ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
  1588. }else
  1589. ff_svq3_add_idct_c(ptr, h->mb + i*16+p*256, linesize, qscale, 0);
  1590. }
  1591. }
  1592. }
  1593. }
  1594. }
  1595. }else{
  1596. h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  1597. if(is_h264){
  1598. if(h->non_zero_count_cache[ scan8[LUMA_DC_BLOCK_INDEX+p] ]){
  1599. if(!transform_bypass)
  1600. h->h264dsp.h264_luma_dc_dequant_idct(h->mb+(p*256 << pixel_shift), h->mb_luma_dc[p], h->dequant4_coeff[p][qscale][0]);
  1601. else{
  1602. static const uint8_t dc_mapping[16] = { 0*16, 1*16, 4*16, 5*16, 2*16, 3*16, 6*16, 7*16,
  1603. 8*16, 9*16,12*16,13*16,10*16,11*16,14*16,15*16};
  1604. for(i = 0; i < 16; i++)
  1605. dctcoef_set(h->mb+(p*256 << pixel_shift), pixel_shift, dc_mapping[i], dctcoef_get(h->mb_luma_dc[p], pixel_shift, i));
  1606. }
  1607. }
  1608. }else
  1609. ff_svq3_luma_dc_dequant_idct_c(h->mb+p*256, h->mb_luma_dc[p], qscale);
  1610. }
  1611. }
  1612. static av_always_inline void hl_decode_mb_idct_luma(H264Context *h, int mb_type, int is_h264, int simple, int transform_bypass,
  1613. int pixel_shift, int *block_offset, int linesize, uint8_t *dest_y, int p)
  1614. {
  1615. MpegEncContext * const s = &h->s;
  1616. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  1617. int i;
  1618. block_offset += 16*p;
  1619. if(!IS_INTRA4x4(mb_type)){
  1620. if(is_h264){
  1621. if(IS_INTRA16x16(mb_type)){
  1622. if(transform_bypass){
  1623. if(h->sps.profile_idc==244 && (h->intra16x16_pred_mode==VERT_PRED8x8 || h->intra16x16_pred_mode==HOR_PRED8x8)){
  1624. h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize);
  1625. }else{
  1626. for(i=0; i<16; i++){
  1627. if(h->non_zero_count_cache[ scan8[i+p*16] ] || dctcoef_get(h->mb, pixel_shift, i*16+p*256))
  1628. s->dsp.add_pixels4(dest_y + block_offset[i], h->mb + (i*16+p*256 << pixel_shift), linesize);
  1629. }
  1630. }
  1631. }else{
  1632. h->h264dsp.h264_idct_add16intra(dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize, h->non_zero_count_cache+p*5*8);
  1633. }
  1634. }else if(h->cbp&15){
  1635. if(transform_bypass){
  1636. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  1637. idct_add= IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  1638. for(i=0; i<16; i+=di){
  1639. if(h->non_zero_count_cache[ scan8[i+p*16] ]){
  1640. idct_add(dest_y + block_offset[i], h->mb + (i*16+p*256 << pixel_shift), linesize);
  1641. }
  1642. }
  1643. }else{
  1644. if(IS_8x8DCT(mb_type)){
  1645. h->h264dsp.h264_idct8_add4(dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize, h->non_zero_count_cache+p*5*8);
  1646. }else{
  1647. h->h264dsp.h264_idct_add16(dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize, h->non_zero_count_cache+p*5*8);
  1648. }
  1649. }
  1650. }
  1651. }else{
  1652. for(i=0; i<16; i++){
  1653. if(h->non_zero_count_cache[ scan8[i+p*16] ] || h->mb[i*16+p*256]){ //FIXME benchmark weird rule, & below
  1654. uint8_t * const ptr= dest_y + block_offset[i];
  1655. ff_svq3_add_idct_c(ptr, h->mb + i*16 + p*256, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  1656. }
  1657. }
  1658. }
  1659. }
  1660. }
  1661. static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple, int pixel_shift)
  1662. {
  1663. MpegEncContext * const s = &h->s;
  1664. const int mb_x= s->mb_x;
  1665. const int mb_y= s->mb_y;
  1666. const int mb_xy= h->mb_xy;
  1667. const int mb_type = s->current_picture.f.mb_type[mb_xy];
  1668. uint8_t *dest_y, *dest_cb, *dest_cr;
  1669. int linesize, uvlinesize /*dct_offset*/;
  1670. int i, j;
  1671. int *block_offset = &h->block_offset[0];
  1672. const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
  1673. /* is_h264 should always be true if SVQ3 is disabled. */
  1674. const int is_h264 = !CONFIG_SVQ3_DECODER || simple || s->codec_id == CODEC_ID_H264;
  1675. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  1676. const int block_h = 16 >> s->chroma_y_shift;
  1677. const int chroma422 = CHROMA422;
  1678. dest_y = s->current_picture.f.data[0] + ((mb_x << pixel_shift) + mb_y * s->linesize ) * 16;
  1679. dest_cb = s->current_picture.f.data[1] + (mb_x << pixel_shift)*8 + mb_y * s->uvlinesize * block_h;
  1680. dest_cr = s->current_picture.f.data[2] + (mb_x << pixel_shift)*8 + mb_y * s->uvlinesize * block_h;
  1681. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + (64 << pixel_shift), s->linesize, 4);
  1682. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + (64 << pixel_shift), dest_cr - dest_cb, 2);
  1683. h->list_counts[mb_xy]= h->list_count;
  1684. if (!simple && MB_FIELD) {
  1685. linesize = h->mb_linesize = s->linesize * 2;
  1686. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  1687. block_offset = &h->block_offset[48];
  1688. if(mb_y&1){ //FIXME move out of this function?
  1689. dest_y -= s->linesize*15;
  1690. dest_cb-= s->uvlinesize * (block_h - 1);
  1691. dest_cr-= s->uvlinesize * (block_h - 1);
  1692. }
  1693. if(FRAME_MBAFF) {
  1694. int list;
  1695. for(list=0; list<h->list_count; list++){
  1696. if(!USES_LIST(mb_type, list))
  1697. continue;
  1698. if(IS_16X16(mb_type)){
  1699. int8_t *ref = &h->ref_cache[list][scan8[0]];
  1700. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  1701. }else{
  1702. for(i=0; i<16; i+=4){
  1703. int ref = h->ref_cache[list][scan8[i]];
  1704. if(ref >= 0)
  1705. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  1706. }
  1707. }
  1708. }
  1709. }
  1710. } else {
  1711. linesize = h->mb_linesize = s->linesize;
  1712. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  1713. // dct_offset = s->linesize * 16;
  1714. }
  1715. if (!simple && IS_INTRA_PCM(mb_type)) {
  1716. const int bit_depth = h->sps.bit_depth_luma;
  1717. if (pixel_shift) {
  1718. int j;
  1719. GetBitContext gb;
  1720. init_get_bits(&gb, (uint8_t*)h->mb, 384*bit_depth);
  1721. for (i = 0; i < 16; i++) {
  1722. uint16_t *tmp_y = (uint16_t*)(dest_y + i*linesize);
  1723. for (j = 0; j < 16; j++)
  1724. tmp_y[j] = get_bits(&gb, bit_depth);
  1725. }
  1726. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1727. if (!h->sps.chroma_format_idc) {
  1728. for (i = 0; i < block_h; i++) {
  1729. uint16_t *tmp_cb = (uint16_t*)(dest_cb + i*uvlinesize);
  1730. uint16_t *tmp_cr = (uint16_t*)(dest_cr + i*uvlinesize);
  1731. for (j = 0; j < 8; j++) {
  1732. tmp_cb[j] = tmp_cr[j] = 1 << (bit_depth - 1);
  1733. }
  1734. }
  1735. } else {
  1736. for (i = 0; i < block_h; i++) {
  1737. uint16_t *tmp_cb = (uint16_t*)(dest_cb + i*uvlinesize);
  1738. for (j = 0; j < 8; j++)
  1739. tmp_cb[j] = get_bits(&gb, bit_depth);
  1740. }
  1741. for (i = 0; i < block_h; i++) {
  1742. uint16_t *tmp_cr = (uint16_t*)(dest_cr + i*uvlinesize);
  1743. for (j = 0; j < 8; j++)
  1744. tmp_cr[j] = get_bits(&gb, bit_depth);
  1745. }
  1746. }
  1747. }
  1748. } else {
  1749. for (i=0; i<16; i++) {
  1750. memcpy(dest_y + i* linesize, h->mb + i*8, 16);
  1751. }
  1752. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1753. if (!h->sps.chroma_format_idc) {
  1754. for (i=0; i<8; i++) {
  1755. memset(dest_cb + i*uvlinesize, 1 << (bit_depth - 1), 8);
  1756. memset(dest_cr + i*uvlinesize, 1 << (bit_depth - 1), 8);
  1757. }
  1758. } else {
  1759. for (i=0; i<block_h; i++) {
  1760. memcpy(dest_cb + i*uvlinesize, h->mb + 128 + i*4, 8);
  1761. memcpy(dest_cr + i*uvlinesize, h->mb + 160 + i*4, 8);
  1762. }
  1763. }
  1764. }
  1765. }
  1766. } else {
  1767. if(IS_INTRA(mb_type)){
  1768. if(h->deblocking_filter)
  1769. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, 0, simple, pixel_shift);
  1770. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1771. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  1772. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  1773. }
  1774. hl_decode_mb_predict_luma(h, mb_type, is_h264, simple, transform_bypass, pixel_shift, block_offset, linesize, dest_y, 0);
  1775. if(h->deblocking_filter)
  1776. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, 0, simple, pixel_shift);
  1777. }else if(is_h264){
  1778. if (chroma422) {
  1779. hl_motion_422(h, dest_y, dest_cb, dest_cr,
  1780. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  1781. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  1782. h->h264dsp.weight_h264_pixels_tab,
  1783. h->h264dsp.biweight_h264_pixels_tab,
  1784. pixel_shift);
  1785. } else {
  1786. hl_motion_420(h, dest_y, dest_cb, dest_cr,
  1787. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  1788. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  1789. h->h264dsp.weight_h264_pixels_tab,
  1790. h->h264dsp.biweight_h264_pixels_tab,
  1791. pixel_shift);
  1792. }
  1793. }
  1794. hl_decode_mb_idct_luma(h, mb_type, is_h264, simple, transform_bypass, pixel_shift, block_offset, linesize, dest_y, 0);
  1795. if((simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) && (h->cbp&0x30)){
  1796. uint8_t *dest[2] = {dest_cb, dest_cr};
  1797. if(transform_bypass){
  1798. if(IS_INTRA(mb_type) && h->sps.profile_idc==244 && (h->chroma_pred_mode==VERT_PRED8x8 || h->chroma_pred_mode==HOR_PRED8x8)){
  1799. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[0], block_offset + 16, h->mb + (16*16*1 << pixel_shift), uvlinesize);
  1800. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[1], block_offset + 32, h->mb + (16*16*2 << pixel_shift), uvlinesize);
  1801. }else{
  1802. idct_add = s->dsp.add_pixels4;
  1803. for(j=1; j<3; j++){
  1804. for(i=j*16; i<j*16+4; i++){
  1805. if(h->non_zero_count_cache[ scan8[i] ] || dctcoef_get(h->mb, pixel_shift, i*16))
  1806. idct_add (dest[j-1] + block_offset[i], h->mb + (i*16 << pixel_shift), uvlinesize);
  1807. }
  1808. if (chroma422) {
  1809. for(i=j*16+4; i<j*16+8; i++){
  1810. if(h->non_zero_count_cache[ scan8[i+4] ] || dctcoef_get(h->mb, pixel_shift, i*16))
  1811. idct_add (dest[j-1] + block_offset[i+4], h->mb + (i*16 << pixel_shift), uvlinesize);
  1812. }
  1813. }
  1814. }
  1815. }
  1816. }else{
  1817. if(is_h264){
  1818. int qp[2];
  1819. if (chroma422) {
  1820. qp[0] = h->chroma_qp[0] + 3;
  1821. qp[1] = h->chroma_qp[1] + 3;
  1822. } else {
  1823. qp[0] = h->chroma_qp[0];
  1824. qp[1] = h->chroma_qp[1];
  1825. }
  1826. if(h->non_zero_count_cache[ scan8[CHROMA_DC_BLOCK_INDEX+0] ])
  1827. h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + (16*16*1 << pixel_shift), h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][qp[0]][0]);
  1828. if(h->non_zero_count_cache[ scan8[CHROMA_DC_BLOCK_INDEX+1] ])
  1829. h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + (16*16*2 << pixel_shift), h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][qp[1]][0]);
  1830. h->h264dsp.h264_idct_add8(dest, block_offset,
  1831. h->mb, uvlinesize,
  1832. h->non_zero_count_cache);
  1833. }
  1834. #if CONFIG_SVQ3_DECODER
  1835. else{
  1836. h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + 16*16*1, h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
  1837. h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + 16*16*2, h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
  1838. for(j=1; j<3; j++){
  1839. for(i=j*16; i<j*16+4; i++){
  1840. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  1841. uint8_t * const ptr= dest[j-1] + block_offset[i];
  1842. ff_svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, ff_h264_chroma_qp[0][s->qscale + 12] - 12, 2);
  1843. }
  1844. }
  1845. }
  1846. }
  1847. #endif
  1848. }
  1849. }
  1850. }
  1851. if(h->cbp || IS_INTRA(mb_type))
  1852. {
  1853. s->dsp.clear_blocks(h->mb);
  1854. s->dsp.clear_blocks(h->mb+(24*16<<pixel_shift));
  1855. }
  1856. }
  1857. static av_always_inline void hl_decode_mb_444_internal(H264Context *h, int simple, int pixel_shift){
  1858. MpegEncContext * const s = &h->s;
  1859. const int mb_x= s->mb_x;
  1860. const int mb_y= s->mb_y;
  1861. const int mb_xy= h->mb_xy;
  1862. const int mb_type = s->current_picture.f.mb_type[mb_xy];
  1863. uint8_t *dest[3];
  1864. int linesize;
  1865. int i, j, p;
  1866. int *block_offset = &h->block_offset[0];
  1867. const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
  1868. const int plane_count = (simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) ? 3 : 1;
  1869. for (p = 0; p < plane_count; p++)
  1870. {
  1871. dest[p] = s->current_picture.f.data[p] + ((mb_x << pixel_shift) + mb_y * s->linesize) * 16;
  1872. s->dsp.prefetch(dest[p] + (s->mb_x&3)*4*s->linesize + (64 << pixel_shift), s->linesize, 4);
  1873. }
  1874. h->list_counts[mb_xy]= h->list_count;
  1875. if (!simple && MB_FIELD) {
  1876. linesize = h->mb_linesize = h->mb_uvlinesize = s->linesize * 2;
  1877. block_offset = &h->block_offset[48];
  1878. if(mb_y&1) //FIXME move out of this function?
  1879. for (p = 0; p < 3; p++)
  1880. dest[p] -= s->linesize*15;
  1881. if(FRAME_MBAFF) {
  1882. int list;
  1883. for(list=0; list<h->list_count; list++){
  1884. if(!USES_LIST(mb_type, list))
  1885. continue;
  1886. if(IS_16X16(mb_type)){
  1887. int8_t *ref = &h->ref_cache[list][scan8[0]];
  1888. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  1889. }else{
  1890. for(i=0; i<16; i+=4){
  1891. int ref = h->ref_cache[list][scan8[i]];
  1892. if(ref >= 0)
  1893. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  1894. }
  1895. }
  1896. }
  1897. }
  1898. } else {
  1899. linesize = h->mb_linesize = h->mb_uvlinesize = s->linesize;
  1900. }
  1901. if (!simple && IS_INTRA_PCM(mb_type)) {
  1902. if (pixel_shift) {
  1903. const int bit_depth = h->sps.bit_depth_luma;
  1904. GetBitContext gb;
  1905. init_get_bits(&gb, (uint8_t*)h->mb, 768*bit_depth);
  1906. for (p = 0; p < plane_count; p++) {
  1907. for (i = 0; i < 16; i++) {
  1908. uint16_t *tmp = (uint16_t*)(dest[p] + i*linesize);
  1909. for (j = 0; j < 16; j++)
  1910. tmp[j] = get_bits(&gb, bit_depth);
  1911. }
  1912. }
  1913. } else {
  1914. for (p = 0; p < plane_count; p++) {
  1915. for (i = 0; i < 16; i++) {
  1916. memcpy(dest[p] + i*linesize, h->mb + p*128 + i*8, 16);
  1917. }
  1918. }
  1919. }
  1920. } else {
  1921. if(IS_INTRA(mb_type)){
  1922. if(h->deblocking_filter)
  1923. xchg_mb_border(h, dest[0], dest[1], dest[2], linesize, linesize, 1, 1, simple, pixel_shift);
  1924. for (p = 0; p < plane_count; p++)
  1925. hl_decode_mb_predict_luma(h, mb_type, 1, simple, transform_bypass, pixel_shift, block_offset, linesize, dest[p], p);
  1926. if(h->deblocking_filter)
  1927. xchg_mb_border(h, dest[0], dest[1], dest[2], linesize, linesize, 0, 1, simple, pixel_shift);
  1928. }else{
  1929. hl_motion(h, dest[0], dest[1], dest[2],
  1930. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  1931. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  1932. h->h264dsp.weight_h264_pixels_tab,
  1933. h->h264dsp.biweight_h264_pixels_tab, pixel_shift, 3);
  1934. }
  1935. for (p = 0; p < plane_count; p++)
  1936. hl_decode_mb_idct_luma(h, mb_type, 1, simple, transform_bypass, pixel_shift, block_offset, linesize, dest[p], p);
  1937. }
  1938. if(h->cbp || IS_INTRA(mb_type))
  1939. {
  1940. s->dsp.clear_blocks(h->mb);
  1941. s->dsp.clear_blocks(h->mb+(24*16<<pixel_shift));
  1942. }
  1943. }
  1944. /**
  1945. * Process a macroblock; this case avoids checks for expensive uncommon cases.
  1946. */
  1947. #define hl_decode_mb_simple(sh, bits) \
  1948. static void hl_decode_mb_simple_ ## bits(H264Context *h){ \
  1949. hl_decode_mb_internal(h, 1, sh); \
  1950. }
  1951. hl_decode_mb_simple(0, 8);
  1952. hl_decode_mb_simple(1, 16);
  1953. /**
  1954. * Process a macroblock; this handles edge cases, such as interlacing.
  1955. */
  1956. static void av_noinline hl_decode_mb_complex(H264Context *h){
  1957. hl_decode_mb_internal(h, 0, h->pixel_shift);
  1958. }
  1959. static void av_noinline hl_decode_mb_444_complex(H264Context *h){
  1960. hl_decode_mb_444_internal(h, 0, h->pixel_shift);
  1961. }
  1962. static void av_noinline hl_decode_mb_444_simple(H264Context *h){
  1963. hl_decode_mb_444_internal(h, 1, 0);
  1964. }
  1965. void ff_h264_hl_decode_mb(H264Context *h){
  1966. MpegEncContext * const s = &h->s;
  1967. const int mb_xy= h->mb_xy;
  1968. const int mb_type = s->current_picture.f.mb_type[mb_xy];
  1969. int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0;
  1970. if (CHROMA444) {
  1971. if(is_complex || h->pixel_shift)
  1972. hl_decode_mb_444_complex(h);
  1973. else
  1974. hl_decode_mb_444_simple(h);
  1975. } else if (is_complex) {
  1976. hl_decode_mb_complex(h);
  1977. } else if (h->pixel_shift) {
  1978. hl_decode_mb_simple_16(h);
  1979. } else
  1980. hl_decode_mb_simple_8(h);
  1981. }
  1982. static int pred_weight_table(H264Context *h){
  1983. MpegEncContext * const s = &h->s;
  1984. int list, i;
  1985. int luma_def, chroma_def;
  1986. h->use_weight= 0;
  1987. h->use_weight_chroma= 0;
  1988. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  1989. if(h->sps.chroma_format_idc)
  1990. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  1991. luma_def = 1<<h->luma_log2_weight_denom;
  1992. chroma_def = 1<<h->chroma_log2_weight_denom;
  1993. for(list=0; list<2; list++){
  1994. h->luma_weight_flag[list] = 0;
  1995. h->chroma_weight_flag[list] = 0;
  1996. for(i=0; i<h->ref_count[list]; i++){
  1997. int luma_weight_flag, chroma_weight_flag;
  1998. luma_weight_flag= get_bits1(&s->gb);
  1999. if(luma_weight_flag){
  2000. h->luma_weight[i][list][0]= get_se_golomb(&s->gb);
  2001. h->luma_weight[i][list][1]= get_se_golomb(&s->gb);
  2002. if( h->luma_weight[i][list][0] != luma_def
  2003. || h->luma_weight[i][list][1] != 0) {
  2004. h->use_weight= 1;
  2005. h->luma_weight_flag[list]= 1;
  2006. }
  2007. }else{
  2008. h->luma_weight[i][list][0]= luma_def;
  2009. h->luma_weight[i][list][1]= 0;
  2010. }
  2011. if(h->sps.chroma_format_idc){
  2012. chroma_weight_flag= get_bits1(&s->gb);
  2013. if(chroma_weight_flag){
  2014. int j;
  2015. for(j=0; j<2; j++){
  2016. h->chroma_weight[i][list][j][0]= get_se_golomb(&s->gb);
  2017. h->chroma_weight[i][list][j][1]= get_se_golomb(&s->gb);
  2018. if( h->chroma_weight[i][list][j][0] != chroma_def
  2019. || h->chroma_weight[i][list][j][1] != 0) {
  2020. h->use_weight_chroma= 1;
  2021. h->chroma_weight_flag[list]= 1;
  2022. }
  2023. }
  2024. }else{
  2025. int j;
  2026. for(j=0; j<2; j++){
  2027. h->chroma_weight[i][list][j][0]= chroma_def;
  2028. h->chroma_weight[i][list][j][1]= 0;
  2029. }
  2030. }
  2031. }
  2032. }
  2033. if(h->slice_type_nos != AV_PICTURE_TYPE_B) break;
  2034. }
  2035. h->use_weight= h->use_weight || h->use_weight_chroma;
  2036. return 0;
  2037. }
  2038. /**
  2039. * Initialize implicit_weight table.
  2040. * @param field 0/1 initialize the weight for interlaced MBAFF
  2041. * -1 initializes the rest
  2042. */
  2043. static void implicit_weight_table(H264Context *h, int field){
  2044. MpegEncContext * const s = &h->s;
  2045. int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
  2046. for (i = 0; i < 2; i++) {
  2047. h->luma_weight_flag[i] = 0;
  2048. h->chroma_weight_flag[i] = 0;
  2049. }
  2050. if(field < 0){
  2051. if (s->picture_structure == PICT_FRAME) {
  2052. cur_poc = s->current_picture_ptr->poc;
  2053. } else {
  2054. cur_poc = s->current_picture_ptr->field_poc[s->picture_structure - 1];
  2055. }
  2056. if( h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF
  2057. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  2058. h->use_weight= 0;
  2059. h->use_weight_chroma= 0;
  2060. return;
  2061. }
  2062. ref_start= 0;
  2063. ref_count0= h->ref_count[0];
  2064. ref_count1= h->ref_count[1];
  2065. }else{
  2066. cur_poc = s->current_picture_ptr->field_poc[field];
  2067. ref_start= 16;
  2068. ref_count0= 16+2*h->ref_count[0];
  2069. ref_count1= 16+2*h->ref_count[1];
  2070. }
  2071. h->use_weight= 2;
  2072. h->use_weight_chroma= 2;
  2073. h->luma_log2_weight_denom= 5;
  2074. h->chroma_log2_weight_denom= 5;
  2075. for(ref0=ref_start; ref0 < ref_count0; ref0++){
  2076. int poc0 = h->ref_list[0][ref0].poc;
  2077. for(ref1=ref_start; ref1 < ref_count1; ref1++){
  2078. int w = 32;
  2079. if (!h->ref_list[0][ref0].long_ref && !h->ref_list[1][ref1].long_ref) {
  2080. int poc1 = h->ref_list[1][ref1].poc;
  2081. int td = av_clip(poc1 - poc0, -128, 127);
  2082. if(td){
  2083. int tb = av_clip(cur_poc - poc0, -128, 127);
  2084. int tx = (16384 + (FFABS(td) >> 1)) / td;
  2085. int dist_scale_factor = (tb*tx + 32) >> 8;
  2086. if(dist_scale_factor >= -64 && dist_scale_factor <= 128)
  2087. w = 64 - dist_scale_factor;
  2088. }
  2089. }
  2090. if(field<0){
  2091. h->implicit_weight[ref0][ref1][0]=
  2092. h->implicit_weight[ref0][ref1][1]= w;
  2093. }else{
  2094. h->implicit_weight[ref0][ref1][field]=w;
  2095. }
  2096. }
  2097. }
  2098. }
  2099. /**
  2100. * instantaneous decoder refresh.
  2101. */
  2102. static void idr(H264Context *h){
  2103. int i;
  2104. ff_h264_remove_all_refs(h);
  2105. h->prev_frame_num= -1;
  2106. h->prev_frame_num_offset= 0;
  2107. h->prev_poc_msb=
  2108. h->prev_poc_lsb= 0;
  2109. for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++)
  2110. h->last_pocs[i] = INT_MIN;
  2111. }
  2112. /* forget old pics after a seek */
  2113. static void flush_dpb(AVCodecContext *avctx){
  2114. H264Context *h= avctx->priv_data;
  2115. int i;
  2116. for(i=0; i<=MAX_DELAYED_PIC_COUNT; i++) {
  2117. if(h->delayed_pic[i])
  2118. h->delayed_pic[i]->f.reference = 0;
  2119. h->delayed_pic[i]= NULL;
  2120. }
  2121. h->outputed_poc=h->next_outputed_poc= INT_MIN;
  2122. h->prev_interlaced_frame = 1;
  2123. idr(h);
  2124. if(h->s.current_picture_ptr)
  2125. h->s.current_picture_ptr->f.reference = 0;
  2126. h->s.first_field= 0;
  2127. ff_h264_reset_sei(h);
  2128. ff_mpeg_flush(avctx);
  2129. h->recovery_frame= -1;
  2130. h->sync= 0;
  2131. }
  2132. static int init_poc(H264Context *h){
  2133. MpegEncContext * const s = &h->s;
  2134. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  2135. int field_poc[2];
  2136. Picture *cur = s->current_picture_ptr;
  2137. h->frame_num_offset= h->prev_frame_num_offset;
  2138. if(h->frame_num < h->prev_frame_num)
  2139. h->frame_num_offset += max_frame_num;
  2140. if(h->sps.poc_type==0){
  2141. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  2142. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  2143. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  2144. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  2145. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  2146. else
  2147. h->poc_msb = h->prev_poc_msb;
  2148. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  2149. field_poc[0] =
  2150. field_poc[1] = h->poc_msb + h->poc_lsb;
  2151. if(s->picture_structure == PICT_FRAME)
  2152. field_poc[1] += h->delta_poc_bottom;
  2153. }else if(h->sps.poc_type==1){
  2154. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  2155. int i;
  2156. if(h->sps.poc_cycle_length != 0)
  2157. abs_frame_num = h->frame_num_offset + h->frame_num;
  2158. else
  2159. abs_frame_num = 0;
  2160. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  2161. abs_frame_num--;
  2162. expected_delta_per_poc_cycle = 0;
  2163. for(i=0; i < h->sps.poc_cycle_length; i++)
  2164. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  2165. if(abs_frame_num > 0){
  2166. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  2167. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  2168. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  2169. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  2170. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  2171. } else
  2172. expectedpoc = 0;
  2173. if(h->nal_ref_idc == 0)
  2174. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  2175. field_poc[0] = expectedpoc + h->delta_poc[0];
  2176. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  2177. if(s->picture_structure == PICT_FRAME)
  2178. field_poc[1] += h->delta_poc[1];
  2179. }else{
  2180. int poc= 2*(h->frame_num_offset + h->frame_num);
  2181. if(!h->nal_ref_idc)
  2182. poc--;
  2183. field_poc[0]= poc;
  2184. field_poc[1]= poc;
  2185. }
  2186. if(s->picture_structure != PICT_BOTTOM_FIELD)
  2187. s->current_picture_ptr->field_poc[0]= field_poc[0];
  2188. if(s->picture_structure != PICT_TOP_FIELD)
  2189. s->current_picture_ptr->field_poc[1]= field_poc[1];
  2190. cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
  2191. return 0;
  2192. }
  2193. /**
  2194. * initialize scan tables
  2195. */
  2196. static void init_scan_tables(H264Context *h){
  2197. int i;
  2198. for(i=0; i<16; i++){
  2199. #define T(x) (x>>2) | ((x<<2) & 0xF)
  2200. h->zigzag_scan[i] = T(zigzag_scan[i]);
  2201. h-> field_scan[i] = T( field_scan[i]);
  2202. #undef T
  2203. }
  2204. for(i=0; i<64; i++){
  2205. #define T(x) (x>>3) | ((x&7)<<3)
  2206. h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]);
  2207. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  2208. h->field_scan8x8[i] = T(field_scan8x8[i]);
  2209. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  2210. #undef T
  2211. }
  2212. if(h->sps.transform_bypass){ //FIXME same ugly
  2213. h->zigzag_scan_q0 = zigzag_scan;
  2214. h->zigzag_scan8x8_q0 = ff_zigzag_direct;
  2215. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  2216. h->field_scan_q0 = field_scan;
  2217. h->field_scan8x8_q0 = field_scan8x8;
  2218. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  2219. }else{
  2220. h->zigzag_scan_q0 = h->zigzag_scan;
  2221. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  2222. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  2223. h->field_scan_q0 = h->field_scan;
  2224. h->field_scan8x8_q0 = h->field_scan8x8;
  2225. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  2226. }
  2227. }
  2228. static int field_end(H264Context *h, int in_setup){
  2229. MpegEncContext * const s = &h->s;
  2230. AVCodecContext * const avctx= s->avctx;
  2231. int err = 0;
  2232. s->mb_y= 0;
  2233. if (!in_setup && !s->dropable)
  2234. ff_thread_report_progress((AVFrame*)s->current_picture_ptr, (16*s->mb_height >> FIELD_PICTURE) - 1,
  2235. s->picture_structure==PICT_BOTTOM_FIELD);
  2236. if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2237. ff_vdpau_h264_set_reference_frames(s);
  2238. if(in_setup || !(avctx->active_thread_type&FF_THREAD_FRAME)){
  2239. if(!s->dropable) {
  2240. err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  2241. h->prev_poc_msb= h->poc_msb;
  2242. h->prev_poc_lsb= h->poc_lsb;
  2243. }
  2244. h->prev_frame_num_offset= h->frame_num_offset;
  2245. h->prev_frame_num= h->frame_num;
  2246. h->outputed_poc = h->next_outputed_poc;
  2247. }
  2248. if (avctx->hwaccel) {
  2249. if (avctx->hwaccel->end_frame(avctx) < 0)
  2250. av_log(avctx, AV_LOG_ERROR, "hardware accelerator failed to decode picture\n");
  2251. }
  2252. if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2253. ff_vdpau_h264_picture_complete(s);
  2254. /*
  2255. * FIXME: Error handling code does not seem to support interlaced
  2256. * when slices span multiple rows
  2257. * The ff_er_add_slice calls don't work right for bottom
  2258. * fields; they cause massive erroneous error concealing
  2259. * Error marking covers both fields (top and bottom).
  2260. * This causes a mismatched s->error_count
  2261. * and a bad error table. Further, the error count goes to
  2262. * INT_MAX when called for bottom field, because mb_y is
  2263. * past end by one (callers fault) and resync_mb_y != 0
  2264. * causes problems for the first MB line, too.
  2265. */
  2266. if (!FIELD_PICTURE)
  2267. ff_er_frame_end(s);
  2268. MPV_frame_end(s);
  2269. h->current_slice=0;
  2270. return err;
  2271. }
  2272. /**
  2273. * Replicate H264 "master" context to thread contexts.
  2274. */
  2275. static void clone_slice(H264Context *dst, H264Context *src)
  2276. {
  2277. memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
  2278. dst->s.current_picture_ptr = src->s.current_picture_ptr;
  2279. dst->s.current_picture = src->s.current_picture;
  2280. dst->s.linesize = src->s.linesize;
  2281. dst->s.uvlinesize = src->s.uvlinesize;
  2282. dst->s.first_field = src->s.first_field;
  2283. dst->prev_poc_msb = src->prev_poc_msb;
  2284. dst->prev_poc_lsb = src->prev_poc_lsb;
  2285. dst->prev_frame_num_offset = src->prev_frame_num_offset;
  2286. dst->prev_frame_num = src->prev_frame_num;
  2287. dst->short_ref_count = src->short_ref_count;
  2288. memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
  2289. memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
  2290. memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
  2291. memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
  2292. memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
  2293. memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
  2294. }
  2295. /**
  2296. * computes profile from profile_idc and constraint_set?_flags
  2297. *
  2298. * @param sps SPS
  2299. *
  2300. * @return profile as defined by FF_PROFILE_H264_*
  2301. */
  2302. int ff_h264_get_profile(SPS *sps)
  2303. {
  2304. int profile = sps->profile_idc;
  2305. switch(sps->profile_idc) {
  2306. case FF_PROFILE_H264_BASELINE:
  2307. // constraint_set1_flag set to 1
  2308. profile |= (sps->constraint_set_flags & 1<<1) ? FF_PROFILE_H264_CONSTRAINED : 0;
  2309. break;
  2310. case FF_PROFILE_H264_HIGH_10:
  2311. case FF_PROFILE_H264_HIGH_422:
  2312. case FF_PROFILE_H264_HIGH_444_PREDICTIVE:
  2313. // constraint_set3_flag set to 1
  2314. profile |= (sps->constraint_set_flags & 1<<3) ? FF_PROFILE_H264_INTRA : 0;
  2315. break;
  2316. }
  2317. return profile;
  2318. }
  2319. /**
  2320. * decodes a slice header.
  2321. * This will also call MPV_common_init() and frame_start() as needed.
  2322. *
  2323. * @param h h264context
  2324. * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
  2325. *
  2326. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  2327. */
  2328. static int decode_slice_header(H264Context *h, H264Context *h0){
  2329. MpegEncContext * const s = &h->s;
  2330. MpegEncContext * const s0 = &h0->s;
  2331. unsigned int first_mb_in_slice;
  2332. unsigned int pps_id;
  2333. int num_ref_idx_active_override_flag;
  2334. unsigned int slice_type, tmp, i, j;
  2335. int default_ref_list_done = 0;
  2336. int last_pic_structure;
  2337. s->dropable= h->nal_ref_idc == 0;
  2338. /* FIXME: 2tap qpel isn't implemented for high bit depth. */
  2339. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc && !h->pixel_shift){
  2340. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  2341. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  2342. }else{
  2343. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  2344. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  2345. }
  2346. first_mb_in_slice= get_ue_golomb_long(&s->gb);
  2347. if(first_mb_in_slice == 0){ //FIXME better field boundary detection
  2348. if(h0->current_slice && FIELD_PICTURE){
  2349. field_end(h, 1);
  2350. }
  2351. h0->current_slice = 0;
  2352. if (!s0->first_field)
  2353. s->current_picture_ptr= NULL;
  2354. }
  2355. slice_type= get_ue_golomb_31(&s->gb);
  2356. if(slice_type > 9){
  2357. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  2358. return -1;
  2359. }
  2360. if(slice_type > 4){
  2361. slice_type -= 5;
  2362. h->slice_type_fixed=1;
  2363. }else
  2364. h->slice_type_fixed=0;
  2365. slice_type= golomb_to_pict_type[ slice_type ];
  2366. if (slice_type == AV_PICTURE_TYPE_I
  2367. || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
  2368. default_ref_list_done = 1;
  2369. }
  2370. h->slice_type= slice_type;
  2371. h->slice_type_nos= slice_type & 3;
  2372. s->pict_type= h->slice_type; // to make a few old functions happy, it's wrong though
  2373. pps_id= get_ue_golomb(&s->gb);
  2374. if(pps_id>=MAX_PPS_COUNT){
  2375. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  2376. return -1;
  2377. }
  2378. if(!h0->pps_buffers[pps_id]) {
  2379. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", pps_id);
  2380. return -1;
  2381. }
  2382. h->pps= *h0->pps_buffers[pps_id];
  2383. if(!h0->sps_buffers[h->pps.sps_id]) {
  2384. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing SPS %u referenced\n", h->pps.sps_id);
  2385. return -1;
  2386. }
  2387. h->sps = *h0->sps_buffers[h->pps.sps_id];
  2388. s->avctx->profile = ff_h264_get_profile(&h->sps);
  2389. s->avctx->level = h->sps.level_idc;
  2390. s->avctx->refs = h->sps.ref_frame_count;
  2391. if(h == h0 && h->dequant_coeff_pps != pps_id){
  2392. h->dequant_coeff_pps = pps_id;
  2393. init_dequant_tables(h);
  2394. }
  2395. s->mb_width= h->sps.mb_width;
  2396. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  2397. h->b_stride= s->mb_width*4;
  2398. s->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p
  2399. s->width = 16*s->mb_width;
  2400. s->height= 16*s->mb_height;
  2401. if (s->context_initialized
  2402. && ( s->width != s->avctx->coded_width || s->height != s->avctx->coded_height
  2403. || s->avctx->bits_per_raw_sample != h->sps.bit_depth_luma
  2404. || h->cur_chroma_format_idc != h->sps.chroma_format_idc
  2405. || av_cmp_q(h->sps.sar, s->avctx->sample_aspect_ratio))) {
  2406. if(h != h0) {
  2407. av_log_missing_feature(s->avctx, "Width/height/bit depth/chroma idc changing with threads is", 0);
  2408. return -1; // width / height changed during parallelized decoding
  2409. }
  2410. free_tables(h, 0);
  2411. flush_dpb(s->avctx);
  2412. MPV_common_end(s);
  2413. h->list_count = 0;
  2414. }
  2415. if (!s->context_initialized) {
  2416. if (h != h0) {
  2417. av_log(h->s.avctx, AV_LOG_ERROR, "Cannot (re-)initialize context during parallel decoding.\n");
  2418. return -1;
  2419. }
  2420. avcodec_set_dimensions(s->avctx, s->width, s->height);
  2421. s->avctx->width -= (2>>CHROMA444)*FFMIN(h->sps.crop_right, (8<<CHROMA444)-1);
  2422. s->avctx->height -= (1<<s->chroma_y_shift)*FFMIN(h->sps.crop_bottom, (16>>s->chroma_y_shift)-1) * (2 - h->sps.frame_mbs_only_flag);
  2423. s->avctx->sample_aspect_ratio= h->sps.sar;
  2424. av_assert0(s->avctx->sample_aspect_ratio.den);
  2425. if (s->avctx->bits_per_raw_sample != h->sps.bit_depth_luma ||
  2426. h->cur_chroma_format_idc != h->sps.chroma_format_idc) {
  2427. if (h->sps.bit_depth_luma >= 8 && h->sps.bit_depth_luma <= 10 &&
  2428. (h->sps.bit_depth_luma != 9 || !CHROMA422)) {
  2429. s->avctx->bits_per_raw_sample = h->sps.bit_depth_luma;
  2430. h->cur_chroma_format_idc = h->sps.chroma_format_idc;
  2431. h->pixel_shift = h->sps.bit_depth_luma > 8;
  2432. ff_h264dsp_init(&h->h264dsp, h->sps.bit_depth_luma, h->sps.chroma_format_idc);
  2433. ff_h264_pred_init(&h->hpc, s->codec_id, h->sps.bit_depth_luma, h->sps.chroma_format_idc);
  2434. s->dsp.dct_bits = h->sps.bit_depth_luma > 8 ? 32 : 16;
  2435. dsputil_init(&s->dsp, s->avctx);
  2436. } else {
  2437. av_log(s->avctx, AV_LOG_ERROR, "Unsupported bit depth: %d chroma_idc: %d\n",
  2438. h->sps.bit_depth_luma, h->sps.chroma_format_idc);
  2439. return -1;
  2440. }
  2441. }
  2442. if(h->sps.video_signal_type_present_flag){
  2443. s->avctx->color_range = h->sps.full_range>0 ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
  2444. if(h->sps.colour_description_present_flag){
  2445. s->avctx->color_primaries = h->sps.color_primaries;
  2446. s->avctx->color_trc = h->sps.color_trc;
  2447. s->avctx->colorspace = h->sps.colorspace;
  2448. }
  2449. }
  2450. if(h->sps.timing_info_present_flag){
  2451. int64_t den= h->sps.time_scale;
  2452. if(h->x264_build < 44U)
  2453. den *= 2;
  2454. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  2455. h->sps.num_units_in_tick, den, 1<<30);
  2456. }
  2457. switch (h->sps.bit_depth_luma) {
  2458. case 9 :
  2459. if (CHROMA444)
  2460. s->avctx->pix_fmt = PIX_FMT_YUV444P9;
  2461. else if (CHROMA422)
  2462. s->avctx->pix_fmt = PIX_FMT_YUV422P9;
  2463. else
  2464. s->avctx->pix_fmt = PIX_FMT_YUV420P9;
  2465. break;
  2466. case 10 :
  2467. if (CHROMA444)
  2468. s->avctx->pix_fmt = PIX_FMT_YUV444P10;
  2469. else if (CHROMA422)
  2470. s->avctx->pix_fmt = PIX_FMT_YUV422P10;
  2471. else
  2472. s->avctx->pix_fmt = PIX_FMT_YUV420P10;
  2473. break;
  2474. default:
  2475. if (CHROMA444){
  2476. s->avctx->pix_fmt = s->avctx->color_range == AVCOL_RANGE_JPEG ? PIX_FMT_YUVJ444P : PIX_FMT_YUV444P;
  2477. if (s->avctx->colorspace == AVCOL_SPC_RGB) {
  2478. s->avctx->pix_fmt = PIX_FMT_GBR24P;
  2479. av_log(h->s.avctx, AV_LOG_DEBUG, "Detected GBR colorspace.\n");
  2480. } else if (s->avctx->colorspace == AVCOL_SPC_YCGCO) {
  2481. av_log(h->s.avctx, AV_LOG_WARNING, "Detected unsupported YCgCo colorspace.\n");
  2482. }
  2483. } else if (CHROMA422) {
  2484. s->avctx->pix_fmt = s->avctx->color_range == AVCOL_RANGE_JPEG ? PIX_FMT_YUVJ422P : PIX_FMT_YUV422P;
  2485. }else{
  2486. s->avctx->pix_fmt = s->avctx->get_format(s->avctx,
  2487. s->avctx->codec->pix_fmts ?
  2488. s->avctx->codec->pix_fmts :
  2489. s->avctx->color_range == AVCOL_RANGE_JPEG ?
  2490. hwaccel_pixfmt_list_h264_jpeg_420 :
  2491. ff_hwaccel_pixfmt_list_420);
  2492. }
  2493. }
  2494. s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id, s->avctx->pix_fmt);
  2495. if (MPV_common_init(s) < 0) {
  2496. av_log(h->s.avctx, AV_LOG_ERROR, "MPV_common_init() failed.\n");
  2497. return -1;
  2498. }
  2499. s->first_field = 0;
  2500. h->prev_interlaced_frame = 1;
  2501. init_scan_tables(h);
  2502. if (ff_h264_alloc_tables(h) < 0) {
  2503. av_log(h->s.avctx, AV_LOG_ERROR, "Could not allocate memory for h264\n");
  2504. return AVERROR(ENOMEM);
  2505. }
  2506. if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_SLICE)) {
  2507. if (context_init(h) < 0) {
  2508. av_log(h->s.avctx, AV_LOG_ERROR, "context_init() failed.\n");
  2509. return -1;
  2510. }
  2511. } else {
  2512. for(i = 1; i < s->avctx->thread_count; i++) {
  2513. H264Context *c;
  2514. c = h->thread_context[i] = av_malloc(sizeof(H264Context));
  2515. memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
  2516. memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
  2517. c->h264dsp = h->h264dsp;
  2518. c->sps = h->sps;
  2519. c->pps = h->pps;
  2520. c->pixel_shift = h->pixel_shift;
  2521. c->cur_chroma_format_idc = h->cur_chroma_format_idc;
  2522. init_scan_tables(c);
  2523. clone_tables(c, h, i);
  2524. }
  2525. for(i = 0; i < s->avctx->thread_count; i++)
  2526. if (context_init(h->thread_context[i]) < 0) {
  2527. av_log(h->s.avctx, AV_LOG_ERROR, "context_init() failed.\n");
  2528. return -1;
  2529. }
  2530. }
  2531. }
  2532. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  2533. h->mb_mbaff = 0;
  2534. h->mb_aff_frame = 0;
  2535. last_pic_structure = s0->picture_structure;
  2536. if(h->sps.frame_mbs_only_flag){
  2537. s->picture_structure= PICT_FRAME;
  2538. }else{
  2539. if(!h->sps.direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B){
  2540. av_log(h->s.avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
  2541. return -1;
  2542. }
  2543. if(get_bits1(&s->gb)) { //field_pic_flag
  2544. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  2545. } else {
  2546. s->picture_structure= PICT_FRAME;
  2547. h->mb_aff_frame = h->sps.mb_aff;
  2548. }
  2549. }
  2550. h->mb_field_decoding_flag= s->picture_structure != PICT_FRAME;
  2551. if(h0->current_slice == 0){
  2552. // Shorten frame num gaps so we don't have to allocate reference frames just to throw them away
  2553. if(h->frame_num != h->prev_frame_num && h->prev_frame_num >= 0) {
  2554. int unwrap_prev_frame_num = h->prev_frame_num, max_frame_num = 1<<h->sps.log2_max_frame_num;
  2555. if (unwrap_prev_frame_num > h->frame_num) unwrap_prev_frame_num -= max_frame_num;
  2556. if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) {
  2557. unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1;
  2558. if (unwrap_prev_frame_num < 0)
  2559. unwrap_prev_frame_num += max_frame_num;
  2560. h->prev_frame_num = unwrap_prev_frame_num;
  2561. }
  2562. }
  2563. while(h->frame_num != h->prev_frame_num && h->prev_frame_num >= 0 &&
  2564. h->frame_num != (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num)){
  2565. Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
  2566. av_log(h->s.avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num);
  2567. if (ff_h264_frame_start(h) < 0)
  2568. return -1;
  2569. h->prev_frame_num++;
  2570. h->prev_frame_num %= 1<<h->sps.log2_max_frame_num;
  2571. s->current_picture_ptr->frame_num= h->prev_frame_num;
  2572. ff_thread_report_progress((AVFrame*)s->current_picture_ptr, INT_MAX, 0);
  2573. ff_thread_report_progress((AVFrame*)s->current_picture_ptr, INT_MAX, 1);
  2574. ff_generate_sliding_window_mmcos(h);
  2575. if (ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index) < 0 &&
  2576. (s->avctx->err_recognition & AV_EF_EXPLODE))
  2577. return AVERROR_INVALIDDATA;
  2578. /* Error concealment: if a ref is missing, copy the previous ref in its place.
  2579. * FIXME: avoiding a memcpy would be nice, but ref handling makes many assumptions
  2580. * about there being no actual duplicates.
  2581. * FIXME: this doesn't copy padding for out-of-frame motion vectors. Given we're
  2582. * concealing a lost frame, this probably isn't noticable by comparison, but it should
  2583. * be fixed. */
  2584. if (h->short_ref_count) {
  2585. if (prev) {
  2586. av_image_copy(h->short_ref[0]->f.data, h->short_ref[0]->f.linesize,
  2587. (const uint8_t**)prev->f.data, prev->f.linesize,
  2588. s->avctx->pix_fmt, s->mb_width*16, s->mb_height*16);
  2589. h->short_ref[0]->poc = prev->poc+2;
  2590. }
  2591. h->short_ref[0]->frame_num = h->prev_frame_num;
  2592. }
  2593. }
  2594. /* See if we have a decoded first field looking for a pair... */
  2595. if (s0->first_field) {
  2596. assert(s0->current_picture_ptr);
  2597. assert(s0->current_picture_ptr->f.data[0]);
  2598. assert(s0->current_picture_ptr->f.reference != DELAYED_PIC_REF);
  2599. /* figure out if we have a complementary field pair */
  2600. if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
  2601. /*
  2602. * Previous field is unmatched. Don't display it, but let it
  2603. * remain for reference if marked as such.
  2604. */
  2605. s0->current_picture_ptr = NULL;
  2606. s0->first_field = FIELD_PICTURE;
  2607. } else {
  2608. if (s0->current_picture_ptr->frame_num != h->frame_num) {
  2609. /*
  2610. * This and previous field had
  2611. * different frame_nums. Consider this field first in
  2612. * pair. Throw away previous field except for reference
  2613. * purposes.
  2614. */
  2615. s0->first_field = 1;
  2616. s0->current_picture_ptr = NULL;
  2617. } else {
  2618. /* Second field in complementary pair */
  2619. s0->first_field = 0;
  2620. }
  2621. }
  2622. } else {
  2623. /* Frame or first field in a potentially complementary pair */
  2624. assert(!s0->current_picture_ptr);
  2625. s0->first_field = FIELD_PICTURE;
  2626. }
  2627. if(!FIELD_PICTURE || s0->first_field) {
  2628. if (ff_h264_frame_start(h) < 0) {
  2629. s0->first_field = 0;
  2630. return -1;
  2631. }
  2632. } else {
  2633. ff_release_unused_pictures(s, 0);
  2634. }
  2635. }
  2636. if(h != h0)
  2637. clone_slice(h, h0);
  2638. s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
  2639. assert(s->mb_num == s->mb_width * s->mb_height);
  2640. if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
  2641. first_mb_in_slice >= s->mb_num){
  2642. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  2643. return -1;
  2644. }
  2645. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  2646. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
  2647. if (s->picture_structure == PICT_BOTTOM_FIELD)
  2648. s->resync_mb_y = s->mb_y = s->mb_y + 1;
  2649. assert(s->mb_y < s->mb_height);
  2650. if(s->picture_structure==PICT_FRAME){
  2651. h->curr_pic_num= h->frame_num;
  2652. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  2653. }else{
  2654. h->curr_pic_num= 2*h->frame_num + 1;
  2655. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  2656. }
  2657. if(h->nal_unit_type == NAL_IDR_SLICE){
  2658. get_ue_golomb(&s->gb); /* idr_pic_id */
  2659. }
  2660. if(h->sps.poc_type==0){
  2661. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  2662. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  2663. h->delta_poc_bottom= get_se_golomb(&s->gb);
  2664. }
  2665. }
  2666. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  2667. h->delta_poc[0]= get_se_golomb(&s->gb);
  2668. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  2669. h->delta_poc[1]= get_se_golomb(&s->gb);
  2670. }
  2671. init_poc(h);
  2672. if(h->pps.redundant_pic_cnt_present){
  2673. h->redundant_pic_count= get_ue_golomb(&s->gb);
  2674. }
  2675. //set defaults, might be overridden a few lines later
  2676. h->ref_count[0]= h->pps.ref_count[0];
  2677. h->ref_count[1]= h->pps.ref_count[1];
  2678. if(h->slice_type_nos != AV_PICTURE_TYPE_I){
  2679. unsigned max= (16<<(s->picture_structure != PICT_FRAME))-1;
  2680. if(h->slice_type_nos == AV_PICTURE_TYPE_B){
  2681. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  2682. }
  2683. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  2684. if(num_ref_idx_active_override_flag){
  2685. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  2686. if(h->slice_type_nos==AV_PICTURE_TYPE_B)
  2687. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  2688. }
  2689. if(h->ref_count[0]-1 > max || h->ref_count[1]-1 > max){
  2690. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  2691. h->ref_count[0]= h->ref_count[1]= 1;
  2692. return -1;
  2693. }
  2694. if(h->slice_type_nos == AV_PICTURE_TYPE_B)
  2695. h->list_count= 2;
  2696. else
  2697. h->list_count= 1;
  2698. }else
  2699. h->ref_count[1]= h->ref_count[0]= h->list_count= 0;
  2700. if(!default_ref_list_done){
  2701. ff_h264_fill_default_ref_list(h);
  2702. }
  2703. if(h->slice_type_nos!=AV_PICTURE_TYPE_I && ff_h264_decode_ref_pic_list_reordering(h) < 0) {
  2704. h->ref_count[1]= h->ref_count[0]= 0;
  2705. return -1;
  2706. }
  2707. if(h->slice_type_nos!=AV_PICTURE_TYPE_I){
  2708. s->last_picture_ptr= &h->ref_list[0][0];
  2709. ff_copy_picture(&s->last_picture, s->last_picture_ptr);
  2710. }
  2711. if(h->slice_type_nos==AV_PICTURE_TYPE_B){
  2712. s->next_picture_ptr= &h->ref_list[1][0];
  2713. ff_copy_picture(&s->next_picture, s->next_picture_ptr);
  2714. }
  2715. if( (h->pps.weighted_pred && h->slice_type_nos == AV_PICTURE_TYPE_P )
  2716. || (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== AV_PICTURE_TYPE_B ) )
  2717. pred_weight_table(h);
  2718. else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== AV_PICTURE_TYPE_B){
  2719. implicit_weight_table(h, -1);
  2720. }else {
  2721. h->use_weight = 0;
  2722. for (i = 0; i < 2; i++) {
  2723. h->luma_weight_flag[i] = 0;
  2724. h->chroma_weight_flag[i] = 0;
  2725. }
  2726. }
  2727. if(h->nal_ref_idc && ff_h264_decode_ref_pic_marking(h0, &s->gb) < 0 &&
  2728. (s->avctx->err_recognition & AV_EF_EXPLODE))
  2729. return AVERROR_INVALIDDATA;
  2730. if(FRAME_MBAFF){
  2731. ff_h264_fill_mbaff_ref_list(h);
  2732. if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== AV_PICTURE_TYPE_B){
  2733. implicit_weight_table(h, 0);
  2734. implicit_weight_table(h, 1);
  2735. }
  2736. }
  2737. if(h->slice_type_nos==AV_PICTURE_TYPE_B && !h->direct_spatial_mv_pred)
  2738. ff_h264_direct_dist_scale_factor(h);
  2739. ff_h264_direct_ref_list_init(h);
  2740. if( h->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac ){
  2741. tmp = get_ue_golomb_31(&s->gb);
  2742. if(tmp > 2){
  2743. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  2744. return -1;
  2745. }
  2746. h->cabac_init_idc= tmp;
  2747. }
  2748. h->last_qscale_diff = 0;
  2749. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  2750. if(tmp>51+6*(h->sps.bit_depth_luma-8)){
  2751. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  2752. return -1;
  2753. }
  2754. s->qscale= tmp;
  2755. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  2756. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  2757. //FIXME qscale / qp ... stuff
  2758. if(h->slice_type == AV_PICTURE_TYPE_SP){
  2759. get_bits1(&s->gb); /* sp_for_switch_flag */
  2760. }
  2761. if(h->slice_type==AV_PICTURE_TYPE_SP || h->slice_type == AV_PICTURE_TYPE_SI){
  2762. get_se_golomb(&s->gb); /* slice_qs_delta */
  2763. }
  2764. h->deblocking_filter = 1;
  2765. h->slice_alpha_c0_offset = 52;
  2766. h->slice_beta_offset = 52;
  2767. if( h->pps.deblocking_filter_parameters_present ) {
  2768. tmp= get_ue_golomb_31(&s->gb);
  2769. if(tmp > 2){
  2770. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  2771. return -1;
  2772. }
  2773. h->deblocking_filter= tmp;
  2774. if(h->deblocking_filter < 2)
  2775. h->deblocking_filter^= 1; // 1<->0
  2776. if( h->deblocking_filter ) {
  2777. h->slice_alpha_c0_offset += get_se_golomb(&s->gb) << 1;
  2778. h->slice_beta_offset += get_se_golomb(&s->gb) << 1;
  2779. if( h->slice_alpha_c0_offset > 104U
  2780. || h->slice_beta_offset > 104U){
  2781. av_log(s->avctx, AV_LOG_ERROR, "deblocking filter parameters %d %d out of range\n", h->slice_alpha_c0_offset, h->slice_beta_offset);
  2782. return -1;
  2783. }
  2784. }
  2785. }
  2786. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  2787. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != AV_PICTURE_TYPE_I)
  2788. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == AV_PICTURE_TYPE_B)
  2789. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  2790. h->deblocking_filter= 0;
  2791. if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
  2792. if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
  2793. /* Cheat slightly for speed:
  2794. Do not bother to deblock across slices. */
  2795. h->deblocking_filter = 2;
  2796. } else {
  2797. h0->max_contexts = 1;
  2798. if(!h0->single_decode_warning) {
  2799. av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  2800. h0->single_decode_warning = 1;
  2801. }
  2802. if (h != h0) {
  2803. av_log(h->s.avctx, AV_LOG_ERROR, "Deblocking switched inside frame.\n");
  2804. return 1;
  2805. }
  2806. }
  2807. }
  2808. h->qp_thresh = 15 + 52 - FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset)
  2809. - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1])
  2810. + 6 * (h->sps.bit_depth_luma - 8);
  2811. #if 0 //FMO
  2812. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  2813. slice_group_change_cycle= get_bits(&s->gb, ?);
  2814. #endif
  2815. h0->last_slice_type = slice_type;
  2816. h->slice_num = ++h0->current_slice;
  2817. if(h->slice_num)
  2818. h0->slice_row[(h->slice_num-1)&(MAX_SLICES-1)]= s->resync_mb_y;
  2819. if ( h0->slice_row[h->slice_num&(MAX_SLICES-1)] + 3 >= s->resync_mb_y
  2820. && h0->slice_row[h->slice_num&(MAX_SLICES-1)] <= s->resync_mb_y
  2821. && h->slice_num >= MAX_SLICES) {
  2822. //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
  2823. av_log(s->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", h->slice_num, MAX_SLICES);
  2824. }
  2825. for(j=0; j<2; j++){
  2826. int id_list[16];
  2827. int *ref2frm= h->ref2frm[h->slice_num&(MAX_SLICES-1)][j];
  2828. for(i=0; i<16; i++){
  2829. id_list[i]= 60;
  2830. if (h->ref_list[j][i].f.data[0]) {
  2831. int k;
  2832. uint8_t *base = h->ref_list[j][i].f.base[0];
  2833. for(k=0; k<h->short_ref_count; k++)
  2834. if (h->short_ref[k]->f.base[0] == base) {
  2835. id_list[i]= k;
  2836. break;
  2837. }
  2838. for(k=0; k<h->long_ref_count; k++)
  2839. if (h->long_ref[k] && h->long_ref[k]->f.base[0] == base) {
  2840. id_list[i]= h->short_ref_count + k;
  2841. break;
  2842. }
  2843. }
  2844. }
  2845. ref2frm[0]=
  2846. ref2frm[1]= -1;
  2847. for(i=0; i<16; i++)
  2848. ref2frm[i+2]= 4*id_list[i]
  2849. + (h->ref_list[j][i].f.reference & 3);
  2850. ref2frm[18+0]=
  2851. ref2frm[18+1]= -1;
  2852. for(i=16; i<48; i++)
  2853. ref2frm[i+4]= 4*id_list[(i-16)>>1]
  2854. + (h->ref_list[j][i].f.reference & 3);
  2855. }
  2856. //FIXME: fix draw_edges+PAFF+frame threads
  2857. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE || (!h->sps.frame_mbs_only_flag && s->avctx->active_thread_type)) ? 0 : 16;
  2858. h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
  2859. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  2860. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
  2861. h->slice_num,
  2862. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  2863. first_mb_in_slice,
  2864. av_get_picture_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
  2865. pps_id, h->frame_num,
  2866. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  2867. h->ref_count[0], h->ref_count[1],
  2868. s->qscale,
  2869. h->deblocking_filter, h->slice_alpha_c0_offset/2-26, h->slice_beta_offset/2-26,
  2870. h->use_weight,
  2871. h->use_weight==1 && h->use_weight_chroma ? "c" : "",
  2872. h->slice_type == AV_PICTURE_TYPE_B ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
  2873. );
  2874. }
  2875. return 0;
  2876. }
  2877. int ff_h264_get_slice_type(const H264Context *h)
  2878. {
  2879. switch (h->slice_type) {
  2880. case AV_PICTURE_TYPE_P: return 0;
  2881. case AV_PICTURE_TYPE_B: return 1;
  2882. case AV_PICTURE_TYPE_I: return 2;
  2883. case AV_PICTURE_TYPE_SP: return 3;
  2884. case AV_PICTURE_TYPE_SI: return 4;
  2885. default: return -1;
  2886. }
  2887. }
  2888. static av_always_inline void fill_filter_caches_inter(H264Context *h, MpegEncContext * const s, int mb_type, int top_xy,
  2889. int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
  2890. {
  2891. int b_stride = h->b_stride;
  2892. int16_t (*mv_dst)[2] = &h->mv_cache[list][scan8[0]];
  2893. int8_t *ref_cache = &h->ref_cache[list][scan8[0]];
  2894. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  2895. if(USES_LIST(top_type, list)){
  2896. const int b_xy= h->mb2b_xy[top_xy] + 3*b_stride;
  2897. const int b8_xy= 4*top_xy + 2;
  2898. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  2899. AV_COPY128(mv_dst - 1*8, s->current_picture.f.motion_val[list][b_xy + 0]);
  2900. ref_cache[0 - 1*8]=
  2901. ref_cache[1 - 1*8]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 0]];
  2902. ref_cache[2 - 1*8]=
  2903. ref_cache[3 - 1*8]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 1]];
  2904. }else{
  2905. AV_ZERO128(mv_dst - 1*8);
  2906. AV_WN32A(&ref_cache[0 - 1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2907. }
  2908. if(!IS_INTERLACED(mb_type^left_type[LTOP])){
  2909. if(USES_LIST(left_type[LTOP], list)){
  2910. const int b_xy= h->mb2b_xy[left_xy[LTOP]] + 3;
  2911. const int b8_xy= 4*left_xy[LTOP] + 1;
  2912. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[LTOP]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  2913. AV_COPY32(mv_dst - 1 + 0, s->current_picture.f.motion_val[list][b_xy + b_stride*0]);
  2914. AV_COPY32(mv_dst - 1 + 8, s->current_picture.f.motion_val[list][b_xy + b_stride*1]);
  2915. AV_COPY32(mv_dst - 1 + 16, s->current_picture.f.motion_val[list][b_xy + b_stride*2]);
  2916. AV_COPY32(mv_dst - 1 + 24, s->current_picture.f.motion_val[list][b_xy + b_stride*3]);
  2917. ref_cache[-1 + 0]=
  2918. ref_cache[-1 + 8]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 2*0]];
  2919. ref_cache[-1 + 16]=
  2920. ref_cache[-1 + 24]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 2*1]];
  2921. }else{
  2922. AV_ZERO32(mv_dst - 1 + 0);
  2923. AV_ZERO32(mv_dst - 1 + 8);
  2924. AV_ZERO32(mv_dst - 1 +16);
  2925. AV_ZERO32(mv_dst - 1 +24);
  2926. ref_cache[-1 + 0]=
  2927. ref_cache[-1 + 8]=
  2928. ref_cache[-1 + 16]=
  2929. ref_cache[-1 + 24]= LIST_NOT_USED;
  2930. }
  2931. }
  2932. }
  2933. if(!USES_LIST(mb_type, list)){
  2934. fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0,0), 4);
  2935. AV_WN32A(&ref_cache[0*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2936. AV_WN32A(&ref_cache[1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2937. AV_WN32A(&ref_cache[2*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2938. AV_WN32A(&ref_cache[3*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2939. return;
  2940. }
  2941. {
  2942. int8_t *ref = &s->current_picture.f.ref_index[list][4*mb_xy];
  2943. int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  2944. uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
  2945. uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]],ref2frm[list][ref[3]])&0x00FF00FF)*0x0101;
  2946. AV_WN32A(&ref_cache[0*8], ref01);
  2947. AV_WN32A(&ref_cache[1*8], ref01);
  2948. AV_WN32A(&ref_cache[2*8], ref23);
  2949. AV_WN32A(&ref_cache[3*8], ref23);
  2950. }
  2951. {
  2952. int16_t (*mv_src)[2] = &s->current_picture.f.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
  2953. AV_COPY128(mv_dst + 8*0, mv_src + 0*b_stride);
  2954. AV_COPY128(mv_dst + 8*1, mv_src + 1*b_stride);
  2955. AV_COPY128(mv_dst + 8*2, mv_src + 2*b_stride);
  2956. AV_COPY128(mv_dst + 8*3, mv_src + 3*b_stride);
  2957. }
  2958. }
  2959. /**
  2960. *
  2961. * @return non zero if the loop filter can be skiped
  2962. */
  2963. static int fill_filter_caches(H264Context *h, int mb_type){
  2964. MpegEncContext * const s = &h->s;
  2965. const int mb_xy= h->mb_xy;
  2966. int top_xy, left_xy[LEFT_MBS];
  2967. int top_type, left_type[LEFT_MBS];
  2968. uint8_t *nnz;
  2969. uint8_t *nnz_cache;
  2970. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  2971. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  2972. * stuff, I can't imagine that these complex rules are worth it. */
  2973. left_xy[LBOT] = left_xy[LTOP] = mb_xy-1;
  2974. if(FRAME_MBAFF){
  2975. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.f.mb_type[mb_xy - 1]);
  2976. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  2977. if(s->mb_y&1){
  2978. if (left_mb_field_flag != curr_mb_field_flag) {
  2979. left_xy[LTOP] -= s->mb_stride;
  2980. }
  2981. }else{
  2982. if(curr_mb_field_flag){
  2983. top_xy += s->mb_stride & (((s->current_picture.f.mb_type[top_xy] >> 7) & 1) - 1);
  2984. }
  2985. if (left_mb_field_flag != curr_mb_field_flag) {
  2986. left_xy[LBOT] += s->mb_stride;
  2987. }
  2988. }
  2989. }
  2990. h->top_mb_xy = top_xy;
  2991. h->left_mb_xy[LTOP] = left_xy[LTOP];
  2992. h->left_mb_xy[LBOT] = left_xy[LBOT];
  2993. {
  2994. //for sufficiently low qp, filtering wouldn't do anything
  2995. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  2996. int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
  2997. int qp = s->current_picture.f.qscale_table[mb_xy];
  2998. if(qp <= qp_thresh
  2999. && (left_xy[LTOP] < 0 || ((qp + s->current_picture.f.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh)
  3000. && (top_xy < 0 || ((qp + s->current_picture.f.qscale_table[top_xy ] + 1) >> 1) <= qp_thresh)) {
  3001. if(!FRAME_MBAFF)
  3002. return 1;
  3003. if ((left_xy[LTOP] < 0 || ((qp + s->current_picture.f.qscale_table[left_xy[LBOT] ] + 1) >> 1) <= qp_thresh) &&
  3004. (top_xy < s->mb_stride || ((qp + s->current_picture.f.qscale_table[top_xy - s->mb_stride] + 1) >> 1) <= qp_thresh))
  3005. return 1;
  3006. }
  3007. }
  3008. top_type = s->current_picture.f.mb_type[top_xy];
  3009. left_type[LTOP] = s->current_picture.f.mb_type[left_xy[LTOP]];
  3010. left_type[LBOT] = s->current_picture.f.mb_type[left_xy[LBOT]];
  3011. if(h->deblocking_filter == 2){
  3012. if(h->slice_table[top_xy ] != h->slice_num) top_type= 0;
  3013. if(h->slice_table[left_xy[LBOT]] != h->slice_num) left_type[LTOP]= left_type[LBOT]= 0;
  3014. }else{
  3015. if(h->slice_table[top_xy ] == 0xFFFF) top_type= 0;
  3016. if(h->slice_table[left_xy[LBOT]] == 0xFFFF) left_type[LTOP]= left_type[LBOT] =0;
  3017. }
  3018. h->top_type = top_type;
  3019. h->left_type[LTOP]= left_type[LTOP];
  3020. h->left_type[LBOT]= left_type[LBOT];
  3021. if(IS_INTRA(mb_type))
  3022. return 0;
  3023. fill_filter_caches_inter(h, s, mb_type, top_xy, left_xy, top_type, left_type, mb_xy, 0);
  3024. if(h->list_count == 2)
  3025. fill_filter_caches_inter(h, s, mb_type, top_xy, left_xy, top_type, left_type, mb_xy, 1);
  3026. nnz = h->non_zero_count[mb_xy];
  3027. nnz_cache = h->non_zero_count_cache;
  3028. AV_COPY32(&nnz_cache[4+8*1], &nnz[ 0]);
  3029. AV_COPY32(&nnz_cache[4+8*2], &nnz[ 4]);
  3030. AV_COPY32(&nnz_cache[4+8*3], &nnz[ 8]);
  3031. AV_COPY32(&nnz_cache[4+8*4], &nnz[12]);
  3032. h->cbp= h->cbp_table[mb_xy];
  3033. if(top_type){
  3034. nnz = h->non_zero_count[top_xy];
  3035. AV_COPY32(&nnz_cache[4+8*0], &nnz[3*4]);
  3036. }
  3037. if(left_type[LTOP]){
  3038. nnz = h->non_zero_count[left_xy[LTOP]];
  3039. nnz_cache[3+8*1]= nnz[3+0*4];
  3040. nnz_cache[3+8*2]= nnz[3+1*4];
  3041. nnz_cache[3+8*3]= nnz[3+2*4];
  3042. nnz_cache[3+8*4]= nnz[3+3*4];
  3043. }
  3044. // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
  3045. if(!CABAC && h->pps.transform_8x8_mode){
  3046. if(IS_8x8DCT(top_type)){
  3047. nnz_cache[4+8*0]=
  3048. nnz_cache[5+8*0]= (h->cbp_table[top_xy] & 0x4000) >> 12;
  3049. nnz_cache[6+8*0]=
  3050. nnz_cache[7+8*0]= (h->cbp_table[top_xy] & 0x8000) >> 12;
  3051. }
  3052. if(IS_8x8DCT(left_type[LTOP])){
  3053. nnz_cache[3+8*1]=
  3054. nnz_cache[3+8*2]= (h->cbp_table[left_xy[LTOP]]&0x2000) >> 12; //FIXME check MBAFF
  3055. }
  3056. if(IS_8x8DCT(left_type[LBOT])){
  3057. nnz_cache[3+8*3]=
  3058. nnz_cache[3+8*4]= (h->cbp_table[left_xy[LBOT]]&0x8000) >> 12; //FIXME check MBAFF
  3059. }
  3060. if(IS_8x8DCT(mb_type)){
  3061. nnz_cache[scan8[0 ]]= nnz_cache[scan8[1 ]]=
  3062. nnz_cache[scan8[2 ]]= nnz_cache[scan8[3 ]]= (h->cbp & 0x1000) >> 12;
  3063. nnz_cache[scan8[0+ 4]]= nnz_cache[scan8[1+ 4]]=
  3064. nnz_cache[scan8[2+ 4]]= nnz_cache[scan8[3+ 4]]= (h->cbp & 0x2000) >> 12;
  3065. nnz_cache[scan8[0+ 8]]= nnz_cache[scan8[1+ 8]]=
  3066. nnz_cache[scan8[2+ 8]]= nnz_cache[scan8[3+ 8]]= (h->cbp & 0x4000) >> 12;
  3067. nnz_cache[scan8[0+12]]= nnz_cache[scan8[1+12]]=
  3068. nnz_cache[scan8[2+12]]= nnz_cache[scan8[3+12]]= (h->cbp & 0x8000) >> 12;
  3069. }
  3070. }
  3071. return 0;
  3072. }
  3073. static void loop_filter(H264Context *h, int start_x, int end_x){
  3074. MpegEncContext * const s = &h->s;
  3075. uint8_t *dest_y, *dest_cb, *dest_cr;
  3076. int linesize, uvlinesize, mb_x, mb_y;
  3077. const int end_mb_y= s->mb_y + FRAME_MBAFF;
  3078. const int old_slice_type= h->slice_type;
  3079. const int pixel_shift = h->pixel_shift;
  3080. const int block_h = 16 >> s->chroma_y_shift;
  3081. if(h->deblocking_filter) {
  3082. for(mb_x= start_x; mb_x<end_x; mb_x++){
  3083. for(mb_y=end_mb_y - FRAME_MBAFF; mb_y<= end_mb_y; mb_y++){
  3084. int mb_xy, mb_type;
  3085. mb_xy = h->mb_xy = mb_x + mb_y*s->mb_stride;
  3086. h->slice_num= h->slice_table[mb_xy];
  3087. mb_type = s->current_picture.f.mb_type[mb_xy];
  3088. h->list_count= h->list_counts[mb_xy];
  3089. if(FRAME_MBAFF)
  3090. h->mb_mbaff = h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
  3091. s->mb_x= mb_x;
  3092. s->mb_y= mb_y;
  3093. dest_y = s->current_picture.f.data[0] + ((mb_x << pixel_shift) + mb_y * s->linesize ) * 16;
  3094. dest_cb = s->current_picture.f.data[1] + (mb_x << pixel_shift) * (8 << CHROMA444) + mb_y * s->uvlinesize * block_h;
  3095. dest_cr = s->current_picture.f.data[2] + (mb_x << pixel_shift) * (8 << CHROMA444) + mb_y * s->uvlinesize * block_h;
  3096. //FIXME simplify above
  3097. if (MB_FIELD) {
  3098. linesize = h->mb_linesize = s->linesize * 2;
  3099. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  3100. if(mb_y&1){ //FIXME move out of this function?
  3101. dest_y -= s->linesize*15;
  3102. dest_cb-= s->uvlinesize * (block_h - 1);
  3103. dest_cr-= s->uvlinesize * (block_h - 1);
  3104. }
  3105. } else {
  3106. linesize = h->mb_linesize = s->linesize;
  3107. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  3108. }
  3109. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
  3110. if(fill_filter_caches(h, mb_type))
  3111. continue;
  3112. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.f.qscale_table[mb_xy]);
  3113. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.f.qscale_table[mb_xy]);
  3114. if (FRAME_MBAFF) {
  3115. ff_h264_filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3116. } else {
  3117. ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3118. }
  3119. }
  3120. }
  3121. }
  3122. h->slice_type= old_slice_type;
  3123. s->mb_x= end_x;
  3124. s->mb_y= end_mb_y - FRAME_MBAFF;
  3125. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  3126. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  3127. }
  3128. static void predict_field_decoding_flag(H264Context *h){
  3129. MpegEncContext * const s = &h->s;
  3130. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  3131. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  3132. ? s->current_picture.f.mb_type[mb_xy - 1]
  3133. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  3134. ? s->current_picture.f.mb_type[mb_xy - s->mb_stride]
  3135. : 0;
  3136. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  3137. }
  3138. /**
  3139. * Draw edges and report progress for the last MB row.
  3140. */
  3141. static void decode_finish_row(H264Context *h){
  3142. MpegEncContext * const s = &h->s;
  3143. int top = 16*(s->mb_y >> FIELD_PICTURE);
  3144. int height = 16 << FRAME_MBAFF;
  3145. int deblock_border = (16 + 4) << FRAME_MBAFF;
  3146. int pic_height = 16*s->mb_height >> FIELD_PICTURE;
  3147. if (h->deblocking_filter) {
  3148. if((top + height) >= pic_height)
  3149. height += deblock_border;
  3150. top -= deblock_border;
  3151. }
  3152. if (top >= pic_height || (top + height) < h->emu_edge_height)
  3153. return;
  3154. height = FFMIN(height, pic_height - top);
  3155. if (top < h->emu_edge_height) {
  3156. height = top+height;
  3157. top = 0;
  3158. }
  3159. ff_draw_horiz_band(s, top, height);
  3160. if (s->dropable) return;
  3161. ff_thread_report_progress((AVFrame*)s->current_picture_ptr, top + height - 1,
  3162. s->picture_structure==PICT_BOTTOM_FIELD);
  3163. }
  3164. static int decode_slice(struct AVCodecContext *avctx, void *arg){
  3165. H264Context *h = *(void**)arg;
  3166. MpegEncContext * const s = &h->s;
  3167. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  3168. int lf_x_start = s->mb_x;
  3169. s->mb_skip_run= -1;
  3170. h->is_complex = FRAME_MBAFF || s->picture_structure != PICT_FRAME || s->codec_id != CODEC_ID_H264 ||
  3171. (CONFIG_GRAY && (s->flags&CODEC_FLAG_GRAY));
  3172. if( h->pps.cabac ) {
  3173. /* realign */
  3174. align_get_bits( &s->gb );
  3175. /* init cabac */
  3176. ff_init_cabac_states( &h->cabac);
  3177. ff_init_cabac_decoder( &h->cabac,
  3178. s->gb.buffer + get_bits_count(&s->gb)/8,
  3179. (get_bits_left(&s->gb) + 7)/8);
  3180. ff_h264_init_cabac_states(h);
  3181. for(;;){
  3182. //START_TIMER
  3183. int ret = ff_h264_decode_mb_cabac(h);
  3184. int eos;
  3185. //STOP_TIMER("decode_mb_cabac")
  3186. if(ret>=0) ff_h264_hl_decode_mb(h);
  3187. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  3188. s->mb_y++;
  3189. ret = ff_h264_decode_mb_cabac(h);
  3190. if(ret>=0) ff_h264_hl_decode_mb(h);
  3191. s->mb_y--;
  3192. }
  3193. eos = get_cabac_terminate( &h->cabac );
  3194. if((s->workaround_bugs & FF_BUG_TRUNCATED) && h->cabac.bytestream > h->cabac.bytestream_end + 2){
  3195. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  3196. if (s->mb_x >= lf_x_start) loop_filter(h, lf_x_start, s->mb_x + 1);
  3197. return 0;
  3198. }
  3199. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  3200. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  3201. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  3202. return -1;
  3203. }
  3204. if( ++s->mb_x >= s->mb_width ) {
  3205. loop_filter(h, lf_x_start, s->mb_x);
  3206. s->mb_x = lf_x_start = 0;
  3207. decode_finish_row(h);
  3208. ++s->mb_y;
  3209. if(FIELD_OR_MBAFF_PICTURE) {
  3210. ++s->mb_y;
  3211. if(FRAME_MBAFF && s->mb_y < s->mb_height)
  3212. predict_field_decoding_flag(h);
  3213. }
  3214. }
  3215. if( eos || s->mb_y >= s->mb_height ) {
  3216. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  3217. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  3218. if (s->mb_x > lf_x_start) loop_filter(h, lf_x_start, s->mb_x);
  3219. return 0;
  3220. }
  3221. }
  3222. } else {
  3223. for(;;){
  3224. int ret = ff_h264_decode_mb_cavlc(h);
  3225. if(ret>=0) ff_h264_hl_decode_mb(h);
  3226. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  3227. s->mb_y++;
  3228. ret = ff_h264_decode_mb_cavlc(h);
  3229. if(ret>=0) ff_h264_hl_decode_mb(h);
  3230. s->mb_y--;
  3231. }
  3232. if(ret<0){
  3233. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  3234. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  3235. return -1;
  3236. }
  3237. if(++s->mb_x >= s->mb_width){
  3238. loop_filter(h, lf_x_start, s->mb_x);
  3239. s->mb_x = lf_x_start = 0;
  3240. decode_finish_row(h);
  3241. ++s->mb_y;
  3242. if(FIELD_OR_MBAFF_PICTURE) {
  3243. ++s->mb_y;
  3244. if(FRAME_MBAFF && s->mb_y < s->mb_height)
  3245. predict_field_decoding_flag(h);
  3246. }
  3247. if(s->mb_y >= s->mb_height){
  3248. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  3249. if( get_bits_count(&s->gb) == s->gb.size_in_bits
  3250. || get_bits_count(&s->gb) < s->gb.size_in_bits && s->avctx->error_recognition < FF_ER_AGGRESSIVE) {
  3251. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  3252. return 0;
  3253. }else{
  3254. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  3255. return -1;
  3256. }
  3257. }
  3258. }
  3259. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  3260. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  3261. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  3262. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  3263. if (s->mb_x > lf_x_start) loop_filter(h, lf_x_start, s->mb_x);
  3264. return 0;
  3265. }else{
  3266. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  3267. return -1;
  3268. }
  3269. }
  3270. }
  3271. }
  3272. }
  3273. /**
  3274. * Call decode_slice() for each context.
  3275. *
  3276. * @param h h264 master context
  3277. * @param context_count number of contexts to execute
  3278. */
  3279. static int execute_decode_slices(H264Context *h, int context_count){
  3280. MpegEncContext * const s = &h->s;
  3281. AVCodecContext * const avctx= s->avctx;
  3282. H264Context *hx;
  3283. int i;
  3284. if (s->avctx->hwaccel || s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3285. return 0;
  3286. if(context_count == 1) {
  3287. return decode_slice(avctx, &h);
  3288. } else {
  3289. for(i = 1; i < context_count; i++) {
  3290. hx = h->thread_context[i];
  3291. hx->s.error_recognition = avctx->error_recognition;
  3292. hx->s.error_count = 0;
  3293. hx->x264_build= h->x264_build;
  3294. }
  3295. avctx->execute(avctx, (void *)decode_slice,
  3296. h->thread_context, NULL, context_count, sizeof(void*));
  3297. /* pull back stuff from slices to master context */
  3298. hx = h->thread_context[context_count - 1];
  3299. s->mb_x = hx->s.mb_x;
  3300. s->mb_y = hx->s.mb_y;
  3301. s->dropable = hx->s.dropable;
  3302. s->picture_structure = hx->s.picture_structure;
  3303. for(i = 1; i < context_count; i++)
  3304. h->s.error_count += h->thread_context[i]->s.error_count;
  3305. }
  3306. return 0;
  3307. }
  3308. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
  3309. MpegEncContext * const s = &h->s;
  3310. AVCodecContext * const avctx= s->avctx;
  3311. H264Context *hx; ///< thread context
  3312. int buf_index;
  3313. int context_count;
  3314. int next_avc;
  3315. int pass = !(avctx->active_thread_type & FF_THREAD_FRAME);
  3316. int nals_needed=0; ///< number of NALs that need decoding before the next frame thread starts
  3317. int nal_index;
  3318. h->max_contexts = (HAVE_THREADS && (s->avctx->active_thread_type&FF_THREAD_SLICE)) ? avctx->thread_count : 1;
  3319. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
  3320. h->current_slice = 0;
  3321. if (!s->first_field)
  3322. s->current_picture_ptr= NULL;
  3323. ff_h264_reset_sei(h);
  3324. }
  3325. for(;pass <= 1;pass++){
  3326. buf_index = 0;
  3327. context_count = 0;
  3328. next_avc = h->is_avc ? 0 : buf_size;
  3329. nal_index = 0;
  3330. for(;;){
  3331. int consumed;
  3332. int dst_length;
  3333. int bit_length;
  3334. const uint8_t *ptr;
  3335. int i, nalsize = 0;
  3336. int err;
  3337. if(buf_index >= next_avc) {
  3338. if(buf_index >= buf_size) break;
  3339. nalsize = 0;
  3340. for(i = 0; i < h->nal_length_size; i++)
  3341. nalsize = (nalsize << 8) | buf[buf_index++];
  3342. if(nalsize <= 0 || nalsize > buf_size - buf_index){
  3343. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  3344. break;
  3345. }
  3346. next_avc= buf_index + nalsize;
  3347. } else {
  3348. // start code prefix search
  3349. for(; buf_index + 3 < next_avc; buf_index++){
  3350. // This should always succeed in the first iteration.
  3351. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  3352. break;
  3353. }
  3354. if(buf_index+3 >= buf_size) break;
  3355. buf_index+=3;
  3356. if(buf_index >= next_avc) continue;
  3357. }
  3358. hx = h->thread_context[context_count];
  3359. ptr= ff_h264_decode_nal(hx, buf + buf_index, &dst_length, &consumed, next_avc - buf_index);
  3360. if (ptr==NULL || dst_length < 0){
  3361. return -1;
  3362. }
  3363. i= buf_index + consumed;
  3364. if((s->workaround_bugs & FF_BUG_AUTODETECT) && i+3<next_avc &&
  3365. buf[i]==0x00 && buf[i+1]==0x00 && buf[i+2]==0x01 && buf[i+3]==0xE0)
  3366. s->workaround_bugs |= FF_BUG_TRUNCATED;
  3367. if(!(s->workaround_bugs & FF_BUG_TRUNCATED)){
  3368. while(dst_length > 0 && ptr[dst_length - 1] == 0)
  3369. dst_length--;
  3370. }
  3371. bit_length= !dst_length ? 0 : (8*dst_length - ff_h264_decode_rbsp_trailing(h, ptr + dst_length - 1));
  3372. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  3373. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d/%d at %d/%d length %d\n", hx->nal_unit_type, hx->nal_ref_idc, buf_index, buf_size, dst_length);
  3374. }
  3375. if (h->is_avc && (nalsize != consumed) && nalsize){
  3376. av_log(h->s.avctx, AV_LOG_DEBUG, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  3377. }
  3378. buf_index += consumed;
  3379. nal_index++;
  3380. if(pass == 0) {
  3381. // packets can sometimes contain multiple PPS/SPS
  3382. // e.g. two PAFF field pictures in one packet, or a demuxer which splits NALs strangely
  3383. // if so, when frame threading we can't start the next thread until we've read all of them
  3384. switch (hx->nal_unit_type) {
  3385. case NAL_SPS:
  3386. case NAL_PPS:
  3387. nals_needed = nal_index;
  3388. break;
  3389. case NAL_IDR_SLICE:
  3390. case NAL_SLICE:
  3391. init_get_bits(&hx->s.gb, ptr, bit_length);
  3392. if (!get_ue_golomb(&hx->s.gb))
  3393. nals_needed = nal_index;
  3394. }
  3395. continue;
  3396. }
  3397. //FIXME do not discard SEI id
  3398. if(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0)
  3399. continue;
  3400. again:
  3401. err = 0;
  3402. switch(hx->nal_unit_type){
  3403. case NAL_IDR_SLICE:
  3404. if (h->nal_unit_type != NAL_IDR_SLICE) {
  3405. av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
  3406. return -1;
  3407. }
  3408. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  3409. case NAL_SLICE:
  3410. init_get_bits(&hx->s.gb, ptr, bit_length);
  3411. hx->intra_gb_ptr=
  3412. hx->inter_gb_ptr= &hx->s.gb;
  3413. hx->s.data_partitioning = 0;
  3414. if((err = decode_slice_header(hx, h)))
  3415. break;
  3416. if ( h->sei_recovery_frame_cnt >= 0
  3417. && ((h->recovery_frame - h->frame_num) & ((1 << h->sps.log2_max_frame_num)-1)) > h->sei_recovery_frame_cnt) {
  3418. h->recovery_frame = (h->frame_num + h->sei_recovery_frame_cnt) %
  3419. (1 << h->sps.log2_max_frame_num);
  3420. }
  3421. s->current_picture_ptr->f.key_frame |=
  3422. (hx->nal_unit_type == NAL_IDR_SLICE);
  3423. if (h->recovery_frame == h->frame_num) {
  3424. h->sync |= 1;
  3425. h->recovery_frame = -1;
  3426. }
  3427. h->sync |= !!s->current_picture_ptr->f.key_frame;
  3428. h->sync |= 3*!!(s->flags2 & CODEC_FLAG2_SHOW_ALL);
  3429. s->current_picture_ptr->sync = h->sync;
  3430. if (h->current_slice == 1) {
  3431. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)) {
  3432. decode_postinit(h, nal_index >= nals_needed);
  3433. }
  3434. if (s->avctx->hwaccel && s->avctx->hwaccel->start_frame(s->avctx, NULL, 0) < 0)
  3435. return -1;
  3436. if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3437. ff_vdpau_h264_picture_start(s);
  3438. }
  3439. if(hx->redundant_pic_count==0
  3440. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  3441. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=AV_PICTURE_TYPE_B)
  3442. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==AV_PICTURE_TYPE_I)
  3443. && avctx->skip_frame < AVDISCARD_ALL){
  3444. if(avctx->hwaccel) {
  3445. if (avctx->hwaccel->decode_slice(avctx, &buf[buf_index - consumed], consumed) < 0)
  3446. return -1;
  3447. }else
  3448. if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  3449. static const uint8_t start_code[] = {0x00, 0x00, 0x01};
  3450. ff_vdpau_add_data_chunk(s, start_code, sizeof(start_code));
  3451. ff_vdpau_add_data_chunk(s, &buf[buf_index - consumed], consumed );
  3452. }else
  3453. context_count++;
  3454. }
  3455. break;
  3456. case NAL_DPA:
  3457. init_get_bits(&hx->s.gb, ptr, bit_length);
  3458. hx->intra_gb_ptr=
  3459. hx->inter_gb_ptr= NULL;
  3460. if ((err = decode_slice_header(hx, h)) < 0)
  3461. break;
  3462. hx->s.data_partitioning = 1;
  3463. break;
  3464. case NAL_DPB:
  3465. init_get_bits(&hx->intra_gb, ptr, bit_length);
  3466. hx->intra_gb_ptr= &hx->intra_gb;
  3467. break;
  3468. case NAL_DPC:
  3469. init_get_bits(&hx->inter_gb, ptr, bit_length);
  3470. hx->inter_gb_ptr= &hx->inter_gb;
  3471. if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
  3472. && s->context_initialized
  3473. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  3474. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=AV_PICTURE_TYPE_B)
  3475. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==AV_PICTURE_TYPE_I)
  3476. && avctx->skip_frame < AVDISCARD_ALL)
  3477. context_count++;
  3478. break;
  3479. case NAL_SEI:
  3480. init_get_bits(&s->gb, ptr, bit_length);
  3481. ff_h264_decode_sei(h);
  3482. break;
  3483. case NAL_SPS:
  3484. init_get_bits(&s->gb, ptr, bit_length);
  3485. if(ff_h264_decode_seq_parameter_set(h) < 0 && (h->is_avc ? (nalsize != consumed) && nalsize : 1)){
  3486. av_log(h->s.avctx, AV_LOG_DEBUG, "SPS decoding failure, trying alternative mode\n");
  3487. if(h->is_avc) av_assert0(next_avc - buf_index + consumed == nalsize);
  3488. init_get_bits(&s->gb, &buf[buf_index + 1 - consumed], 8*(next_avc - buf_index + consumed));
  3489. ff_h264_decode_seq_parameter_set(h);
  3490. }
  3491. if (s->flags& CODEC_FLAG_LOW_DELAY ||
  3492. (h->sps.bitstream_restriction_flag && !h->sps.num_reorder_frames))
  3493. s->low_delay=1;
  3494. if(avctx->has_b_frames < 2)
  3495. avctx->has_b_frames= !s->low_delay;
  3496. break;
  3497. case NAL_PPS:
  3498. init_get_bits(&s->gb, ptr, bit_length);
  3499. ff_h264_decode_picture_parameter_set(h, bit_length);
  3500. break;
  3501. case NAL_AUD:
  3502. case NAL_END_SEQUENCE:
  3503. case NAL_END_STREAM:
  3504. case NAL_FILLER_DATA:
  3505. case NAL_SPS_EXT:
  3506. case NAL_AUXILIARY_SLICE:
  3507. break;
  3508. default:
  3509. av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", hx->nal_unit_type, bit_length);
  3510. }
  3511. if(context_count == h->max_contexts) {
  3512. execute_decode_slices(h, context_count);
  3513. context_count = 0;
  3514. }
  3515. if (err < 0)
  3516. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  3517. else if(err == 1) {
  3518. /* Slice could not be decoded in parallel mode, copy down
  3519. * NAL unit stuff to context 0 and restart. Note that
  3520. * rbsp_buffer is not transferred, but since we no longer
  3521. * run in parallel mode this should not be an issue. */
  3522. h->nal_unit_type = hx->nal_unit_type;
  3523. h->nal_ref_idc = hx->nal_ref_idc;
  3524. hx = h;
  3525. goto again;
  3526. }
  3527. }
  3528. }
  3529. if(context_count)
  3530. execute_decode_slices(h, context_count);
  3531. return buf_index;
  3532. }
  3533. /**
  3534. * returns the number of bytes consumed for building the current frame
  3535. */
  3536. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  3537. if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
  3538. if(pos+10>buf_size) pos=buf_size; // oops ;)
  3539. return pos;
  3540. }
  3541. static int decode_frame(AVCodecContext *avctx,
  3542. void *data, int *data_size,
  3543. AVPacket *avpkt)
  3544. {
  3545. const uint8_t *buf = avpkt->data;
  3546. int buf_size = avpkt->size;
  3547. H264Context *h = avctx->priv_data;
  3548. MpegEncContext *s = &h->s;
  3549. AVFrame *pict = data;
  3550. int buf_index;
  3551. s->flags= avctx->flags;
  3552. s->flags2= avctx->flags2;
  3553. /* end of stream, output what is still in the buffers */
  3554. out:
  3555. if (buf_size == 0) {
  3556. Picture *out;
  3557. int i, out_idx;
  3558. s->current_picture_ptr = NULL;
  3559. //FIXME factorize this with the output code below
  3560. out = h->delayed_pic[0];
  3561. out_idx = 0;
  3562. for (i = 1; h->delayed_pic[i] && !h->delayed_pic[i]->f.key_frame && !h->delayed_pic[i]->mmco_reset; i++)
  3563. if(h->delayed_pic[i]->poc < out->poc){
  3564. out = h->delayed_pic[i];
  3565. out_idx = i;
  3566. }
  3567. for(i=out_idx; h->delayed_pic[i]; i++)
  3568. h->delayed_pic[i] = h->delayed_pic[i+1];
  3569. if(out){
  3570. *data_size = sizeof(AVFrame);
  3571. *pict= *(AVFrame*)out;
  3572. }
  3573. return 0;
  3574. }
  3575. if(h->is_avc && buf_size >= 9 && AV_RB32(buf)==0x0164001F && buf[5] && buf[8]==0x67)
  3576. return ff_h264_decode_extradata(h, buf, buf_size);
  3577. buf_index=decode_nal_units(h, buf, buf_size);
  3578. if(buf_index < 0)
  3579. return -1;
  3580. if (!s->current_picture_ptr && h->nal_unit_type == NAL_END_SEQUENCE) {
  3581. buf_size = 0;
  3582. goto out;
  3583. }
  3584. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
  3585. if (avctx->skip_frame >= AVDISCARD_NONREF)
  3586. return 0;
  3587. av_log(avctx, AV_LOG_ERROR, "no frame!\n");
  3588. return -1;
  3589. }
  3590. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
  3591. if(s->flags2 & CODEC_FLAG2_CHUNKS) decode_postinit(h, 1);
  3592. field_end(h, 0);
  3593. *data_size = 0; /* Wait for second field. */
  3594. if (h->next_output_pic && h->next_output_pic->sync) {
  3595. if(h->sync>1 || h->next_output_pic->f.pict_type != AV_PICTURE_TYPE_B){
  3596. *data_size = sizeof(AVFrame);
  3597. *pict = *(AVFrame*)h->next_output_pic;
  3598. }
  3599. }
  3600. }
  3601. assert(pict->data[0] || !*data_size);
  3602. ff_print_debug_info(s, pict);
  3603. //printf("out %d\n", (int)pict->data[0]);
  3604. return get_consumed_bytes(s, buf_index, buf_size);
  3605. }
  3606. #if 0
  3607. static inline void fill_mb_avail(H264Context *h){
  3608. MpegEncContext * const s = &h->s;
  3609. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  3610. if(s->mb_y){
  3611. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  3612. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  3613. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  3614. }else{
  3615. h->mb_avail[0]=
  3616. h->mb_avail[1]=
  3617. h->mb_avail[2]= 0;
  3618. }
  3619. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  3620. h->mb_avail[4]= 1; //FIXME move out
  3621. h->mb_avail[5]= 0; //FIXME move out
  3622. }
  3623. #endif
  3624. #ifdef TEST
  3625. #undef printf
  3626. #undef random
  3627. #define COUNT 8000
  3628. #define SIZE (COUNT*40)
  3629. extern AVCodec ff_h264_decoder;
  3630. int main(void){
  3631. int i;
  3632. uint8_t temp[SIZE];
  3633. PutBitContext pb;
  3634. GetBitContext gb;
  3635. // int int_temp[10000];
  3636. DSPContext dsp;
  3637. AVCodecContext avctx;
  3638. avcodec_get_context_defaults3(&avctx, &ff_h264_decoder);
  3639. dsputil_init(&dsp, &avctx);
  3640. init_put_bits(&pb, temp, SIZE);
  3641. printf("testing unsigned exp golomb\n");
  3642. for(i=0; i<COUNT; i++){
  3643. START_TIMER
  3644. set_ue_golomb(&pb, i);
  3645. STOP_TIMER("set_ue_golomb");
  3646. }
  3647. flush_put_bits(&pb);
  3648. init_get_bits(&gb, temp, 8*SIZE);
  3649. for(i=0; i<COUNT; i++){
  3650. int j, s;
  3651. s= show_bits(&gb, 24);
  3652. START_TIMER
  3653. j= get_ue_golomb(&gb);
  3654. if(j != i){
  3655. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  3656. // return -1;
  3657. }
  3658. STOP_TIMER("get_ue_golomb");
  3659. }
  3660. init_put_bits(&pb, temp, SIZE);
  3661. printf("testing signed exp golomb\n");
  3662. for(i=0; i<COUNT; i++){
  3663. START_TIMER
  3664. set_se_golomb(&pb, i - COUNT/2);
  3665. STOP_TIMER("set_se_golomb");
  3666. }
  3667. flush_put_bits(&pb);
  3668. init_get_bits(&gb, temp, 8*SIZE);
  3669. for(i=0; i<COUNT; i++){
  3670. int j, s;
  3671. s= show_bits(&gb, 24);
  3672. START_TIMER
  3673. j= get_se_golomb(&gb);
  3674. if(j != i - COUNT/2){
  3675. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  3676. // return -1;
  3677. }
  3678. STOP_TIMER("get_se_golomb");
  3679. }
  3680. printf("Testing RBSP\n");
  3681. return 0;
  3682. }
  3683. #endif /* TEST */
  3684. av_cold void ff_h264_free_context(H264Context *h)
  3685. {
  3686. int i;
  3687. free_tables(h, 1); //FIXME cleanup init stuff perhaps
  3688. for(i = 0; i < MAX_SPS_COUNT; i++)
  3689. av_freep(h->sps_buffers + i);
  3690. for(i = 0; i < MAX_PPS_COUNT; i++)
  3691. av_freep(h->pps_buffers + i);
  3692. }
  3693. av_cold int ff_h264_decode_end(AVCodecContext *avctx)
  3694. {
  3695. H264Context *h = avctx->priv_data;
  3696. MpegEncContext *s = &h->s;
  3697. ff_h264_free_context(h);
  3698. MPV_common_end(s);
  3699. // memset(h, 0, sizeof(H264Context));
  3700. return 0;
  3701. }
  3702. static const AVProfile profiles[] = {
  3703. { FF_PROFILE_H264_BASELINE, "Baseline" },
  3704. { FF_PROFILE_H264_CONSTRAINED_BASELINE, "Constrained Baseline" },
  3705. { FF_PROFILE_H264_MAIN, "Main" },
  3706. { FF_PROFILE_H264_EXTENDED, "Extended" },
  3707. { FF_PROFILE_H264_HIGH, "High" },
  3708. { FF_PROFILE_H264_HIGH_10, "High 10" },
  3709. { FF_PROFILE_H264_HIGH_10_INTRA, "High 10 Intra" },
  3710. { FF_PROFILE_H264_HIGH_422, "High 4:2:2" },
  3711. { FF_PROFILE_H264_HIGH_422_INTRA, "High 4:2:2 Intra" },
  3712. { FF_PROFILE_H264_HIGH_444, "High 4:4:4" },
  3713. { FF_PROFILE_H264_HIGH_444_PREDICTIVE, "High 4:4:4 Predictive" },
  3714. { FF_PROFILE_H264_HIGH_444_INTRA, "High 4:4:4 Intra" },
  3715. { FF_PROFILE_H264_CAVLC_444, "CAVLC 4:4:4" },
  3716. { FF_PROFILE_UNKNOWN },
  3717. };
  3718. static const AVOption h264_options[] = {
  3719. {"is_avc", "is avc", offsetof(H264Context, is_avc), FF_OPT_TYPE_INT, {.dbl = 0}, 0, 1, 0},
  3720. {"nal_length_size", "nal_length_size", offsetof(H264Context, nal_length_size), FF_OPT_TYPE_INT, {.dbl = 0}, 0, 4, 0},
  3721. {NULL}
  3722. };
  3723. static const AVClass h264_class = {
  3724. "H264 Decoder",
  3725. av_default_item_name,
  3726. h264_options,
  3727. LIBAVUTIL_VERSION_INT,
  3728. };
  3729. static const AVClass h264_vdpau_class = {
  3730. "H264 VDPAU Decoder",
  3731. av_default_item_name,
  3732. h264_options,
  3733. LIBAVUTIL_VERSION_INT,
  3734. };
  3735. AVCodec ff_h264_decoder = {
  3736. .name = "h264",
  3737. .type = AVMEDIA_TYPE_VIDEO,
  3738. .id = CODEC_ID_H264,
  3739. .priv_data_size = sizeof(H264Context),
  3740. .init = ff_h264_decode_init,
  3741. .close = ff_h264_decode_end,
  3742. .decode = decode_frame,
  3743. .capabilities = /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY |
  3744. CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS,
  3745. .flush= flush_dpb,
  3746. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
  3747. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  3748. .update_thread_context = ONLY_IF_THREADS_ENABLED(decode_update_thread_context),
  3749. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  3750. .priv_class = &h264_class,
  3751. };
  3752. #if CONFIG_H264_VDPAU_DECODER
  3753. AVCodec ff_h264_vdpau_decoder = {
  3754. .name = "h264_vdpau",
  3755. .type = AVMEDIA_TYPE_VIDEO,
  3756. .id = CODEC_ID_H264,
  3757. .priv_data_size = sizeof(H264Context),
  3758. .init = ff_h264_decode_init,
  3759. .close = ff_h264_decode_end,
  3760. .decode = decode_frame,
  3761. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3762. .flush= flush_dpb,
  3763. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"),
  3764. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_H264, PIX_FMT_NONE},
  3765. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  3766. .priv_class = &h264_vdpau_class,
  3767. };
  3768. #endif