You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1944 lines
71KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/common.h"
  28. #include "libavutil/intmath.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/audioconvert.h"
  31. #include "avcodec.h"
  32. #include "dsputil.h"
  33. #include "fft.h"
  34. #include "get_bits.h"
  35. #include "put_bits.h"
  36. #include "dcadata.h"
  37. #include "dcahuff.h"
  38. #include "dca.h"
  39. #include "synth_filter.h"
  40. #include "dcadsp.h"
  41. #include "fmtconvert.h"
  42. #if ARCH_ARM
  43. # include "arm/dca.h"
  44. #endif
  45. //#define TRACE
  46. #define DCA_PRIM_CHANNELS_MAX (7)
  47. #define DCA_SUBBANDS (32)
  48. #define DCA_ABITS_MAX (32) /* Should be 28 */
  49. #define DCA_SUBSUBFRAMES_MAX (4)
  50. #define DCA_SUBFRAMES_MAX (16)
  51. #define DCA_BLOCKS_MAX (16)
  52. #define DCA_LFE_MAX (3)
  53. enum DCAMode {
  54. DCA_MONO = 0,
  55. DCA_CHANNEL,
  56. DCA_STEREO,
  57. DCA_STEREO_SUMDIFF,
  58. DCA_STEREO_TOTAL,
  59. DCA_3F,
  60. DCA_2F1R,
  61. DCA_3F1R,
  62. DCA_2F2R,
  63. DCA_3F2R,
  64. DCA_4F2R
  65. };
  66. /* these are unconfirmed but should be mostly correct */
  67. enum DCAExSSSpeakerMask {
  68. DCA_EXSS_FRONT_CENTER = 0x0001,
  69. DCA_EXSS_FRONT_LEFT_RIGHT = 0x0002,
  70. DCA_EXSS_SIDE_REAR_LEFT_RIGHT = 0x0004,
  71. DCA_EXSS_LFE = 0x0008,
  72. DCA_EXSS_REAR_CENTER = 0x0010,
  73. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT = 0x0020,
  74. DCA_EXSS_REAR_LEFT_RIGHT = 0x0040,
  75. DCA_EXSS_FRONT_HIGH_CENTER = 0x0080,
  76. DCA_EXSS_OVERHEAD = 0x0100,
  77. DCA_EXSS_CENTER_LEFT_RIGHT = 0x0200,
  78. DCA_EXSS_WIDE_LEFT_RIGHT = 0x0400,
  79. DCA_EXSS_SIDE_LEFT_RIGHT = 0x0800,
  80. DCA_EXSS_LFE2 = 0x1000,
  81. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT = 0x2000,
  82. DCA_EXSS_REAR_HIGH_CENTER = 0x4000,
  83. DCA_EXSS_REAR_HIGH_LEFT_RIGHT = 0x8000,
  84. };
  85. enum DCAExtensionMask {
  86. DCA_EXT_CORE = 0x001, ///< core in core substream
  87. DCA_EXT_XXCH = 0x002, ///< XXCh channels extension in core substream
  88. DCA_EXT_X96 = 0x004, ///< 96/24 extension in core substream
  89. DCA_EXT_XCH = 0x008, ///< XCh channel extension in core substream
  90. DCA_EXT_EXSS_CORE = 0x010, ///< core in ExSS (extension substream)
  91. DCA_EXT_EXSS_XBR = 0x020, ///< extended bitrate extension in ExSS
  92. DCA_EXT_EXSS_XXCH = 0x040, ///< XXCh channels extension in ExSS
  93. DCA_EXT_EXSS_X96 = 0x080, ///< 96/24 extension in ExSS
  94. DCA_EXT_EXSS_LBR = 0x100, ///< low bitrate component in ExSS
  95. DCA_EXT_EXSS_XLL = 0x200, ///< lossless extension in ExSS
  96. };
  97. /* -1 are reserved or unknown */
  98. static const int dca_ext_audio_descr_mask[] = {
  99. DCA_EXT_XCH,
  100. -1,
  101. DCA_EXT_X96,
  102. DCA_EXT_XCH | DCA_EXT_X96,
  103. -1,
  104. -1,
  105. DCA_EXT_XXCH,
  106. -1,
  107. };
  108. /* extensions that reside in core substream */
  109. #define DCA_CORE_EXTS (DCA_EXT_XCH | DCA_EXT_XXCH | DCA_EXT_X96)
  110. /* Tables for mapping dts channel configurations to libavcodec multichannel api.
  111. * Some compromises have been made for special configurations. Most configurations
  112. * are never used so complete accuracy is not needed.
  113. *
  114. * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
  115. * S -> side, when both rear and back are configured move one of them to the side channel
  116. * OV -> center back
  117. * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
  118. */
  119. static const int64_t dca_core_channel_layout[] = {
  120. AV_CH_FRONT_CENTER, ///< 1, A
  121. AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
  122. AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
  123. AV_CH_LAYOUT_STEREO, ///< 2, (L+R) + (L-R) (sum-difference)
  124. AV_CH_LAYOUT_STEREO, ///< 2, LT +RT (left and right total)
  125. AV_CH_LAYOUT_STEREO|AV_CH_FRONT_CENTER, ///< 3, C+L+R
  126. AV_CH_LAYOUT_STEREO|AV_CH_BACK_CENTER, ///< 3, L+R+S
  127. AV_CH_LAYOUT_STEREO|AV_CH_FRONT_CENTER|AV_CH_BACK_CENTER, ///< 4, C + L + R+ S
  128. AV_CH_LAYOUT_STEREO|AV_CH_SIDE_LEFT|AV_CH_SIDE_RIGHT, ///< 4, L + R +SL+ SR
  129. AV_CH_LAYOUT_STEREO|AV_CH_FRONT_CENTER|AV_CH_SIDE_LEFT|AV_CH_SIDE_RIGHT, ///< 5, C + L + R+ SL+SR
  130. AV_CH_LAYOUT_STEREO|AV_CH_SIDE_LEFT|AV_CH_SIDE_RIGHT|AV_CH_FRONT_LEFT_OF_CENTER|AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
  131. AV_CH_LAYOUT_STEREO|AV_CH_BACK_LEFT|AV_CH_BACK_RIGHT|AV_CH_FRONT_CENTER|AV_CH_BACK_CENTER, ///< 6, C + L + R+ LR + RR + OV
  132. AV_CH_FRONT_CENTER|AV_CH_FRONT_RIGHT_OF_CENTER|AV_CH_FRONT_LEFT_OF_CENTER|AV_CH_BACK_CENTER|AV_CH_BACK_LEFT|AV_CH_BACK_RIGHT, ///< 6, CF+ CR+LF+ RF+LR + RR
  133. AV_CH_FRONT_LEFT_OF_CENTER|AV_CH_FRONT_CENTER|AV_CH_FRONT_RIGHT_OF_CENTER|AV_CH_LAYOUT_STEREO|AV_CH_SIDE_LEFT|AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
  134. AV_CH_FRONT_LEFT_OF_CENTER|AV_CH_FRONT_RIGHT_OF_CENTER|AV_CH_LAYOUT_STEREO|AV_CH_SIDE_LEFT|AV_CH_SIDE_RIGHT|AV_CH_BACK_LEFT|AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2+ SR1 + SR2
  135. AV_CH_FRONT_LEFT_OF_CENTER|AV_CH_FRONT_CENTER|AV_CH_FRONT_RIGHT_OF_CENTER|AV_CH_LAYOUT_STEREO|AV_CH_SIDE_LEFT|AV_CH_BACK_CENTER|AV_CH_SIDE_RIGHT, ///< 8, CL + C+ CR + L + R + SL + S+ SR
  136. };
  137. static const int8_t dca_lfe_index[] = {
  138. 1,2,2,2,2,3,2,3,2,3,2,3,1,3,2,3
  139. };
  140. static const int8_t dca_channel_reorder_lfe[][9] = {
  141. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  142. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  143. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  144. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  145. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  146. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  147. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  148. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  149. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  150. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  151. { 3, 4, 0, 1, 5, 6, -1, -1, -1},
  152. { 2, 0, 1, 4, 5, 6, -1, -1, -1},
  153. { 0, 6, 4, 5, 2, 3, -1, -1, -1},
  154. { 4, 2, 5, 0, 1, 6, 7, -1, -1},
  155. { 5, 6, 0, 1, 7, 3, 8, 4, -1},
  156. { 4, 2, 5, 0, 1, 6, 8, 7, -1},
  157. };
  158. static const int8_t dca_channel_reorder_lfe_xch[][9] = {
  159. { 0, 2, -1, -1, -1, -1, -1, -1, -1},
  160. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  161. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  162. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  163. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  164. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  165. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  166. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  167. { 0, 1, 4, 5, 3, -1, -1, -1, -1},
  168. { 2, 0, 1, 5, 6, 4, -1, -1, -1},
  169. { 3, 4, 0, 1, 6, 7, 5, -1, -1},
  170. { 2, 0, 1, 4, 5, 6, 7, -1, -1},
  171. { 0, 6, 4, 5, 2, 3, 7, -1, -1},
  172. { 4, 2, 5, 0, 1, 7, 8, 6, -1},
  173. { 5, 6, 0, 1, 8, 3, 9, 4, 7},
  174. { 4, 2, 5, 0, 1, 6, 9, 8, 7},
  175. };
  176. static const int8_t dca_channel_reorder_nolfe[][9] = {
  177. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  178. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  179. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  180. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  181. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  182. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  183. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  184. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  185. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  186. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  187. { 2, 3, 0, 1, 4, 5, -1, -1, -1},
  188. { 2, 0, 1, 3, 4, 5, -1, -1, -1},
  189. { 0, 5, 3, 4, 1, 2, -1, -1, -1},
  190. { 3, 2, 4, 0, 1, 5, 6, -1, -1},
  191. { 4, 5, 0, 1, 6, 2, 7, 3, -1},
  192. { 3, 2, 4, 0, 1, 5, 7, 6, -1},
  193. };
  194. static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
  195. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  196. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  197. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  198. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  199. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  200. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  201. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  202. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  203. { 0, 1, 3, 4, 2, -1, -1, -1, -1},
  204. { 2, 0, 1, 4, 5, 3, -1, -1, -1},
  205. { 2, 3, 0, 1, 5, 6, 4, -1, -1},
  206. { 2, 0, 1, 3, 4, 5, 6, -1, -1},
  207. { 0, 5, 3, 4, 1, 2, 6, -1, -1},
  208. { 3, 2, 4, 0, 1, 6, 7, 5, -1},
  209. { 4, 5, 0, 1, 7, 2, 8, 3, 6},
  210. { 3, 2, 4, 0, 1, 5, 8, 7, 6},
  211. };
  212. #define DCA_DOLBY 101 /* FIXME */
  213. #define DCA_CHANNEL_BITS 6
  214. #define DCA_CHANNEL_MASK 0x3F
  215. #define DCA_LFE 0x80
  216. #define HEADER_SIZE 14
  217. #define DCA_MAX_FRAME_SIZE 16384
  218. #define DCA_MAX_EXSS_HEADER_SIZE 4096
  219. #define DCA_BUFFER_PADDING_SIZE 1024
  220. /** Bit allocation */
  221. typedef struct {
  222. int offset; ///< code values offset
  223. int maxbits[8]; ///< max bits in VLC
  224. int wrap; ///< wrap for get_vlc2()
  225. VLC vlc[8]; ///< actual codes
  226. } BitAlloc;
  227. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  228. static BitAlloc dca_tmode; ///< transition mode VLCs
  229. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  230. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  231. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba, int idx)
  232. {
  233. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) + ba->offset;
  234. }
  235. typedef struct {
  236. AVCodecContext *avctx;
  237. /* Frame header */
  238. int frame_type; ///< type of the current frame
  239. int samples_deficit; ///< deficit sample count
  240. int crc_present; ///< crc is present in the bitstream
  241. int sample_blocks; ///< number of PCM sample blocks
  242. int frame_size; ///< primary frame byte size
  243. int amode; ///< audio channels arrangement
  244. int sample_rate; ///< audio sampling rate
  245. int bit_rate; ///< transmission bit rate
  246. int bit_rate_index; ///< transmission bit rate index
  247. int downmix; ///< embedded downmix enabled
  248. int dynrange; ///< embedded dynamic range flag
  249. int timestamp; ///< embedded time stamp flag
  250. int aux_data; ///< auxiliary data flag
  251. int hdcd; ///< source material is mastered in HDCD
  252. int ext_descr; ///< extension audio descriptor flag
  253. int ext_coding; ///< extended coding flag
  254. int aspf; ///< audio sync word insertion flag
  255. int lfe; ///< low frequency effects flag
  256. int predictor_history; ///< predictor history flag
  257. int header_crc; ///< header crc check bytes
  258. int multirate_inter; ///< multirate interpolator switch
  259. int version; ///< encoder software revision
  260. int copy_history; ///< copy history
  261. int source_pcm_res; ///< source pcm resolution
  262. int front_sum; ///< front sum/difference flag
  263. int surround_sum; ///< surround sum/difference flag
  264. int dialog_norm; ///< dialog normalisation parameter
  265. /* Primary audio coding header */
  266. int subframes; ///< number of subframes
  267. int total_channels; ///< number of channels including extensions
  268. int prim_channels; ///< number of primary audio channels
  269. int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
  270. int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
  271. int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
  272. int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
  273. int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
  274. int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
  275. int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
  276. float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
  277. /* Primary audio coding side information */
  278. int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes
  279. int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count
  280. int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
  281. int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
  282. int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
  283. int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
  284. int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2]; ///< scale factors (2 if transient)
  285. int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
  286. int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
  287. int downmix_coef[DCA_PRIM_CHANNELS_MAX][2]; ///< stereo downmix coefficients
  288. int dynrange_coef; ///< dynamic range coefficient
  289. int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
  290. float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data
  291. int lfe_scale_factor;
  292. /* Subband samples history (for ADPCM) */
  293. DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
  294. DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
  295. DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
  296. int hist_index[DCA_PRIM_CHANNELS_MAX];
  297. DECLARE_ALIGNED(32, float, raXin)[32];
  298. int output; ///< type of output
  299. float scale_bias; ///< output scale
  300. DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
  301. DECLARE_ALIGNED(32, float, samples)[(DCA_PRIM_CHANNELS_MAX+1)*256];
  302. const float *samples_chanptr[DCA_PRIM_CHANNELS_MAX+1];
  303. uint8_t dca_buffer[DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE + DCA_BUFFER_PADDING_SIZE];
  304. int dca_buffer_size; ///< how much data is in the dca_buffer
  305. const int8_t* channel_order_tab; ///< channel reordering table, lfe and non lfe
  306. GetBitContext gb;
  307. /* Current position in DCA frame */
  308. int current_subframe;
  309. int current_subsubframe;
  310. int core_ext_mask; ///< present extensions in the core substream
  311. /* XCh extension information */
  312. int xch_present; ///< XCh extension present and valid
  313. int xch_base_channel; ///< index of first (only) channel containing XCH data
  314. /* ExSS header parser */
  315. int static_fields; ///< static fields present
  316. int mix_metadata; ///< mixing metadata present
  317. int num_mix_configs; ///< number of mix out configurations
  318. int mix_config_num_ch[4]; ///< number of channels in each mix out configuration
  319. int profile;
  320. int debug_flag; ///< used for suppressing repeated error messages output
  321. DSPContext dsp;
  322. FFTContext imdct;
  323. SynthFilterContext synth;
  324. DCADSPContext dcadsp;
  325. FmtConvertContext fmt_conv;
  326. } DCAContext;
  327. static const uint16_t dca_vlc_offs[] = {
  328. 0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
  329. 5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
  330. 5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
  331. 7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
  332. 12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
  333. 18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
  334. };
  335. static av_cold void dca_init_vlcs(void)
  336. {
  337. static int vlcs_initialized = 0;
  338. int i, j, c = 14;
  339. static VLC_TYPE dca_table[23622][2];
  340. if (vlcs_initialized)
  341. return;
  342. dca_bitalloc_index.offset = 1;
  343. dca_bitalloc_index.wrap = 2;
  344. for (i = 0; i < 5; i++) {
  345. dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
  346. dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
  347. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  348. bitalloc_12_bits[i], 1, 1,
  349. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  350. }
  351. dca_scalefactor.offset = -64;
  352. dca_scalefactor.wrap = 2;
  353. for (i = 0; i < 5; i++) {
  354. dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
  355. dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
  356. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  357. scales_bits[i], 1, 1,
  358. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  359. }
  360. dca_tmode.offset = 0;
  361. dca_tmode.wrap = 1;
  362. for (i = 0; i < 4; i++) {
  363. dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
  364. dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
  365. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  366. tmode_bits[i], 1, 1,
  367. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  368. }
  369. for (i = 0; i < 10; i++)
  370. for (j = 0; j < 7; j++){
  371. if (!bitalloc_codes[i][j]) break;
  372. dca_smpl_bitalloc[i+1].offset = bitalloc_offsets[i];
  373. dca_smpl_bitalloc[i+1].wrap = 1 + (j > 4);
  374. dca_smpl_bitalloc[i+1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
  375. dca_smpl_bitalloc[i+1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
  376. init_vlc(&dca_smpl_bitalloc[i+1].vlc[j], bitalloc_maxbits[i][j],
  377. bitalloc_sizes[i],
  378. bitalloc_bits[i][j], 1, 1,
  379. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  380. c++;
  381. }
  382. vlcs_initialized = 1;
  383. }
  384. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  385. {
  386. while(len--)
  387. *dst++ = get_bits(gb, bits);
  388. }
  389. static int dca_parse_audio_coding_header(DCAContext * s, int base_channel)
  390. {
  391. int i, j;
  392. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  393. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  394. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  395. s->total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
  396. s->prim_channels = s->total_channels;
  397. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  398. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  399. for (i = base_channel; i < s->prim_channels; i++) {
  400. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  401. if (s->subband_activity[i] > DCA_SUBBANDS)
  402. s->subband_activity[i] = DCA_SUBBANDS;
  403. }
  404. for (i = base_channel; i < s->prim_channels; i++) {
  405. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  406. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  407. s->vq_start_subband[i] = DCA_SUBBANDS;
  408. }
  409. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  410. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  411. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  412. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  413. /* Get codebooks quantization indexes */
  414. if (!base_channel)
  415. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  416. for (j = 1; j < 11; j++)
  417. for (i = base_channel; i < s->prim_channels; i++)
  418. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  419. /* Get scale factor adjustment */
  420. for (j = 0; j < 11; j++)
  421. for (i = base_channel; i < s->prim_channels; i++)
  422. s->scalefactor_adj[i][j] = 1;
  423. for (j = 1; j < 11; j++)
  424. for (i = base_channel; i < s->prim_channels; i++)
  425. if (s->quant_index_huffman[i][j] < thr[j])
  426. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  427. if (s->crc_present) {
  428. /* Audio header CRC check */
  429. get_bits(&s->gb, 16);
  430. }
  431. s->current_subframe = 0;
  432. s->current_subsubframe = 0;
  433. #ifdef TRACE
  434. av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
  435. av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
  436. for (i = base_channel; i < s->prim_channels; i++){
  437. av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n", s->subband_activity[i]);
  438. av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n", s->vq_start_subband[i]);
  439. av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n", s->joint_intensity[i]);
  440. av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n", s->transient_huffman[i]);
  441. av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n", s->scalefactor_huffman[i]);
  442. av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n", s->bitalloc_huffman[i]);
  443. av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
  444. for (j = 0; j < 11; j++)
  445. av_log(s->avctx, AV_LOG_DEBUG, " %i",
  446. s->quant_index_huffman[i][j]);
  447. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  448. av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
  449. for (j = 0; j < 11; j++)
  450. av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
  451. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  452. }
  453. #endif
  454. return 0;
  455. }
  456. static int dca_parse_frame_header(DCAContext * s)
  457. {
  458. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  459. /* Sync code */
  460. get_bits(&s->gb, 32);
  461. /* Frame header */
  462. s->frame_type = get_bits(&s->gb, 1);
  463. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  464. s->crc_present = get_bits(&s->gb, 1);
  465. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  466. s->frame_size = get_bits(&s->gb, 14) + 1;
  467. if (s->frame_size < 95)
  468. return AVERROR_INVALIDDATA;
  469. s->amode = get_bits(&s->gb, 6);
  470. s->sample_rate = dca_sample_rates[get_bits(&s->gb, 4)];
  471. if (!s->sample_rate)
  472. return AVERROR_INVALIDDATA;
  473. s->bit_rate_index = get_bits(&s->gb, 5);
  474. s->bit_rate = dca_bit_rates[s->bit_rate_index];
  475. if (!s->bit_rate)
  476. return AVERROR_INVALIDDATA;
  477. s->downmix = get_bits(&s->gb, 1);
  478. s->dynrange = get_bits(&s->gb, 1);
  479. s->timestamp = get_bits(&s->gb, 1);
  480. s->aux_data = get_bits(&s->gb, 1);
  481. s->hdcd = get_bits(&s->gb, 1);
  482. s->ext_descr = get_bits(&s->gb, 3);
  483. s->ext_coding = get_bits(&s->gb, 1);
  484. s->aspf = get_bits(&s->gb, 1);
  485. s->lfe = get_bits(&s->gb, 2);
  486. s->predictor_history = get_bits(&s->gb, 1);
  487. /* TODO: check CRC */
  488. if (s->crc_present)
  489. s->header_crc = get_bits(&s->gb, 16);
  490. s->multirate_inter = get_bits(&s->gb, 1);
  491. s->version = get_bits(&s->gb, 4);
  492. s->copy_history = get_bits(&s->gb, 2);
  493. s->source_pcm_res = get_bits(&s->gb, 3);
  494. s->front_sum = get_bits(&s->gb, 1);
  495. s->surround_sum = get_bits(&s->gb, 1);
  496. s->dialog_norm = get_bits(&s->gb, 4);
  497. /* FIXME: channels mixing levels */
  498. s->output = s->amode;
  499. if (s->lfe) s->output |= DCA_LFE;
  500. #ifdef TRACE
  501. av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
  502. av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
  503. av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
  504. av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
  505. s->sample_blocks, s->sample_blocks * 32);
  506. av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
  507. av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
  508. s->amode, dca_channels[s->amode]);
  509. av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
  510. s->sample_rate);
  511. av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
  512. s->bit_rate);
  513. av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix);
  514. av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
  515. av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
  516. av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
  517. av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
  518. av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
  519. av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
  520. av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
  521. av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
  522. av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
  523. s->predictor_history);
  524. av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
  525. av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
  526. s->multirate_inter);
  527. av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
  528. av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
  529. av_log(s->avctx, AV_LOG_DEBUG,
  530. "source pcm resolution: %i (%i bits/sample)\n",
  531. s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
  532. av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
  533. av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
  534. av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
  535. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  536. #endif
  537. /* Primary audio coding header */
  538. s->subframes = get_bits(&s->gb, 4) + 1;
  539. return dca_parse_audio_coding_header(s, 0);
  540. }
  541. static inline int get_scale(GetBitContext *gb, int level, int value)
  542. {
  543. if (level < 5) {
  544. /* huffman encoded */
  545. value += get_bitalloc(gb, &dca_scalefactor, level);
  546. } else if (level < 8)
  547. value = get_bits(gb, level + 1);
  548. return value;
  549. }
  550. static int dca_subframe_header(DCAContext * s, int base_channel, int block_index)
  551. {
  552. /* Primary audio coding side information */
  553. int j, k;
  554. if (get_bits_left(&s->gb) < 0)
  555. return AVERROR_INVALIDDATA;
  556. if (!base_channel) {
  557. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  558. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  559. }
  560. for (j = base_channel; j < s->prim_channels; j++) {
  561. for (k = 0; k < s->subband_activity[j]; k++)
  562. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  563. }
  564. /* Get prediction codebook */
  565. for (j = base_channel; j < s->prim_channels; j++) {
  566. for (k = 0; k < s->subband_activity[j]; k++) {
  567. if (s->prediction_mode[j][k] > 0) {
  568. /* (Prediction coefficient VQ address) */
  569. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  570. }
  571. }
  572. }
  573. /* Bit allocation index */
  574. for (j = base_channel; j < s->prim_channels; j++) {
  575. for (k = 0; k < s->vq_start_subband[j]; k++) {
  576. if (s->bitalloc_huffman[j] == 6)
  577. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  578. else if (s->bitalloc_huffman[j] == 5)
  579. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  580. else if (s->bitalloc_huffman[j] == 7) {
  581. av_log(s->avctx, AV_LOG_ERROR,
  582. "Invalid bit allocation index\n");
  583. return AVERROR_INVALIDDATA;
  584. } else {
  585. s->bitalloc[j][k] =
  586. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  587. }
  588. if (s->bitalloc[j][k] > 26) {
  589. // av_log(s->avctx,AV_LOG_DEBUG,"bitalloc index [%i][%i] too big (%i)\n",
  590. // j, k, s->bitalloc[j][k]);
  591. return AVERROR_INVALIDDATA;
  592. }
  593. }
  594. }
  595. /* Transition mode */
  596. for (j = base_channel; j < s->prim_channels; j++) {
  597. for (k = 0; k < s->subband_activity[j]; k++) {
  598. s->transition_mode[j][k] = 0;
  599. if (s->subsubframes[s->current_subframe] > 1 &&
  600. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  601. s->transition_mode[j][k] =
  602. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  603. }
  604. }
  605. }
  606. if (get_bits_left(&s->gb) < 0)
  607. return AVERROR_INVALIDDATA;
  608. for (j = base_channel; j < s->prim_channels; j++) {
  609. const uint32_t *scale_table;
  610. int scale_sum;
  611. memset(s->scale_factor[j], 0, s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  612. if (s->scalefactor_huffman[j] == 6)
  613. scale_table = scale_factor_quant7;
  614. else
  615. scale_table = scale_factor_quant6;
  616. /* When huffman coded, only the difference is encoded */
  617. scale_sum = 0;
  618. for (k = 0; k < s->subband_activity[j]; k++) {
  619. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  620. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
  621. s->scale_factor[j][k][0] = scale_table[scale_sum];
  622. }
  623. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  624. /* Get second scale factor */
  625. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
  626. s->scale_factor[j][k][1] = scale_table[scale_sum];
  627. }
  628. }
  629. }
  630. /* Joint subband scale factor codebook select */
  631. for (j = base_channel; j < s->prim_channels; j++) {
  632. /* Transmitted only if joint subband coding enabled */
  633. if (s->joint_intensity[j] > 0)
  634. s->joint_huff[j] = get_bits(&s->gb, 3);
  635. }
  636. if (get_bits_left(&s->gb) < 0)
  637. return AVERROR_INVALIDDATA;
  638. /* Scale factors for joint subband coding */
  639. for (j = base_channel; j < s->prim_channels; j++) {
  640. int source_channel;
  641. /* Transmitted only if joint subband coding enabled */
  642. if (s->joint_intensity[j] > 0) {
  643. int scale = 0;
  644. source_channel = s->joint_intensity[j] - 1;
  645. /* When huffman coded, only the difference is encoded
  646. * (is this valid as well for joint scales ???) */
  647. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  648. scale = get_scale(&s->gb, s->joint_huff[j], 0);
  649. scale += 64; /* bias */
  650. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  651. }
  652. if (!(s->debug_flag & 0x02)) {
  653. av_log(s->avctx, AV_LOG_DEBUG,
  654. "Joint stereo coding not supported\n");
  655. s->debug_flag |= 0x02;
  656. }
  657. }
  658. }
  659. /* Stereo downmix coefficients */
  660. if (!base_channel && s->prim_channels > 2) {
  661. if (s->downmix) {
  662. for (j = base_channel; j < s->prim_channels; j++) {
  663. s->downmix_coef[j][0] = get_bits(&s->gb, 7);
  664. s->downmix_coef[j][1] = get_bits(&s->gb, 7);
  665. }
  666. } else {
  667. int am = s->amode & DCA_CHANNEL_MASK;
  668. for (j = base_channel; j < s->prim_channels; j++) {
  669. s->downmix_coef[j][0] = dca_default_coeffs[am][j][0];
  670. s->downmix_coef[j][1] = dca_default_coeffs[am][j][1];
  671. }
  672. }
  673. }
  674. /* Dynamic range coefficient */
  675. if (!base_channel && s->dynrange)
  676. s->dynrange_coef = get_bits(&s->gb, 8);
  677. /* Side information CRC check word */
  678. if (s->crc_present) {
  679. get_bits(&s->gb, 16);
  680. }
  681. /*
  682. * Primary audio data arrays
  683. */
  684. /* VQ encoded high frequency subbands */
  685. for (j = base_channel; j < s->prim_channels; j++)
  686. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  687. /* 1 vector -> 32 samples */
  688. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  689. /* Low frequency effect data */
  690. if (!base_channel && s->lfe) {
  691. /* LFE samples */
  692. int lfe_samples = 2 * s->lfe * (4 + block_index);
  693. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  694. float lfe_scale;
  695. for (j = lfe_samples; j < lfe_end_sample; j++) {
  696. /* Signed 8 bits int */
  697. s->lfe_data[j] = get_sbits(&s->gb, 8);
  698. }
  699. /* Scale factor index */
  700. s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 8)];
  701. /* Quantization step size * scale factor */
  702. lfe_scale = 0.035 * s->lfe_scale_factor;
  703. for (j = lfe_samples; j < lfe_end_sample; j++)
  704. s->lfe_data[j] *= lfe_scale;
  705. }
  706. #ifdef TRACE
  707. av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n", s->subsubframes[s->current_subframe]);
  708. av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
  709. s->partial_samples[s->current_subframe]);
  710. for (j = base_channel; j < s->prim_channels; j++) {
  711. av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
  712. for (k = 0; k < s->subband_activity[j]; k++)
  713. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
  714. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  715. }
  716. for (j = base_channel; j < s->prim_channels; j++) {
  717. for (k = 0; k < s->subband_activity[j]; k++)
  718. av_log(s->avctx, AV_LOG_DEBUG,
  719. "prediction coefs: %f, %f, %f, %f\n",
  720. (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
  721. (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
  722. (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
  723. (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
  724. }
  725. for (j = base_channel; j < s->prim_channels; j++) {
  726. av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
  727. for (k = 0; k < s->vq_start_subband[j]; k++)
  728. av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
  729. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  730. }
  731. for (j = base_channel; j < s->prim_channels; j++) {
  732. av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
  733. for (k = 0; k < s->subband_activity[j]; k++)
  734. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
  735. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  736. }
  737. for (j = base_channel; j < s->prim_channels; j++) {
  738. av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
  739. for (k = 0; k < s->subband_activity[j]; k++) {
  740. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
  741. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
  742. if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
  743. av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
  744. }
  745. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  746. }
  747. for (j = base_channel; j < s->prim_channels; j++) {
  748. if (s->joint_intensity[j] > 0) {
  749. int source_channel = s->joint_intensity[j] - 1;
  750. av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
  751. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
  752. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
  753. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  754. }
  755. }
  756. if (!base_channel && s->prim_channels > 2 && s->downmix) {
  757. av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n");
  758. for (j = 0; j < s->prim_channels; j++) {
  759. av_log(s->avctx, AV_LOG_DEBUG, "Channel 0,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][0]]);
  760. av_log(s->avctx, AV_LOG_DEBUG, "Channel 1,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][1]]);
  761. }
  762. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  763. }
  764. for (j = base_channel; j < s->prim_channels; j++)
  765. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  766. av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
  767. if (!base_channel && s->lfe) {
  768. int lfe_samples = 2 * s->lfe * (4 + block_index);
  769. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  770. av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
  771. for (j = lfe_samples; j < lfe_end_sample; j++)
  772. av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
  773. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  774. }
  775. #endif
  776. return 0;
  777. }
  778. static void qmf_32_subbands(DCAContext * s, int chans,
  779. float samples_in[32][8], float *samples_out,
  780. float scale)
  781. {
  782. const float *prCoeff;
  783. int i;
  784. int sb_act = s->subband_activity[chans];
  785. int subindex;
  786. scale *= sqrt(1/8.0);
  787. /* Select filter */
  788. if (!s->multirate_inter) /* Non-perfect reconstruction */
  789. prCoeff = fir_32bands_nonperfect;
  790. else /* Perfect reconstruction */
  791. prCoeff = fir_32bands_perfect;
  792. for (i = sb_act; i < 32; i++)
  793. s->raXin[i] = 0.0;
  794. /* Reconstructed channel sample index */
  795. for (subindex = 0; subindex < 8; subindex++) {
  796. /* Load in one sample from each subband and clear inactive subbands */
  797. for (i = 0; i < sb_act; i++){
  798. unsigned sign = (i - 1) & 2;
  799. uint32_t v = AV_RN32A(&samples_in[i][subindex]) ^ sign << 30;
  800. AV_WN32A(&s->raXin[i], v);
  801. }
  802. s->synth.synth_filter_float(&s->imdct,
  803. s->subband_fir_hist[chans], &s->hist_index[chans],
  804. s->subband_fir_noidea[chans], prCoeff,
  805. samples_out, s->raXin, scale);
  806. samples_out+= 32;
  807. }
  808. }
  809. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  810. int num_deci_sample, float *samples_in,
  811. float *samples_out, float scale)
  812. {
  813. /* samples_in: An array holding decimated samples.
  814. * Samples in current subframe starts from samples_in[0],
  815. * while samples_in[-1], samples_in[-2], ..., stores samples
  816. * from last subframe as history.
  817. *
  818. * samples_out: An array holding interpolated samples
  819. */
  820. int decifactor;
  821. const float *prCoeff;
  822. int deciindex;
  823. /* Select decimation filter */
  824. if (decimation_select == 1) {
  825. decifactor = 64;
  826. prCoeff = lfe_fir_128;
  827. } else {
  828. decifactor = 32;
  829. prCoeff = lfe_fir_64;
  830. }
  831. /* Interpolation */
  832. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  833. s->dcadsp.lfe_fir(samples_out, samples_in, prCoeff, decifactor,
  834. scale);
  835. samples_in++;
  836. samples_out += 2 * decifactor;
  837. }
  838. }
  839. /* downmixing routines */
  840. #define MIX_REAR1(samples, si1, rs, coef) \
  841. samples[i] += samples[si1] * coef[rs][0]; \
  842. samples[i+256] += samples[si1] * coef[rs][1];
  843. #define MIX_REAR2(samples, si1, si2, rs, coef) \
  844. samples[i] += samples[si1] * coef[rs][0] + samples[si2] * coef[rs+1][0]; \
  845. samples[i+256] += samples[si1] * coef[rs][1] + samples[si2] * coef[rs+1][1];
  846. #define MIX_FRONT3(samples, coef) \
  847. t = samples[i+c]; \
  848. u = samples[i+l]; \
  849. v = samples[i+r]; \
  850. samples[i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  851. samples[i+256] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  852. #define DOWNMIX_TO_STEREO(op1, op2) \
  853. for (i = 0; i < 256; i++){ \
  854. op1 \
  855. op2 \
  856. }
  857. static void dca_downmix(float *samples, int srcfmt,
  858. int downmix_coef[DCA_PRIM_CHANNELS_MAX][2],
  859. const int8_t *channel_mapping)
  860. {
  861. int c,l,r,sl,sr,s;
  862. int i;
  863. float t, u, v;
  864. float coef[DCA_PRIM_CHANNELS_MAX][2];
  865. for (i=0; i<DCA_PRIM_CHANNELS_MAX; i++) {
  866. coef[i][0] = dca_downmix_coeffs[downmix_coef[i][0]];
  867. coef[i][1] = dca_downmix_coeffs[downmix_coef[i][1]];
  868. }
  869. switch (srcfmt) {
  870. case DCA_MONO:
  871. case DCA_CHANNEL:
  872. case DCA_STEREO_TOTAL:
  873. case DCA_STEREO_SUMDIFF:
  874. case DCA_4F2R:
  875. av_log(NULL, 0, "Not implemented!\n");
  876. break;
  877. case DCA_STEREO:
  878. break;
  879. case DCA_3F:
  880. c = channel_mapping[0] * 256;
  881. l = channel_mapping[1] * 256;
  882. r = channel_mapping[2] * 256;
  883. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),);
  884. break;
  885. case DCA_2F1R:
  886. s = channel_mapping[2] * 256;
  887. DOWNMIX_TO_STEREO(MIX_REAR1(samples, i + s, 2, coef),);
  888. break;
  889. case DCA_3F1R:
  890. c = channel_mapping[0] * 256;
  891. l = channel_mapping[1] * 256;
  892. r = channel_mapping[2] * 256;
  893. s = channel_mapping[3] * 256;
  894. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  895. MIX_REAR1(samples, i + s, 3, coef));
  896. break;
  897. case DCA_2F2R:
  898. sl = channel_mapping[2] * 256;
  899. sr = channel_mapping[3] * 256;
  900. DOWNMIX_TO_STEREO(MIX_REAR2(samples, i + sl, i + sr, 2, coef),);
  901. break;
  902. case DCA_3F2R:
  903. c = channel_mapping[0] * 256;
  904. l = channel_mapping[1] * 256;
  905. r = channel_mapping[2] * 256;
  906. sl = channel_mapping[3] * 256;
  907. sr = channel_mapping[4] * 256;
  908. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  909. MIX_REAR2(samples, i + sl, i + sr, 3, coef));
  910. break;
  911. }
  912. }
  913. #ifndef decode_blockcode
  914. /* Very compact version of the block code decoder that does not use table
  915. * look-up but is slightly slower */
  916. static int decode_blockcode(int code, int levels, int *values)
  917. {
  918. int i;
  919. int offset = (levels - 1) >> 1;
  920. for (i = 0; i < 4; i++) {
  921. int div = FASTDIV(code, levels);
  922. values[i] = code - offset - div*levels;
  923. code = div;
  924. }
  925. if (code == 0)
  926. return 0;
  927. else {
  928. av_log(NULL, AV_LOG_ERROR, "ERROR: block code look-up failed\n");
  929. return AVERROR_INVALIDDATA;
  930. }
  931. }
  932. #endif
  933. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  934. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  935. #ifndef int8x8_fmul_int32
  936. static inline void int8x8_fmul_int32(float *dst, const int8_t *src, int scale)
  937. {
  938. float fscale = scale / 16.0;
  939. int i;
  940. for (i = 0; i < 8; i++)
  941. dst[i] = src[i] * fscale;
  942. }
  943. #endif
  944. static int dca_subsubframe(DCAContext * s, int base_channel, int block_index)
  945. {
  946. int k, l;
  947. int subsubframe = s->current_subsubframe;
  948. const float *quant_step_table;
  949. /* FIXME */
  950. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  951. LOCAL_ALIGNED_16(int, block, [8]);
  952. /*
  953. * Audio data
  954. */
  955. /* Select quantization step size table */
  956. if (s->bit_rate_index == 0x1f)
  957. quant_step_table = lossless_quant_d;
  958. else
  959. quant_step_table = lossy_quant_d;
  960. for (k = base_channel; k < s->prim_channels; k++) {
  961. if (get_bits_left(&s->gb) < 0)
  962. return AVERROR_INVALIDDATA;
  963. for (l = 0; l < s->vq_start_subband[k]; l++) {
  964. int m;
  965. /* Select the mid-tread linear quantizer */
  966. int abits = s->bitalloc[k][l];
  967. float quant_step_size = quant_step_table[abits];
  968. /*
  969. * Determine quantization index code book and its type
  970. */
  971. /* Select quantization index code book */
  972. int sel = s->quant_index_huffman[k][abits];
  973. /*
  974. * Extract bits from the bit stream
  975. */
  976. if (!abits){
  977. memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0]));
  978. } else {
  979. /* Deal with transients */
  980. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  981. float rscale = quant_step_size * s->scale_factor[k][l][sfi] * s->scalefactor_adj[k][sel];
  982. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table){
  983. if (abits <= 7){
  984. /* Block code */
  985. int block_code1, block_code2, size, levels;
  986. size = abits_sizes[abits-1];
  987. levels = abits_levels[abits-1];
  988. block_code1 = get_bits(&s->gb, size);
  989. /* FIXME Should test return value */
  990. decode_blockcode(block_code1, levels, block);
  991. block_code2 = get_bits(&s->gb, size);
  992. decode_blockcode(block_code2, levels, &block[4]);
  993. }else{
  994. /* no coding */
  995. for (m = 0; m < 8; m++)
  996. block[m] = get_sbits(&s->gb, abits - 3);
  997. }
  998. }else{
  999. /* Huffman coded */
  1000. for (m = 0; m < 8; m++)
  1001. block[m] = get_bitalloc(&s->gb, &dca_smpl_bitalloc[abits], sel);
  1002. }
  1003. s->fmt_conv.int32_to_float_fmul_scalar(subband_samples[k][l],
  1004. block, rscale, 8);
  1005. }
  1006. /*
  1007. * Inverse ADPCM if in prediction mode
  1008. */
  1009. if (s->prediction_mode[k][l]) {
  1010. int n;
  1011. for (m = 0; m < 8; m++) {
  1012. for (n = 1; n <= 4; n++)
  1013. if (m >= n)
  1014. subband_samples[k][l][m] +=
  1015. (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1016. subband_samples[k][l][m - n] / 8192);
  1017. else if (s->predictor_history)
  1018. subband_samples[k][l][m] +=
  1019. (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1020. s->subband_samples_hist[k][l][m - n +
  1021. 4] / 8192);
  1022. }
  1023. }
  1024. }
  1025. /*
  1026. * Decode VQ encoded high frequencies
  1027. */
  1028. for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
  1029. /* 1 vector -> 32 samples but we only need the 8 samples
  1030. * for this subsubframe. */
  1031. int hfvq = s->high_freq_vq[k][l];
  1032. if (!s->debug_flag & 0x01) {
  1033. av_log(s->avctx, AV_LOG_DEBUG, "Stream with high frequencies VQ coding\n");
  1034. s->debug_flag |= 0x01;
  1035. }
  1036. int8x8_fmul_int32(subband_samples[k][l],
  1037. &high_freq_vq[hfvq][subsubframe * 8],
  1038. s->scale_factor[k][l][0]);
  1039. }
  1040. }
  1041. /* Check for DSYNC after subsubframe */
  1042. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  1043. if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
  1044. #ifdef TRACE
  1045. av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
  1046. #endif
  1047. } else {
  1048. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  1049. }
  1050. }
  1051. /* Backup predictor history for adpcm */
  1052. for (k = base_channel; k < s->prim_channels; k++)
  1053. for (l = 0; l < s->vq_start_subband[k]; l++)
  1054. memcpy(s->subband_samples_hist[k][l], &subband_samples[k][l][4],
  1055. 4 * sizeof(subband_samples[0][0][0]));
  1056. return 0;
  1057. }
  1058. static int dca_filter_channels(DCAContext * s, int block_index)
  1059. {
  1060. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1061. int k;
  1062. /* 32 subbands QMF */
  1063. for (k = 0; k < s->prim_channels; k++) {
  1064. /* static float pcm_to_double[8] =
  1065. {32768.0, 32768.0, 524288.0, 524288.0, 0, 8388608.0, 8388608.0};*/
  1066. qmf_32_subbands(s, k, subband_samples[k], &s->samples[256 * s->channel_order_tab[k]],
  1067. M_SQRT1_2*s->scale_bias /*pcm_to_double[s->source_pcm_res] */ );
  1068. }
  1069. /* Down mixing */
  1070. if (s->avctx->request_channels == 2 && s->prim_channels > 2) {
  1071. dca_downmix(s->samples, s->amode, s->downmix_coef, s->channel_order_tab);
  1072. }
  1073. /* Generate LFE samples for this subsubframe FIXME!!! */
  1074. if (s->output & DCA_LFE) {
  1075. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  1076. s->lfe_data + 2 * s->lfe * (block_index + 4),
  1077. &s->samples[256 * dca_lfe_index[s->amode]],
  1078. (1.0/256.0)*s->scale_bias);
  1079. /* Outputs 20bits pcm samples */
  1080. }
  1081. return 0;
  1082. }
  1083. static int dca_subframe_footer(DCAContext * s, int base_channel)
  1084. {
  1085. int aux_data_count = 0, i;
  1086. /*
  1087. * Unpack optional information
  1088. */
  1089. /* presumably optional information only appears in the core? */
  1090. if (!base_channel) {
  1091. if (s->timestamp)
  1092. get_bits(&s->gb, 32);
  1093. if (s->aux_data)
  1094. aux_data_count = get_bits(&s->gb, 6);
  1095. for (i = 0; i < aux_data_count; i++)
  1096. get_bits(&s->gb, 8);
  1097. if (s->crc_present && (s->downmix || s->dynrange))
  1098. get_bits(&s->gb, 16);
  1099. }
  1100. return 0;
  1101. }
  1102. /**
  1103. * Decode a dca frame block
  1104. *
  1105. * @param s pointer to the DCAContext
  1106. */
  1107. static int dca_decode_block(DCAContext * s, int base_channel, int block_index)
  1108. {
  1109. int ret;
  1110. /* Sanity check */
  1111. if (s->current_subframe >= s->subframes) {
  1112. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  1113. s->current_subframe, s->subframes);
  1114. return AVERROR_INVALIDDATA;
  1115. }
  1116. if (!s->current_subsubframe) {
  1117. #ifdef TRACE
  1118. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
  1119. #endif
  1120. /* Read subframe header */
  1121. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  1122. return ret;
  1123. }
  1124. /* Read subsubframe */
  1125. #ifdef TRACE
  1126. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
  1127. #endif
  1128. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  1129. return ret;
  1130. /* Update state */
  1131. s->current_subsubframe++;
  1132. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  1133. s->current_subsubframe = 0;
  1134. s->current_subframe++;
  1135. }
  1136. if (s->current_subframe >= s->subframes) {
  1137. #ifdef TRACE
  1138. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
  1139. #endif
  1140. /* Read subframe footer */
  1141. if ((ret = dca_subframe_footer(s, base_channel)))
  1142. return ret;
  1143. }
  1144. return 0;
  1145. }
  1146. /**
  1147. * Convert bitstream to one representation based on sync marker
  1148. */
  1149. static int dca_convert_bitstream(const uint8_t * src, int src_size, uint8_t * dst,
  1150. int max_size)
  1151. {
  1152. uint32_t mrk;
  1153. int i, tmp;
  1154. const uint16_t *ssrc = (const uint16_t *) src;
  1155. uint16_t *sdst = (uint16_t *) dst;
  1156. PutBitContext pb;
  1157. if ((unsigned)src_size > (unsigned)max_size) {
  1158. // av_log(NULL, AV_LOG_ERROR, "Input frame size larger than DCA_MAX_FRAME_SIZE!\n");
  1159. // return -1;
  1160. src_size = max_size;
  1161. }
  1162. mrk = AV_RB32(src);
  1163. switch (mrk) {
  1164. case DCA_MARKER_RAW_BE:
  1165. memcpy(dst, src, src_size);
  1166. return src_size;
  1167. case DCA_MARKER_RAW_LE:
  1168. for (i = 0; i < (src_size + 1) >> 1; i++)
  1169. *sdst++ = av_bswap16(*ssrc++);
  1170. return src_size;
  1171. case DCA_MARKER_14B_BE:
  1172. case DCA_MARKER_14B_LE:
  1173. init_put_bits(&pb, dst, max_size);
  1174. for (i = 0; i < (src_size + 1) >> 1; i++, src += 2) {
  1175. tmp = ((mrk == DCA_MARKER_14B_BE) ? AV_RB16(src) : AV_RL16(src)) & 0x3FFF;
  1176. put_bits(&pb, 14, tmp);
  1177. }
  1178. flush_put_bits(&pb);
  1179. return (put_bits_count(&pb) + 7) >> 3;
  1180. default:
  1181. return AVERROR_INVALIDDATA;
  1182. }
  1183. }
  1184. /**
  1185. * Return the number of channels in an ExSS speaker mask (HD)
  1186. */
  1187. static int dca_exss_mask2count(int mask)
  1188. {
  1189. /* count bits that mean speaker pairs twice */
  1190. return av_popcount(mask)
  1191. + av_popcount(mask & (
  1192. DCA_EXSS_CENTER_LEFT_RIGHT
  1193. | DCA_EXSS_FRONT_LEFT_RIGHT
  1194. | DCA_EXSS_FRONT_HIGH_LEFT_RIGHT
  1195. | DCA_EXSS_WIDE_LEFT_RIGHT
  1196. | DCA_EXSS_SIDE_LEFT_RIGHT
  1197. | DCA_EXSS_SIDE_HIGH_LEFT_RIGHT
  1198. | DCA_EXSS_SIDE_REAR_LEFT_RIGHT
  1199. | DCA_EXSS_REAR_LEFT_RIGHT
  1200. | DCA_EXSS_REAR_HIGH_LEFT_RIGHT
  1201. ));
  1202. }
  1203. /**
  1204. * Skip mixing coefficients of a single mix out configuration (HD)
  1205. */
  1206. static void dca_exss_skip_mix_coeffs(GetBitContext *gb, int channels, int out_ch)
  1207. {
  1208. int i;
  1209. for (i = 0; i < channels; i++) {
  1210. int mix_map_mask = get_bits(gb, out_ch);
  1211. int num_coeffs = av_popcount(mix_map_mask);
  1212. skip_bits_long(gb, num_coeffs * 6);
  1213. }
  1214. }
  1215. /**
  1216. * Parse extension substream asset header (HD)
  1217. */
  1218. static int dca_exss_parse_asset_header(DCAContext *s)
  1219. {
  1220. int header_pos = get_bits_count(&s->gb);
  1221. int header_size;
  1222. int channels;
  1223. int embedded_stereo = 0;
  1224. int embedded_6ch = 0;
  1225. int drc_code_present;
  1226. int extensions_mask;
  1227. int i, j;
  1228. if (get_bits_left(&s->gb) < 16)
  1229. return -1;
  1230. /* We will parse just enough to get to the extensions bitmask with which
  1231. * we can set the profile value. */
  1232. header_size = get_bits(&s->gb, 9) + 1;
  1233. skip_bits(&s->gb, 3); // asset index
  1234. if (s->static_fields) {
  1235. if (get_bits1(&s->gb))
  1236. skip_bits(&s->gb, 4); // asset type descriptor
  1237. if (get_bits1(&s->gb))
  1238. skip_bits_long(&s->gb, 24); // language descriptor
  1239. if (get_bits1(&s->gb)) {
  1240. /* How can one fit 1024 bytes of text here if the maximum value
  1241. * for the asset header size field above was 512 bytes? */
  1242. int text_length = get_bits(&s->gb, 10) + 1;
  1243. if (get_bits_left(&s->gb) < text_length * 8)
  1244. return -1;
  1245. skip_bits_long(&s->gb, text_length * 8); // info text
  1246. }
  1247. skip_bits(&s->gb, 5); // bit resolution - 1
  1248. skip_bits(&s->gb, 4); // max sample rate code
  1249. channels = get_bits(&s->gb, 8) + 1;
  1250. if (get_bits1(&s->gb)) { // 1-to-1 channels to speakers
  1251. int spkr_remap_sets;
  1252. int spkr_mask_size = 16;
  1253. int num_spkrs[7];
  1254. if (channels > 2)
  1255. embedded_stereo = get_bits1(&s->gb);
  1256. if (channels > 6)
  1257. embedded_6ch = get_bits1(&s->gb);
  1258. if (get_bits1(&s->gb)) {
  1259. spkr_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1260. skip_bits(&s->gb, spkr_mask_size); // spkr activity mask
  1261. }
  1262. spkr_remap_sets = get_bits(&s->gb, 3);
  1263. for (i = 0; i < spkr_remap_sets; i++) {
  1264. /* std layout mask for each remap set */
  1265. num_spkrs[i] = dca_exss_mask2count(get_bits(&s->gb, spkr_mask_size));
  1266. }
  1267. for (i = 0; i < spkr_remap_sets; i++) {
  1268. int num_dec_ch_remaps = get_bits(&s->gb, 5) + 1;
  1269. if (get_bits_left(&s->gb) < 0)
  1270. return -1;
  1271. for (j = 0; j < num_spkrs[i]; j++) {
  1272. int remap_dec_ch_mask = get_bits_long(&s->gb, num_dec_ch_remaps);
  1273. int num_dec_ch = av_popcount(remap_dec_ch_mask);
  1274. skip_bits_long(&s->gb, num_dec_ch * 5); // remap codes
  1275. }
  1276. }
  1277. } else {
  1278. skip_bits(&s->gb, 3); // representation type
  1279. }
  1280. }
  1281. drc_code_present = get_bits1(&s->gb);
  1282. if (drc_code_present)
  1283. get_bits(&s->gb, 8); // drc code
  1284. if (get_bits1(&s->gb))
  1285. skip_bits(&s->gb, 5); // dialog normalization code
  1286. if (drc_code_present && embedded_stereo)
  1287. get_bits(&s->gb, 8); // drc stereo code
  1288. if (s->mix_metadata && get_bits1(&s->gb)) {
  1289. skip_bits(&s->gb, 1); // external mix
  1290. skip_bits(&s->gb, 6); // post mix gain code
  1291. if (get_bits(&s->gb, 2) != 3) // mixer drc code
  1292. skip_bits(&s->gb, 3); // drc limit
  1293. else
  1294. skip_bits(&s->gb, 8); // custom drc code
  1295. if (get_bits1(&s->gb)) // channel specific scaling
  1296. for (i = 0; i < s->num_mix_configs; i++)
  1297. skip_bits_long(&s->gb, s->mix_config_num_ch[i] * 6); // scale codes
  1298. else
  1299. skip_bits_long(&s->gb, s->num_mix_configs * 6); // scale codes
  1300. for (i = 0; i < s->num_mix_configs; i++) {
  1301. if (get_bits_left(&s->gb) < 0)
  1302. return -1;
  1303. dca_exss_skip_mix_coeffs(&s->gb, channels, s->mix_config_num_ch[i]);
  1304. if (embedded_6ch)
  1305. dca_exss_skip_mix_coeffs(&s->gb, 6, s->mix_config_num_ch[i]);
  1306. if (embedded_stereo)
  1307. dca_exss_skip_mix_coeffs(&s->gb, 2, s->mix_config_num_ch[i]);
  1308. }
  1309. }
  1310. switch (get_bits(&s->gb, 2)) {
  1311. case 0: extensions_mask = get_bits(&s->gb, 12); break;
  1312. case 1: extensions_mask = DCA_EXT_EXSS_XLL; break;
  1313. case 2: extensions_mask = DCA_EXT_EXSS_LBR; break;
  1314. case 3: extensions_mask = 0; /* aux coding */ break;
  1315. }
  1316. /* not parsed further, we were only interested in the extensions mask */
  1317. if (get_bits_left(&s->gb) < 0)
  1318. return -1;
  1319. if (get_bits_count(&s->gb) - header_pos > header_size * 8) {
  1320. av_log(s->avctx, AV_LOG_WARNING, "Asset header size mismatch.\n");
  1321. return -1;
  1322. }
  1323. skip_bits_long(&s->gb, header_pos + header_size * 8 - get_bits_count(&s->gb));
  1324. if (extensions_mask & DCA_EXT_EXSS_XLL)
  1325. s->profile = FF_PROFILE_DTS_HD_MA;
  1326. else if (extensions_mask & (DCA_EXT_EXSS_XBR | DCA_EXT_EXSS_X96 |
  1327. DCA_EXT_EXSS_XXCH))
  1328. s->profile = FF_PROFILE_DTS_HD_HRA;
  1329. if (!(extensions_mask & DCA_EXT_CORE))
  1330. av_log(s->avctx, AV_LOG_WARNING, "DTS core detection mismatch.\n");
  1331. if ((extensions_mask & DCA_CORE_EXTS) != s->core_ext_mask)
  1332. av_log(s->avctx, AV_LOG_WARNING, "DTS extensions detection mismatch (%d, %d)\n",
  1333. extensions_mask & DCA_CORE_EXTS, s->core_ext_mask);
  1334. return 0;
  1335. }
  1336. /**
  1337. * Parse extension substream header (HD)
  1338. */
  1339. static void dca_exss_parse_header(DCAContext *s)
  1340. {
  1341. int ss_index;
  1342. int blownup;
  1343. int num_audiop = 1;
  1344. int num_assets = 1;
  1345. int active_ss_mask[8];
  1346. int i, j;
  1347. if (get_bits_left(&s->gb) < 52)
  1348. return;
  1349. skip_bits(&s->gb, 8); // user data
  1350. ss_index = get_bits(&s->gb, 2);
  1351. blownup = get_bits1(&s->gb);
  1352. skip_bits(&s->gb, 8 + 4 * blownup); // header_size
  1353. skip_bits(&s->gb, 16 + 4 * blownup); // hd_size
  1354. s->static_fields = get_bits1(&s->gb);
  1355. if (s->static_fields) {
  1356. skip_bits(&s->gb, 2); // reference clock code
  1357. skip_bits(&s->gb, 3); // frame duration code
  1358. if (get_bits1(&s->gb))
  1359. skip_bits_long(&s->gb, 36); // timestamp
  1360. /* a single stream can contain multiple audio assets that can be
  1361. * combined to form multiple audio presentations */
  1362. num_audiop = get_bits(&s->gb, 3) + 1;
  1363. if (num_audiop > 1) {
  1364. av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio presentations.");
  1365. /* ignore such streams for now */
  1366. return;
  1367. }
  1368. num_assets = get_bits(&s->gb, 3) + 1;
  1369. if (num_assets > 1) {
  1370. av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio assets.");
  1371. /* ignore such streams for now */
  1372. return;
  1373. }
  1374. for (i = 0; i < num_audiop; i++)
  1375. active_ss_mask[i] = get_bits(&s->gb, ss_index + 1);
  1376. for (i = 0; i < num_audiop; i++)
  1377. for (j = 0; j <= ss_index; j++)
  1378. if (active_ss_mask[i] & (1 << j))
  1379. skip_bits(&s->gb, 8); // active asset mask
  1380. s->mix_metadata = get_bits1(&s->gb);
  1381. if (s->mix_metadata) {
  1382. int mix_out_mask_size;
  1383. skip_bits(&s->gb, 2); // adjustment level
  1384. mix_out_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1385. s->num_mix_configs = get_bits(&s->gb, 2) + 1;
  1386. for (i = 0; i < s->num_mix_configs; i++) {
  1387. int mix_out_mask = get_bits(&s->gb, mix_out_mask_size);
  1388. s->mix_config_num_ch[i] = dca_exss_mask2count(mix_out_mask);
  1389. }
  1390. }
  1391. }
  1392. for (i = 0; i < num_assets; i++)
  1393. skip_bits_long(&s->gb, 16 + 4 * blownup); // asset size
  1394. for (i = 0; i < num_assets; i++) {
  1395. if (dca_exss_parse_asset_header(s))
  1396. return;
  1397. }
  1398. /* not parsed further, we were only interested in the extensions mask
  1399. * from the asset header */
  1400. }
  1401. /**
  1402. * Main frame decoding function
  1403. * FIXME add arguments
  1404. */
  1405. static int dca_decode_frame(AVCodecContext * avctx,
  1406. void *data, int *data_size,
  1407. AVPacket *avpkt)
  1408. {
  1409. const uint8_t *buf = avpkt->data;
  1410. int buf_size = avpkt->size;
  1411. int lfe_samples;
  1412. int num_core_channels = 0;
  1413. int i, ret;
  1414. float *samples_flt = data;
  1415. int16_t *samples_s16 = data;
  1416. int out_size;
  1417. DCAContext *s = avctx->priv_data;
  1418. int channels;
  1419. int core_ss_end;
  1420. s->xch_present = 0;
  1421. s->dca_buffer_size = dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  1422. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1423. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1424. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1425. return AVERROR_INVALIDDATA;
  1426. }
  1427. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  1428. if ((ret = dca_parse_frame_header(s)) < 0) {
  1429. //seems like the frame is corrupt, try with the next one
  1430. return ret;
  1431. }
  1432. //set AVCodec values with parsed data
  1433. avctx->sample_rate = s->sample_rate;
  1434. avctx->bit_rate = s->bit_rate;
  1435. avctx->frame_size = s->sample_blocks * 32;
  1436. s->profile = FF_PROFILE_DTS;
  1437. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1438. if ((ret = dca_decode_block(s, 0, i))) {
  1439. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1440. return ret;
  1441. }
  1442. }
  1443. /* record number of core channels incase less than max channels are requested */
  1444. num_core_channels = s->prim_channels;
  1445. if (s->ext_coding)
  1446. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  1447. else
  1448. s->core_ext_mask = 0;
  1449. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1450. /* only scan for extensions if ext_descr was unknown or indicated a
  1451. * supported XCh extension */
  1452. if (s->core_ext_mask < 0 || s->core_ext_mask & DCA_EXT_XCH) {
  1453. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1454. * extensions scan can fill it up */
  1455. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1456. /* extensions start at 32-bit boundaries into bitstream */
  1457. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1458. while(core_ss_end - get_bits_count(&s->gb) >= 32) {
  1459. uint32_t bits = get_bits_long(&s->gb, 32);
  1460. switch(bits) {
  1461. case 0x5a5a5a5a: {
  1462. int ext_amode, xch_fsize;
  1463. s->xch_base_channel = s->prim_channels;
  1464. /* validate sync word using XCHFSIZE field */
  1465. xch_fsize = show_bits(&s->gb, 10);
  1466. if((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1467. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1468. continue;
  1469. /* skip length-to-end-of-frame field for the moment */
  1470. skip_bits(&s->gb, 10);
  1471. s->core_ext_mask |= DCA_EXT_XCH;
  1472. /* extension amode should == 1, number of channels in extension */
  1473. /* AFAIK XCh is not used for more channels */
  1474. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1475. av_log(avctx, AV_LOG_ERROR, "XCh extension amode %d not"
  1476. " supported!\n",ext_amode);
  1477. continue;
  1478. }
  1479. /* much like core primary audio coding header */
  1480. dca_parse_audio_coding_header(s, s->xch_base_channel);
  1481. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1482. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1483. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1484. continue;
  1485. }
  1486. }
  1487. s->xch_present = 1;
  1488. break;
  1489. }
  1490. case 0x47004a03:
  1491. /* XXCh: extended channels */
  1492. /* usually found either in core or HD part in DTS-HD HRA streams,
  1493. * but not in DTS-ES which contains XCh extensions instead */
  1494. s->core_ext_mask |= DCA_EXT_XXCH;
  1495. break;
  1496. case 0x1d95f262: {
  1497. int fsize96 = show_bits(&s->gb, 12) + 1;
  1498. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1499. continue;
  1500. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n", get_bits_count(&s->gb));
  1501. skip_bits(&s->gb, 12);
  1502. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1503. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1504. s->core_ext_mask |= DCA_EXT_X96;
  1505. break;
  1506. }
  1507. }
  1508. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1509. }
  1510. } else {
  1511. /* no supported extensions, skip the rest of the core substream */
  1512. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1513. }
  1514. if (s->core_ext_mask & DCA_EXT_X96)
  1515. s->profile = FF_PROFILE_DTS_96_24;
  1516. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  1517. s->profile = FF_PROFILE_DTS_ES;
  1518. /* check for ExSS (HD part) */
  1519. if (s->dca_buffer_size - s->frame_size > 32
  1520. && get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
  1521. dca_exss_parse_header(s);
  1522. avctx->profile = s->profile;
  1523. channels = s->prim_channels + !!s->lfe;
  1524. if (s->amode<16) {
  1525. avctx->channel_layout = dca_core_channel_layout[s->amode];
  1526. if (s->xch_present && (!avctx->request_channels ||
  1527. avctx->request_channels > num_core_channels + !!s->lfe)) {
  1528. avctx->channel_layout |= AV_CH_BACK_CENTER;
  1529. if (s->lfe) {
  1530. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1531. s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
  1532. } else {
  1533. s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
  1534. }
  1535. } else {
  1536. channels = num_core_channels + !!s->lfe;
  1537. s->xch_present = 0; /* disable further xch processing */
  1538. if (s->lfe) {
  1539. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1540. s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
  1541. } else
  1542. s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
  1543. }
  1544. if (channels > !!s->lfe &&
  1545. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  1546. return AVERROR_INVALIDDATA;
  1547. if (avctx->request_channels == 2 && s->prim_channels > 2) {
  1548. channels = 2;
  1549. s->output = DCA_STEREO;
  1550. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  1551. }
  1552. else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
  1553. static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  1554. s->channel_order_tab = dca_channel_order_native;
  1555. }
  1556. } else {
  1557. av_log(avctx, AV_LOG_ERROR, "Non standard configuration %d !\n",s->amode);
  1558. return AVERROR_INVALIDDATA;
  1559. }
  1560. if (avctx->channels != channels) {
  1561. if (avctx->channels)
  1562. av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
  1563. avctx->channels = channels;
  1564. }
  1565. out_size = 256 / 8 * s->sample_blocks * channels *
  1566. av_get_bytes_per_sample(avctx->sample_fmt);
  1567. if (*data_size < out_size)
  1568. return AVERROR(EINVAL);
  1569. *data_size = out_size;
  1570. /* filter to get final output */
  1571. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1572. dca_filter_channels(s, i);
  1573. /* If this was marked as a DTS-ES stream we need to subtract back- */
  1574. /* channel from SL & SR to remove matrixed back-channel signal */
  1575. if((s->source_pcm_res & 1) && s->xch_present) {
  1576. float* back_chan = s->samples + s->channel_order_tab[s->xch_base_channel] * 256;
  1577. float* lt_chan = s->samples + s->channel_order_tab[s->xch_base_channel - 2] * 256;
  1578. float* rt_chan = s->samples + s->channel_order_tab[s->xch_base_channel - 1] * 256;
  1579. s->dsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  1580. s->dsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  1581. }
  1582. if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT) {
  1583. s->fmt_conv.float_interleave(samples_flt, s->samples_chanptr, 256,
  1584. channels);
  1585. samples_flt += 256 * channels;
  1586. } else {
  1587. s->fmt_conv.float_to_int16_interleave(samples_s16,
  1588. s->samples_chanptr, 256,
  1589. channels);
  1590. samples_s16 += 256 * channels;
  1591. }
  1592. }
  1593. /* update lfe history */
  1594. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  1595. for (i = 0; i < 2 * s->lfe * 4; i++) {
  1596. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  1597. }
  1598. return buf_size;
  1599. }
  1600. /**
  1601. * DCA initialization
  1602. *
  1603. * @param avctx pointer to the AVCodecContext
  1604. */
  1605. static av_cold int dca_decode_init(AVCodecContext * avctx)
  1606. {
  1607. DCAContext *s = avctx->priv_data;
  1608. int i;
  1609. s->avctx = avctx;
  1610. dca_init_vlcs();
  1611. dsputil_init(&s->dsp, avctx);
  1612. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  1613. ff_synth_filter_init(&s->synth);
  1614. ff_dcadsp_init(&s->dcadsp);
  1615. ff_fmt_convert_init(&s->fmt_conv, avctx);
  1616. for (i = 0; i < DCA_PRIM_CHANNELS_MAX+1; i++)
  1617. s->samples_chanptr[i] = s->samples + i * 256;
  1618. if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
  1619. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1620. s->scale_bias = 1.0 / 32768.0;
  1621. } else {
  1622. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  1623. s->scale_bias = 1.0;
  1624. }
  1625. /* allow downmixing to stereo */
  1626. if (avctx->channels > 0 && avctx->request_channels < avctx->channels &&
  1627. avctx->request_channels == 2) {
  1628. avctx->channels = avctx->request_channels;
  1629. }
  1630. return 0;
  1631. }
  1632. static av_cold int dca_decode_end(AVCodecContext * avctx)
  1633. {
  1634. DCAContext *s = avctx->priv_data;
  1635. ff_mdct_end(&s->imdct);
  1636. return 0;
  1637. }
  1638. static const AVProfile profiles[] = {
  1639. { FF_PROFILE_DTS, "DTS" },
  1640. { FF_PROFILE_DTS_ES, "DTS-ES" },
  1641. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  1642. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  1643. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  1644. { FF_PROFILE_UNKNOWN },
  1645. };
  1646. AVCodec ff_dca_decoder = {
  1647. .name = "dca",
  1648. .type = AVMEDIA_TYPE_AUDIO,
  1649. .id = CODEC_ID_DTS,
  1650. .priv_data_size = sizeof(DCAContext),
  1651. .init = dca_decode_init,
  1652. .decode = dca_decode_frame,
  1653. .close = dca_decode_end,
  1654. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  1655. .capabilities = CODEC_CAP_CHANNEL_CONF,
  1656. .sample_fmts = (const enum AVSampleFormat[]) {
  1657. AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
  1658. },
  1659. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  1660. };