You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

406 lines
13KB

  1. /*
  2. * Atrac 1 compatible decoder
  3. * Copyright (c) 2009 Maxim Poliakovski
  4. * Copyright (c) 2009 Benjamin Larsson
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Atrac 1 compatible decoder.
  25. * This decoder handles raw ATRAC1 data and probably SDDS data.
  26. */
  27. /* Many thanks to Tim Craig for all the help! */
  28. #include <math.h>
  29. #include <stddef.h>
  30. #include <stdio.h>
  31. #include "avcodec.h"
  32. #include "get_bits.h"
  33. #include "dsputil.h"
  34. #include "fft.h"
  35. #include "fmtconvert.h"
  36. #include "sinewin.h"
  37. #include "atrac.h"
  38. #include "atrac1data.h"
  39. #define AT1_MAX_BFU 52 ///< max number of block floating units in a sound unit
  40. #define AT1_SU_SIZE 212 ///< number of bytes in a sound unit
  41. #define AT1_SU_SAMPLES 512 ///< number of samples in a sound unit
  42. #define AT1_FRAME_SIZE AT1_SU_SIZE * 2
  43. #define AT1_SU_MAX_BITS AT1_SU_SIZE * 8
  44. #define AT1_MAX_CHANNELS 2
  45. #define AT1_QMF_BANDS 3
  46. #define IDX_LOW_BAND 0
  47. #define IDX_MID_BAND 1
  48. #define IDX_HIGH_BAND 2
  49. /**
  50. * Sound unit struct, one unit is used per channel
  51. */
  52. typedef struct {
  53. int log2_block_count[AT1_QMF_BANDS]; ///< log2 number of blocks in a band
  54. int num_bfus; ///< number of Block Floating Units
  55. float* spectrum[2];
  56. DECLARE_ALIGNED(32, float, spec1)[AT1_SU_SAMPLES]; ///< mdct buffer
  57. DECLARE_ALIGNED(32, float, spec2)[AT1_SU_SAMPLES]; ///< mdct buffer
  58. DECLARE_ALIGNED(32, float, fst_qmf_delay)[46]; ///< delay line for the 1st stacked QMF filter
  59. DECLARE_ALIGNED(32, float, snd_qmf_delay)[46]; ///< delay line for the 2nd stacked QMF filter
  60. DECLARE_ALIGNED(32, float, last_qmf_delay)[256+23]; ///< delay line for the last stacked QMF filter
  61. } AT1SUCtx;
  62. /**
  63. * The atrac1 context, holds all needed parameters for decoding
  64. */
  65. typedef struct {
  66. AT1SUCtx SUs[AT1_MAX_CHANNELS]; ///< channel sound unit
  67. DECLARE_ALIGNED(32, float, spec)[AT1_SU_SAMPLES]; ///< the mdct spectrum buffer
  68. DECLARE_ALIGNED(32, float, low)[256];
  69. DECLARE_ALIGNED(32, float, mid)[256];
  70. DECLARE_ALIGNED(32, float, high)[512];
  71. float* bands[3];
  72. float *out_samples[AT1_MAX_CHANNELS];
  73. FFTContext mdct_ctx[3];
  74. int channels;
  75. DSPContext dsp;
  76. FmtConvertContext fmt_conv;
  77. } AT1Ctx;
  78. /** size of the transform in samples in the long mode for each QMF band */
  79. static const uint16_t samples_per_band[3] = {128, 128, 256};
  80. static const uint8_t mdct_long_nbits[3] = {7, 7, 8};
  81. static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
  82. int rev_spec)
  83. {
  84. FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
  85. int transf_size = 1 << nbits;
  86. if (rev_spec) {
  87. int i;
  88. for (i = 0; i < transf_size / 2; i++)
  89. FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
  90. }
  91. mdct_context->imdct_half(mdct_context, out, spec);
  92. }
  93. static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
  94. {
  95. int band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
  96. unsigned int start_pos, ref_pos = 0, pos = 0;
  97. for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
  98. float *prev_buf;
  99. int j;
  100. band_samples = samples_per_band[band_num];
  101. log2_block_count = su->log2_block_count[band_num];
  102. /* number of mdct blocks in the current QMF band: 1 - for long mode */
  103. /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
  104. num_blocks = 1 << log2_block_count;
  105. if (num_blocks == 1) {
  106. /* mdct block size in samples: 128 (long mode, low & mid bands), */
  107. /* 256 (long mode, high band) and 32 (short mode, all bands) */
  108. block_size = band_samples >> log2_block_count;
  109. /* calc transform size in bits according to the block_size_mode */
  110. nbits = mdct_long_nbits[band_num] - log2_block_count;
  111. if (nbits != 5 && nbits != 7 && nbits != 8)
  112. return AVERROR_INVALIDDATA;
  113. } else {
  114. block_size = 32;
  115. nbits = 5;
  116. }
  117. start_pos = 0;
  118. prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
  119. for (j=0; j < num_blocks; j++) {
  120. at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
  121. /* overlap and window */
  122. q->dsp.vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
  123. &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16);
  124. prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
  125. start_pos += block_size;
  126. pos += block_size;
  127. }
  128. if (num_blocks == 1)
  129. memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
  130. ref_pos += band_samples;
  131. }
  132. /* Swap buffers so the mdct overlap works */
  133. FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
  134. return 0;
  135. }
  136. /**
  137. * Parse the block size mode byte
  138. */
  139. static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
  140. {
  141. int log2_block_count_tmp, i;
  142. for (i = 0; i < 2; i++) {
  143. /* low and mid band */
  144. log2_block_count_tmp = get_bits(gb, 2);
  145. if (log2_block_count_tmp & 1)
  146. return AVERROR_INVALIDDATA;
  147. log2_block_cnt[i] = 2 - log2_block_count_tmp;
  148. }
  149. /* high band */
  150. log2_block_count_tmp = get_bits(gb, 2);
  151. if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
  152. return AVERROR_INVALIDDATA;
  153. log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
  154. skip_bits(gb, 2);
  155. return 0;
  156. }
  157. static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
  158. float spec[AT1_SU_SAMPLES])
  159. {
  160. int bits_used, band_num, bfu_num, i;
  161. uint8_t idwls[AT1_MAX_BFU]; ///< the word length indexes for each BFU
  162. uint8_t idsfs[AT1_MAX_BFU]; ///< the scalefactor indexes for each BFU
  163. /* parse the info byte (2nd byte) telling how much BFUs were coded */
  164. su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
  165. /* calc number of consumed bits:
  166. num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
  167. + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
  168. bits_used = su->num_bfus * 10 + 32 +
  169. bfu_amount_tab2[get_bits(gb, 2)] +
  170. (bfu_amount_tab3[get_bits(gb, 3)] << 1);
  171. /* get word length index (idwl) for each BFU */
  172. for (i = 0; i < su->num_bfus; i++)
  173. idwls[i] = get_bits(gb, 4);
  174. /* get scalefactor index (idsf) for each BFU */
  175. for (i = 0; i < su->num_bfus; i++)
  176. idsfs[i] = get_bits(gb, 6);
  177. /* zero idwl/idsf for empty BFUs */
  178. for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
  179. idwls[i] = idsfs[i] = 0;
  180. /* read in the spectral data and reconstruct MDCT spectrum of this channel */
  181. for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
  182. for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
  183. int pos;
  184. int num_specs = specs_per_bfu[bfu_num];
  185. int word_len = !!idwls[bfu_num] + idwls[bfu_num];
  186. float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]];
  187. bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
  188. /* check for bitstream overflow */
  189. if (bits_used > AT1_SU_MAX_BITS)
  190. return AVERROR_INVALIDDATA;
  191. /* get the position of the 1st spec according to the block size mode */
  192. pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
  193. if (word_len) {
  194. float max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
  195. for (i = 0; i < num_specs; i++) {
  196. /* read in a quantized spec and convert it to
  197. * signed int and then inverse quantization
  198. */
  199. spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
  200. }
  201. } else { /* word_len = 0 -> empty BFU, zero all specs in the emty BFU */
  202. memset(&spec[pos], 0, num_specs * sizeof(float));
  203. }
  204. }
  205. }
  206. return 0;
  207. }
  208. static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
  209. {
  210. float temp[256];
  211. float iqmf_temp[512 + 46];
  212. /* combine low and middle bands */
  213. atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
  214. /* delay the signal of the high band by 23 samples */
  215. memcpy( su->last_qmf_delay, &su->last_qmf_delay[256], sizeof(float) * 23);
  216. memcpy(&su->last_qmf_delay[23], q->bands[2], sizeof(float) * 256);
  217. /* combine (low + middle) and high bands */
  218. atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
  219. }
  220. static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
  221. int *data_size, AVPacket *avpkt)
  222. {
  223. const uint8_t *buf = avpkt->data;
  224. int buf_size = avpkt->size;
  225. AT1Ctx *q = avctx->priv_data;
  226. int ch, ret, out_size;
  227. GetBitContext gb;
  228. float* samples = data;
  229. if (buf_size < 212 * q->channels) {
  230. av_log(avctx, AV_LOG_ERROR, "Not enough data to decode!\n");
  231. return AVERROR_INVALIDDATA;
  232. }
  233. out_size = q->channels * AT1_SU_SAMPLES *
  234. av_get_bytes_per_sample(avctx->sample_fmt);
  235. if (*data_size < out_size) {
  236. av_log(avctx, AV_LOG_ERROR, "Output buffer is too small\n");
  237. return AVERROR(EINVAL);
  238. }
  239. for (ch = 0; ch < q->channels; ch++) {
  240. AT1SUCtx* su = &q->SUs[ch];
  241. init_get_bits(&gb, &buf[212 * ch], 212 * 8);
  242. /* parse block_size_mode, 1st byte */
  243. ret = at1_parse_bsm(&gb, su->log2_block_count);
  244. if (ret < 0)
  245. return ret;
  246. ret = at1_unpack_dequant(&gb, su, q->spec);
  247. if (ret < 0)
  248. return ret;
  249. ret = at1_imdct_block(su, q);
  250. if (ret < 0)
  251. return ret;
  252. at1_subband_synthesis(q, su, q->channels == 1 ? samples : q->out_samples[ch]);
  253. }
  254. /* interleave */
  255. if (q->channels == 2) {
  256. q->fmt_conv.float_interleave(samples, (const float **)q->out_samples,
  257. AT1_SU_SAMPLES, 2);
  258. }
  259. *data_size = out_size;
  260. return avctx->block_align;
  261. }
  262. static av_cold int atrac1_decode_end(AVCodecContext * avctx)
  263. {
  264. AT1Ctx *q = avctx->priv_data;
  265. av_freep(&q->out_samples[0]);
  266. ff_mdct_end(&q->mdct_ctx[0]);
  267. ff_mdct_end(&q->mdct_ctx[1]);
  268. ff_mdct_end(&q->mdct_ctx[2]);
  269. return 0;
  270. }
  271. static av_cold int atrac1_decode_init(AVCodecContext *avctx)
  272. {
  273. AT1Ctx *q = avctx->priv_data;
  274. int ret;
  275. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  276. if (avctx->channels < 1 || avctx->channels > AT1_MAX_CHANNELS) {
  277. av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n",
  278. avctx->channels);
  279. return AVERROR(EINVAL);
  280. }
  281. q->channels = avctx->channels;
  282. if (avctx->channels == 2) {
  283. q->out_samples[0] = av_malloc(2 * AT1_SU_SAMPLES * sizeof(*q->out_samples[0]));
  284. q->out_samples[1] = q->out_samples[0] + AT1_SU_SAMPLES;
  285. if (!q->out_samples[0]) {
  286. av_freep(&q->out_samples[0]);
  287. return AVERROR(ENOMEM);
  288. }
  289. }
  290. /* Init the mdct transforms */
  291. if ((ret = ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15))) ||
  292. (ret = ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15))) ||
  293. (ret = ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15)))) {
  294. av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
  295. atrac1_decode_end(avctx);
  296. return ret;
  297. }
  298. ff_init_ff_sine_windows(5);
  299. atrac_generate_tables();
  300. dsputil_init(&q->dsp, avctx);
  301. ff_fmt_convert_init(&q->fmt_conv, avctx);
  302. q->bands[0] = q->low;
  303. q->bands[1] = q->mid;
  304. q->bands[2] = q->high;
  305. /* Prepare the mdct overlap buffers */
  306. q->SUs[0].spectrum[0] = q->SUs[0].spec1;
  307. q->SUs[0].spectrum[1] = q->SUs[0].spec2;
  308. q->SUs[1].spectrum[0] = q->SUs[1].spec1;
  309. q->SUs[1].spectrum[1] = q->SUs[1].spec2;
  310. return 0;
  311. }
  312. AVCodec ff_atrac1_decoder = {
  313. .name = "atrac1",
  314. .type = AVMEDIA_TYPE_AUDIO,
  315. .id = CODEC_ID_ATRAC1,
  316. .priv_data_size = sizeof(AT1Ctx),
  317. .init = atrac1_decode_init,
  318. .close = atrac1_decode_end,
  319. .decode = atrac1_decode_frame,
  320. .long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"),
  321. };