You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1223 lines
44KB

  1. /*
  2. * Copyright (c) 2001-2003 The ffmpeg Project
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "avcodec.h"
  21. #include "get_bits.h"
  22. #include "put_bits.h"
  23. #include "bytestream.h"
  24. #include "adpcm.h"
  25. #include "adpcm_data.h"
  26. /**
  27. * @file
  28. * ADPCM decoders
  29. * First version by Francois Revol (revol@free.fr)
  30. * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
  31. * by Mike Melanson (melanson@pcisys.net)
  32. * CD-ROM XA ADPCM codec by BERO
  33. * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
  34. * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
  35. * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
  36. * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
  37. * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
  38. * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
  39. * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
  40. *
  41. * Features and limitations:
  42. *
  43. * Reference documents:
  44. * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
  45. * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
  46. * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
  47. * http://openquicktime.sourceforge.net/
  48. * XAnim sources (xa_codec.c) http://xanim.polter.net/
  49. * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
  50. * SoX source code http://sox.sourceforge.net/
  51. *
  52. * CD-ROM XA:
  53. * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
  54. * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
  55. * readstr http://www.geocities.co.jp/Playtown/2004/
  56. */
  57. /* These are for CD-ROM XA ADPCM */
  58. static const int xa_adpcm_table[5][2] = {
  59. { 0, 0 },
  60. { 60, 0 },
  61. { 115, -52 },
  62. { 98, -55 },
  63. { 122, -60 }
  64. };
  65. static const int ea_adpcm_table[] = {
  66. 0, 240, 460, 392,
  67. 0, 0, -208, -220,
  68. 0, 1, 3, 4,
  69. 7, 8, 10, 11,
  70. 0, -1, -3, -4
  71. };
  72. // padded to zero where table size is less then 16
  73. static const int swf_index_tables[4][16] = {
  74. /*2*/ { -1, 2 },
  75. /*3*/ { -1, -1, 2, 4 },
  76. /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
  77. /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
  78. };
  79. /* end of tables */
  80. typedef struct ADPCMDecodeContext {
  81. ADPCMChannelStatus status[6];
  82. } ADPCMDecodeContext;
  83. static av_cold int adpcm_decode_init(AVCodecContext * avctx)
  84. {
  85. ADPCMDecodeContext *c = avctx->priv_data;
  86. unsigned int max_channels = 2;
  87. switch(avctx->codec->id) {
  88. case CODEC_ID_ADPCM_EA_R1:
  89. case CODEC_ID_ADPCM_EA_R2:
  90. case CODEC_ID_ADPCM_EA_R3:
  91. case CODEC_ID_ADPCM_EA_XAS:
  92. max_channels = 6;
  93. break;
  94. }
  95. if(avctx->channels > max_channels){
  96. return -1;
  97. }
  98. switch(avctx->codec->id) {
  99. case CODEC_ID_ADPCM_CT:
  100. c->status[0].step = c->status[1].step = 511;
  101. break;
  102. case CODEC_ID_ADPCM_IMA_WAV:
  103. if (avctx->bits_per_coded_sample != 4) {
  104. av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
  105. return -1;
  106. }
  107. break;
  108. case CODEC_ID_ADPCM_IMA_WS:
  109. if (avctx->extradata && avctx->extradata_size == 2 * 4) {
  110. c->status[0].predictor = AV_RL32(avctx->extradata);
  111. c->status[1].predictor = AV_RL32(avctx->extradata + 4);
  112. }
  113. break;
  114. default:
  115. break;
  116. }
  117. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  118. return 0;
  119. }
  120. static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
  121. {
  122. int step_index;
  123. int predictor;
  124. int sign, delta, diff, step;
  125. step = ff_adpcm_step_table[c->step_index];
  126. step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
  127. if (step_index < 0) step_index = 0;
  128. else if (step_index > 88) step_index = 88;
  129. sign = nibble & 8;
  130. delta = nibble & 7;
  131. /* perform direct multiplication instead of series of jumps proposed by
  132. * the reference ADPCM implementation since modern CPUs can do the mults
  133. * quickly enough */
  134. diff = ((2 * delta + 1) * step) >> shift;
  135. predictor = c->predictor;
  136. if (sign) predictor -= diff;
  137. else predictor += diff;
  138. c->predictor = av_clip_int16(predictor);
  139. c->step_index = step_index;
  140. return (short)c->predictor;
  141. }
  142. static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
  143. {
  144. int step_index;
  145. int predictor;
  146. int diff, step;
  147. step = ff_adpcm_step_table[c->step_index];
  148. step_index = c->step_index + ff_adpcm_index_table[nibble];
  149. step_index = av_clip(step_index, 0, 88);
  150. diff = step >> 3;
  151. if (nibble & 4) diff += step;
  152. if (nibble & 2) diff += step >> 1;
  153. if (nibble & 1) diff += step >> 2;
  154. if (nibble & 8)
  155. predictor = c->predictor - diff;
  156. else
  157. predictor = c->predictor + diff;
  158. c->predictor = av_clip_int16(predictor);
  159. c->step_index = step_index;
  160. return c->predictor;
  161. }
  162. static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
  163. {
  164. int predictor;
  165. predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
  166. predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
  167. c->sample2 = c->sample1;
  168. c->sample1 = av_clip_int16(predictor);
  169. c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
  170. if (c->idelta < 16) c->idelta = 16;
  171. return c->sample1;
  172. }
  173. static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
  174. {
  175. int sign, delta, diff;
  176. int new_step;
  177. sign = nibble & 8;
  178. delta = nibble & 7;
  179. /* perform direct multiplication instead of series of jumps proposed by
  180. * the reference ADPCM implementation since modern CPUs can do the mults
  181. * quickly enough */
  182. diff = ((2 * delta + 1) * c->step) >> 3;
  183. /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
  184. c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
  185. c->predictor = av_clip_int16(c->predictor);
  186. /* calculate new step and clamp it to range 511..32767 */
  187. new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
  188. c->step = av_clip(new_step, 511, 32767);
  189. return (short)c->predictor;
  190. }
  191. static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
  192. {
  193. int sign, delta, diff;
  194. sign = nibble & (1<<(size-1));
  195. delta = nibble & ((1<<(size-1))-1);
  196. diff = delta << (7 + c->step + shift);
  197. /* clamp result */
  198. c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
  199. /* calculate new step */
  200. if (delta >= (2*size - 3) && c->step < 3)
  201. c->step++;
  202. else if (delta == 0 && c->step > 0)
  203. c->step--;
  204. return (short) c->predictor;
  205. }
  206. static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
  207. {
  208. if(!c->step) {
  209. c->predictor = 0;
  210. c->step = 127;
  211. }
  212. c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
  213. c->predictor = av_clip_int16(c->predictor);
  214. c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
  215. c->step = av_clip(c->step, 127, 24567);
  216. return c->predictor;
  217. }
  218. static void xa_decode(short *out, const unsigned char *in,
  219. ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
  220. {
  221. int i, j;
  222. int shift,filter,f0,f1;
  223. int s_1,s_2;
  224. int d,s,t;
  225. for(i=0;i<4;i++) {
  226. shift = 12 - (in[4+i*2] & 15);
  227. filter = in[4+i*2] >> 4;
  228. f0 = xa_adpcm_table[filter][0];
  229. f1 = xa_adpcm_table[filter][1];
  230. s_1 = left->sample1;
  231. s_2 = left->sample2;
  232. for(j=0;j<28;j++) {
  233. d = in[16+i+j*4];
  234. t = (signed char)(d<<4)>>4;
  235. s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
  236. s_2 = s_1;
  237. s_1 = av_clip_int16(s);
  238. *out = s_1;
  239. out += inc;
  240. }
  241. if (inc==2) { /* stereo */
  242. left->sample1 = s_1;
  243. left->sample2 = s_2;
  244. s_1 = right->sample1;
  245. s_2 = right->sample2;
  246. out = out + 1 - 28*2;
  247. }
  248. shift = 12 - (in[5+i*2] & 15);
  249. filter = in[5+i*2] >> 4;
  250. f0 = xa_adpcm_table[filter][0];
  251. f1 = xa_adpcm_table[filter][1];
  252. for(j=0;j<28;j++) {
  253. d = in[16+i+j*4];
  254. t = (signed char)d >> 4;
  255. s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
  256. s_2 = s_1;
  257. s_1 = av_clip_int16(s);
  258. *out = s_1;
  259. out += inc;
  260. }
  261. if (inc==2) { /* stereo */
  262. right->sample1 = s_1;
  263. right->sample2 = s_2;
  264. out -= 1;
  265. } else {
  266. left->sample1 = s_1;
  267. left->sample2 = s_2;
  268. }
  269. }
  270. }
  271. /**
  272. * Get the number of samples that will be decoded from the packet.
  273. * In one case, this is actually the maximum number of samples possible to
  274. * decode with the given buf_size.
  275. *
  276. * @param[out] coded_samples set to the number of samples as coded in the
  277. * packet, or 0 if the codec does not encode the
  278. * number of samples in each frame.
  279. */
  280. static int get_nb_samples(AVCodecContext *avctx, const uint8_t *buf,
  281. int buf_size, int *coded_samples)
  282. {
  283. ADPCMDecodeContext *s = avctx->priv_data;
  284. int nb_samples = 0;
  285. int ch = avctx->channels;
  286. int has_coded_samples = 0;
  287. int header_size;
  288. *coded_samples = 0;
  289. switch (avctx->codec->id) {
  290. /* constant, only check buf_size */
  291. case CODEC_ID_ADPCM_EA_XAS:
  292. if (buf_size < 76 * ch)
  293. return 0;
  294. nb_samples = 128;
  295. break;
  296. case CODEC_ID_ADPCM_IMA_QT:
  297. if (buf_size < 34 * ch)
  298. return 0;
  299. nb_samples = 64;
  300. break;
  301. /* simple 4-bit adpcm */
  302. case CODEC_ID_ADPCM_CT:
  303. case CODEC_ID_ADPCM_IMA_EA_SEAD:
  304. case CODEC_ID_ADPCM_IMA_WS:
  305. case CODEC_ID_ADPCM_YAMAHA:
  306. nb_samples = buf_size * 2 / ch;
  307. break;
  308. }
  309. if (nb_samples)
  310. return nb_samples;
  311. /* simple 4-bit adpcm, with header */
  312. header_size = 0;
  313. switch (avctx->codec->id) {
  314. case CODEC_ID_ADPCM_4XM:
  315. case CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
  316. case CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
  317. case CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break;
  318. }
  319. if (header_size > 0)
  320. return (buf_size - header_size) * 2 / ch;
  321. /* more complex formats */
  322. switch (avctx->codec->id) {
  323. case CODEC_ID_ADPCM_EA:
  324. has_coded_samples = 1;
  325. if (buf_size < 4)
  326. return 0;
  327. *coded_samples = AV_RL32(buf);
  328. *coded_samples -= *coded_samples % 28;
  329. nb_samples = (buf_size - 12) / 30 * 28;
  330. break;
  331. case CODEC_ID_ADPCM_IMA_EA_EACS:
  332. has_coded_samples = 1;
  333. if (buf_size < 4)
  334. return 0;
  335. *coded_samples = AV_RL32(buf);
  336. nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
  337. break;
  338. case CODEC_ID_ADPCM_EA_MAXIS_XA:
  339. nb_samples = ((buf_size - ch) / (2 * ch)) * 2 * ch;
  340. break;
  341. case CODEC_ID_ADPCM_EA_R1:
  342. case CODEC_ID_ADPCM_EA_R2:
  343. case CODEC_ID_ADPCM_EA_R3:
  344. /* maximum number of samples */
  345. /* has internal offsets and a per-frame switch to signal raw 16-bit */
  346. has_coded_samples = 1;
  347. if (buf_size < 4)
  348. return 0;
  349. switch (avctx->codec->id) {
  350. case CODEC_ID_ADPCM_EA_R1:
  351. header_size = 4 + 9 * ch;
  352. *coded_samples = AV_RL32(buf);
  353. break;
  354. case CODEC_ID_ADPCM_EA_R2:
  355. header_size = 4 + 5 * ch;
  356. *coded_samples = AV_RL32(buf);
  357. break;
  358. case CODEC_ID_ADPCM_EA_R3:
  359. header_size = 4 + 5 * ch;
  360. *coded_samples = AV_RB32(buf);
  361. break;
  362. }
  363. *coded_samples -= *coded_samples % 28;
  364. nb_samples = (buf_size - header_size) * 2 / ch;
  365. nb_samples -= nb_samples % 28;
  366. break;
  367. case CODEC_ID_ADPCM_IMA_DK3:
  368. if (avctx->block_align > 0)
  369. buf_size = FFMIN(buf_size, avctx->block_align);
  370. nb_samples = ((buf_size - 16) * 8 / 3) / ch;
  371. break;
  372. case CODEC_ID_ADPCM_IMA_DK4:
  373. nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
  374. break;
  375. case CODEC_ID_ADPCM_IMA_WAV:
  376. if (avctx->block_align > 0)
  377. buf_size = FFMIN(buf_size, avctx->block_align);
  378. nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
  379. break;
  380. case CODEC_ID_ADPCM_MS:
  381. if (avctx->block_align > 0)
  382. buf_size = FFMIN(buf_size, avctx->block_align);
  383. nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
  384. break;
  385. case CODEC_ID_ADPCM_SBPRO_2:
  386. case CODEC_ID_ADPCM_SBPRO_3:
  387. case CODEC_ID_ADPCM_SBPRO_4:
  388. {
  389. int samples_per_byte;
  390. switch (avctx->codec->id) {
  391. case CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
  392. case CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
  393. case CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
  394. }
  395. if (!s->status[0].step_index) {
  396. nb_samples++;
  397. buf_size -= ch;
  398. }
  399. nb_samples += buf_size * samples_per_byte / ch;
  400. break;
  401. }
  402. case CODEC_ID_ADPCM_SWF:
  403. {
  404. int buf_bits = buf_size * 8 - 2;
  405. int nbits = (buf[0] >> 6) + 2;
  406. int block_hdr_size = 22 * ch;
  407. int block_size = block_hdr_size + nbits * ch * 4095;
  408. int nblocks = buf_bits / block_size;
  409. int bits_left = buf_bits - nblocks * block_size;
  410. nb_samples = nblocks * 4096;
  411. if (bits_left >= block_hdr_size)
  412. nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
  413. break;
  414. }
  415. case CODEC_ID_ADPCM_THP:
  416. has_coded_samples = 1;
  417. if (buf_size < 8)
  418. return 0;
  419. *coded_samples = AV_RB32(&buf[4]);
  420. *coded_samples -= *coded_samples % 14;
  421. nb_samples = (buf_size - 80) / (8 * ch) * 14;
  422. break;
  423. case CODEC_ID_ADPCM_XA:
  424. nb_samples = (buf_size / 128) * 224 / ch;
  425. break;
  426. }
  427. /* validate coded sample count */
  428. if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
  429. return AVERROR_INVALIDDATA;
  430. return nb_samples;
  431. }
  432. /* DK3 ADPCM support macro */
  433. #define DK3_GET_NEXT_NIBBLE() \
  434. if (decode_top_nibble_next) \
  435. { \
  436. nibble = last_byte >> 4; \
  437. decode_top_nibble_next = 0; \
  438. } \
  439. else \
  440. { \
  441. if (end_of_packet) \
  442. break; \
  443. last_byte = *src++; \
  444. if (src >= buf + buf_size) \
  445. end_of_packet = 1; \
  446. nibble = last_byte & 0x0F; \
  447. decode_top_nibble_next = 1; \
  448. }
  449. static int adpcm_decode_frame(AVCodecContext *avctx,
  450. void *data, int *data_size,
  451. AVPacket *avpkt)
  452. {
  453. const uint8_t *buf = avpkt->data;
  454. int buf_size = avpkt->size;
  455. ADPCMDecodeContext *c = avctx->priv_data;
  456. ADPCMChannelStatus *cs;
  457. int n, m, channel, i;
  458. short *samples;
  459. const uint8_t *src;
  460. int st; /* stereo */
  461. int count1, count2;
  462. int nb_samples, coded_samples, out_bps, out_size;
  463. nb_samples = get_nb_samples(avctx, buf, buf_size, &coded_samples);
  464. if (nb_samples <= 0) {
  465. av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
  466. return AVERROR_INVALIDDATA;
  467. }
  468. out_bps = av_get_bytes_per_sample(avctx->sample_fmt);
  469. out_size = nb_samples * avctx->channels * out_bps;
  470. if (*data_size < out_size) {
  471. av_log(avctx, AV_LOG_ERROR, "output buffer is too small\n");
  472. return AVERROR(EINVAL);
  473. }
  474. /* use coded_samples when applicable */
  475. /* it is always <= nb_samples, so the output buffer will be large enough */
  476. if (coded_samples) {
  477. if (coded_samples != nb_samples)
  478. av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
  479. nb_samples = coded_samples;
  480. out_size = nb_samples * avctx->channels * out_bps;
  481. }
  482. samples = data;
  483. src = buf;
  484. st = avctx->channels == 2 ? 1 : 0;
  485. switch(avctx->codec->id) {
  486. case CODEC_ID_ADPCM_IMA_QT:
  487. /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
  488. Channel data is interleaved per-chunk. */
  489. for (channel = 0; channel < avctx->channels; channel++) {
  490. int16_t predictor;
  491. int step_index;
  492. cs = &(c->status[channel]);
  493. /* (pppppp) (piiiiiii) */
  494. /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
  495. predictor = AV_RB16(src);
  496. step_index = predictor & 0x7F;
  497. predictor &= 0xFF80;
  498. src += 2;
  499. if (cs->step_index == step_index) {
  500. int diff = (int)predictor - cs->predictor;
  501. if (diff < 0)
  502. diff = - diff;
  503. if (diff > 0x7f)
  504. goto update;
  505. } else {
  506. update:
  507. cs->step_index = step_index;
  508. cs->predictor = predictor;
  509. }
  510. if (cs->step_index > 88){
  511. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
  512. cs->step_index = 88;
  513. }
  514. samples = (short*)data + channel;
  515. for (m = 0; m < 32; m++) {
  516. *samples = adpcm_ima_qt_expand_nibble(cs, src[0] & 0x0F, 3);
  517. samples += avctx->channels;
  518. *samples = adpcm_ima_qt_expand_nibble(cs, src[0] >> 4 , 3);
  519. samples += avctx->channels;
  520. src ++;
  521. }
  522. }
  523. break;
  524. case CODEC_ID_ADPCM_IMA_WAV:
  525. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  526. buf_size = avctx->block_align;
  527. for(i=0; i<avctx->channels; i++){
  528. cs = &(c->status[i]);
  529. cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
  530. cs->step_index = *src++;
  531. if (cs->step_index > 88){
  532. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
  533. cs->step_index = 88;
  534. }
  535. if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
  536. }
  537. for (n = (nb_samples - 1) / 8; n > 0; n--) {
  538. for (i = 0; i < avctx->channels; i++) {
  539. cs = &c->status[i];
  540. for (m = 0; m < 4; m++) {
  541. uint8_t v = *src++;
  542. *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
  543. samples += avctx->channels;
  544. *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
  545. samples += avctx->channels;
  546. }
  547. samples -= 8 * avctx->channels - 1;
  548. }
  549. samples += 7 * avctx->channels;
  550. }
  551. break;
  552. case CODEC_ID_ADPCM_4XM:
  553. for (i = 0; i < avctx->channels; i++)
  554. c->status[i].predictor= (int16_t)bytestream_get_le16(&src);
  555. for (i = 0; i < avctx->channels; i++) {
  556. c->status[i].step_index= (int16_t)bytestream_get_le16(&src);
  557. c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
  558. }
  559. for (i = 0; i < avctx->channels; i++) {
  560. samples = (short*)data + i;
  561. cs = &c->status[i];
  562. for (n = nb_samples >> 1; n > 0; n--, src++) {
  563. uint8_t v = *src;
  564. *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
  565. samples += avctx->channels;
  566. *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
  567. samples += avctx->channels;
  568. }
  569. }
  570. break;
  571. case CODEC_ID_ADPCM_MS:
  572. {
  573. int block_predictor;
  574. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  575. buf_size = avctx->block_align;
  576. block_predictor = av_clip(*src++, 0, 6);
  577. c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
  578. c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
  579. if (st) {
  580. block_predictor = av_clip(*src++, 0, 6);
  581. c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
  582. c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
  583. }
  584. c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
  585. if (st){
  586. c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
  587. }
  588. c->status[0].sample1 = bytestream_get_le16(&src);
  589. if (st) c->status[1].sample1 = bytestream_get_le16(&src);
  590. c->status[0].sample2 = bytestream_get_le16(&src);
  591. if (st) c->status[1].sample2 = bytestream_get_le16(&src);
  592. *samples++ = c->status[0].sample2;
  593. if (st) *samples++ = c->status[1].sample2;
  594. *samples++ = c->status[0].sample1;
  595. if (st) *samples++ = c->status[1].sample1;
  596. for(n = (nb_samples - 2) >> (1 - st); n > 0; n--, src++) {
  597. *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
  598. *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
  599. }
  600. break;
  601. }
  602. case CODEC_ID_ADPCM_IMA_DK4:
  603. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  604. buf_size = avctx->block_align;
  605. for (channel = 0; channel < avctx->channels; channel++) {
  606. cs = &c->status[channel];
  607. cs->predictor = (int16_t)bytestream_get_le16(&src);
  608. cs->step_index = *src++;
  609. src++;
  610. *samples++ = cs->predictor;
  611. }
  612. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  613. uint8_t v = *src;
  614. *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
  615. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
  616. }
  617. break;
  618. case CODEC_ID_ADPCM_IMA_DK3:
  619. {
  620. unsigned char last_byte = 0;
  621. unsigned char nibble;
  622. int decode_top_nibble_next = 0;
  623. int end_of_packet = 0;
  624. int diff_channel;
  625. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  626. buf_size = avctx->block_align;
  627. c->status[0].predictor = (int16_t)AV_RL16(src + 10);
  628. c->status[1].predictor = (int16_t)AV_RL16(src + 12);
  629. c->status[0].step_index = src[14];
  630. c->status[1].step_index = src[15];
  631. /* sign extend the predictors */
  632. src += 16;
  633. diff_channel = c->status[1].predictor;
  634. /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
  635. * the buffer is consumed */
  636. while (1) {
  637. /* for this algorithm, c->status[0] is the sum channel and
  638. * c->status[1] is the diff channel */
  639. /* process the first predictor of the sum channel */
  640. DK3_GET_NEXT_NIBBLE();
  641. adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
  642. /* process the diff channel predictor */
  643. DK3_GET_NEXT_NIBBLE();
  644. adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
  645. /* process the first pair of stereo PCM samples */
  646. diff_channel = (diff_channel + c->status[1].predictor) / 2;
  647. *samples++ = c->status[0].predictor + c->status[1].predictor;
  648. *samples++ = c->status[0].predictor - c->status[1].predictor;
  649. /* process the second predictor of the sum channel */
  650. DK3_GET_NEXT_NIBBLE();
  651. adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
  652. /* process the second pair of stereo PCM samples */
  653. diff_channel = (diff_channel + c->status[1].predictor) / 2;
  654. *samples++ = c->status[0].predictor + c->status[1].predictor;
  655. *samples++ = c->status[0].predictor - c->status[1].predictor;
  656. }
  657. break;
  658. }
  659. case CODEC_ID_ADPCM_IMA_ISS:
  660. for (channel = 0; channel < avctx->channels; channel++) {
  661. cs = &c->status[channel];
  662. cs->predictor = (int16_t)bytestream_get_le16(&src);
  663. cs->step_index = *src++;
  664. src++;
  665. }
  666. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  667. uint8_t v1, v2;
  668. uint8_t v = *src;
  669. /* nibbles are swapped for mono */
  670. if (st) {
  671. v1 = v >> 4;
  672. v2 = v & 0x0F;
  673. } else {
  674. v2 = v >> 4;
  675. v1 = v & 0x0F;
  676. }
  677. *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
  678. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
  679. }
  680. break;
  681. case CODEC_ID_ADPCM_IMA_WS:
  682. while (src < buf + buf_size) {
  683. uint8_t v = *src++;
  684. *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
  685. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
  686. }
  687. break;
  688. case CODEC_ID_ADPCM_XA:
  689. while (buf_size >= 128) {
  690. xa_decode(samples, src, &c->status[0], &c->status[1],
  691. avctx->channels);
  692. src += 128;
  693. samples += 28 * 8;
  694. buf_size -= 128;
  695. }
  696. break;
  697. case CODEC_ID_ADPCM_IMA_EA_EACS:
  698. src += 4; // skip sample count (already read)
  699. for (i=0; i<=st; i++)
  700. c->status[i].step_index = bytestream_get_le32(&src);
  701. for (i=0; i<=st; i++)
  702. c->status[i].predictor = bytestream_get_le32(&src);
  703. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  704. *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
  705. *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
  706. }
  707. break;
  708. case CODEC_ID_ADPCM_IMA_EA_SEAD:
  709. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  710. *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
  711. *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
  712. }
  713. break;
  714. case CODEC_ID_ADPCM_EA:
  715. {
  716. int32_t previous_left_sample, previous_right_sample;
  717. int32_t current_left_sample, current_right_sample;
  718. int32_t next_left_sample, next_right_sample;
  719. int32_t coeff1l, coeff2l, coeff1r, coeff2r;
  720. uint8_t shift_left, shift_right;
  721. /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
  722. each coding 28 stereo samples. */
  723. src += 4; // skip sample count (already read)
  724. current_left_sample = (int16_t)bytestream_get_le16(&src);
  725. previous_left_sample = (int16_t)bytestream_get_le16(&src);
  726. current_right_sample = (int16_t)bytestream_get_le16(&src);
  727. previous_right_sample = (int16_t)bytestream_get_le16(&src);
  728. for (count1 = 0; count1 < nb_samples / 28; count1++) {
  729. coeff1l = ea_adpcm_table[ *src >> 4 ];
  730. coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
  731. coeff1r = ea_adpcm_table[*src & 0x0F];
  732. coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
  733. src++;
  734. shift_left = 20 - (*src >> 4);
  735. shift_right = 20 - (*src & 0x0F);
  736. src++;
  737. for (count2 = 0; count2 < 28; count2++) {
  738. next_left_sample = sign_extend(*src >> 4, 4) << shift_left;
  739. next_right_sample = sign_extend(*src, 4) << shift_right;
  740. src++;
  741. next_left_sample = (next_left_sample +
  742. (current_left_sample * coeff1l) +
  743. (previous_left_sample * coeff2l) + 0x80) >> 8;
  744. next_right_sample = (next_right_sample +
  745. (current_right_sample * coeff1r) +
  746. (previous_right_sample * coeff2r) + 0x80) >> 8;
  747. previous_left_sample = current_left_sample;
  748. current_left_sample = av_clip_int16(next_left_sample);
  749. previous_right_sample = current_right_sample;
  750. current_right_sample = av_clip_int16(next_right_sample);
  751. *samples++ = (unsigned short)current_left_sample;
  752. *samples++ = (unsigned short)current_right_sample;
  753. }
  754. }
  755. if (src - buf == buf_size - 2)
  756. src += 2; // Skip terminating 0x0000
  757. break;
  758. }
  759. case CODEC_ID_ADPCM_EA_MAXIS_XA:
  760. {
  761. int coeff[2][2], shift[2];
  762. for(channel = 0; channel < avctx->channels; channel++) {
  763. for (i=0; i<2; i++)
  764. coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
  765. shift[channel] = 20 - (*src & 0x0F);
  766. src++;
  767. }
  768. for (count1 = 0; count1 < nb_samples / 2; count1++) {
  769. for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
  770. for(channel = 0; channel < avctx->channels; channel++) {
  771. int32_t sample = sign_extend(src[channel] >> i, 4) << shift[channel];
  772. sample = (sample +
  773. c->status[channel].sample1 * coeff[channel][0] +
  774. c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
  775. c->status[channel].sample2 = c->status[channel].sample1;
  776. c->status[channel].sample1 = av_clip_int16(sample);
  777. *samples++ = c->status[channel].sample1;
  778. }
  779. }
  780. src+=avctx->channels;
  781. }
  782. /* consume whole packet */
  783. src = buf + buf_size;
  784. break;
  785. }
  786. case CODEC_ID_ADPCM_EA_R1:
  787. case CODEC_ID_ADPCM_EA_R2:
  788. case CODEC_ID_ADPCM_EA_R3: {
  789. /* channel numbering
  790. 2chan: 0=fl, 1=fr
  791. 4chan: 0=fl, 1=rl, 2=fr, 3=rr
  792. 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
  793. const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
  794. int32_t previous_sample, current_sample, next_sample;
  795. int32_t coeff1, coeff2;
  796. uint8_t shift;
  797. unsigned int channel;
  798. uint16_t *samplesC;
  799. const uint8_t *srcC;
  800. const uint8_t *src_end = buf + buf_size;
  801. int count = 0;
  802. src += 4; // skip sample count (already read)
  803. for (channel=0; channel<avctx->channels; channel++) {
  804. int32_t offset = (big_endian ? bytestream_get_be32(&src)
  805. : bytestream_get_le32(&src))
  806. + (avctx->channels-channel-1) * 4;
  807. if ((offset < 0) || (offset >= src_end - src - 4)) break;
  808. srcC = src + offset;
  809. samplesC = samples + channel;
  810. if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
  811. current_sample = (int16_t)bytestream_get_le16(&srcC);
  812. previous_sample = (int16_t)bytestream_get_le16(&srcC);
  813. } else {
  814. current_sample = c->status[channel].predictor;
  815. previous_sample = c->status[channel].prev_sample;
  816. }
  817. for (count1 = 0; count1 < nb_samples / 28; count1++) {
  818. if (*srcC == 0xEE) { /* only seen in R2 and R3 */
  819. srcC++;
  820. if (srcC > src_end - 30*2) break;
  821. current_sample = (int16_t)bytestream_get_be16(&srcC);
  822. previous_sample = (int16_t)bytestream_get_be16(&srcC);
  823. for (count2=0; count2<28; count2++) {
  824. *samplesC = (int16_t)bytestream_get_be16(&srcC);
  825. samplesC += avctx->channels;
  826. }
  827. } else {
  828. coeff1 = ea_adpcm_table[ *srcC>>4 ];
  829. coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
  830. shift = 20 - (*srcC++ & 0x0F);
  831. if (srcC > src_end - 14) break;
  832. for (count2=0; count2<28; count2++) {
  833. if (count2 & 1)
  834. next_sample = sign_extend(*srcC++, 4) << shift;
  835. else
  836. next_sample = sign_extend(*srcC >> 4, 4) << shift;
  837. next_sample += (current_sample * coeff1) +
  838. (previous_sample * coeff2);
  839. next_sample = av_clip_int16(next_sample >> 8);
  840. previous_sample = current_sample;
  841. current_sample = next_sample;
  842. *samplesC = current_sample;
  843. samplesC += avctx->channels;
  844. }
  845. }
  846. }
  847. if (!count) {
  848. count = count1;
  849. } else if (count != count1) {
  850. av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
  851. count = FFMAX(count, count1);
  852. }
  853. if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
  854. c->status[channel].predictor = current_sample;
  855. c->status[channel].prev_sample = previous_sample;
  856. }
  857. }
  858. out_size = count * 28 * avctx->channels * out_bps;
  859. src = src_end;
  860. break;
  861. }
  862. case CODEC_ID_ADPCM_EA_XAS:
  863. for (channel=0; channel<avctx->channels; channel++) {
  864. int coeff[2][4], shift[4];
  865. short *s2, *s = &samples[channel];
  866. for (n=0; n<4; n++, s+=32*avctx->channels) {
  867. for (i=0; i<2; i++)
  868. coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
  869. shift[n] = 20 - (src[2] & 0x0F);
  870. for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
  871. s2[0] = (src[0]&0xF0) + (src[1]<<8);
  872. }
  873. for (m=2; m<32; m+=2) {
  874. s = &samples[m*avctx->channels + channel];
  875. for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
  876. for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
  877. int level = sign_extend(*src >> (4 - i), 4) << shift[n];
  878. int pred = s2[-1*avctx->channels] * coeff[0][n]
  879. + s2[-2*avctx->channels] * coeff[1][n];
  880. s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
  881. }
  882. }
  883. }
  884. }
  885. break;
  886. case CODEC_ID_ADPCM_IMA_AMV:
  887. case CODEC_ID_ADPCM_IMA_SMJPEG:
  888. c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
  889. c->status[0].step_index = bytestream_get_le16(&src);
  890. if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
  891. src+=4;
  892. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  893. char hi, lo;
  894. lo = *src & 0x0F;
  895. hi = *src >> 4;
  896. if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
  897. FFSWAP(char, hi, lo);
  898. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  899. lo, 3);
  900. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  901. hi, 3);
  902. }
  903. break;
  904. case CODEC_ID_ADPCM_CT:
  905. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  906. uint8_t v = *src;
  907. *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
  908. *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
  909. }
  910. break;
  911. case CODEC_ID_ADPCM_SBPRO_4:
  912. case CODEC_ID_ADPCM_SBPRO_3:
  913. case CODEC_ID_ADPCM_SBPRO_2:
  914. if (!c->status[0].step_index) {
  915. /* the first byte is a raw sample */
  916. *samples++ = 128 * (*src++ - 0x80);
  917. if (st)
  918. *samples++ = 128 * (*src++ - 0x80);
  919. c->status[0].step_index = 1;
  920. nb_samples--;
  921. }
  922. if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
  923. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  924. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  925. src[0] >> 4, 4, 0);
  926. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  927. src[0] & 0x0F, 4, 0);
  928. }
  929. } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
  930. for (n = nb_samples / 3; n > 0; n--, src++) {
  931. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  932. src[0] >> 5 , 3, 0);
  933. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  934. (src[0] >> 2) & 0x07, 3, 0);
  935. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  936. src[0] & 0x03, 2, 0);
  937. }
  938. } else {
  939. for (n = nb_samples >> (2 - st); n > 0; n--, src++) {
  940. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  941. src[0] >> 6 , 2, 2);
  942. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  943. (src[0] >> 4) & 0x03, 2, 2);
  944. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  945. (src[0] >> 2) & 0x03, 2, 2);
  946. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  947. src[0] & 0x03, 2, 2);
  948. }
  949. }
  950. break;
  951. case CODEC_ID_ADPCM_SWF:
  952. {
  953. GetBitContext gb;
  954. const int *table;
  955. int k0, signmask, nb_bits, count;
  956. int size = buf_size*8;
  957. init_get_bits(&gb, buf, size);
  958. //read bits & initial values
  959. nb_bits = get_bits(&gb, 2)+2;
  960. //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
  961. table = swf_index_tables[nb_bits-2];
  962. k0 = 1 << (nb_bits-2);
  963. signmask = 1 << (nb_bits-1);
  964. while (get_bits_count(&gb) <= size - 22*avctx->channels) {
  965. for (i = 0; i < avctx->channels; i++) {
  966. *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
  967. c->status[i].step_index = get_bits(&gb, 6);
  968. }
  969. for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
  970. int i;
  971. for (i = 0; i < avctx->channels; i++) {
  972. // similar to IMA adpcm
  973. int delta = get_bits(&gb, nb_bits);
  974. int step = ff_adpcm_step_table[c->status[i].step_index];
  975. long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
  976. int k = k0;
  977. do {
  978. if (delta & k)
  979. vpdiff += step;
  980. step >>= 1;
  981. k >>= 1;
  982. } while(k);
  983. vpdiff += step;
  984. if (delta & signmask)
  985. c->status[i].predictor -= vpdiff;
  986. else
  987. c->status[i].predictor += vpdiff;
  988. c->status[i].step_index += table[delta & (~signmask)];
  989. c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
  990. c->status[i].predictor = av_clip_int16(c->status[i].predictor);
  991. *samples++ = c->status[i].predictor;
  992. }
  993. }
  994. }
  995. src += buf_size;
  996. break;
  997. }
  998. case CODEC_ID_ADPCM_YAMAHA:
  999. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  1000. uint8_t v = *src;
  1001. *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
  1002. *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
  1003. }
  1004. break;
  1005. case CODEC_ID_ADPCM_THP:
  1006. {
  1007. int table[2][16];
  1008. int prev[2][2];
  1009. int ch;
  1010. src += 4; // skip channel size
  1011. src += 4; // skip number of samples (already read)
  1012. for (i = 0; i < 32; i++)
  1013. table[0][i] = (int16_t)bytestream_get_be16(&src);
  1014. /* Initialize the previous sample. */
  1015. for (i = 0; i < 4; i++)
  1016. prev[0][i] = (int16_t)bytestream_get_be16(&src);
  1017. for (ch = 0; ch <= st; ch++) {
  1018. samples = (unsigned short *) data + ch;
  1019. /* Read in every sample for this channel. */
  1020. for (i = 0; i < nb_samples / 14; i++) {
  1021. int index = (*src >> 4) & 7;
  1022. unsigned int exp = *src++ & 15;
  1023. int factor1 = table[ch][index * 2];
  1024. int factor2 = table[ch][index * 2 + 1];
  1025. /* Decode 14 samples. */
  1026. for (n = 0; n < 14; n++) {
  1027. int32_t sampledat;
  1028. if(n&1) sampledat = sign_extend(*src++, 4);
  1029. else sampledat = sign_extend(*src >> 4, 4);
  1030. sampledat = ((prev[ch][0]*factor1
  1031. + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
  1032. *samples = av_clip_int16(sampledat);
  1033. prev[ch][1] = prev[ch][0];
  1034. prev[ch][0] = *samples++;
  1035. /* In case of stereo, skip one sample, this sample
  1036. is for the other channel. */
  1037. samples += st;
  1038. }
  1039. }
  1040. }
  1041. break;
  1042. }
  1043. default:
  1044. return -1;
  1045. }
  1046. *data_size = out_size;
  1047. return src - buf;
  1048. }
  1049. #define ADPCM_DECODER(id_, name_, long_name_) \
  1050. AVCodec ff_ ## name_ ## _decoder = { \
  1051. .name = #name_, \
  1052. .type = AVMEDIA_TYPE_AUDIO, \
  1053. .id = id_, \
  1054. .priv_data_size = sizeof(ADPCMDecodeContext), \
  1055. .init = adpcm_decode_init, \
  1056. .decode = adpcm_decode_frame, \
  1057. .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
  1058. }
  1059. /* Note: Do not forget to add new entries to the Makefile as well. */
  1060. ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
  1061. ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
  1062. ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
  1063. ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
  1064. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
  1065. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
  1066. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
  1067. ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
  1068. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
  1069. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
  1070. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
  1071. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
  1072. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
  1073. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
  1074. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
  1075. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
  1076. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
  1077. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
  1078. ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
  1079. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
  1080. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
  1081. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
  1082. ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
  1083. ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
  1084. ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
  1085. ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");