You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

234 lines
6.9KB

  1. /*
  2. * AC-3 DSP utils
  3. * Copyright (c) 2011 Justin Ruggles
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/avassert.h"
  22. #include "avcodec.h"
  23. #include "ac3.h"
  24. #include "ac3dsp.h"
  25. #include "mathops.h"
  26. static void ac3_exponent_min_c(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
  27. {
  28. int blk, i;
  29. if (!num_reuse_blocks)
  30. return;
  31. for (i = 0; i < nb_coefs; i++) {
  32. uint8_t min_exp = *exp;
  33. uint8_t *exp1 = exp + 256;
  34. for (blk = 0; blk < num_reuse_blocks; blk++) {
  35. uint8_t next_exp = *exp1;
  36. if (next_exp < min_exp)
  37. min_exp = next_exp;
  38. exp1 += 256;
  39. }
  40. *exp++ = min_exp;
  41. }
  42. }
  43. static int ac3_max_msb_abs_int16_c(const int16_t *src, int len)
  44. {
  45. int i, v = 0;
  46. for (i = 0; i < len; i++)
  47. v |= abs(src[i]);
  48. return v;
  49. }
  50. static void ac3_lshift_int16_c(int16_t *src, unsigned int len,
  51. unsigned int shift)
  52. {
  53. uint32_t *src32 = (uint32_t *)src;
  54. const uint32_t mask = ~(((1 << shift) - 1) << 16);
  55. int i;
  56. len >>= 1;
  57. for (i = 0; i < len; i += 8) {
  58. src32[i ] = (src32[i ] << shift) & mask;
  59. src32[i+1] = (src32[i+1] << shift) & mask;
  60. src32[i+2] = (src32[i+2] << shift) & mask;
  61. src32[i+3] = (src32[i+3] << shift) & mask;
  62. src32[i+4] = (src32[i+4] << shift) & mask;
  63. src32[i+5] = (src32[i+5] << shift) & mask;
  64. src32[i+6] = (src32[i+6] << shift) & mask;
  65. src32[i+7] = (src32[i+7] << shift) & mask;
  66. }
  67. }
  68. static void ac3_rshift_int32_c(int32_t *src, unsigned int len,
  69. unsigned int shift)
  70. {
  71. do {
  72. *src++ >>= shift;
  73. *src++ >>= shift;
  74. *src++ >>= shift;
  75. *src++ >>= shift;
  76. *src++ >>= shift;
  77. *src++ >>= shift;
  78. *src++ >>= shift;
  79. *src++ >>= shift;
  80. len -= 8;
  81. } while (len > 0);
  82. }
  83. static void float_to_fixed24_c(int32_t *dst, const float *src, unsigned int len)
  84. {
  85. const float scale = 1 << 24;
  86. do {
  87. *dst++ = lrintf(*src++ * scale);
  88. *dst++ = lrintf(*src++ * scale);
  89. *dst++ = lrintf(*src++ * scale);
  90. *dst++ = lrintf(*src++ * scale);
  91. *dst++ = lrintf(*src++ * scale);
  92. *dst++ = lrintf(*src++ * scale);
  93. *dst++ = lrintf(*src++ * scale);
  94. *dst++ = lrintf(*src++ * scale);
  95. len -= 8;
  96. } while (len > 0);
  97. }
  98. static void ac3_bit_alloc_calc_bap_c(int16_t *mask, int16_t *psd,
  99. int start, int end,
  100. int snr_offset, int floor,
  101. const uint8_t *bap_tab, uint8_t *bap)
  102. {
  103. int bin, band;
  104. /* special case, if snr offset is -960, set all bap's to zero */
  105. if (snr_offset == -960) {
  106. memset(bap, 0, AC3_MAX_COEFS);
  107. return;
  108. }
  109. bin = start;
  110. band = ff_ac3_bin_to_band_tab[start];
  111. do {
  112. int m = (FFMAX(mask[band] - snr_offset - floor, 0) & 0x1FE0) + floor;
  113. int band_end = FFMIN(ff_ac3_band_start_tab[band+1], end);
  114. for (; bin < band_end; bin++) {
  115. int address = av_clip((psd[bin] - m) >> 5, 0, 63);
  116. bap[bin] = bap_tab[address];
  117. }
  118. } while (end > ff_ac3_band_start_tab[band++]);
  119. }
  120. static void ac3_update_bap_counts_c(uint16_t mant_cnt[16], uint8_t *bap,
  121. int len)
  122. {
  123. while (len-- > 0)
  124. mant_cnt[bap[len]]++;
  125. }
  126. DECLARE_ALIGNED(16, const uint16_t, ff_ac3_bap_bits)[16] = {
  127. 0, 0, 0, 3, 0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
  128. };
  129. static int ac3_compute_mantissa_size_c(uint16_t mant_cnt[6][16])
  130. {
  131. int blk, bap;
  132. int bits = 0;
  133. for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
  134. // bap=1 : 3 mantissas in 5 bits
  135. bits += (mant_cnt[blk][1] / 3) * 5;
  136. // bap=2 : 3 mantissas in 7 bits
  137. // bap=4 : 2 mantissas in 7 bits
  138. bits += ((mant_cnt[blk][2] / 3) + (mant_cnt[blk][4] >> 1)) * 7;
  139. // bap=3 : 1 mantissa in 3 bits
  140. bits += mant_cnt[blk][3] * 3;
  141. // bap=5 to 15 : get bits per mantissa from table
  142. for (bap = 5; bap < 16; bap++)
  143. bits += mant_cnt[blk][bap] * ff_ac3_bap_bits[bap];
  144. }
  145. return bits;
  146. }
  147. static void ac3_extract_exponents_c(uint8_t *exp, int32_t *coef, int nb_coefs)
  148. {
  149. int i;
  150. for (i = 0; i < nb_coefs; i++) {
  151. int v = abs(coef[i]);
  152. exp[i] = v ? 23 - av_log2(v) : 24;
  153. }
  154. }
  155. static void ac3_sum_square_butterfly_int32_c(int64_t sum[4],
  156. const int32_t *coef0,
  157. const int32_t *coef1,
  158. int len)
  159. {
  160. int i;
  161. sum[0] = sum[1] = sum[2] = sum[3] = 0;
  162. for (i = 0; i < len; i++) {
  163. int lt = coef0[i];
  164. int rt = coef1[i];
  165. int md = lt + rt;
  166. int sd = lt - rt;
  167. MAC64(sum[0], lt, lt);
  168. MAC64(sum[1], rt, rt);
  169. MAC64(sum[2], md, md);
  170. MAC64(sum[3], sd, sd);
  171. }
  172. }
  173. static void ac3_sum_square_butterfly_float_c(float sum[4],
  174. const float *coef0,
  175. const float *coef1,
  176. int len)
  177. {
  178. int i;
  179. sum[0] = sum[1] = sum[2] = sum[3] = 0;
  180. for (i = 0; i < len; i++) {
  181. float lt = coef0[i];
  182. float rt = coef1[i];
  183. float md = lt + rt;
  184. float sd = lt - rt;
  185. sum[0] += lt * lt;
  186. sum[1] += rt * rt;
  187. sum[2] += md * md;
  188. sum[3] += sd * sd;
  189. }
  190. }
  191. av_cold void ff_ac3dsp_init(AC3DSPContext *c, int bit_exact)
  192. {
  193. c->ac3_exponent_min = ac3_exponent_min_c;
  194. c->ac3_max_msb_abs_int16 = ac3_max_msb_abs_int16_c;
  195. c->ac3_lshift_int16 = ac3_lshift_int16_c;
  196. c->ac3_rshift_int32 = ac3_rshift_int32_c;
  197. c->float_to_fixed24 = float_to_fixed24_c;
  198. c->bit_alloc_calc_bap = ac3_bit_alloc_calc_bap_c;
  199. c->update_bap_counts = ac3_update_bap_counts_c;
  200. c->compute_mantissa_size = ac3_compute_mantissa_size_c;
  201. c->extract_exponents = ac3_extract_exponents_c;
  202. c->sum_square_butterfly_int32 = ac3_sum_square_butterfly_int32_c;
  203. c->sum_square_butterfly_float = ac3_sum_square_butterfly_float_c;
  204. if (ARCH_ARM)
  205. ff_ac3dsp_init_arm(c, bit_exact);
  206. if (HAVE_MMX)
  207. ff_ac3dsp_init_x86(c, bit_exact);
  208. }