You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

8258 lines
312KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. *
  21. */
  22. /**
  23. * @file h264.c
  24. * H.264 / AVC / MPEG4 part10 codec.
  25. * @author Michael Niedermayer <michaelni@gmx.at>
  26. */
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "h264.h"
  31. #include "h264data.h"
  32. #include "h264_parser.h"
  33. #include "golomb.h"
  34. #include "cabac.h"
  35. //#undef NDEBUG
  36. #include <assert.h>
  37. static VLC coeff_token_vlc[4];
  38. static VLC chroma_dc_coeff_token_vlc;
  39. static VLC total_zeros_vlc[15];
  40. static VLC chroma_dc_total_zeros_vlc[3];
  41. static VLC run_vlc[6];
  42. static VLC run7_vlc;
  43. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  44. static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  45. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  46. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  47. static av_always_inline uint32_t pack16to32(int a, int b){
  48. #ifdef WORDS_BIGENDIAN
  49. return (b&0xFFFF) + (a<<16);
  50. #else
  51. return (a&0xFFFF) + (b<<16);
  52. #endif
  53. }
  54. const uint8_t ff_rem6[52]={
  55. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  56. };
  57. const uint8_t ff_div6[52]={
  58. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
  59. };
  60. /**
  61. * fill a rectangle.
  62. * @param h height of the rectangle, should be a constant
  63. * @param w width of the rectangle, should be a constant
  64. * @param size the size of val (1 or 4), should be a constant
  65. */
  66. static av_always_inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){
  67. uint8_t *p= (uint8_t*)vp;
  68. assert(size==1 || size==4);
  69. assert(w<=4);
  70. w *= size;
  71. stride *= size;
  72. assert((((long)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0);
  73. assert((stride&(w-1))==0);
  74. if(w==2){
  75. const uint16_t v= size==4 ? val : val*0x0101;
  76. *(uint16_t*)(p + 0*stride)= v;
  77. if(h==1) return;
  78. *(uint16_t*)(p + 1*stride)= v;
  79. if(h==2) return;
  80. *(uint16_t*)(p + 2*stride)=
  81. *(uint16_t*)(p + 3*stride)= v;
  82. }else if(w==4){
  83. const uint32_t v= size==4 ? val : val*0x01010101;
  84. *(uint32_t*)(p + 0*stride)= v;
  85. if(h==1) return;
  86. *(uint32_t*)(p + 1*stride)= v;
  87. if(h==2) return;
  88. *(uint32_t*)(p + 2*stride)=
  89. *(uint32_t*)(p + 3*stride)= v;
  90. }else if(w==8){
  91. //gcc can't optimize 64bit math on x86_32
  92. #if defined(ARCH_X86_64) || (defined(MP_WORDSIZE) && MP_WORDSIZE >= 64)
  93. const uint64_t v= val*0x0100000001ULL;
  94. *(uint64_t*)(p + 0*stride)= v;
  95. if(h==1) return;
  96. *(uint64_t*)(p + 1*stride)= v;
  97. if(h==2) return;
  98. *(uint64_t*)(p + 2*stride)=
  99. *(uint64_t*)(p + 3*stride)= v;
  100. }else if(w==16){
  101. const uint64_t v= val*0x0100000001ULL;
  102. *(uint64_t*)(p + 0+0*stride)=
  103. *(uint64_t*)(p + 8+0*stride)=
  104. *(uint64_t*)(p + 0+1*stride)=
  105. *(uint64_t*)(p + 8+1*stride)= v;
  106. if(h==2) return;
  107. *(uint64_t*)(p + 0+2*stride)=
  108. *(uint64_t*)(p + 8+2*stride)=
  109. *(uint64_t*)(p + 0+3*stride)=
  110. *(uint64_t*)(p + 8+3*stride)= v;
  111. #else
  112. *(uint32_t*)(p + 0+0*stride)=
  113. *(uint32_t*)(p + 4+0*stride)= val;
  114. if(h==1) return;
  115. *(uint32_t*)(p + 0+1*stride)=
  116. *(uint32_t*)(p + 4+1*stride)= val;
  117. if(h==2) return;
  118. *(uint32_t*)(p + 0+2*stride)=
  119. *(uint32_t*)(p + 4+2*stride)=
  120. *(uint32_t*)(p + 0+3*stride)=
  121. *(uint32_t*)(p + 4+3*stride)= val;
  122. }else if(w==16){
  123. *(uint32_t*)(p + 0+0*stride)=
  124. *(uint32_t*)(p + 4+0*stride)=
  125. *(uint32_t*)(p + 8+0*stride)=
  126. *(uint32_t*)(p +12+0*stride)=
  127. *(uint32_t*)(p + 0+1*stride)=
  128. *(uint32_t*)(p + 4+1*stride)=
  129. *(uint32_t*)(p + 8+1*stride)=
  130. *(uint32_t*)(p +12+1*stride)= val;
  131. if(h==2) return;
  132. *(uint32_t*)(p + 0+2*stride)=
  133. *(uint32_t*)(p + 4+2*stride)=
  134. *(uint32_t*)(p + 8+2*stride)=
  135. *(uint32_t*)(p +12+2*stride)=
  136. *(uint32_t*)(p + 0+3*stride)=
  137. *(uint32_t*)(p + 4+3*stride)=
  138. *(uint32_t*)(p + 8+3*stride)=
  139. *(uint32_t*)(p +12+3*stride)= val;
  140. #endif
  141. }else
  142. assert(0);
  143. assert(h==4);
  144. }
  145. static void fill_caches(H264Context *h, int mb_type, int for_deblock){
  146. MpegEncContext * const s = &h->s;
  147. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  148. int topleft_xy, top_xy, topright_xy, left_xy[2];
  149. int topleft_type, top_type, topright_type, left_type[2];
  150. int left_block[8];
  151. int i;
  152. //FIXME deblocking could skip the intra and nnz parts.
  153. if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[mb_xy-s->mb_stride]) && !FRAME_MBAFF)
  154. return;
  155. //wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it
  156. top_xy = mb_xy - s->mb_stride;
  157. topleft_xy = top_xy - 1;
  158. topright_xy= top_xy + 1;
  159. left_xy[1] = left_xy[0] = mb_xy-1;
  160. left_block[0]= 0;
  161. left_block[1]= 1;
  162. left_block[2]= 2;
  163. left_block[3]= 3;
  164. left_block[4]= 7;
  165. left_block[5]= 10;
  166. left_block[6]= 8;
  167. left_block[7]= 11;
  168. if(FRAME_MBAFF){
  169. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  170. const int top_pair_xy = pair_xy - s->mb_stride;
  171. const int topleft_pair_xy = top_pair_xy - 1;
  172. const int topright_pair_xy = top_pair_xy + 1;
  173. const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
  174. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  175. const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
  176. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  177. const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
  178. const int bottom = (s->mb_y & 1);
  179. tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
  180. if (bottom
  181. ? !curr_mb_frame_flag // bottom macroblock
  182. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  183. ) {
  184. top_xy -= s->mb_stride;
  185. }
  186. if (bottom
  187. ? !curr_mb_frame_flag // bottom macroblock
  188. : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
  189. ) {
  190. topleft_xy -= s->mb_stride;
  191. }
  192. if (bottom
  193. ? !curr_mb_frame_flag // bottom macroblock
  194. : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
  195. ) {
  196. topright_xy -= s->mb_stride;
  197. }
  198. if (left_mb_frame_flag != curr_mb_frame_flag) {
  199. left_xy[1] = left_xy[0] = pair_xy - 1;
  200. if (curr_mb_frame_flag) {
  201. if (bottom) {
  202. left_block[0]= 2;
  203. left_block[1]= 2;
  204. left_block[2]= 3;
  205. left_block[3]= 3;
  206. left_block[4]= 8;
  207. left_block[5]= 11;
  208. left_block[6]= 8;
  209. left_block[7]= 11;
  210. } else {
  211. left_block[0]= 0;
  212. left_block[1]= 0;
  213. left_block[2]= 1;
  214. left_block[3]= 1;
  215. left_block[4]= 7;
  216. left_block[5]= 10;
  217. left_block[6]= 7;
  218. left_block[7]= 10;
  219. }
  220. } else {
  221. left_xy[1] += s->mb_stride;
  222. //left_block[0]= 0;
  223. left_block[1]= 2;
  224. left_block[2]= 0;
  225. left_block[3]= 2;
  226. //left_block[4]= 7;
  227. left_block[5]= 10;
  228. left_block[6]= 7;
  229. left_block[7]= 10;
  230. }
  231. }
  232. }
  233. h->top_mb_xy = top_xy;
  234. h->left_mb_xy[0] = left_xy[0];
  235. h->left_mb_xy[1] = left_xy[1];
  236. if(for_deblock){
  237. topleft_type = 0;
  238. topright_type = 0;
  239. top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
  240. left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
  241. left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
  242. if(FRAME_MBAFF && !IS_INTRA(mb_type)){
  243. int list;
  244. int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
  245. for(i=0; i<16; i++)
  246. h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
  247. for(list=0; list<h->list_count; list++){
  248. if(USES_LIST(mb_type,list)){
  249. uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
  250. uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
  251. int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
  252. for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
  253. dst[0] = src[0];
  254. dst[1] = src[1];
  255. dst[2] = src[2];
  256. dst[3] = src[3];
  257. }
  258. *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
  259. *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
  260. ref += h->b8_stride;
  261. *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
  262. *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
  263. }else{
  264. fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
  265. fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
  266. }
  267. }
  268. }
  269. }else{
  270. topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
  271. top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  272. topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
  273. left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  274. left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  275. }
  276. if(IS_INTRA(mb_type)){
  277. h->topleft_samples_available=
  278. h->top_samples_available=
  279. h->left_samples_available= 0xFFFF;
  280. h->topright_samples_available= 0xEEEA;
  281. if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
  282. h->topleft_samples_available= 0xB3FF;
  283. h->top_samples_available= 0x33FF;
  284. h->topright_samples_available= 0x26EA;
  285. }
  286. for(i=0; i<2; i++){
  287. if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
  288. h->topleft_samples_available&= 0xDF5F;
  289. h->left_samples_available&= 0x5F5F;
  290. }
  291. }
  292. if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
  293. h->topleft_samples_available&= 0x7FFF;
  294. if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
  295. h->topright_samples_available&= 0xFBFF;
  296. if(IS_INTRA4x4(mb_type)){
  297. if(IS_INTRA4x4(top_type)){
  298. h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
  299. h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
  300. h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
  301. h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
  302. }else{
  303. int pred;
  304. if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
  305. pred= -1;
  306. else{
  307. pred= 2;
  308. }
  309. h->intra4x4_pred_mode_cache[4+8*0]=
  310. h->intra4x4_pred_mode_cache[5+8*0]=
  311. h->intra4x4_pred_mode_cache[6+8*0]=
  312. h->intra4x4_pred_mode_cache[7+8*0]= pred;
  313. }
  314. for(i=0; i<2; i++){
  315. if(IS_INTRA4x4(left_type[i])){
  316. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
  317. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
  318. }else{
  319. int pred;
  320. if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
  321. pred= -1;
  322. else{
  323. pred= 2;
  324. }
  325. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  326. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
  327. }
  328. }
  329. }
  330. }
  331. /*
  332. 0 . T T. T T T T
  333. 1 L . .L . . . .
  334. 2 L . .L . . . .
  335. 3 . T TL . . . .
  336. 4 L . .L . . . .
  337. 5 L . .. . . . .
  338. */
  339. //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
  340. if(top_type){
  341. h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
  342. h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
  343. h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
  344. h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
  345. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
  346. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
  347. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
  348. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
  349. }else{
  350. h->non_zero_count_cache[4+8*0]=
  351. h->non_zero_count_cache[5+8*0]=
  352. h->non_zero_count_cache[6+8*0]=
  353. h->non_zero_count_cache[7+8*0]=
  354. h->non_zero_count_cache[1+8*0]=
  355. h->non_zero_count_cache[2+8*0]=
  356. h->non_zero_count_cache[1+8*3]=
  357. h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  358. }
  359. for (i=0; i<2; i++) {
  360. if(left_type[i]){
  361. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
  362. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
  363. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
  364. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
  365. }else{
  366. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  367. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  368. h->non_zero_count_cache[0+8*1 + 8*i]=
  369. h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  370. }
  371. }
  372. if( h->pps.cabac ) {
  373. // top_cbp
  374. if(top_type) {
  375. h->top_cbp = h->cbp_table[top_xy];
  376. } else if(IS_INTRA(mb_type)) {
  377. h->top_cbp = 0x1C0;
  378. } else {
  379. h->top_cbp = 0;
  380. }
  381. // left_cbp
  382. if (left_type[0]) {
  383. h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
  384. } else if(IS_INTRA(mb_type)) {
  385. h->left_cbp = 0x1C0;
  386. } else {
  387. h->left_cbp = 0;
  388. }
  389. if (left_type[0]) {
  390. h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
  391. }
  392. if (left_type[1]) {
  393. h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
  394. }
  395. }
  396. #if 1
  397. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  398. int list;
  399. for(list=0; list<h->list_count; list++){
  400. if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
  401. /*if(!h->mv_cache_clean[list]){
  402. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  403. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  404. h->mv_cache_clean[list]= 1;
  405. }*/
  406. continue;
  407. }
  408. h->mv_cache_clean[list]= 0;
  409. if(USES_LIST(top_type, list)){
  410. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  411. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  412. *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
  413. *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
  414. *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
  415. *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
  416. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  417. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
  418. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  419. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
  420. }else{
  421. *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
  422. *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
  423. *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
  424. *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
  425. *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
  426. }
  427. for(i=0; i<2; i++){
  428. int cache_idx = scan8[0] - 1 + i*2*8;
  429. if(USES_LIST(left_type[i], list)){
  430. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  431. const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
  432. *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
  433. *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
  434. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
  435. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
  436. }else{
  437. *(uint32_t*)h->mv_cache [list][cache_idx ]=
  438. *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
  439. h->ref_cache[list][cache_idx ]=
  440. h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  441. }
  442. }
  443. if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
  444. continue;
  445. if(USES_LIST(topleft_type, list)){
  446. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
  447. const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
  448. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  449. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  450. }else{
  451. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
  452. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  453. }
  454. if(USES_LIST(topright_type, list)){
  455. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  456. const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
  457. *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  458. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  459. }else{
  460. *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
  461. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  462. }
  463. if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
  464. continue;
  465. h->ref_cache[list][scan8[5 ]+1] =
  466. h->ref_cache[list][scan8[7 ]+1] =
  467. h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
  468. h->ref_cache[list][scan8[4 ]] =
  469. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  470. *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
  471. *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
  472. *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  473. *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
  474. *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
  475. if( h->pps.cabac ) {
  476. /* XXX beurk, Load mvd */
  477. if(USES_LIST(top_type, list)){
  478. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  479. *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
  480. *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
  481. *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
  482. *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
  483. }else{
  484. *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
  485. *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
  486. *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
  487. *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
  488. }
  489. if(USES_LIST(left_type[0], list)){
  490. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  491. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
  492. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
  493. }else{
  494. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
  495. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
  496. }
  497. if(USES_LIST(left_type[1], list)){
  498. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  499. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
  500. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
  501. }else{
  502. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
  503. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
  504. }
  505. *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
  506. *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
  507. *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  508. *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
  509. *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
  510. if(h->slice_type == B_TYPE){
  511. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
  512. if(IS_DIRECT(top_type)){
  513. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
  514. }else if(IS_8X8(top_type)){
  515. int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
  516. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
  517. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
  518. }else{
  519. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
  520. }
  521. if(IS_DIRECT(left_type[0]))
  522. h->direct_cache[scan8[0] - 1 + 0*8]= 1;
  523. else if(IS_8X8(left_type[0]))
  524. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
  525. else
  526. h->direct_cache[scan8[0] - 1 + 0*8]= 0;
  527. if(IS_DIRECT(left_type[1]))
  528. h->direct_cache[scan8[0] - 1 + 2*8]= 1;
  529. else if(IS_8X8(left_type[1]))
  530. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
  531. else
  532. h->direct_cache[scan8[0] - 1 + 2*8]= 0;
  533. }
  534. }
  535. if(FRAME_MBAFF){
  536. #define MAP_MVS\
  537. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  538. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  539. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  540. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  541. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  542. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  543. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  544. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  545. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  546. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  547. if(MB_FIELD){
  548. #define MAP_F2F(idx, mb_type)\
  549. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  550. h->ref_cache[list][idx] <<= 1;\
  551. h->mv_cache[list][idx][1] /= 2;\
  552. h->mvd_cache[list][idx][1] /= 2;\
  553. }
  554. MAP_MVS
  555. #undef MAP_F2F
  556. }else{
  557. #define MAP_F2F(idx, mb_type)\
  558. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  559. h->ref_cache[list][idx] >>= 1;\
  560. h->mv_cache[list][idx][1] <<= 1;\
  561. h->mvd_cache[list][idx][1] <<= 1;\
  562. }
  563. MAP_MVS
  564. #undef MAP_F2F
  565. }
  566. }
  567. }
  568. }
  569. #endif
  570. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  571. }
  572. static inline void write_back_intra_pred_mode(H264Context *h){
  573. MpegEncContext * const s = &h->s;
  574. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  575. h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
  576. h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
  577. h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
  578. h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
  579. h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
  580. h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
  581. h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
  582. }
  583. /**
  584. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  585. */
  586. static inline int check_intra4x4_pred_mode(H264Context *h){
  587. MpegEncContext * const s = &h->s;
  588. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  589. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  590. int i;
  591. if(!(h->top_samples_available&0x8000)){
  592. for(i=0; i<4; i++){
  593. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  594. if(status<0){
  595. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  596. return -1;
  597. } else if(status){
  598. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  599. }
  600. }
  601. }
  602. if(!(h->left_samples_available&0x8000)){
  603. for(i=0; i<4; i++){
  604. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  605. if(status<0){
  606. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  607. return -1;
  608. } else if(status){
  609. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  610. }
  611. }
  612. }
  613. return 0;
  614. } //FIXME cleanup like next
  615. /**
  616. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  617. */
  618. static inline int check_intra_pred_mode(H264Context *h, int mode){
  619. MpegEncContext * const s = &h->s;
  620. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  621. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  622. if(mode > 6U) {
  623. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  624. return -1;
  625. }
  626. if(!(h->top_samples_available&0x8000)){
  627. mode= top[ mode ];
  628. if(mode<0){
  629. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  630. return -1;
  631. }
  632. }
  633. if(!(h->left_samples_available&0x8000)){
  634. mode= left[ mode ];
  635. if(mode<0){
  636. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  637. return -1;
  638. }
  639. }
  640. return mode;
  641. }
  642. /**
  643. * gets the predicted intra4x4 prediction mode.
  644. */
  645. static inline int pred_intra_mode(H264Context *h, int n){
  646. const int index8= scan8[n];
  647. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  648. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  649. const int min= FFMIN(left, top);
  650. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  651. if(min<0) return DC_PRED;
  652. else return min;
  653. }
  654. static inline void write_back_non_zero_count(H264Context *h){
  655. MpegEncContext * const s = &h->s;
  656. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  657. h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
  658. h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
  659. h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
  660. h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
  661. h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
  662. h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
  663. h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
  664. h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
  665. h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
  666. h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
  667. h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
  668. h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
  669. h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
  670. if(FRAME_MBAFF){
  671. // store all luma nnzs, for deblocking
  672. int v = 0, i;
  673. for(i=0; i<16; i++)
  674. v += (!!h->non_zero_count_cache[scan8[i]]) << i;
  675. *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
  676. }
  677. }
  678. /**
  679. * gets the predicted number of non zero coefficients.
  680. * @param n block index
  681. */
  682. static inline int pred_non_zero_count(H264Context *h, int n){
  683. const int index8= scan8[n];
  684. const int left= h->non_zero_count_cache[index8 - 1];
  685. const int top = h->non_zero_count_cache[index8 - 8];
  686. int i= left + top;
  687. if(i<64) i= (i+1)>>1;
  688. tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  689. return i&31;
  690. }
  691. static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
  692. const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
  693. MpegEncContext *s = &h->s;
  694. /* there is no consistent mapping of mvs to neighboring locations that will
  695. * make mbaff happy, so we can't move all this logic to fill_caches */
  696. if(FRAME_MBAFF){
  697. const uint32_t *mb_types = s->current_picture_ptr->mb_type;
  698. const int16_t *mv;
  699. *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
  700. *C = h->mv_cache[list][scan8[0]-2];
  701. if(!MB_FIELD
  702. && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
  703. int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
  704. if(IS_INTERLACED(mb_types[topright_xy])){
  705. #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
  706. const int x4 = X4, y4 = Y4;\
  707. const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
  708. if(!USES_LIST(mb_type,list) && !IS_8X8(mb_type))\
  709. return LIST_NOT_USED;\
  710. mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
  711. h->mv_cache[list][scan8[0]-2][0] = mv[0];\
  712. h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
  713. return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
  714. SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
  715. }
  716. }
  717. if(topright_ref == PART_NOT_AVAILABLE
  718. && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
  719. && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
  720. if(!MB_FIELD
  721. && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
  722. SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
  723. }
  724. if(MB_FIELD
  725. && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
  726. && i >= scan8[0]+8){
  727. // leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
  728. SET_DIAG_MV(>>1, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
  729. }
  730. }
  731. #undef SET_DIAG_MV
  732. }
  733. if(topright_ref != PART_NOT_AVAILABLE){
  734. *C= h->mv_cache[list][ i - 8 + part_width ];
  735. return topright_ref;
  736. }else{
  737. tprintf(s->avctx, "topright MV not available\n");
  738. *C= h->mv_cache[list][ i - 8 - 1 ];
  739. return h->ref_cache[list][ i - 8 - 1 ];
  740. }
  741. }
  742. /**
  743. * gets the predicted MV.
  744. * @param n the block index
  745. * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
  746. * @param mx the x component of the predicted motion vector
  747. * @param my the y component of the predicted motion vector
  748. */
  749. static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
  750. const int index8= scan8[n];
  751. const int top_ref= h->ref_cache[list][ index8 - 8 ];
  752. const int left_ref= h->ref_cache[list][ index8 - 1 ];
  753. const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
  754. const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
  755. const int16_t * C;
  756. int diagonal_ref, match_count;
  757. assert(part_width==1 || part_width==2 || part_width==4);
  758. /* mv_cache
  759. B . . A T T T T
  760. U . . L . . , .
  761. U . . L . . . .
  762. U . . L . . , .
  763. . . . L . . . .
  764. */
  765. diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
  766. match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
  767. tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
  768. if(match_count > 1){ //most common
  769. *mx= mid_pred(A[0], B[0], C[0]);
  770. *my= mid_pred(A[1], B[1], C[1]);
  771. }else if(match_count==1){
  772. if(left_ref==ref){
  773. *mx= A[0];
  774. *my= A[1];
  775. }else if(top_ref==ref){
  776. *mx= B[0];
  777. *my= B[1];
  778. }else{
  779. *mx= C[0];
  780. *my= C[1];
  781. }
  782. }else{
  783. if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
  784. *mx= A[0];
  785. *my= A[1];
  786. }else{
  787. *mx= mid_pred(A[0], B[0], C[0]);
  788. *my= mid_pred(A[1], B[1], C[1]);
  789. }
  790. }
  791. tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
  792. }
  793. /**
  794. * gets the directionally predicted 16x8 MV.
  795. * @param n the block index
  796. * @param mx the x component of the predicted motion vector
  797. * @param my the y component of the predicted motion vector
  798. */
  799. static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  800. if(n==0){
  801. const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
  802. const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
  803. tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
  804. if(top_ref == ref){
  805. *mx= B[0];
  806. *my= B[1];
  807. return;
  808. }
  809. }else{
  810. const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
  811. const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
  812. tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  813. if(left_ref == ref){
  814. *mx= A[0];
  815. *my= A[1];
  816. return;
  817. }
  818. }
  819. //RARE
  820. pred_motion(h, n, 4, list, ref, mx, my);
  821. }
  822. /**
  823. * gets the directionally predicted 8x16 MV.
  824. * @param n the block index
  825. * @param mx the x component of the predicted motion vector
  826. * @param my the y component of the predicted motion vector
  827. */
  828. static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  829. if(n==0){
  830. const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
  831. const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
  832. tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  833. if(left_ref == ref){
  834. *mx= A[0];
  835. *my= A[1];
  836. return;
  837. }
  838. }else{
  839. const int16_t * C;
  840. int diagonal_ref;
  841. diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
  842. tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
  843. if(diagonal_ref == ref){
  844. *mx= C[0];
  845. *my= C[1];
  846. return;
  847. }
  848. }
  849. //RARE
  850. pred_motion(h, n, 2, list, ref, mx, my);
  851. }
  852. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
  853. const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
  854. const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
  855. tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
  856. if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
  857. || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
  858. || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
  859. *mx = *my = 0;
  860. return;
  861. }
  862. pred_motion(h, 0, 4, 0, 0, mx, my);
  863. return;
  864. }
  865. static inline void direct_dist_scale_factor(H264Context * const h){
  866. const int poc = h->s.current_picture_ptr->poc;
  867. const int poc1 = h->ref_list[1][0].poc;
  868. int i;
  869. for(i=0; i<h->ref_count[0]; i++){
  870. int poc0 = h->ref_list[0][i].poc;
  871. int td = av_clip(poc1 - poc0, -128, 127);
  872. if(td == 0 /* FIXME || pic0 is a long-term ref */){
  873. h->dist_scale_factor[i] = 256;
  874. }else{
  875. int tb = av_clip(poc - poc0, -128, 127);
  876. int tx = (16384 + (FFABS(td) >> 1)) / td;
  877. h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023);
  878. }
  879. }
  880. if(FRAME_MBAFF){
  881. for(i=0; i<h->ref_count[0]; i++){
  882. h->dist_scale_factor_field[2*i] =
  883. h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
  884. }
  885. }
  886. }
  887. static inline void direct_ref_list_init(H264Context * const h){
  888. MpegEncContext * const s = &h->s;
  889. Picture * const ref1 = &h->ref_list[1][0];
  890. Picture * const cur = s->current_picture_ptr;
  891. int list, i, j;
  892. if(cur->pict_type == I_TYPE)
  893. cur->ref_count[0] = 0;
  894. if(cur->pict_type != B_TYPE)
  895. cur->ref_count[1] = 0;
  896. for(list=0; list<2; list++){
  897. cur->ref_count[list] = h->ref_count[list];
  898. for(j=0; j<h->ref_count[list]; j++)
  899. cur->ref_poc[list][j] = h->ref_list[list][j].poc;
  900. }
  901. if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred)
  902. return;
  903. for(list=0; list<2; list++){
  904. for(i=0; i<ref1->ref_count[list]; i++){
  905. const int poc = ref1->ref_poc[list][i];
  906. h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
  907. for(j=0; j<h->ref_count[list]; j++)
  908. if(h->ref_list[list][j].poc == poc){
  909. h->map_col_to_list0[list][i] = j;
  910. break;
  911. }
  912. }
  913. }
  914. if(FRAME_MBAFF){
  915. for(list=0; list<2; list++){
  916. for(i=0; i<ref1->ref_count[list]; i++){
  917. j = h->map_col_to_list0[list][i];
  918. h->map_col_to_list0_field[list][2*i] = 2*j;
  919. h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
  920. }
  921. }
  922. }
  923. }
  924. static inline void pred_direct_motion(H264Context * const h, int *mb_type){
  925. MpegEncContext * const s = &h->s;
  926. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  927. const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  928. const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  929. const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
  930. const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
  931. const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
  932. const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
  933. const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
  934. const int is_b8x8 = IS_8X8(*mb_type);
  935. unsigned int sub_mb_type;
  936. int i8, i4;
  937. #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
  938. if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
  939. /* FIXME save sub mb types from previous frames (or derive from MVs)
  940. * so we know exactly what block size to use */
  941. sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
  942. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  943. }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
  944. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  945. *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
  946. }else{
  947. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  948. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  949. }
  950. if(!is_b8x8)
  951. *mb_type |= MB_TYPE_DIRECT2;
  952. if(MB_FIELD)
  953. *mb_type |= MB_TYPE_INTERLACED;
  954. tprintf(s->avctx, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
  955. if(h->direct_spatial_mv_pred){
  956. int ref[2];
  957. int mv[2][2];
  958. int list;
  959. /* FIXME interlacing + spatial direct uses wrong colocated block positions */
  960. /* ref = min(neighbors) */
  961. for(list=0; list<2; list++){
  962. int refa = h->ref_cache[list][scan8[0] - 1];
  963. int refb = h->ref_cache[list][scan8[0] - 8];
  964. int refc = h->ref_cache[list][scan8[0] - 8 + 4];
  965. if(refc == -2)
  966. refc = h->ref_cache[list][scan8[0] - 8 - 1];
  967. ref[list] = refa;
  968. if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
  969. ref[list] = refb;
  970. if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
  971. ref[list] = refc;
  972. if(ref[list] < 0)
  973. ref[list] = -1;
  974. }
  975. if(ref[0] < 0 && ref[1] < 0){
  976. ref[0] = ref[1] = 0;
  977. mv[0][0] = mv[0][1] =
  978. mv[1][0] = mv[1][1] = 0;
  979. }else{
  980. for(list=0; list<2; list++){
  981. if(ref[list] >= 0)
  982. pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
  983. else
  984. mv[list][0] = mv[list][1] = 0;
  985. }
  986. }
  987. if(ref[1] < 0){
  988. *mb_type &= ~MB_TYPE_P0L1;
  989. sub_mb_type &= ~MB_TYPE_P0L1;
  990. }else if(ref[0] < 0){
  991. *mb_type &= ~MB_TYPE_P0L0;
  992. sub_mb_type &= ~MB_TYPE_P0L0;
  993. }
  994. if(IS_16X16(*mb_type)){
  995. int a=0, b=0;
  996. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
  997. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
  998. if(!IS_INTRA(mb_type_col)
  999. && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
  1000. || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
  1001. && (h->x264_build>33 || !h->x264_build)))){
  1002. if(ref[0] > 0)
  1003. a= pack16to32(mv[0][0],mv[0][1]);
  1004. if(ref[1] > 0)
  1005. b= pack16to32(mv[1][0],mv[1][1]);
  1006. }else{
  1007. a= pack16to32(mv[0][0],mv[0][1]);
  1008. b= pack16to32(mv[1][0],mv[1][1]);
  1009. }
  1010. fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
  1011. fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
  1012. }else{
  1013. for(i8=0; i8<4; i8++){
  1014. const int x8 = i8&1;
  1015. const int y8 = i8>>1;
  1016. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1017. continue;
  1018. h->sub_mb_type[i8] = sub_mb_type;
  1019. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
  1020. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
  1021. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  1022. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  1023. /* col_zero_flag */
  1024. if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
  1025. || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
  1026. && (h->x264_build>33 || !h->x264_build)))){
  1027. const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
  1028. if(IS_SUB_8X8(sub_mb_type)){
  1029. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1030. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1031. if(ref[0] == 0)
  1032. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1033. if(ref[1] == 0)
  1034. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1035. }
  1036. }else
  1037. for(i4=0; i4<4; i4++){
  1038. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1039. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1040. if(ref[0] == 0)
  1041. *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
  1042. if(ref[1] == 0)
  1043. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
  1044. }
  1045. }
  1046. }
  1047. }
  1048. }
  1049. }else{ /* direct temporal mv pred */
  1050. const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
  1051. const int *dist_scale_factor = h->dist_scale_factor;
  1052. if(FRAME_MBAFF){
  1053. if(IS_INTERLACED(*mb_type)){
  1054. map_col_to_list0[0] = h->map_col_to_list0_field[0];
  1055. map_col_to_list0[1] = h->map_col_to_list0_field[1];
  1056. dist_scale_factor = h->dist_scale_factor_field;
  1057. }
  1058. if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
  1059. /* FIXME assumes direct_8x8_inference == 1 */
  1060. const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
  1061. int mb_types_col[2];
  1062. int y_shift;
  1063. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
  1064. | (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
  1065. | (*mb_type & MB_TYPE_INTERLACED);
  1066. sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
  1067. if(IS_INTERLACED(*mb_type)){
  1068. /* frame to field scaling */
  1069. mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
  1070. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  1071. if(s->mb_y&1){
  1072. l1ref0 -= 2*h->b8_stride;
  1073. l1ref1 -= 2*h->b8_stride;
  1074. l1mv0 -= 4*h->b_stride;
  1075. l1mv1 -= 4*h->b_stride;
  1076. }
  1077. y_shift = 0;
  1078. if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
  1079. && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
  1080. && !is_b8x8)
  1081. *mb_type |= MB_TYPE_16x8;
  1082. else
  1083. *mb_type |= MB_TYPE_8x8;
  1084. }else{
  1085. /* field to frame scaling */
  1086. /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
  1087. * but in MBAFF, top and bottom POC are equal */
  1088. int dy = (s->mb_y&1) ? 1 : 2;
  1089. mb_types_col[0] =
  1090. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  1091. l1ref0 += dy*h->b8_stride;
  1092. l1ref1 += dy*h->b8_stride;
  1093. l1mv0 += 2*dy*h->b_stride;
  1094. l1mv1 += 2*dy*h->b_stride;
  1095. y_shift = 2;
  1096. if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
  1097. && !is_b8x8)
  1098. *mb_type |= MB_TYPE_16x16;
  1099. else
  1100. *mb_type |= MB_TYPE_8x8;
  1101. }
  1102. for(i8=0; i8<4; i8++){
  1103. const int x8 = i8&1;
  1104. const int y8 = i8>>1;
  1105. int ref0, scale;
  1106. const int16_t (*l1mv)[2]= l1mv0;
  1107. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1108. continue;
  1109. h->sub_mb_type[i8] = sub_mb_type;
  1110. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1111. if(IS_INTRA(mb_types_col[y8])){
  1112. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1113. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1114. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1115. continue;
  1116. }
  1117. ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
  1118. if(ref0 >= 0)
  1119. ref0 = map_col_to_list0[0][ref0*2>>y_shift];
  1120. else{
  1121. ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
  1122. l1mv= l1mv1;
  1123. }
  1124. scale = dist_scale_factor[ref0];
  1125. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1126. {
  1127. const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
  1128. int my_col = (mv_col[1]<<y_shift)/2;
  1129. int mx = (scale * mv_col[0] + 128) >> 8;
  1130. int my = (scale * my_col + 128) >> 8;
  1131. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1132. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
  1133. }
  1134. }
  1135. return;
  1136. }
  1137. }
  1138. /* one-to-one mv scaling */
  1139. if(IS_16X16(*mb_type)){
  1140. int ref, mv0, mv1;
  1141. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
  1142. if(IS_INTRA(mb_type_col)){
  1143. ref=mv0=mv1=0;
  1144. }else{
  1145. const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
  1146. : map_col_to_list0[1][l1ref1[0]];
  1147. const int scale = dist_scale_factor[ref0];
  1148. const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
  1149. int mv_l0[2];
  1150. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1151. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1152. ref= ref0;
  1153. mv0= pack16to32(mv_l0[0],mv_l0[1]);
  1154. mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1155. }
  1156. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
  1157. fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
  1158. fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
  1159. }else{
  1160. for(i8=0; i8<4; i8++){
  1161. const int x8 = i8&1;
  1162. const int y8 = i8>>1;
  1163. int ref0, scale;
  1164. const int16_t (*l1mv)[2]= l1mv0;
  1165. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1166. continue;
  1167. h->sub_mb_type[i8] = sub_mb_type;
  1168. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1169. if(IS_INTRA(mb_type_col)){
  1170. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1171. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1172. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1173. continue;
  1174. }
  1175. ref0 = l1ref0[x8 + y8*h->b8_stride];
  1176. if(ref0 >= 0)
  1177. ref0 = map_col_to_list0[0][ref0];
  1178. else{
  1179. ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
  1180. l1mv= l1mv1;
  1181. }
  1182. scale = dist_scale_factor[ref0];
  1183. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1184. if(IS_SUB_8X8(sub_mb_type)){
  1185. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1186. int mx = (scale * mv_col[0] + 128) >> 8;
  1187. int my = (scale * mv_col[1] + 128) >> 8;
  1188. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1189. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
  1190. }else
  1191. for(i4=0; i4<4; i4++){
  1192. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1193. int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
  1194. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1195. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1196. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
  1197. pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1198. }
  1199. }
  1200. }
  1201. }
  1202. }
  1203. static inline void write_back_motion(H264Context *h, int mb_type){
  1204. MpegEncContext * const s = &h->s;
  1205. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1206. const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1207. int list;
  1208. if(!USES_LIST(mb_type, 0))
  1209. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
  1210. for(list=0; list<h->list_count; list++){
  1211. int y;
  1212. if(!USES_LIST(mb_type, list))
  1213. continue;
  1214. for(y=0; y<4; y++){
  1215. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
  1216. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
  1217. }
  1218. if( h->pps.cabac ) {
  1219. if(IS_SKIP(mb_type))
  1220. fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
  1221. else
  1222. for(y=0; y<4; y++){
  1223. *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
  1224. *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
  1225. }
  1226. }
  1227. {
  1228. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1229. ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
  1230. ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
  1231. ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
  1232. ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
  1233. }
  1234. }
  1235. if(h->slice_type == B_TYPE && h->pps.cabac){
  1236. if(IS_8X8(mb_type)){
  1237. uint8_t *direct_table = &h->direct_table[b8_xy];
  1238. direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
  1239. direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
  1240. direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
  1241. }
  1242. }
  1243. }
  1244. /**
  1245. * Decodes a network abstraction layer unit.
  1246. * @param consumed is the number of bytes used as input
  1247. * @param length is the length of the array
  1248. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  1249. * @returns decoded bytes, might be src+1 if no escapes
  1250. */
  1251. static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
  1252. int i, si, di;
  1253. uint8_t *dst;
  1254. // src[0]&0x80; //forbidden bit
  1255. h->nal_ref_idc= src[0]>>5;
  1256. h->nal_unit_type= src[0]&0x1F;
  1257. src++; length--;
  1258. #if 0
  1259. for(i=0; i<length; i++)
  1260. printf("%2X ", src[i]);
  1261. #endif
  1262. for(i=0; i+1<length; i+=2){
  1263. if(src[i]) continue;
  1264. if(i>0 && src[i-1]==0) i--;
  1265. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  1266. if(src[i+2]!=3){
  1267. /* startcode, so we must be past the end */
  1268. length=i;
  1269. }
  1270. break;
  1271. }
  1272. }
  1273. if(i>=length-1){ //no escaped 0
  1274. *dst_length= length;
  1275. *consumed= length+1; //+1 for the header
  1276. return src;
  1277. }
  1278. h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
  1279. dst= h->rbsp_buffer;
  1280. if (dst == NULL){
  1281. return NULL;
  1282. }
  1283. //printf("decoding esc\n");
  1284. si=di=0;
  1285. while(si<length){
  1286. //remove escapes (very rare 1:2^22)
  1287. if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
  1288. if(src[si+2]==3){ //escape
  1289. dst[di++]= 0;
  1290. dst[di++]= 0;
  1291. si+=3;
  1292. continue;
  1293. }else //next start code
  1294. break;
  1295. }
  1296. dst[di++]= src[si++];
  1297. }
  1298. *dst_length= di;
  1299. *consumed= si + 1;//+1 for the header
  1300. //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
  1301. return dst;
  1302. }
  1303. /**
  1304. * identifies the exact end of the bitstream
  1305. * @return the length of the trailing, or 0 if damaged
  1306. */
  1307. static int decode_rbsp_trailing(H264Context *h, uint8_t *src){
  1308. int v= *src;
  1309. int r;
  1310. tprintf(h->s.avctx, "rbsp trailing %X\n", v);
  1311. for(r=1; r<9; r++){
  1312. if(v&1) return r;
  1313. v>>=1;
  1314. }
  1315. return 0;
  1316. }
  1317. /**
  1318. * idct tranforms the 16 dc values and dequantize them.
  1319. * @param qp quantization parameter
  1320. */
  1321. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1322. #define stride 16
  1323. int i;
  1324. int temp[16]; //FIXME check if this is a good idea
  1325. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1326. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1327. //memset(block, 64, 2*256);
  1328. //return;
  1329. for(i=0; i<4; i++){
  1330. const int offset= y_offset[i];
  1331. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1332. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1333. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1334. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1335. temp[4*i+0]= z0+z3;
  1336. temp[4*i+1]= z1+z2;
  1337. temp[4*i+2]= z1-z2;
  1338. temp[4*i+3]= z0-z3;
  1339. }
  1340. for(i=0; i<4; i++){
  1341. const int offset= x_offset[i];
  1342. const int z0= temp[4*0+i] + temp[4*2+i];
  1343. const int z1= temp[4*0+i] - temp[4*2+i];
  1344. const int z2= temp[4*1+i] - temp[4*3+i];
  1345. const int z3= temp[4*1+i] + temp[4*3+i];
  1346. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
  1347. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  1348. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  1349. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  1350. }
  1351. }
  1352. #if 0
  1353. /**
  1354. * dct tranforms the 16 dc values.
  1355. * @param qp quantization parameter ??? FIXME
  1356. */
  1357. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  1358. // const int qmul= dequant_coeff[qp][0];
  1359. int i;
  1360. int temp[16]; //FIXME check if this is a good idea
  1361. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1362. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1363. for(i=0; i<4; i++){
  1364. const int offset= y_offset[i];
  1365. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1366. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1367. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1368. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1369. temp[4*i+0]= z0+z3;
  1370. temp[4*i+1]= z1+z2;
  1371. temp[4*i+2]= z1-z2;
  1372. temp[4*i+3]= z0-z3;
  1373. }
  1374. for(i=0; i<4; i++){
  1375. const int offset= x_offset[i];
  1376. const int z0= temp[4*0+i] + temp[4*2+i];
  1377. const int z1= temp[4*0+i] - temp[4*2+i];
  1378. const int z2= temp[4*1+i] - temp[4*3+i];
  1379. const int z3= temp[4*1+i] + temp[4*3+i];
  1380. block[stride*0 +offset]= (z0 + z3)>>1;
  1381. block[stride*2 +offset]= (z1 + z2)>>1;
  1382. block[stride*8 +offset]= (z1 - z2)>>1;
  1383. block[stride*10+offset]= (z0 - z3)>>1;
  1384. }
  1385. }
  1386. #endif
  1387. #undef xStride
  1388. #undef stride
  1389. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1390. const int stride= 16*2;
  1391. const int xStride= 16;
  1392. int a,b,c,d,e;
  1393. a= block[stride*0 + xStride*0];
  1394. b= block[stride*0 + xStride*1];
  1395. c= block[stride*1 + xStride*0];
  1396. d= block[stride*1 + xStride*1];
  1397. e= a-b;
  1398. a= a+b;
  1399. b= c-d;
  1400. c= c+d;
  1401. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  1402. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  1403. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  1404. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  1405. }
  1406. #if 0
  1407. static void chroma_dc_dct_c(DCTELEM *block){
  1408. const int stride= 16*2;
  1409. const int xStride= 16;
  1410. int a,b,c,d,e;
  1411. a= block[stride*0 + xStride*0];
  1412. b= block[stride*0 + xStride*1];
  1413. c= block[stride*1 + xStride*0];
  1414. d= block[stride*1 + xStride*1];
  1415. e= a-b;
  1416. a= a+b;
  1417. b= c-d;
  1418. c= c+d;
  1419. block[stride*0 + xStride*0]= (a+c);
  1420. block[stride*0 + xStride*1]= (e+b);
  1421. block[stride*1 + xStride*0]= (a-c);
  1422. block[stride*1 + xStride*1]= (e-b);
  1423. }
  1424. #endif
  1425. /**
  1426. * gets the chroma qp.
  1427. */
  1428. static inline int get_chroma_qp(int chroma_qp_index_offset, int qscale){
  1429. return chroma_qp[av_clip(qscale + chroma_qp_index_offset, 0, 51)];
  1430. }
  1431. //FIXME need to check that this does not overflow signed 32 bit for low qp, i am not sure, it's very close
  1432. //FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
  1433. static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){
  1434. int i;
  1435. const int * const quant_table= quant_coeff[qscale];
  1436. const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
  1437. const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
  1438. const unsigned int threshold2= (threshold1<<1);
  1439. int last_non_zero;
  1440. if(separate_dc){
  1441. if(qscale<=18){
  1442. //avoid overflows
  1443. const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
  1444. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
  1445. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1446. int level= block[0]*quant_coeff[qscale+18][0];
  1447. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1448. if(level>0){
  1449. level= (dc_bias + level)>>(QUANT_SHIFT-2);
  1450. block[0]= level;
  1451. }else{
  1452. level= (dc_bias - level)>>(QUANT_SHIFT-2);
  1453. block[0]= -level;
  1454. }
  1455. // last_non_zero = i;
  1456. }else{
  1457. block[0]=0;
  1458. }
  1459. }else{
  1460. const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
  1461. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
  1462. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1463. int level= block[0]*quant_table[0];
  1464. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1465. if(level>0){
  1466. level= (dc_bias + level)>>(QUANT_SHIFT+1);
  1467. block[0]= level;
  1468. }else{
  1469. level= (dc_bias - level)>>(QUANT_SHIFT+1);
  1470. block[0]= -level;
  1471. }
  1472. // last_non_zero = i;
  1473. }else{
  1474. block[0]=0;
  1475. }
  1476. }
  1477. last_non_zero= 0;
  1478. i=1;
  1479. }else{
  1480. last_non_zero= -1;
  1481. i=0;
  1482. }
  1483. for(; i<16; i++){
  1484. const int j= scantable[i];
  1485. int level= block[j]*quant_table[j];
  1486. // if( bias+level >= (1<<(QMAT_SHIFT - 3))
  1487. // || bias-level >= (1<<(QMAT_SHIFT - 3))){
  1488. if(((unsigned)(level+threshold1))>threshold2){
  1489. if(level>0){
  1490. level= (bias + level)>>QUANT_SHIFT;
  1491. block[j]= level;
  1492. }else{
  1493. level= (bias - level)>>QUANT_SHIFT;
  1494. block[j]= -level;
  1495. }
  1496. last_non_zero = i;
  1497. }else{
  1498. block[j]=0;
  1499. }
  1500. }
  1501. return last_non_zero;
  1502. }
  1503. static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
  1504. const uint32_t a= ((uint32_t*)(src-stride))[0];
  1505. ((uint32_t*)(src+0*stride))[0]= a;
  1506. ((uint32_t*)(src+1*stride))[0]= a;
  1507. ((uint32_t*)(src+2*stride))[0]= a;
  1508. ((uint32_t*)(src+3*stride))[0]= a;
  1509. }
  1510. static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
  1511. ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
  1512. ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
  1513. ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
  1514. ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
  1515. }
  1516. static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1517. const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
  1518. + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
  1519. ((uint32_t*)(src+0*stride))[0]=
  1520. ((uint32_t*)(src+1*stride))[0]=
  1521. ((uint32_t*)(src+2*stride))[0]=
  1522. ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
  1523. }
  1524. static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1525. const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
  1526. ((uint32_t*)(src+0*stride))[0]=
  1527. ((uint32_t*)(src+1*stride))[0]=
  1528. ((uint32_t*)(src+2*stride))[0]=
  1529. ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
  1530. }
  1531. static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1532. const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
  1533. ((uint32_t*)(src+0*stride))[0]=
  1534. ((uint32_t*)(src+1*stride))[0]=
  1535. ((uint32_t*)(src+2*stride))[0]=
  1536. ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
  1537. }
  1538. static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
  1539. ((uint32_t*)(src+0*stride))[0]=
  1540. ((uint32_t*)(src+1*stride))[0]=
  1541. ((uint32_t*)(src+2*stride))[0]=
  1542. ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
  1543. }
  1544. #define LOAD_TOP_RIGHT_EDGE\
  1545. const int av_unused t4= topright[0];\
  1546. const int av_unused t5= topright[1];\
  1547. const int av_unused t6= topright[2];\
  1548. const int av_unused t7= topright[3];\
  1549. #define LOAD_LEFT_EDGE\
  1550. const int av_unused l0= src[-1+0*stride];\
  1551. const int av_unused l1= src[-1+1*stride];\
  1552. const int av_unused l2= src[-1+2*stride];\
  1553. const int av_unused l3= src[-1+3*stride];\
  1554. #define LOAD_TOP_EDGE\
  1555. const int av_unused t0= src[ 0-1*stride];\
  1556. const int av_unused t1= src[ 1-1*stride];\
  1557. const int av_unused t2= src[ 2-1*stride];\
  1558. const int av_unused t3= src[ 3-1*stride];\
  1559. static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
  1560. const int lt= src[-1-1*stride];
  1561. LOAD_TOP_EDGE
  1562. LOAD_LEFT_EDGE
  1563. src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2;
  1564. src[0+2*stride]=
  1565. src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2;
  1566. src[0+1*stride]=
  1567. src[1+2*stride]=
  1568. src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2;
  1569. src[0+0*stride]=
  1570. src[1+1*stride]=
  1571. src[2+2*stride]=
  1572. src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
  1573. src[1+0*stride]=
  1574. src[2+1*stride]=
  1575. src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
  1576. src[2+0*stride]=
  1577. src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1578. src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
  1579. }
  1580. static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
  1581. LOAD_TOP_EDGE
  1582. LOAD_TOP_RIGHT_EDGE
  1583. // LOAD_LEFT_EDGE
  1584. src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
  1585. src[1+0*stride]=
  1586. src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
  1587. src[2+0*stride]=
  1588. src[1+1*stride]=
  1589. src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
  1590. src[3+0*stride]=
  1591. src[2+1*stride]=
  1592. src[1+2*stride]=
  1593. src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
  1594. src[3+1*stride]=
  1595. src[2+2*stride]=
  1596. src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
  1597. src[3+2*stride]=
  1598. src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
  1599. src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
  1600. }
  1601. static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
  1602. const int lt= src[-1-1*stride];
  1603. LOAD_TOP_EDGE
  1604. LOAD_LEFT_EDGE
  1605. src[0+0*stride]=
  1606. src[1+2*stride]=(lt + t0 + 1)>>1;
  1607. src[1+0*stride]=
  1608. src[2+2*stride]=(t0 + t1 + 1)>>1;
  1609. src[2+0*stride]=
  1610. src[3+2*stride]=(t1 + t2 + 1)>>1;
  1611. src[3+0*stride]=(t2 + t3 + 1)>>1;
  1612. src[0+1*stride]=
  1613. src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
  1614. src[1+1*stride]=
  1615. src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
  1616. src[2+1*stride]=
  1617. src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1618. src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
  1619. src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
  1620. src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
  1621. }
  1622. static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
  1623. LOAD_TOP_EDGE
  1624. LOAD_TOP_RIGHT_EDGE
  1625. src[0+0*stride]=(t0 + t1 + 1)>>1;
  1626. src[1+0*stride]=
  1627. src[0+2*stride]=(t1 + t2 + 1)>>1;
  1628. src[2+0*stride]=
  1629. src[1+2*stride]=(t2 + t3 + 1)>>1;
  1630. src[3+0*stride]=
  1631. src[2+2*stride]=(t3 + t4+ 1)>>1;
  1632. src[3+2*stride]=(t4 + t5+ 1)>>1;
  1633. src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1634. src[1+1*stride]=
  1635. src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
  1636. src[2+1*stride]=
  1637. src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
  1638. src[3+1*stride]=
  1639. src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
  1640. src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
  1641. }
  1642. static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
  1643. LOAD_LEFT_EDGE
  1644. src[0+0*stride]=(l0 + l1 + 1)>>1;
  1645. src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
  1646. src[2+0*stride]=
  1647. src[0+1*stride]=(l1 + l2 + 1)>>1;
  1648. src[3+0*stride]=
  1649. src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
  1650. src[2+1*stride]=
  1651. src[0+2*stride]=(l2 + l3 + 1)>>1;
  1652. src[3+1*stride]=
  1653. src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
  1654. src[3+2*stride]=
  1655. src[1+3*stride]=
  1656. src[0+3*stride]=
  1657. src[2+2*stride]=
  1658. src[2+3*stride]=
  1659. src[3+3*stride]=l3;
  1660. }
  1661. static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
  1662. const int lt= src[-1-1*stride];
  1663. LOAD_TOP_EDGE
  1664. LOAD_LEFT_EDGE
  1665. src[0+0*stride]=
  1666. src[2+1*stride]=(lt + l0 + 1)>>1;
  1667. src[1+0*stride]=
  1668. src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
  1669. src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
  1670. src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
  1671. src[0+1*stride]=
  1672. src[2+2*stride]=(l0 + l1 + 1)>>1;
  1673. src[1+1*stride]=
  1674. src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
  1675. src[0+2*stride]=
  1676. src[2+3*stride]=(l1 + l2+ 1)>>1;
  1677. src[1+2*stride]=
  1678. src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
  1679. src[0+3*stride]=(l2 + l3 + 1)>>1;
  1680. src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
  1681. }
  1682. void ff_pred16x16_vertical_c(uint8_t *src, int stride){
  1683. int i;
  1684. const uint32_t a= ((uint32_t*)(src-stride))[0];
  1685. const uint32_t b= ((uint32_t*)(src-stride))[1];
  1686. const uint32_t c= ((uint32_t*)(src-stride))[2];
  1687. const uint32_t d= ((uint32_t*)(src-stride))[3];
  1688. for(i=0; i<16; i++){
  1689. ((uint32_t*)(src+i*stride))[0]= a;
  1690. ((uint32_t*)(src+i*stride))[1]= b;
  1691. ((uint32_t*)(src+i*stride))[2]= c;
  1692. ((uint32_t*)(src+i*stride))[3]= d;
  1693. }
  1694. }
  1695. void ff_pred16x16_horizontal_c(uint8_t *src, int stride){
  1696. int i;
  1697. for(i=0; i<16; i++){
  1698. ((uint32_t*)(src+i*stride))[0]=
  1699. ((uint32_t*)(src+i*stride))[1]=
  1700. ((uint32_t*)(src+i*stride))[2]=
  1701. ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
  1702. }
  1703. }
  1704. void ff_pred16x16_dc_c(uint8_t *src, int stride){
  1705. int i, dc=0;
  1706. for(i=0;i<16; i++){
  1707. dc+= src[-1+i*stride];
  1708. }
  1709. for(i=0;i<16; i++){
  1710. dc+= src[i-stride];
  1711. }
  1712. dc= 0x01010101*((dc + 16)>>5);
  1713. for(i=0; i<16; i++){
  1714. ((uint32_t*)(src+i*stride))[0]=
  1715. ((uint32_t*)(src+i*stride))[1]=
  1716. ((uint32_t*)(src+i*stride))[2]=
  1717. ((uint32_t*)(src+i*stride))[3]= dc;
  1718. }
  1719. }
  1720. void ff_pred16x16_left_dc_c(uint8_t *src, int stride){
  1721. int i, dc=0;
  1722. for(i=0;i<16; i++){
  1723. dc+= src[-1+i*stride];
  1724. }
  1725. dc= 0x01010101*((dc + 8)>>4);
  1726. for(i=0; i<16; i++){
  1727. ((uint32_t*)(src+i*stride))[0]=
  1728. ((uint32_t*)(src+i*stride))[1]=
  1729. ((uint32_t*)(src+i*stride))[2]=
  1730. ((uint32_t*)(src+i*stride))[3]= dc;
  1731. }
  1732. }
  1733. void ff_pred16x16_top_dc_c(uint8_t *src, int stride){
  1734. int i, dc=0;
  1735. for(i=0;i<16; i++){
  1736. dc+= src[i-stride];
  1737. }
  1738. dc= 0x01010101*((dc + 8)>>4);
  1739. for(i=0; i<16; i++){
  1740. ((uint32_t*)(src+i*stride))[0]=
  1741. ((uint32_t*)(src+i*stride))[1]=
  1742. ((uint32_t*)(src+i*stride))[2]=
  1743. ((uint32_t*)(src+i*stride))[3]= dc;
  1744. }
  1745. }
  1746. void ff_pred16x16_128_dc_c(uint8_t *src, int stride){
  1747. int i;
  1748. for(i=0; i<16; i++){
  1749. ((uint32_t*)(src+i*stride))[0]=
  1750. ((uint32_t*)(src+i*stride))[1]=
  1751. ((uint32_t*)(src+i*stride))[2]=
  1752. ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
  1753. }
  1754. }
  1755. static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
  1756. int i, j, k;
  1757. int a;
  1758. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  1759. const uint8_t * const src0 = src+7-stride;
  1760. const uint8_t *src1 = src+8*stride-1;
  1761. const uint8_t *src2 = src1-2*stride; // == src+6*stride-1;
  1762. int H = src0[1] - src0[-1];
  1763. int V = src1[0] - src2[ 0];
  1764. for(k=2; k<=8; ++k) {
  1765. src1 += stride; src2 -= stride;
  1766. H += k*(src0[k] - src0[-k]);
  1767. V += k*(src1[0] - src2[ 0]);
  1768. }
  1769. if(svq3){
  1770. H = ( 5*(H/4) ) / 16;
  1771. V = ( 5*(V/4) ) / 16;
  1772. /* required for 100% accuracy */
  1773. i = H; H = V; V = i;
  1774. }else{
  1775. H = ( 5*H+32 ) >> 6;
  1776. V = ( 5*V+32 ) >> 6;
  1777. }
  1778. a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
  1779. for(j=16; j>0; --j) {
  1780. int b = a;
  1781. a += V;
  1782. for(i=-16; i<0; i+=4) {
  1783. src[16+i] = cm[ (b ) >> 5 ];
  1784. src[17+i] = cm[ (b+ H) >> 5 ];
  1785. src[18+i] = cm[ (b+2*H) >> 5 ];
  1786. src[19+i] = cm[ (b+3*H) >> 5 ];
  1787. b += 4*H;
  1788. }
  1789. src += stride;
  1790. }
  1791. }
  1792. void ff_pred16x16_plane_c(uint8_t *src, int stride){
  1793. pred16x16_plane_compat_c(src, stride, 0);
  1794. }
  1795. void ff_pred8x8_vertical_c(uint8_t *src, int stride){
  1796. int i;
  1797. const uint32_t a= ((uint32_t*)(src-stride))[0];
  1798. const uint32_t b= ((uint32_t*)(src-stride))[1];
  1799. for(i=0; i<8; i++){
  1800. ((uint32_t*)(src+i*stride))[0]= a;
  1801. ((uint32_t*)(src+i*stride))[1]= b;
  1802. }
  1803. }
  1804. void ff_pred8x8_horizontal_c(uint8_t *src, int stride){
  1805. int i;
  1806. for(i=0; i<8; i++){
  1807. ((uint32_t*)(src+i*stride))[0]=
  1808. ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
  1809. }
  1810. }
  1811. void ff_pred8x8_128_dc_c(uint8_t *src, int stride){
  1812. int i;
  1813. for(i=0; i<8; i++){
  1814. ((uint32_t*)(src+i*stride))[0]=
  1815. ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
  1816. }
  1817. }
  1818. void ff_pred8x8_left_dc_c(uint8_t *src, int stride){
  1819. int i;
  1820. int dc0, dc2;
  1821. dc0=dc2=0;
  1822. for(i=0;i<4; i++){
  1823. dc0+= src[-1+i*stride];
  1824. dc2+= src[-1+(i+4)*stride];
  1825. }
  1826. dc0= 0x01010101*((dc0 + 2)>>2);
  1827. dc2= 0x01010101*((dc2 + 2)>>2);
  1828. for(i=0; i<4; i++){
  1829. ((uint32_t*)(src+i*stride))[0]=
  1830. ((uint32_t*)(src+i*stride))[1]= dc0;
  1831. }
  1832. for(i=4; i<8; i++){
  1833. ((uint32_t*)(src+i*stride))[0]=
  1834. ((uint32_t*)(src+i*stride))[1]= dc2;
  1835. }
  1836. }
  1837. void ff_pred8x8_top_dc_c(uint8_t *src, int stride){
  1838. int i;
  1839. int dc0, dc1;
  1840. dc0=dc1=0;
  1841. for(i=0;i<4; i++){
  1842. dc0+= src[i-stride];
  1843. dc1+= src[4+i-stride];
  1844. }
  1845. dc0= 0x01010101*((dc0 + 2)>>2);
  1846. dc1= 0x01010101*((dc1 + 2)>>2);
  1847. for(i=0; i<4; i++){
  1848. ((uint32_t*)(src+i*stride))[0]= dc0;
  1849. ((uint32_t*)(src+i*stride))[1]= dc1;
  1850. }
  1851. for(i=4; i<8; i++){
  1852. ((uint32_t*)(src+i*stride))[0]= dc0;
  1853. ((uint32_t*)(src+i*stride))[1]= dc1;
  1854. }
  1855. }
  1856. void ff_pred8x8_dc_c(uint8_t *src, int stride){
  1857. int i;
  1858. int dc0, dc1, dc2, dc3;
  1859. dc0=dc1=dc2=0;
  1860. for(i=0;i<4; i++){
  1861. dc0+= src[-1+i*stride] + src[i-stride];
  1862. dc1+= src[4+i-stride];
  1863. dc2+= src[-1+(i+4)*stride];
  1864. }
  1865. dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
  1866. dc0= 0x01010101*((dc0 + 4)>>3);
  1867. dc1= 0x01010101*((dc1 + 2)>>2);
  1868. dc2= 0x01010101*((dc2 + 2)>>2);
  1869. for(i=0; i<4; i++){
  1870. ((uint32_t*)(src+i*stride))[0]= dc0;
  1871. ((uint32_t*)(src+i*stride))[1]= dc1;
  1872. }
  1873. for(i=4; i<8; i++){
  1874. ((uint32_t*)(src+i*stride))[0]= dc2;
  1875. ((uint32_t*)(src+i*stride))[1]= dc3;
  1876. }
  1877. }
  1878. void ff_pred8x8_plane_c(uint8_t *src, int stride){
  1879. int j, k;
  1880. int a;
  1881. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  1882. const uint8_t * const src0 = src+3-stride;
  1883. const uint8_t *src1 = src+4*stride-1;
  1884. const uint8_t *src2 = src1-2*stride; // == src+2*stride-1;
  1885. int H = src0[1] - src0[-1];
  1886. int V = src1[0] - src2[ 0];
  1887. for(k=2; k<=4; ++k) {
  1888. src1 += stride; src2 -= stride;
  1889. H += k*(src0[k] - src0[-k]);
  1890. V += k*(src1[0] - src2[ 0]);
  1891. }
  1892. H = ( 17*H+16 ) >> 5;
  1893. V = ( 17*V+16 ) >> 5;
  1894. a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
  1895. for(j=8; j>0; --j) {
  1896. int b = a;
  1897. a += V;
  1898. src[0] = cm[ (b ) >> 5 ];
  1899. src[1] = cm[ (b+ H) >> 5 ];
  1900. src[2] = cm[ (b+2*H) >> 5 ];
  1901. src[3] = cm[ (b+3*H) >> 5 ];
  1902. src[4] = cm[ (b+4*H) >> 5 ];
  1903. src[5] = cm[ (b+5*H) >> 5 ];
  1904. src[6] = cm[ (b+6*H) >> 5 ];
  1905. src[7] = cm[ (b+7*H) >> 5 ];
  1906. src += stride;
  1907. }
  1908. }
  1909. #define SRC(x,y) src[(x)+(y)*stride]
  1910. #define PL(y) \
  1911. const int l##y = (SRC(-1,y-1) + 2*SRC(-1,y) + SRC(-1,y+1) + 2) >> 2;
  1912. #define PREDICT_8x8_LOAD_LEFT \
  1913. const int l0 = ((has_topleft ? SRC(-1,-1) : SRC(-1,0)) \
  1914. + 2*SRC(-1,0) + SRC(-1,1) + 2) >> 2; \
  1915. PL(1) PL(2) PL(3) PL(4) PL(5) PL(6) \
  1916. const int l7 av_unused = (SRC(-1,6) + 3*SRC(-1,7) + 2) >> 2
  1917. #define PT(x) \
  1918. const int t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
  1919. #define PREDICT_8x8_LOAD_TOP \
  1920. const int t0 = ((has_topleft ? SRC(-1,-1) : SRC(0,-1)) \
  1921. + 2*SRC(0,-1) + SRC(1,-1) + 2) >> 2; \
  1922. PT(1) PT(2) PT(3) PT(4) PT(5) PT(6) \
  1923. const int t7 av_unused = ((has_topright ? SRC(8,-1) : SRC(7,-1)) \
  1924. + 2*SRC(7,-1) + SRC(6,-1) + 2) >> 2
  1925. #define PTR(x) \
  1926. t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
  1927. #define PREDICT_8x8_LOAD_TOPRIGHT \
  1928. int t8, t9, t10, t11, t12, t13, t14, t15; \
  1929. if(has_topright) { \
  1930. PTR(8) PTR(9) PTR(10) PTR(11) PTR(12) PTR(13) PTR(14) \
  1931. t15 = (SRC(14,-1) + 3*SRC(15,-1) + 2) >> 2; \
  1932. } else t8=t9=t10=t11=t12=t13=t14=t15= SRC(7,-1);
  1933. #define PREDICT_8x8_LOAD_TOPLEFT \
  1934. const int lt = (SRC(-1,0) + 2*SRC(-1,-1) + SRC(0,-1) + 2) >> 2
  1935. #define PREDICT_8x8_DC(v) \
  1936. int y; \
  1937. for( y = 0; y < 8; y++ ) { \
  1938. ((uint32_t*)src)[0] = \
  1939. ((uint32_t*)src)[1] = v; \
  1940. src += stride; \
  1941. }
  1942. static void pred8x8l_128_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  1943. {
  1944. PREDICT_8x8_DC(0x80808080);
  1945. }
  1946. static void pred8x8l_left_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  1947. {
  1948. PREDICT_8x8_LOAD_LEFT;
  1949. const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7+4) >> 3) * 0x01010101;
  1950. PREDICT_8x8_DC(dc);
  1951. }
  1952. static void pred8x8l_top_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  1953. {
  1954. PREDICT_8x8_LOAD_TOP;
  1955. const uint32_t dc = ((t0+t1+t2+t3+t4+t5+t6+t7+4) >> 3) * 0x01010101;
  1956. PREDICT_8x8_DC(dc);
  1957. }
  1958. static void pred8x8l_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  1959. {
  1960. PREDICT_8x8_LOAD_LEFT;
  1961. PREDICT_8x8_LOAD_TOP;
  1962. const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7
  1963. +t0+t1+t2+t3+t4+t5+t6+t7+8) >> 4) * 0x01010101;
  1964. PREDICT_8x8_DC(dc);
  1965. }
  1966. static void pred8x8l_horizontal_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  1967. {
  1968. PREDICT_8x8_LOAD_LEFT;
  1969. #define ROW(y) ((uint32_t*)(src+y*stride))[0] =\
  1970. ((uint32_t*)(src+y*stride))[1] = 0x01010101 * l##y
  1971. ROW(0); ROW(1); ROW(2); ROW(3); ROW(4); ROW(5); ROW(6); ROW(7);
  1972. #undef ROW
  1973. }
  1974. static void pred8x8l_vertical_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  1975. {
  1976. int y;
  1977. PREDICT_8x8_LOAD_TOP;
  1978. src[0] = t0;
  1979. src[1] = t1;
  1980. src[2] = t2;
  1981. src[3] = t3;
  1982. src[4] = t4;
  1983. src[5] = t5;
  1984. src[6] = t6;
  1985. src[7] = t7;
  1986. for( y = 1; y < 8; y++ )
  1987. *(uint64_t*)(src+y*stride) = *(uint64_t*)src;
  1988. }
  1989. static void pred8x8l_down_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  1990. {
  1991. PREDICT_8x8_LOAD_TOP;
  1992. PREDICT_8x8_LOAD_TOPRIGHT;
  1993. SRC(0,0)= (t0 + 2*t1 + t2 + 2) >> 2;
  1994. SRC(0,1)=SRC(1,0)= (t1 + 2*t2 + t3 + 2) >> 2;
  1995. SRC(0,2)=SRC(1,1)=SRC(2,0)= (t2 + 2*t3 + t4 + 2) >> 2;
  1996. SRC(0,3)=SRC(1,2)=SRC(2,1)=SRC(3,0)= (t3 + 2*t4 + t5 + 2) >> 2;
  1997. SRC(0,4)=SRC(1,3)=SRC(2,2)=SRC(3,1)=SRC(4,0)= (t4 + 2*t5 + t6 + 2) >> 2;
  1998. SRC(0,5)=SRC(1,4)=SRC(2,3)=SRC(3,2)=SRC(4,1)=SRC(5,0)= (t5 + 2*t6 + t7 + 2) >> 2;
  1999. SRC(0,6)=SRC(1,5)=SRC(2,4)=SRC(3,3)=SRC(4,2)=SRC(5,1)=SRC(6,0)= (t6 + 2*t7 + t8 + 2) >> 2;
  2000. SRC(0,7)=SRC(1,6)=SRC(2,5)=SRC(3,4)=SRC(4,3)=SRC(5,2)=SRC(6,1)=SRC(7,0)= (t7 + 2*t8 + t9 + 2) >> 2;
  2001. SRC(1,7)=SRC(2,6)=SRC(3,5)=SRC(4,4)=SRC(5,3)=SRC(6,2)=SRC(7,1)= (t8 + 2*t9 + t10 + 2) >> 2;
  2002. SRC(2,7)=SRC(3,6)=SRC(4,5)=SRC(5,4)=SRC(6,3)=SRC(7,2)= (t9 + 2*t10 + t11 + 2) >> 2;
  2003. SRC(3,7)=SRC(4,6)=SRC(5,5)=SRC(6,4)=SRC(7,3)= (t10 + 2*t11 + t12 + 2) >> 2;
  2004. SRC(4,7)=SRC(5,6)=SRC(6,5)=SRC(7,4)= (t11 + 2*t12 + t13 + 2) >> 2;
  2005. SRC(5,7)=SRC(6,6)=SRC(7,5)= (t12 + 2*t13 + t14 + 2) >> 2;
  2006. SRC(6,7)=SRC(7,6)= (t13 + 2*t14 + t15 + 2) >> 2;
  2007. SRC(7,7)= (t14 + 3*t15 + 2) >> 2;
  2008. }
  2009. static void pred8x8l_down_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2010. {
  2011. PREDICT_8x8_LOAD_TOP;
  2012. PREDICT_8x8_LOAD_LEFT;
  2013. PREDICT_8x8_LOAD_TOPLEFT;
  2014. SRC(0,7)= (l7 + 2*l6 + l5 + 2) >> 2;
  2015. SRC(0,6)=SRC(1,7)= (l6 + 2*l5 + l4 + 2) >> 2;
  2016. SRC(0,5)=SRC(1,6)=SRC(2,7)= (l5 + 2*l4 + l3 + 2) >> 2;
  2017. SRC(0,4)=SRC(1,5)=SRC(2,6)=SRC(3,7)= (l4 + 2*l3 + l2 + 2) >> 2;
  2018. SRC(0,3)=SRC(1,4)=SRC(2,5)=SRC(3,6)=SRC(4,7)= (l3 + 2*l2 + l1 + 2) >> 2;
  2019. SRC(0,2)=SRC(1,3)=SRC(2,4)=SRC(3,5)=SRC(4,6)=SRC(5,7)= (l2 + 2*l1 + l0 + 2) >> 2;
  2020. SRC(0,1)=SRC(1,2)=SRC(2,3)=SRC(3,4)=SRC(4,5)=SRC(5,6)=SRC(6,7)= (l1 + 2*l0 + lt + 2) >> 2;
  2021. SRC(0,0)=SRC(1,1)=SRC(2,2)=SRC(3,3)=SRC(4,4)=SRC(5,5)=SRC(6,6)=SRC(7,7)= (l0 + 2*lt + t0 + 2) >> 2;
  2022. SRC(1,0)=SRC(2,1)=SRC(3,2)=SRC(4,3)=SRC(5,4)=SRC(6,5)=SRC(7,6)= (lt + 2*t0 + t1 + 2) >> 2;
  2023. SRC(2,0)=SRC(3,1)=SRC(4,2)=SRC(5,3)=SRC(6,4)=SRC(7,5)= (t0 + 2*t1 + t2 + 2) >> 2;
  2024. SRC(3,0)=SRC(4,1)=SRC(5,2)=SRC(6,3)=SRC(7,4)= (t1 + 2*t2 + t3 + 2) >> 2;
  2025. SRC(4,0)=SRC(5,1)=SRC(6,2)=SRC(7,3)= (t2 + 2*t3 + t4 + 2) >> 2;
  2026. SRC(5,0)=SRC(6,1)=SRC(7,2)= (t3 + 2*t4 + t5 + 2) >> 2;
  2027. SRC(6,0)=SRC(7,1)= (t4 + 2*t5 + t6 + 2) >> 2;
  2028. SRC(7,0)= (t5 + 2*t6 + t7 + 2) >> 2;
  2029. }
  2030. static void pred8x8l_vertical_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2031. {
  2032. PREDICT_8x8_LOAD_TOP;
  2033. PREDICT_8x8_LOAD_LEFT;
  2034. PREDICT_8x8_LOAD_TOPLEFT;
  2035. SRC(0,6)= (l5 + 2*l4 + l3 + 2) >> 2;
  2036. SRC(0,7)= (l6 + 2*l5 + l4 + 2) >> 2;
  2037. SRC(0,4)=SRC(1,6)= (l3 + 2*l2 + l1 + 2) >> 2;
  2038. SRC(0,5)=SRC(1,7)= (l4 + 2*l3 + l2 + 2) >> 2;
  2039. SRC(0,2)=SRC(1,4)=SRC(2,6)= (l1 + 2*l0 + lt + 2) >> 2;
  2040. SRC(0,3)=SRC(1,5)=SRC(2,7)= (l2 + 2*l1 + l0 + 2) >> 2;
  2041. SRC(0,1)=SRC(1,3)=SRC(2,5)=SRC(3,7)= (l0 + 2*lt + t0 + 2) >> 2;
  2042. SRC(0,0)=SRC(1,2)=SRC(2,4)=SRC(3,6)= (lt + t0 + 1) >> 1;
  2043. SRC(1,1)=SRC(2,3)=SRC(3,5)=SRC(4,7)= (lt + 2*t0 + t1 + 2) >> 2;
  2044. SRC(1,0)=SRC(2,2)=SRC(3,4)=SRC(4,6)= (t0 + t1 + 1) >> 1;
  2045. SRC(2,1)=SRC(3,3)=SRC(4,5)=SRC(5,7)= (t0 + 2*t1 + t2 + 2) >> 2;
  2046. SRC(2,0)=SRC(3,2)=SRC(4,4)=SRC(5,6)= (t1 + t2 + 1) >> 1;
  2047. SRC(3,1)=SRC(4,3)=SRC(5,5)=SRC(6,7)= (t1 + 2*t2 + t3 + 2) >> 2;
  2048. SRC(3,0)=SRC(4,2)=SRC(5,4)=SRC(6,6)= (t2 + t3 + 1) >> 1;
  2049. SRC(4,1)=SRC(5,3)=SRC(6,5)=SRC(7,7)= (t2 + 2*t3 + t4 + 2) >> 2;
  2050. SRC(4,0)=SRC(5,2)=SRC(6,4)=SRC(7,6)= (t3 + t4 + 1) >> 1;
  2051. SRC(5,1)=SRC(6,3)=SRC(7,5)= (t3 + 2*t4 + t5 + 2) >> 2;
  2052. SRC(5,0)=SRC(6,2)=SRC(7,4)= (t4 + t5 + 1) >> 1;
  2053. SRC(6,1)=SRC(7,3)= (t4 + 2*t5 + t6 + 2) >> 2;
  2054. SRC(6,0)=SRC(7,2)= (t5 + t6 + 1) >> 1;
  2055. SRC(7,1)= (t5 + 2*t6 + t7 + 2) >> 2;
  2056. SRC(7,0)= (t6 + t7 + 1) >> 1;
  2057. }
  2058. static void pred8x8l_horizontal_down_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2059. {
  2060. PREDICT_8x8_LOAD_TOP;
  2061. PREDICT_8x8_LOAD_LEFT;
  2062. PREDICT_8x8_LOAD_TOPLEFT;
  2063. SRC(0,7)= (l6 + l7 + 1) >> 1;
  2064. SRC(1,7)= (l5 + 2*l6 + l7 + 2) >> 2;
  2065. SRC(0,6)=SRC(2,7)= (l5 + l6 + 1) >> 1;
  2066. SRC(1,6)=SRC(3,7)= (l4 + 2*l5 + l6 + 2) >> 2;
  2067. SRC(0,5)=SRC(2,6)=SRC(4,7)= (l4 + l5 + 1) >> 1;
  2068. SRC(1,5)=SRC(3,6)=SRC(5,7)= (l3 + 2*l4 + l5 + 2) >> 2;
  2069. SRC(0,4)=SRC(2,5)=SRC(4,6)=SRC(6,7)= (l3 + l4 + 1) >> 1;
  2070. SRC(1,4)=SRC(3,5)=SRC(5,6)=SRC(7,7)= (l2 + 2*l3 + l4 + 2) >> 2;
  2071. SRC(0,3)=SRC(2,4)=SRC(4,5)=SRC(6,6)= (l2 + l3 + 1) >> 1;
  2072. SRC(1,3)=SRC(3,4)=SRC(5,5)=SRC(7,6)= (l1 + 2*l2 + l3 + 2) >> 2;
  2073. SRC(0,2)=SRC(2,3)=SRC(4,4)=SRC(6,5)= (l1 + l2 + 1) >> 1;
  2074. SRC(1,2)=SRC(3,3)=SRC(5,4)=SRC(7,5)= (l0 + 2*l1 + l2 + 2) >> 2;
  2075. SRC(0,1)=SRC(2,2)=SRC(4,3)=SRC(6,4)= (l0 + l1 + 1) >> 1;
  2076. SRC(1,1)=SRC(3,2)=SRC(5,3)=SRC(7,4)= (lt + 2*l0 + l1 + 2) >> 2;
  2077. SRC(0,0)=SRC(2,1)=SRC(4,2)=SRC(6,3)= (lt + l0 + 1) >> 1;
  2078. SRC(1,0)=SRC(3,1)=SRC(5,2)=SRC(7,3)= (l0 + 2*lt + t0 + 2) >> 2;
  2079. SRC(2,0)=SRC(4,1)=SRC(6,2)= (t1 + 2*t0 + lt + 2) >> 2;
  2080. SRC(3,0)=SRC(5,1)=SRC(7,2)= (t2 + 2*t1 + t0 + 2) >> 2;
  2081. SRC(4,0)=SRC(6,1)= (t3 + 2*t2 + t1 + 2) >> 2;
  2082. SRC(5,0)=SRC(7,1)= (t4 + 2*t3 + t2 + 2) >> 2;
  2083. SRC(6,0)= (t5 + 2*t4 + t3 + 2) >> 2;
  2084. SRC(7,0)= (t6 + 2*t5 + t4 + 2) >> 2;
  2085. }
  2086. static void pred8x8l_vertical_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2087. {
  2088. PREDICT_8x8_LOAD_TOP;
  2089. PREDICT_8x8_LOAD_TOPRIGHT;
  2090. SRC(0,0)= (t0 + t1 + 1) >> 1;
  2091. SRC(0,1)= (t0 + 2*t1 + t2 + 2) >> 2;
  2092. SRC(0,2)=SRC(1,0)= (t1 + t2 + 1) >> 1;
  2093. SRC(0,3)=SRC(1,1)= (t1 + 2*t2 + t3 + 2) >> 2;
  2094. SRC(0,4)=SRC(1,2)=SRC(2,0)= (t2 + t3 + 1) >> 1;
  2095. SRC(0,5)=SRC(1,3)=SRC(2,1)= (t2 + 2*t3 + t4 + 2) >> 2;
  2096. SRC(0,6)=SRC(1,4)=SRC(2,2)=SRC(3,0)= (t3 + t4 + 1) >> 1;
  2097. SRC(0,7)=SRC(1,5)=SRC(2,3)=SRC(3,1)= (t3 + 2*t4 + t5 + 2) >> 2;
  2098. SRC(1,6)=SRC(2,4)=SRC(3,2)=SRC(4,0)= (t4 + t5 + 1) >> 1;
  2099. SRC(1,7)=SRC(2,5)=SRC(3,3)=SRC(4,1)= (t4 + 2*t5 + t6 + 2) >> 2;
  2100. SRC(2,6)=SRC(3,4)=SRC(4,2)=SRC(5,0)= (t5 + t6 + 1) >> 1;
  2101. SRC(2,7)=SRC(3,5)=SRC(4,3)=SRC(5,1)= (t5 + 2*t6 + t7 + 2) >> 2;
  2102. SRC(3,6)=SRC(4,4)=SRC(5,2)=SRC(6,0)= (t6 + t7 + 1) >> 1;
  2103. SRC(3,7)=SRC(4,5)=SRC(5,3)=SRC(6,1)= (t6 + 2*t7 + t8 + 2) >> 2;
  2104. SRC(4,6)=SRC(5,4)=SRC(6,2)=SRC(7,0)= (t7 + t8 + 1) >> 1;
  2105. SRC(4,7)=SRC(5,5)=SRC(6,3)=SRC(7,1)= (t7 + 2*t8 + t9 + 2) >> 2;
  2106. SRC(5,6)=SRC(6,4)=SRC(7,2)= (t8 + t9 + 1) >> 1;
  2107. SRC(5,7)=SRC(6,5)=SRC(7,3)= (t8 + 2*t9 + t10 + 2) >> 2;
  2108. SRC(6,6)=SRC(7,4)= (t9 + t10 + 1) >> 1;
  2109. SRC(6,7)=SRC(7,5)= (t9 + 2*t10 + t11 + 2) >> 2;
  2110. SRC(7,6)= (t10 + t11 + 1) >> 1;
  2111. SRC(7,7)= (t10 + 2*t11 + t12 + 2) >> 2;
  2112. }
  2113. static void pred8x8l_horizontal_up_c(uint8_t *src, int has_topleft, int has_topright, int stride)
  2114. {
  2115. PREDICT_8x8_LOAD_LEFT;
  2116. SRC(0,0)= (l0 + l1 + 1) >> 1;
  2117. SRC(1,0)= (l0 + 2*l1 + l2 + 2) >> 2;
  2118. SRC(0,1)=SRC(2,0)= (l1 + l2 + 1) >> 1;
  2119. SRC(1,1)=SRC(3,0)= (l1 + 2*l2 + l3 + 2) >> 2;
  2120. SRC(0,2)=SRC(2,1)=SRC(4,0)= (l2 + l3 + 1) >> 1;
  2121. SRC(1,2)=SRC(3,1)=SRC(5,0)= (l2 + 2*l3 + l4 + 2) >> 2;
  2122. SRC(0,3)=SRC(2,2)=SRC(4,1)=SRC(6,0)= (l3 + l4 + 1) >> 1;
  2123. SRC(1,3)=SRC(3,2)=SRC(5,1)=SRC(7,0)= (l3 + 2*l4 + l5 + 2) >> 2;
  2124. SRC(0,4)=SRC(2,3)=SRC(4,2)=SRC(6,1)= (l4 + l5 + 1) >> 1;
  2125. SRC(1,4)=SRC(3,3)=SRC(5,2)=SRC(7,1)= (l4 + 2*l5 + l6 + 2) >> 2;
  2126. SRC(0,5)=SRC(2,4)=SRC(4,3)=SRC(6,2)= (l5 + l6 + 1) >> 1;
  2127. SRC(1,5)=SRC(3,4)=SRC(5,3)=SRC(7,2)= (l5 + 2*l6 + l7 + 2) >> 2;
  2128. SRC(0,6)=SRC(2,5)=SRC(4,4)=SRC(6,3)= (l6 + l7 + 1) >> 1;
  2129. SRC(1,6)=SRC(3,5)=SRC(5,4)=SRC(7,3)= (l6 + 3*l7 + 2) >> 2;
  2130. SRC(0,7)=SRC(1,7)=SRC(2,6)=SRC(2,7)=SRC(3,6)=
  2131. SRC(3,7)=SRC(4,5)=SRC(4,6)=SRC(4,7)=SRC(5,5)=
  2132. SRC(5,6)=SRC(5,7)=SRC(6,4)=SRC(6,5)=SRC(6,6)=
  2133. SRC(6,7)=SRC(7,4)=SRC(7,5)=SRC(7,6)=SRC(7,7)= l7;
  2134. }
  2135. #undef PREDICT_8x8_LOAD_LEFT
  2136. #undef PREDICT_8x8_LOAD_TOP
  2137. #undef PREDICT_8x8_LOAD_TOPLEFT
  2138. #undef PREDICT_8x8_LOAD_TOPRIGHT
  2139. #undef PREDICT_8x8_DC
  2140. #undef PTR
  2141. #undef PT
  2142. #undef PL
  2143. #undef SRC
  2144. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  2145. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2146. int src_x_offset, int src_y_offset,
  2147. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  2148. MpegEncContext * const s = &h->s;
  2149. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  2150. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  2151. const int luma_xy= (mx&3) + ((my&3)<<2);
  2152. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
  2153. uint8_t * src_cb, * src_cr;
  2154. int extra_width= h->emu_edge_width;
  2155. int extra_height= h->emu_edge_height;
  2156. int emu=0;
  2157. const int full_mx= mx>>2;
  2158. const int full_my= my>>2;
  2159. const int pic_width = 16*s->mb_width;
  2160. const int pic_height = 16*s->mb_height >> MB_MBAFF;
  2161. if(!pic->data[0]) //FIXME this is unacceptable, some senseable error concealment must be done for missing reference frames
  2162. return;
  2163. if(mx&7) extra_width -= 3;
  2164. if(my&7) extra_height -= 3;
  2165. if( full_mx < 0-extra_width
  2166. || full_my < 0-extra_height
  2167. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  2168. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  2169. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  2170. src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
  2171. emu=1;
  2172. }
  2173. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  2174. if(!square){
  2175. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  2176. }
  2177. if(s->flags&CODEC_FLAG_GRAY) return;
  2178. if(MB_MBAFF){
  2179. // chroma offset when predicting from a field of opposite parity
  2180. my += 2 * ((s->mb_y & 1) - (h->ref_cache[list][scan8[n]] & 1));
  2181. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  2182. }
  2183. src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  2184. src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  2185. if(emu){
  2186. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  2187. src_cb= s->edge_emu_buffer;
  2188. }
  2189. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  2190. if(emu){
  2191. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  2192. src_cr= s->edge_emu_buffer;
  2193. }
  2194. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  2195. }
  2196. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  2197. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2198. int x_offset, int y_offset,
  2199. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  2200. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  2201. int list0, int list1){
  2202. MpegEncContext * const s = &h->s;
  2203. qpel_mc_func *qpix_op= qpix_put;
  2204. h264_chroma_mc_func chroma_op= chroma_put;
  2205. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  2206. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  2207. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  2208. x_offset += 8*s->mb_x;
  2209. y_offset += 8*(s->mb_y >> MB_MBAFF);
  2210. if(list0){
  2211. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  2212. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  2213. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2214. qpix_op, chroma_op);
  2215. qpix_op= qpix_avg;
  2216. chroma_op= chroma_avg;
  2217. }
  2218. if(list1){
  2219. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  2220. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  2221. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2222. qpix_op, chroma_op);
  2223. }
  2224. }
  2225. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  2226. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2227. int x_offset, int y_offset,
  2228. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  2229. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  2230. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  2231. int list0, int list1){
  2232. MpegEncContext * const s = &h->s;
  2233. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  2234. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  2235. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  2236. x_offset += 8*s->mb_x;
  2237. y_offset += 8*(s->mb_y >> MB_MBAFF);
  2238. if(list0 && list1){
  2239. /* don't optimize for luma-only case, since B-frames usually
  2240. * use implicit weights => chroma too. */
  2241. uint8_t *tmp_cb = s->obmc_scratchpad;
  2242. uint8_t *tmp_cr = s->obmc_scratchpad + 8;
  2243. uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
  2244. int refn0 = h->ref_cache[0][ scan8[n] ];
  2245. int refn1 = h->ref_cache[1][ scan8[n] ];
  2246. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  2247. dest_y, dest_cb, dest_cr,
  2248. x_offset, y_offset, qpix_put, chroma_put);
  2249. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  2250. tmp_y, tmp_cb, tmp_cr,
  2251. x_offset, y_offset, qpix_put, chroma_put);
  2252. if(h->use_weight == 2){
  2253. int weight0 = h->implicit_weight[refn0][refn1];
  2254. int weight1 = 64 - weight0;
  2255. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
  2256. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
  2257. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
  2258. }else{
  2259. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
  2260. h->luma_weight[0][refn0], h->luma_weight[1][refn1],
  2261. h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
  2262. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  2263. h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
  2264. h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
  2265. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  2266. h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
  2267. h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
  2268. }
  2269. }else{
  2270. int list = list1 ? 1 : 0;
  2271. int refn = h->ref_cache[list][ scan8[n] ];
  2272. Picture *ref= &h->ref_list[list][refn];
  2273. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  2274. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2275. qpix_put, chroma_put);
  2276. luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
  2277. h->luma_weight[list][refn], h->luma_offset[list][refn]);
  2278. if(h->use_weight_chroma){
  2279. chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  2280. h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
  2281. chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  2282. h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
  2283. }
  2284. }
  2285. }
  2286. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  2287. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2288. int x_offset, int y_offset,
  2289. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  2290. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  2291. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  2292. int list0, int list1){
  2293. if((h->use_weight==2 && list0 && list1
  2294. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
  2295. || h->use_weight==1)
  2296. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  2297. x_offset, y_offset, qpix_put, chroma_put,
  2298. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  2299. else
  2300. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  2301. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  2302. }
  2303. static inline void prefetch_motion(H264Context *h, int list){
  2304. /* fetch pixels for estimated mv 4 macroblocks ahead
  2305. * optimized for 64byte cache lines */
  2306. MpegEncContext * const s = &h->s;
  2307. const int refn = h->ref_cache[list][scan8[0]];
  2308. if(refn >= 0){
  2309. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  2310. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  2311. uint8_t **src= h->ref_list[list][refn].data;
  2312. int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
  2313. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  2314. off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
  2315. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  2316. }
  2317. }
  2318. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  2319. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  2320. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  2321. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  2322. MpegEncContext * const s = &h->s;
  2323. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  2324. const int mb_type= s->current_picture.mb_type[mb_xy];
  2325. assert(IS_INTER(mb_type));
  2326. prefetch_motion(h, 0);
  2327. if(IS_16X16(mb_type)){
  2328. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  2329. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  2330. &weight_op[0], &weight_avg[0],
  2331. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  2332. }else if(IS_16X8(mb_type)){
  2333. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  2334. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  2335. &weight_op[1], &weight_avg[1],
  2336. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  2337. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  2338. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  2339. &weight_op[1], &weight_avg[1],
  2340. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  2341. }else if(IS_8X16(mb_type)){
  2342. mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  2343. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  2344. &weight_op[2], &weight_avg[2],
  2345. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  2346. mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  2347. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  2348. &weight_op[2], &weight_avg[2],
  2349. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  2350. }else{
  2351. int i;
  2352. assert(IS_8X8(mb_type));
  2353. for(i=0; i<4; i++){
  2354. const int sub_mb_type= h->sub_mb_type[i];
  2355. const int n= 4*i;
  2356. int x_offset= (i&1)<<2;
  2357. int y_offset= (i&2)<<1;
  2358. if(IS_SUB_8X8(sub_mb_type)){
  2359. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2360. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  2361. &weight_op[3], &weight_avg[3],
  2362. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2363. }else if(IS_SUB_8X4(sub_mb_type)){
  2364. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2365. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  2366. &weight_op[4], &weight_avg[4],
  2367. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2368. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  2369. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  2370. &weight_op[4], &weight_avg[4],
  2371. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2372. }else if(IS_SUB_4X8(sub_mb_type)){
  2373. mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  2374. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  2375. &weight_op[5], &weight_avg[5],
  2376. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2377. mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  2378. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  2379. &weight_op[5], &weight_avg[5],
  2380. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2381. }else{
  2382. int j;
  2383. assert(IS_SUB_4X4(sub_mb_type));
  2384. for(j=0; j<4; j++){
  2385. int sub_x_offset= x_offset + 2*(j&1);
  2386. int sub_y_offset= y_offset + (j&2);
  2387. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  2388. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  2389. &weight_op[6], &weight_avg[6],
  2390. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  2391. }
  2392. }
  2393. }
  2394. }
  2395. prefetch_motion(h, 1);
  2396. }
  2397. static void decode_init_vlc(void){
  2398. static int done = 0;
  2399. if (!done) {
  2400. int i;
  2401. done = 1;
  2402. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  2403. &chroma_dc_coeff_token_len [0], 1, 1,
  2404. &chroma_dc_coeff_token_bits[0], 1, 1, 1);
  2405. for(i=0; i<4; i++){
  2406. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  2407. &coeff_token_len [i][0], 1, 1,
  2408. &coeff_token_bits[i][0], 1, 1, 1);
  2409. }
  2410. for(i=0; i<3; i++){
  2411. init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  2412. &chroma_dc_total_zeros_len [i][0], 1, 1,
  2413. &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
  2414. }
  2415. for(i=0; i<15; i++){
  2416. init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
  2417. &total_zeros_len [i][0], 1, 1,
  2418. &total_zeros_bits[i][0], 1, 1, 1);
  2419. }
  2420. for(i=0; i<6; i++){
  2421. init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
  2422. &run_len [i][0], 1, 1,
  2423. &run_bits[i][0], 1, 1, 1);
  2424. }
  2425. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  2426. &run_len [6][0], 1, 1,
  2427. &run_bits[6][0], 1, 1, 1);
  2428. }
  2429. }
  2430. /**
  2431. * Sets the intra prediction function pointers.
  2432. */
  2433. static void init_pred_ptrs(H264Context *h){
  2434. // MpegEncContext * const s = &h->s;
  2435. h->pred4x4[VERT_PRED ]= pred4x4_vertical_c;
  2436. h->pred4x4[HOR_PRED ]= pred4x4_horizontal_c;
  2437. h->pred4x4[DC_PRED ]= pred4x4_dc_c;
  2438. h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
  2439. h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
  2440. h->pred4x4[VERT_RIGHT_PRED ]= pred4x4_vertical_right_c;
  2441. h->pred4x4[HOR_DOWN_PRED ]= pred4x4_horizontal_down_c;
  2442. h->pred4x4[VERT_LEFT_PRED ]= pred4x4_vertical_left_c;
  2443. h->pred4x4[HOR_UP_PRED ]= pred4x4_horizontal_up_c;
  2444. h->pred4x4[LEFT_DC_PRED ]= pred4x4_left_dc_c;
  2445. h->pred4x4[TOP_DC_PRED ]= pred4x4_top_dc_c;
  2446. h->pred4x4[DC_128_PRED ]= pred4x4_128_dc_c;
  2447. h->pred8x8l[VERT_PRED ]= pred8x8l_vertical_c;
  2448. h->pred8x8l[HOR_PRED ]= pred8x8l_horizontal_c;
  2449. h->pred8x8l[DC_PRED ]= pred8x8l_dc_c;
  2450. h->pred8x8l[DIAG_DOWN_LEFT_PRED ]= pred8x8l_down_left_c;
  2451. h->pred8x8l[DIAG_DOWN_RIGHT_PRED]= pred8x8l_down_right_c;
  2452. h->pred8x8l[VERT_RIGHT_PRED ]= pred8x8l_vertical_right_c;
  2453. h->pred8x8l[HOR_DOWN_PRED ]= pred8x8l_horizontal_down_c;
  2454. h->pred8x8l[VERT_LEFT_PRED ]= pred8x8l_vertical_left_c;
  2455. h->pred8x8l[HOR_UP_PRED ]= pred8x8l_horizontal_up_c;
  2456. h->pred8x8l[LEFT_DC_PRED ]= pred8x8l_left_dc_c;
  2457. h->pred8x8l[TOP_DC_PRED ]= pred8x8l_top_dc_c;
  2458. h->pred8x8l[DC_128_PRED ]= pred8x8l_128_dc_c;
  2459. h->pred8x8[DC_PRED8x8 ]= ff_pred8x8_dc_c;
  2460. h->pred8x8[VERT_PRED8x8 ]= ff_pred8x8_vertical_c;
  2461. h->pred8x8[HOR_PRED8x8 ]= ff_pred8x8_horizontal_c;
  2462. h->pred8x8[PLANE_PRED8x8 ]= ff_pred8x8_plane_c;
  2463. h->pred8x8[LEFT_DC_PRED8x8]= ff_pred8x8_left_dc_c;
  2464. h->pred8x8[TOP_DC_PRED8x8 ]= ff_pred8x8_top_dc_c;
  2465. h->pred8x8[DC_128_PRED8x8 ]= ff_pred8x8_128_dc_c;
  2466. h->pred16x16[DC_PRED8x8 ]= ff_pred16x16_dc_c;
  2467. h->pred16x16[VERT_PRED8x8 ]= ff_pred16x16_vertical_c;
  2468. h->pred16x16[HOR_PRED8x8 ]= ff_pred16x16_horizontal_c;
  2469. h->pred16x16[PLANE_PRED8x8 ]= ff_pred16x16_plane_c;
  2470. h->pred16x16[LEFT_DC_PRED8x8]= ff_pred16x16_left_dc_c;
  2471. h->pred16x16[TOP_DC_PRED8x8 ]= ff_pred16x16_top_dc_c;
  2472. h->pred16x16[DC_128_PRED8x8 ]= ff_pred16x16_128_dc_c;
  2473. }
  2474. static void free_tables(H264Context *h){
  2475. int i;
  2476. av_freep(&h->intra4x4_pred_mode);
  2477. av_freep(&h->chroma_pred_mode_table);
  2478. av_freep(&h->cbp_table);
  2479. av_freep(&h->mvd_table[0]);
  2480. av_freep(&h->mvd_table[1]);
  2481. av_freep(&h->direct_table);
  2482. av_freep(&h->non_zero_count);
  2483. av_freep(&h->slice_table_base);
  2484. av_freep(&h->top_borders[1]);
  2485. av_freep(&h->top_borders[0]);
  2486. h->slice_table= NULL;
  2487. av_freep(&h->mb2b_xy);
  2488. av_freep(&h->mb2b8_xy);
  2489. av_freep(&h->s.obmc_scratchpad);
  2490. for(i = 0; i < MAX_SPS_COUNT; i++)
  2491. av_freep(h->sps_buffers + i);
  2492. for(i = 0; i < MAX_PPS_COUNT; i++)
  2493. av_freep(h->pps_buffers + i);
  2494. }
  2495. static void init_dequant8_coeff_table(H264Context *h){
  2496. int i,q,x;
  2497. const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
  2498. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  2499. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  2500. for(i=0; i<2; i++ ){
  2501. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  2502. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  2503. break;
  2504. }
  2505. for(q=0; q<52; q++){
  2506. int shift = ff_div6[q];
  2507. int idx = ff_rem6[q];
  2508. for(x=0; x<64; x++)
  2509. h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
  2510. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  2511. h->pps.scaling_matrix8[i][x]) << shift;
  2512. }
  2513. }
  2514. }
  2515. static void init_dequant4_coeff_table(H264Context *h){
  2516. int i,j,q,x;
  2517. const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  2518. for(i=0; i<6; i++ ){
  2519. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  2520. for(j=0; j<i; j++){
  2521. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  2522. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  2523. break;
  2524. }
  2525. }
  2526. if(j<i)
  2527. continue;
  2528. for(q=0; q<52; q++){
  2529. int shift = ff_div6[q] + 2;
  2530. int idx = ff_rem6[q];
  2531. for(x=0; x<16; x++)
  2532. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  2533. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  2534. h->pps.scaling_matrix4[i][x]) << shift;
  2535. }
  2536. }
  2537. }
  2538. static void init_dequant_tables(H264Context *h){
  2539. int i,x;
  2540. init_dequant4_coeff_table(h);
  2541. if(h->pps.transform_8x8_mode)
  2542. init_dequant8_coeff_table(h);
  2543. if(h->sps.transform_bypass){
  2544. for(i=0; i<6; i++)
  2545. for(x=0; x<16; x++)
  2546. h->dequant4_coeff[i][0][x] = 1<<6;
  2547. if(h->pps.transform_8x8_mode)
  2548. for(i=0; i<2; i++)
  2549. for(x=0; x<64; x++)
  2550. h->dequant8_coeff[i][0][x] = 1<<6;
  2551. }
  2552. }
  2553. /**
  2554. * allocates tables.
  2555. * needs width/height
  2556. */
  2557. static int alloc_tables(H264Context *h){
  2558. MpegEncContext * const s = &h->s;
  2559. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  2560. int x,y;
  2561. CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
  2562. CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
  2563. CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
  2564. CHECKED_ALLOCZ(h->top_borders[0] , s->mb_width * (16+8+8) * sizeof(uint8_t))
  2565. CHECKED_ALLOCZ(h->top_borders[1] , s->mb_width * (16+8+8) * sizeof(uint8_t))
  2566. CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
  2567. if( h->pps.cabac ) {
  2568. CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
  2569. CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
  2570. CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
  2571. CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
  2572. }
  2573. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
  2574. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  2575. CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
  2576. CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
  2577. for(y=0; y<s->mb_height; y++){
  2578. for(x=0; x<s->mb_width; x++){
  2579. const int mb_xy= x + y*s->mb_stride;
  2580. const int b_xy = 4*x + 4*y*h->b_stride;
  2581. const int b8_xy= 2*x + 2*y*h->b8_stride;
  2582. h->mb2b_xy [mb_xy]= b_xy;
  2583. h->mb2b8_xy[mb_xy]= b8_xy;
  2584. }
  2585. }
  2586. s->obmc_scratchpad = NULL;
  2587. if(!h->dequant4_coeff[0])
  2588. init_dequant_tables(h);
  2589. return 0;
  2590. fail:
  2591. free_tables(h);
  2592. return -1;
  2593. }
  2594. static void common_init(H264Context *h){
  2595. MpegEncContext * const s = &h->s;
  2596. s->width = s->avctx->width;
  2597. s->height = s->avctx->height;
  2598. s->codec_id= s->avctx->codec->id;
  2599. init_pred_ptrs(h);
  2600. h->dequant_coeff_pps= -1;
  2601. s->unrestricted_mv=1;
  2602. s->decode=1; //FIXME
  2603. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  2604. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  2605. }
  2606. static int decode_init(AVCodecContext *avctx){
  2607. H264Context *h= avctx->priv_data;
  2608. MpegEncContext * const s = &h->s;
  2609. MPV_decode_defaults(s);
  2610. s->avctx = avctx;
  2611. common_init(h);
  2612. s->out_format = FMT_H264;
  2613. s->workaround_bugs= avctx->workaround_bugs;
  2614. // set defaults
  2615. // s->decode_mb= ff_h263_decode_mb;
  2616. s->low_delay= 1;
  2617. avctx->pix_fmt= PIX_FMT_YUV420P;
  2618. decode_init_vlc();
  2619. if(avctx->extradata_size > 0 && avctx->extradata &&
  2620. *(char *)avctx->extradata == 1){
  2621. h->is_avc = 1;
  2622. h->got_avcC = 0;
  2623. } else {
  2624. h->is_avc = 0;
  2625. }
  2626. return 0;
  2627. }
  2628. static int frame_start(H264Context *h){
  2629. MpegEncContext * const s = &h->s;
  2630. int i;
  2631. if(MPV_frame_start(s, s->avctx) < 0)
  2632. return -1;
  2633. ff_er_frame_start(s);
  2634. assert(s->linesize && s->uvlinesize);
  2635. for(i=0; i<16; i++){
  2636. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  2637. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  2638. }
  2639. for(i=0; i<4; i++){
  2640. h->block_offset[16+i]=
  2641. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  2642. h->block_offset[24+16+i]=
  2643. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  2644. }
  2645. /* can't be in alloc_tables because linesize isn't known there.
  2646. * FIXME: redo bipred weight to not require extra buffer? */
  2647. if(!s->obmc_scratchpad)
  2648. s->obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
  2649. /* some macroblocks will be accessed before they're available */
  2650. if(FRAME_MBAFF)
  2651. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
  2652. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  2653. return 0;
  2654. }
  2655. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
  2656. MpegEncContext * const s = &h->s;
  2657. int i;
  2658. src_y -= linesize;
  2659. src_cb -= uvlinesize;
  2660. src_cr -= uvlinesize;
  2661. // There are two lines saved, the line above the the top macroblock of a pair,
  2662. // and the line above the bottom macroblock
  2663. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2664. for(i=1; i<17; i++){
  2665. h->left_border[i]= src_y[15+i* linesize];
  2666. }
  2667. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
  2668. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
  2669. if(simple || !(s->flags&CODEC_FLAG_GRAY)){
  2670. h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
  2671. h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
  2672. for(i=1; i<9; i++){
  2673. h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
  2674. h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
  2675. }
  2676. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
  2677. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
  2678. }
  2679. }
  2680. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
  2681. MpegEncContext * const s = &h->s;
  2682. int temp8, i;
  2683. uint64_t temp64;
  2684. int deblock_left = (s->mb_x > 0);
  2685. int deblock_top = (s->mb_y > 0);
  2686. src_y -= linesize + 1;
  2687. src_cb -= uvlinesize + 1;
  2688. src_cr -= uvlinesize + 1;
  2689. #define XCHG(a,b,t,xchg)\
  2690. t= a;\
  2691. if(xchg)\
  2692. a= b;\
  2693. b= t;
  2694. if(deblock_left){
  2695. for(i = !deblock_top; i<17; i++){
  2696. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2697. }
  2698. }
  2699. if(deblock_top){
  2700. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2701. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2702. if(s->mb_x+1 < s->mb_width){
  2703. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2704. }
  2705. }
  2706. if(simple || !(s->flags&CODEC_FLAG_GRAY)){
  2707. if(deblock_left){
  2708. for(i = !deblock_top; i<9; i++){
  2709. XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
  2710. XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
  2711. }
  2712. }
  2713. if(deblock_top){
  2714. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2715. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2716. }
  2717. }
  2718. }
  2719. static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
  2720. MpegEncContext * const s = &h->s;
  2721. int i;
  2722. src_y -= 2 * linesize;
  2723. src_cb -= 2 * uvlinesize;
  2724. src_cr -= 2 * uvlinesize;
  2725. // There are two lines saved, the line above the the top macroblock of a pair,
  2726. // and the line above the bottom macroblock
  2727. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2728. h->left_border[1]= h->top_borders[1][s->mb_x][15];
  2729. for(i=2; i<34; i++){
  2730. h->left_border[i]= src_y[15+i* linesize];
  2731. }
  2732. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
  2733. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
  2734. *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
  2735. *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
  2736. if(!(s->flags&CODEC_FLAG_GRAY)){
  2737. h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
  2738. h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
  2739. h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
  2740. h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
  2741. for(i=2; i<18; i++){
  2742. h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
  2743. h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
  2744. }
  2745. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
  2746. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
  2747. *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
  2748. *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
  2749. }
  2750. }
  2751. static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
  2752. MpegEncContext * const s = &h->s;
  2753. int temp8, i;
  2754. uint64_t temp64;
  2755. int deblock_left = (s->mb_x > 0);
  2756. int deblock_top = (s->mb_y > 1);
  2757. tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
  2758. src_y -= 2 * linesize + 1;
  2759. src_cb -= 2 * uvlinesize + 1;
  2760. src_cr -= 2 * uvlinesize + 1;
  2761. #define XCHG(a,b,t,xchg)\
  2762. t= a;\
  2763. if(xchg)\
  2764. a= b;\
  2765. b= t;
  2766. if(deblock_left){
  2767. for(i = (!deblock_top)<<1; i<34; i++){
  2768. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2769. }
  2770. }
  2771. if(deblock_top){
  2772. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2773. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2774. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
  2775. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
  2776. if(s->mb_x+1 < s->mb_width){
  2777. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2778. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1);
  2779. }
  2780. }
  2781. if(!(s->flags&CODEC_FLAG_GRAY)){
  2782. if(deblock_left){
  2783. for(i = (!deblock_top) << 1; i<18; i++){
  2784. XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
  2785. XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
  2786. }
  2787. }
  2788. if(deblock_top){
  2789. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2790. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2791. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
  2792. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
  2793. }
  2794. }
  2795. }
  2796. static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
  2797. MpegEncContext * const s = &h->s;
  2798. const int mb_x= s->mb_x;
  2799. const int mb_y= s->mb_y;
  2800. const int mb_xy= mb_x + mb_y*s->mb_stride;
  2801. const int mb_type= s->current_picture.mb_type[mb_xy];
  2802. uint8_t *dest_y, *dest_cb, *dest_cr;
  2803. int linesize, uvlinesize /*dct_offset*/;
  2804. int i;
  2805. int *block_offset = &h->block_offset[0];
  2806. const unsigned int bottom = mb_y & 1;
  2807. const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264);
  2808. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  2809. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  2810. dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  2811. dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2812. dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2813. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  2814. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
  2815. if (!simple && MB_FIELD) {
  2816. linesize = h->mb_linesize = s->linesize * 2;
  2817. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  2818. block_offset = &h->block_offset[24];
  2819. if(mb_y&1){ //FIXME move out of this func?
  2820. dest_y -= s->linesize*15;
  2821. dest_cb-= s->uvlinesize*7;
  2822. dest_cr-= s->uvlinesize*7;
  2823. }
  2824. if(FRAME_MBAFF) {
  2825. int list;
  2826. for(list=0; list<h->list_count; list++){
  2827. if(!USES_LIST(mb_type, list))
  2828. continue;
  2829. if(IS_16X16(mb_type)){
  2830. int8_t *ref = &h->ref_cache[list][scan8[0]];
  2831. fill_rectangle(ref, 4, 4, 8, 16+*ref^(s->mb_y&1), 1);
  2832. }else{
  2833. for(i=0; i<16; i+=4){
  2834. //FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
  2835. int ref = h->ref_cache[list][scan8[i]];
  2836. if(ref >= 0)
  2837. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, 16+ref^(s->mb_y&1), 1);
  2838. }
  2839. }
  2840. }
  2841. }
  2842. } else {
  2843. linesize = h->mb_linesize = s->linesize;
  2844. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  2845. // dct_offset = s->linesize * 16;
  2846. }
  2847. if(transform_bypass){
  2848. idct_dc_add =
  2849. idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  2850. }else if(IS_8x8DCT(mb_type)){
  2851. idct_dc_add = s->dsp.h264_idct8_dc_add;
  2852. idct_add = s->dsp.h264_idct8_add;
  2853. }else{
  2854. idct_dc_add = s->dsp.h264_idct_dc_add;
  2855. idct_add = s->dsp.h264_idct_add;
  2856. }
  2857. if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
  2858. && (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){
  2859. int mbt_y = mb_y&~1;
  2860. uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16;
  2861. uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
  2862. uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
  2863. xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
  2864. }
  2865. if (!simple && IS_INTRA_PCM(mb_type)) {
  2866. unsigned int x, y;
  2867. // The pixels are stored in h->mb array in the same order as levels,
  2868. // copy them in output in the correct order.
  2869. for(i=0; i<16; i++) {
  2870. for (y=0; y<4; y++) {
  2871. for (x=0; x<4; x++) {
  2872. *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
  2873. }
  2874. }
  2875. }
  2876. for(i=16; i<16+4; i++) {
  2877. for (y=0; y<4; y++) {
  2878. for (x=0; x<4; x++) {
  2879. *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2880. }
  2881. }
  2882. }
  2883. for(i=20; i<20+4; i++) {
  2884. for (y=0; y<4; y++) {
  2885. for (x=0; x<4; x++) {
  2886. *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2887. }
  2888. }
  2889. }
  2890. } else {
  2891. if(IS_INTRA(mb_type)){
  2892. if(h->deblocking_filter && (simple || !FRAME_MBAFF))
  2893. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
  2894. if(simple || !(s->flags&CODEC_FLAG_GRAY)){
  2895. h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  2896. h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  2897. }
  2898. if(IS_INTRA4x4(mb_type)){
  2899. if(simple || !s->encoding){
  2900. if(IS_8x8DCT(mb_type)){
  2901. for(i=0; i<16; i+=4){
  2902. uint8_t * const ptr= dest_y + block_offset[i];
  2903. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  2904. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  2905. h->pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  2906. (h->topright_samples_available<<i)&0x4000, linesize);
  2907. if(nnz){
  2908. if(nnz == 1 && h->mb[i*16])
  2909. idct_dc_add(ptr, h->mb + i*16, linesize);
  2910. else
  2911. idct_add(ptr, h->mb + i*16, linesize);
  2912. }
  2913. }
  2914. }else
  2915. for(i=0; i<16; i++){
  2916. uint8_t * const ptr= dest_y + block_offset[i];
  2917. uint8_t *topright;
  2918. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  2919. int nnz, tr;
  2920. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  2921. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  2922. assert(mb_y || linesize <= block_offset[i]);
  2923. if(!topright_avail){
  2924. tr= ptr[3 - linesize]*0x01010101;
  2925. topright= (uint8_t*) &tr;
  2926. }else
  2927. topright= ptr + 4 - linesize;
  2928. }else
  2929. topright= NULL;
  2930. h->pred4x4[ dir ](ptr, topright, linesize);
  2931. nnz = h->non_zero_count_cache[ scan8[i] ];
  2932. if(nnz){
  2933. if(is_h264){
  2934. if(nnz == 1 && h->mb[i*16])
  2935. idct_dc_add(ptr, h->mb + i*16, linesize);
  2936. else
  2937. idct_add(ptr, h->mb + i*16, linesize);
  2938. }else
  2939. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  2940. }
  2941. }
  2942. }
  2943. }else{
  2944. h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  2945. if(is_h264){
  2946. if(!transform_bypass)
  2947. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[IS_INTRA(mb_type) ? 0:3][s->qscale][0]);
  2948. }else
  2949. svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  2950. }
  2951. if(h->deblocking_filter && (simple || !FRAME_MBAFF))
  2952. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
  2953. }else if(is_h264){
  2954. hl_motion(h, dest_y, dest_cb, dest_cr,
  2955. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  2956. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  2957. s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
  2958. }
  2959. if(!IS_INTRA4x4(mb_type)){
  2960. if(is_h264){
  2961. if(IS_INTRA16x16(mb_type)){
  2962. for(i=0; i<16; i++){
  2963. if(h->non_zero_count_cache[ scan8[i] ])
  2964. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2965. else if(h->mb[i*16])
  2966. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2967. }
  2968. }else{
  2969. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  2970. for(i=0; i<16; i+=di){
  2971. int nnz = h->non_zero_count_cache[ scan8[i] ];
  2972. if(nnz){
  2973. if(nnz==1 && h->mb[i*16])
  2974. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2975. else
  2976. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2977. }
  2978. }
  2979. }
  2980. }else{
  2981. for(i=0; i<16; i++){
  2982. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  2983. uint8_t * const ptr= dest_y + block_offset[i];
  2984. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  2985. }
  2986. }
  2987. }
  2988. }
  2989. if(simple || !(s->flags&CODEC_FLAG_GRAY)){
  2990. uint8_t *dest[2] = {dest_cb, dest_cr};
  2991. if(transform_bypass){
  2992. idct_add = idct_dc_add = s->dsp.add_pixels4;
  2993. }else{
  2994. idct_add = s->dsp.h264_idct_add;
  2995. idct_dc_add = s->dsp.h264_idct_dc_add;
  2996. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp, h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp][0]);
  2997. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp, h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp][0]);
  2998. }
  2999. if(is_h264){
  3000. for(i=16; i<16+8; i++){
  3001. if(h->non_zero_count_cache[ scan8[i] ])
  3002. idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  3003. else if(h->mb[i*16])
  3004. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  3005. }
  3006. }else{
  3007. for(i=16; i<16+8; i++){
  3008. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  3009. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  3010. svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
  3011. }
  3012. }
  3013. }
  3014. }
  3015. }
  3016. if(h->deblocking_filter) {
  3017. if (!simple && FRAME_MBAFF) {
  3018. //FIXME try deblocking one mb at a time?
  3019. // the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
  3020. const int mb_y = s->mb_y - 1;
  3021. uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
  3022. const int mb_xy= mb_x + mb_y*s->mb_stride;
  3023. const int mb_type_top = s->current_picture.mb_type[mb_xy];
  3024. const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
  3025. if (!bottom) return;
  3026. pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  3027. pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  3028. pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  3029. if(IS_INTRA(mb_type_top | mb_type_bottom))
  3030. xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
  3031. backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
  3032. // deblock a pair
  3033. // top
  3034. s->mb_y--;
  3035. tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
  3036. fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
  3037. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mb_xy]);
  3038. filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
  3039. // bottom
  3040. s->mb_y++;
  3041. tprintf(h->s.avctx, "call mbaff filter_mb\n");
  3042. fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
  3043. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
  3044. filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3045. } else {
  3046. tprintf(h->s.avctx, "call filter_mb\n");
  3047. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
  3048. fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
  3049. filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3050. }
  3051. }
  3052. }
  3053. /**
  3054. * Process a macroblock; this case avoids checks for expensive uncommon cases.
  3055. */
  3056. static void hl_decode_mb_simple(H264Context *h){
  3057. hl_decode_mb_internal(h, 1);
  3058. }
  3059. /**
  3060. * Process a macroblock; this handles edge cases, such as interlacing.
  3061. */
  3062. static void av_noinline hl_decode_mb_complex(H264Context *h){
  3063. hl_decode_mb_internal(h, 0);
  3064. }
  3065. static void hl_decode_mb(H264Context *h){
  3066. MpegEncContext * const s = &h->s;
  3067. const int mb_x= s->mb_x;
  3068. const int mb_y= s->mb_y;
  3069. const int mb_xy= mb_x + mb_y*s->mb_stride;
  3070. const int mb_type= s->current_picture.mb_type[mb_xy];
  3071. int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 || (s->flags&CODEC_FLAG_GRAY) || s->encoding;
  3072. if(!s->decode)
  3073. return;
  3074. if (is_complex)
  3075. hl_decode_mb_complex(h);
  3076. else hl_decode_mb_simple(h);
  3077. }
  3078. /**
  3079. * fills the default_ref_list.
  3080. */
  3081. static int fill_default_ref_list(H264Context *h){
  3082. MpegEncContext * const s = &h->s;
  3083. int i;
  3084. int smallest_poc_greater_than_current = -1;
  3085. Picture sorted_short_ref[32];
  3086. if(h->slice_type==B_TYPE){
  3087. int out_i;
  3088. int limit= INT_MIN;
  3089. /* sort frame according to poc in B slice */
  3090. for(out_i=0; out_i<h->short_ref_count; out_i++){
  3091. int best_i=INT_MIN;
  3092. int best_poc=INT_MAX;
  3093. for(i=0; i<h->short_ref_count; i++){
  3094. const int poc= h->short_ref[i]->poc;
  3095. if(poc > limit && poc < best_poc){
  3096. best_poc= poc;
  3097. best_i= i;
  3098. }
  3099. }
  3100. assert(best_i != INT_MIN);
  3101. limit= best_poc;
  3102. sorted_short_ref[out_i]= *h->short_ref[best_i];
  3103. tprintf(h->s.avctx, "sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
  3104. if (-1 == smallest_poc_greater_than_current) {
  3105. if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
  3106. smallest_poc_greater_than_current = out_i;
  3107. }
  3108. }
  3109. }
  3110. }
  3111. if(s->picture_structure == PICT_FRAME){
  3112. if(h->slice_type==B_TYPE){
  3113. int list;
  3114. tprintf(h->s.avctx, "current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
  3115. // find the largest poc
  3116. for(list=0; list<2; list++){
  3117. int index = 0;
  3118. int j= -99;
  3119. int step= list ? -1 : 1;
  3120. for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
  3121. while(j<0 || j>= h->short_ref_count){
  3122. if(j != -99 && step == (list ? -1 : 1))
  3123. return -1;
  3124. step = -step;
  3125. j= smallest_poc_greater_than_current + (step>>1);
  3126. }
  3127. if(sorted_short_ref[j].reference != 3) continue;
  3128. h->default_ref_list[list][index ]= sorted_short_ref[j];
  3129. h->default_ref_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
  3130. }
  3131. for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
  3132. if(h->long_ref[i] == NULL) continue;
  3133. if(h->long_ref[i]->reference != 3) continue;
  3134. h->default_ref_list[ list ][index ]= *h->long_ref[i];
  3135. h->default_ref_list[ list ][index++].pic_id= i;;
  3136. }
  3137. if(list && (smallest_poc_greater_than_current<=0 || smallest_poc_greater_than_current>=h->short_ref_count) && (1 < index)){
  3138. // swap the two first elements of L1 when
  3139. // L0 and L1 are identical
  3140. Picture temp= h->default_ref_list[1][0];
  3141. h->default_ref_list[1][0] = h->default_ref_list[1][1];
  3142. h->default_ref_list[1][1] = temp;
  3143. }
  3144. if(index < h->ref_count[ list ])
  3145. memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
  3146. }
  3147. }else{
  3148. int index=0;
  3149. for(i=0; i<h->short_ref_count; i++){
  3150. if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
  3151. h->default_ref_list[0][index ]= *h->short_ref[i];
  3152. h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
  3153. }
  3154. for(i = 0; i < 16; i++){
  3155. if(h->long_ref[i] == NULL) continue;
  3156. if(h->long_ref[i]->reference != 3) continue;
  3157. h->default_ref_list[0][index ]= *h->long_ref[i];
  3158. h->default_ref_list[0][index++].pic_id= i;;
  3159. }
  3160. if(index < h->ref_count[0])
  3161. memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
  3162. }
  3163. }else{ //FIELD
  3164. if(h->slice_type==B_TYPE){
  3165. }else{
  3166. //FIXME second field balh
  3167. }
  3168. }
  3169. #ifdef TRACE
  3170. for (i=0; i<h->ref_count[0]; i++) {
  3171. tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
  3172. }
  3173. if(h->slice_type==B_TYPE){
  3174. for (i=0; i<h->ref_count[1]; i++) {
  3175. tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[0][i].data[0]);
  3176. }
  3177. }
  3178. #endif
  3179. return 0;
  3180. }
  3181. static void print_short_term(H264Context *h);
  3182. static void print_long_term(H264Context *h);
  3183. static int decode_ref_pic_list_reordering(H264Context *h){
  3184. MpegEncContext * const s = &h->s;
  3185. int list, index;
  3186. print_short_term(h);
  3187. print_long_term(h);
  3188. if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move before func
  3189. for(list=0; list<h->list_count; list++){
  3190. memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
  3191. if(get_bits1(&s->gb)){
  3192. int pred= h->curr_pic_num;
  3193. for(index=0; ; index++){
  3194. unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
  3195. unsigned int pic_id;
  3196. int i;
  3197. Picture *ref = NULL;
  3198. if(reordering_of_pic_nums_idc==3)
  3199. break;
  3200. if(index >= h->ref_count[list]){
  3201. av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
  3202. return -1;
  3203. }
  3204. if(reordering_of_pic_nums_idc<3){
  3205. if(reordering_of_pic_nums_idc<2){
  3206. const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
  3207. if(abs_diff_pic_num >= h->max_pic_num){
  3208. av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
  3209. return -1;
  3210. }
  3211. if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
  3212. else pred+= abs_diff_pic_num;
  3213. pred &= h->max_pic_num - 1;
  3214. for(i= h->short_ref_count-1; i>=0; i--){
  3215. ref = h->short_ref[i];
  3216. assert(ref->reference == 3);
  3217. assert(!ref->long_ref);
  3218. if(ref->data[0] != NULL && ref->frame_num == pred && ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
  3219. break;
  3220. }
  3221. if(i>=0)
  3222. ref->pic_id= ref->frame_num;
  3223. }else{
  3224. pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
  3225. if(pic_id>31){
  3226. av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
  3227. return -1;
  3228. }
  3229. ref = h->long_ref[pic_id];
  3230. if(ref){
  3231. ref->pic_id= pic_id;
  3232. assert(ref->reference == 3);
  3233. assert(ref->long_ref);
  3234. i=0;
  3235. }else{
  3236. i=-1;
  3237. }
  3238. }
  3239. if (i < 0) {
  3240. av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
  3241. memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
  3242. } else {
  3243. for(i=index; i+1<h->ref_count[list]; i++){
  3244. if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
  3245. break;
  3246. }
  3247. for(; i > index; i--){
  3248. h->ref_list[list][i]= h->ref_list[list][i-1];
  3249. }
  3250. h->ref_list[list][index]= *ref;
  3251. }
  3252. }else{
  3253. av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
  3254. return -1;
  3255. }
  3256. }
  3257. }
  3258. }
  3259. for(list=0; list<h->list_count; list++){
  3260. for(index= 0; index < h->ref_count[list]; index++){
  3261. if(!h->ref_list[list][index].data[0])
  3262. h->ref_list[list][index]= s->current_picture;
  3263. }
  3264. }
  3265. if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred)
  3266. direct_dist_scale_factor(h);
  3267. direct_ref_list_init(h);
  3268. return 0;
  3269. }
  3270. static void fill_mbaff_ref_list(H264Context *h){
  3271. int list, i, j;
  3272. for(list=0; list<2; list++){ //FIXME try list_count
  3273. for(i=0; i<h->ref_count[list]; i++){
  3274. Picture *frame = &h->ref_list[list][i];
  3275. Picture *field = &h->ref_list[list][16+2*i];
  3276. field[0] = *frame;
  3277. for(j=0; j<3; j++)
  3278. field[0].linesize[j] <<= 1;
  3279. field[1] = field[0];
  3280. for(j=0; j<3; j++)
  3281. field[1].data[j] += frame->linesize[j];
  3282. h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
  3283. h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
  3284. for(j=0; j<2; j++){
  3285. h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
  3286. h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
  3287. }
  3288. }
  3289. }
  3290. for(j=0; j<h->ref_count[1]; j++){
  3291. for(i=0; i<h->ref_count[0]; i++)
  3292. h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
  3293. memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
  3294. memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
  3295. }
  3296. }
  3297. static int pred_weight_table(H264Context *h){
  3298. MpegEncContext * const s = &h->s;
  3299. int list, i;
  3300. int luma_def, chroma_def;
  3301. h->use_weight= 0;
  3302. h->use_weight_chroma= 0;
  3303. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  3304. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  3305. luma_def = 1<<h->luma_log2_weight_denom;
  3306. chroma_def = 1<<h->chroma_log2_weight_denom;
  3307. for(list=0; list<2; list++){
  3308. for(i=0; i<h->ref_count[list]; i++){
  3309. int luma_weight_flag, chroma_weight_flag;
  3310. luma_weight_flag= get_bits1(&s->gb);
  3311. if(luma_weight_flag){
  3312. h->luma_weight[list][i]= get_se_golomb(&s->gb);
  3313. h->luma_offset[list][i]= get_se_golomb(&s->gb);
  3314. if( h->luma_weight[list][i] != luma_def
  3315. || h->luma_offset[list][i] != 0)
  3316. h->use_weight= 1;
  3317. }else{
  3318. h->luma_weight[list][i]= luma_def;
  3319. h->luma_offset[list][i]= 0;
  3320. }
  3321. chroma_weight_flag= get_bits1(&s->gb);
  3322. if(chroma_weight_flag){
  3323. int j;
  3324. for(j=0; j<2; j++){
  3325. h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
  3326. h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
  3327. if( h->chroma_weight[list][i][j] != chroma_def
  3328. || h->chroma_offset[list][i][j] != 0)
  3329. h->use_weight_chroma= 1;
  3330. }
  3331. }else{
  3332. int j;
  3333. for(j=0; j<2; j++){
  3334. h->chroma_weight[list][i][j]= chroma_def;
  3335. h->chroma_offset[list][i][j]= 0;
  3336. }
  3337. }
  3338. }
  3339. if(h->slice_type != B_TYPE) break;
  3340. }
  3341. h->use_weight= h->use_weight || h->use_weight_chroma;
  3342. return 0;
  3343. }
  3344. static void implicit_weight_table(H264Context *h){
  3345. MpegEncContext * const s = &h->s;
  3346. int ref0, ref1;
  3347. int cur_poc = s->current_picture_ptr->poc;
  3348. if( h->ref_count[0] == 1 && h->ref_count[1] == 1
  3349. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  3350. h->use_weight= 0;
  3351. h->use_weight_chroma= 0;
  3352. return;
  3353. }
  3354. h->use_weight= 2;
  3355. h->use_weight_chroma= 2;
  3356. h->luma_log2_weight_denom= 5;
  3357. h->chroma_log2_weight_denom= 5;
  3358. for(ref0=0; ref0 < h->ref_count[0]; ref0++){
  3359. int poc0 = h->ref_list[0][ref0].poc;
  3360. for(ref1=0; ref1 < h->ref_count[1]; ref1++){
  3361. int poc1 = h->ref_list[1][ref1].poc;
  3362. int td = av_clip(poc1 - poc0, -128, 127);
  3363. if(td){
  3364. int tb = av_clip(cur_poc - poc0, -128, 127);
  3365. int tx = (16384 + (FFABS(td) >> 1)) / td;
  3366. int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
  3367. if(dist_scale_factor < -64 || dist_scale_factor > 128)
  3368. h->implicit_weight[ref0][ref1] = 32;
  3369. else
  3370. h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
  3371. }else
  3372. h->implicit_weight[ref0][ref1] = 32;
  3373. }
  3374. }
  3375. }
  3376. static inline void unreference_pic(H264Context *h, Picture *pic){
  3377. int i;
  3378. pic->reference=0;
  3379. if(pic == h->delayed_output_pic)
  3380. pic->reference=1;
  3381. else{
  3382. for(i = 0; h->delayed_pic[i]; i++)
  3383. if(pic == h->delayed_pic[i]){
  3384. pic->reference=1;
  3385. break;
  3386. }
  3387. }
  3388. }
  3389. /**
  3390. * instantaneous decoder refresh.
  3391. */
  3392. static void idr(H264Context *h){
  3393. int i;
  3394. for(i=0; i<16; i++){
  3395. if (h->long_ref[i] != NULL) {
  3396. unreference_pic(h, h->long_ref[i]);
  3397. h->long_ref[i]= NULL;
  3398. }
  3399. }
  3400. h->long_ref_count=0;
  3401. for(i=0; i<h->short_ref_count; i++){
  3402. unreference_pic(h, h->short_ref[i]);
  3403. h->short_ref[i]= NULL;
  3404. }
  3405. h->short_ref_count=0;
  3406. }
  3407. /* forget old pics after a seek */
  3408. static void flush_dpb(AVCodecContext *avctx){
  3409. H264Context *h= avctx->priv_data;
  3410. int i;
  3411. for(i=0; i<16; i++) {
  3412. if(h->delayed_pic[i])
  3413. h->delayed_pic[i]->reference= 0;
  3414. h->delayed_pic[i]= NULL;
  3415. }
  3416. if(h->delayed_output_pic)
  3417. h->delayed_output_pic->reference= 0;
  3418. h->delayed_output_pic= NULL;
  3419. idr(h);
  3420. if(h->s.current_picture_ptr)
  3421. h->s.current_picture_ptr->reference= 0;
  3422. }
  3423. /**
  3424. *
  3425. * @return the removed picture or NULL if an error occurs
  3426. */
  3427. static Picture * remove_short(H264Context *h, int frame_num){
  3428. MpegEncContext * const s = &h->s;
  3429. int i;
  3430. if(s->avctx->debug&FF_DEBUG_MMCO)
  3431. av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
  3432. for(i=0; i<h->short_ref_count; i++){
  3433. Picture *pic= h->short_ref[i];
  3434. if(s->avctx->debug&FF_DEBUG_MMCO)
  3435. av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
  3436. if(pic->frame_num == frame_num){
  3437. h->short_ref[i]= NULL;
  3438. memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
  3439. h->short_ref_count--;
  3440. return pic;
  3441. }
  3442. }
  3443. return NULL;
  3444. }
  3445. /**
  3446. *
  3447. * @return the removed picture or NULL if an error occurs
  3448. */
  3449. static Picture * remove_long(H264Context *h, int i){
  3450. Picture *pic;
  3451. pic= h->long_ref[i];
  3452. h->long_ref[i]= NULL;
  3453. if(pic) h->long_ref_count--;
  3454. return pic;
  3455. }
  3456. /**
  3457. * print short term list
  3458. */
  3459. static void print_short_term(H264Context *h) {
  3460. uint32_t i;
  3461. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3462. av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
  3463. for(i=0; i<h->short_ref_count; i++){
  3464. Picture *pic= h->short_ref[i];
  3465. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3466. }
  3467. }
  3468. }
  3469. /**
  3470. * print long term list
  3471. */
  3472. static void print_long_term(H264Context *h) {
  3473. uint32_t i;
  3474. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3475. av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
  3476. for(i = 0; i < 16; i++){
  3477. Picture *pic= h->long_ref[i];
  3478. if (pic) {
  3479. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3480. }
  3481. }
  3482. }
  3483. }
  3484. /**
  3485. * Executes the reference picture marking (memory management control operations).
  3486. */
  3487. static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
  3488. MpegEncContext * const s = &h->s;
  3489. int i, j;
  3490. int current_is_long=0;
  3491. Picture *pic;
  3492. if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
  3493. av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
  3494. for(i=0; i<mmco_count; i++){
  3495. if(s->avctx->debug&FF_DEBUG_MMCO)
  3496. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
  3497. switch(mmco[i].opcode){
  3498. case MMCO_SHORT2UNUSED:
  3499. pic= remove_short(h, mmco[i].short_frame_num);
  3500. if(pic)
  3501. unreference_pic(h, pic);
  3502. else if(s->avctx->debug&FF_DEBUG_MMCO)
  3503. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: remove_short() failure\n");
  3504. break;
  3505. case MMCO_SHORT2LONG:
  3506. pic= remove_long(h, mmco[i].long_index);
  3507. if(pic) unreference_pic(h, pic);
  3508. h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
  3509. if (h->long_ref[ mmco[i].long_index ]){
  3510. h->long_ref[ mmco[i].long_index ]->long_ref=1;
  3511. h->long_ref_count++;
  3512. }
  3513. break;
  3514. case MMCO_LONG2UNUSED:
  3515. pic= remove_long(h, mmco[i].long_index);
  3516. if(pic)
  3517. unreference_pic(h, pic);
  3518. else if(s->avctx->debug&FF_DEBUG_MMCO)
  3519. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: remove_long() failure\n");
  3520. break;
  3521. case MMCO_LONG:
  3522. pic= remove_long(h, mmco[i].long_index);
  3523. if(pic) unreference_pic(h, pic);
  3524. h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
  3525. h->long_ref[ mmco[i].long_index ]->long_ref=1;
  3526. h->long_ref_count++;
  3527. current_is_long=1;
  3528. break;
  3529. case MMCO_SET_MAX_LONG:
  3530. assert(mmco[i].long_index <= 16);
  3531. // just remove the long term which index is greater than new max
  3532. for(j = mmco[i].long_index; j<16; j++){
  3533. pic = remove_long(h, j);
  3534. if (pic) unreference_pic(h, pic);
  3535. }
  3536. break;
  3537. case MMCO_RESET:
  3538. while(h->short_ref_count){
  3539. pic= remove_short(h, h->short_ref[0]->frame_num);
  3540. if(pic) unreference_pic(h, pic);
  3541. }
  3542. for(j = 0; j < 16; j++) {
  3543. pic= remove_long(h, j);
  3544. if(pic) unreference_pic(h, pic);
  3545. }
  3546. break;
  3547. default: assert(0);
  3548. }
  3549. }
  3550. if(!current_is_long){
  3551. pic= remove_short(h, s->current_picture_ptr->frame_num);
  3552. if(pic){
  3553. unreference_pic(h, pic);
  3554. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
  3555. }
  3556. if(h->short_ref_count)
  3557. memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
  3558. h->short_ref[0]= s->current_picture_ptr;
  3559. h->short_ref[0]->long_ref=0;
  3560. h->short_ref_count++;
  3561. }
  3562. print_short_term(h);
  3563. print_long_term(h);
  3564. return 0;
  3565. }
  3566. static int decode_ref_pic_marking(H264Context *h){
  3567. MpegEncContext * const s = &h->s;
  3568. int i;
  3569. if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
  3570. s->broken_link= get_bits1(&s->gb) -1;
  3571. h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx
  3572. if(h->mmco[0].long_index == -1)
  3573. h->mmco_index= 0;
  3574. else{
  3575. h->mmco[0].opcode= MMCO_LONG;
  3576. h->mmco_index= 1;
  3577. }
  3578. }else{
  3579. if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag
  3580. for(i= 0; i<MAX_MMCO_COUNT; i++) {
  3581. MMCOOpcode opcode= get_ue_golomb(&s->gb);;
  3582. h->mmco[i].opcode= opcode;
  3583. if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
  3584. h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
  3585. /* if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
  3586. av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco);
  3587. return -1;
  3588. }*/
  3589. }
  3590. if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
  3591. unsigned int long_index= get_ue_golomb(&s->gb);
  3592. if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ long_index >= 16){
  3593. av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
  3594. return -1;
  3595. }
  3596. h->mmco[i].long_index= long_index;
  3597. }
  3598. if(opcode > (unsigned)MMCO_LONG){
  3599. av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
  3600. return -1;
  3601. }
  3602. if(opcode == MMCO_END)
  3603. break;
  3604. }
  3605. h->mmco_index= i;
  3606. }else{
  3607. assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
  3608. if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
  3609. h->mmco[0].opcode= MMCO_SHORT2UNUSED;
  3610. h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
  3611. h->mmco_index= 1;
  3612. }else
  3613. h->mmco_index= 0;
  3614. }
  3615. }
  3616. return 0;
  3617. }
  3618. static int init_poc(H264Context *h){
  3619. MpegEncContext * const s = &h->s;
  3620. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  3621. int field_poc[2];
  3622. if(h->nal_unit_type == NAL_IDR_SLICE){
  3623. h->frame_num_offset= 0;
  3624. }else{
  3625. if(h->frame_num < h->prev_frame_num)
  3626. h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
  3627. else
  3628. h->frame_num_offset= h->prev_frame_num_offset;
  3629. }
  3630. if(h->sps.poc_type==0){
  3631. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  3632. if(h->nal_unit_type == NAL_IDR_SLICE){
  3633. h->prev_poc_msb=
  3634. h->prev_poc_lsb= 0;
  3635. }
  3636. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  3637. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  3638. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  3639. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  3640. else
  3641. h->poc_msb = h->prev_poc_msb;
  3642. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  3643. field_poc[0] =
  3644. field_poc[1] = h->poc_msb + h->poc_lsb;
  3645. if(s->picture_structure == PICT_FRAME)
  3646. field_poc[1] += h->delta_poc_bottom;
  3647. }else if(h->sps.poc_type==1){
  3648. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  3649. int i;
  3650. if(h->sps.poc_cycle_length != 0)
  3651. abs_frame_num = h->frame_num_offset + h->frame_num;
  3652. else
  3653. abs_frame_num = 0;
  3654. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  3655. abs_frame_num--;
  3656. expected_delta_per_poc_cycle = 0;
  3657. for(i=0; i < h->sps.poc_cycle_length; i++)
  3658. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  3659. if(abs_frame_num > 0){
  3660. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  3661. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  3662. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  3663. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  3664. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  3665. } else
  3666. expectedpoc = 0;
  3667. if(h->nal_ref_idc == 0)
  3668. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  3669. field_poc[0] = expectedpoc + h->delta_poc[0];
  3670. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  3671. if(s->picture_structure == PICT_FRAME)
  3672. field_poc[1] += h->delta_poc[1];
  3673. }else{
  3674. int poc;
  3675. if(h->nal_unit_type == NAL_IDR_SLICE){
  3676. poc= 0;
  3677. }else{
  3678. if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
  3679. else poc= 2*(h->frame_num_offset + h->frame_num) - 1;
  3680. }
  3681. field_poc[0]= poc;
  3682. field_poc[1]= poc;
  3683. }
  3684. if(s->picture_structure != PICT_BOTTOM_FIELD)
  3685. s->current_picture_ptr->field_poc[0]= field_poc[0];
  3686. if(s->picture_structure != PICT_TOP_FIELD)
  3687. s->current_picture_ptr->field_poc[1]= field_poc[1];
  3688. if(s->picture_structure == PICT_FRAME) // FIXME field pix?
  3689. s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
  3690. return 0;
  3691. }
  3692. /**
  3693. * decodes a slice header.
  3694. * this will allso call MPV_common_init() and frame_start() as needed
  3695. */
  3696. static int decode_slice_header(H264Context *h){
  3697. MpegEncContext * const s = &h->s;
  3698. unsigned int first_mb_in_slice;
  3699. unsigned int pps_id;
  3700. int num_ref_idx_active_override_flag;
  3701. static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
  3702. unsigned int slice_type, tmp;
  3703. int default_ref_list_done = 0;
  3704. s->current_picture.reference= h->nal_ref_idc != 0;
  3705. s->dropable= h->nal_ref_idc == 0;
  3706. first_mb_in_slice= get_ue_golomb(&s->gb);
  3707. if((s->flags2 & CODEC_FLAG2_CHUNKS) && first_mb_in_slice == 0){
  3708. h->slice_num = 0;
  3709. s->current_picture_ptr= NULL;
  3710. }
  3711. slice_type= get_ue_golomb(&s->gb);
  3712. if(slice_type > 9){
  3713. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  3714. return -1;
  3715. }
  3716. if(slice_type > 4){
  3717. slice_type -= 5;
  3718. h->slice_type_fixed=1;
  3719. }else
  3720. h->slice_type_fixed=0;
  3721. slice_type= slice_type_map[ slice_type ];
  3722. if (slice_type == I_TYPE
  3723. || (h->slice_num != 0 && slice_type == h->slice_type) ) {
  3724. default_ref_list_done = 1;
  3725. }
  3726. h->slice_type= slice_type;
  3727. s->pict_type= h->slice_type; // to make a few old func happy, it's wrong though
  3728. pps_id= get_ue_golomb(&s->gb);
  3729. if(pps_id>=MAX_PPS_COUNT){
  3730. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  3731. return -1;
  3732. }
  3733. if(!h->pps_buffers[pps_id]) {
  3734. av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
  3735. return -1;
  3736. }
  3737. h->pps= *h->pps_buffers[pps_id];
  3738. if(!h->sps_buffers[h->pps.sps_id]) {
  3739. av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
  3740. return -1;
  3741. }
  3742. h->sps = *h->sps_buffers[h->pps.sps_id];
  3743. if(h->dequant_coeff_pps != pps_id){
  3744. h->dequant_coeff_pps = pps_id;
  3745. init_dequant_tables(h);
  3746. }
  3747. s->mb_width= h->sps.mb_width;
  3748. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  3749. h->b_stride= s->mb_width*4;
  3750. h->b8_stride= s->mb_width*2;
  3751. s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
  3752. if(h->sps.frame_mbs_only_flag)
  3753. s->height= 16*s->mb_height - 2*(h->sps.crop_top + h->sps.crop_bottom);
  3754. else
  3755. s->height= 16*s->mb_height - 4*(h->sps.crop_top + h->sps.crop_bottom); //FIXME recheck
  3756. if (s->context_initialized
  3757. && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
  3758. free_tables(h);
  3759. MPV_common_end(s);
  3760. }
  3761. if (!s->context_initialized) {
  3762. if (MPV_common_init(s) < 0)
  3763. return -1;
  3764. if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  3765. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  3766. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  3767. }else{
  3768. int i;
  3769. for(i=0; i<16; i++){
  3770. #define T(x) (x>>2) | ((x<<2) & 0xF)
  3771. h->zigzag_scan[i] = T(zigzag_scan[i]);
  3772. h-> field_scan[i] = T( field_scan[i]);
  3773. #undef T
  3774. }
  3775. }
  3776. if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
  3777. memcpy(h->zigzag_scan8x8, zigzag_scan8x8, 64*sizeof(uint8_t));
  3778. memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
  3779. memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
  3780. memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
  3781. }else{
  3782. int i;
  3783. for(i=0; i<64; i++){
  3784. #define T(x) (x>>3) | ((x&7)<<3)
  3785. h->zigzag_scan8x8[i] = T(zigzag_scan8x8[i]);
  3786. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  3787. h->field_scan8x8[i] = T(field_scan8x8[i]);
  3788. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  3789. #undef T
  3790. }
  3791. }
  3792. if(h->sps.transform_bypass){ //FIXME same ugly
  3793. h->zigzag_scan_q0 = zigzag_scan;
  3794. h->zigzag_scan8x8_q0 = zigzag_scan8x8;
  3795. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  3796. h->field_scan_q0 = field_scan;
  3797. h->field_scan8x8_q0 = field_scan8x8;
  3798. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  3799. }else{
  3800. h->zigzag_scan_q0 = h->zigzag_scan;
  3801. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  3802. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  3803. h->field_scan_q0 = h->field_scan;
  3804. h->field_scan8x8_q0 = h->field_scan8x8;
  3805. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  3806. }
  3807. alloc_tables(h);
  3808. s->avctx->width = s->width;
  3809. s->avctx->height = s->height;
  3810. s->avctx->sample_aspect_ratio= h->sps.sar;
  3811. if(!s->avctx->sample_aspect_ratio.den)
  3812. s->avctx->sample_aspect_ratio.den = 1;
  3813. if(h->sps.timing_info_present_flag){
  3814. s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale};
  3815. if(h->x264_build > 0 && h->x264_build < 44)
  3816. s->avctx->time_base.den *= 2;
  3817. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  3818. s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
  3819. }
  3820. }
  3821. if(h->slice_num == 0){
  3822. if(frame_start(h) < 0)
  3823. return -1;
  3824. }
  3825. s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
  3826. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  3827. h->mb_mbaff = 0;
  3828. h->mb_aff_frame = 0;
  3829. if(h->sps.frame_mbs_only_flag){
  3830. s->picture_structure= PICT_FRAME;
  3831. }else{
  3832. if(get_bits1(&s->gb)) { //field_pic_flag
  3833. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  3834. av_log(h->s.avctx, AV_LOG_ERROR, "PAFF interlacing is not implemented\n");
  3835. } else {
  3836. s->picture_structure= PICT_FRAME;
  3837. h->mb_aff_frame = h->sps.mb_aff;
  3838. }
  3839. }
  3840. assert(s->mb_num == s->mb_width * s->mb_height);
  3841. if(first_mb_in_slice << h->mb_aff_frame >= s->mb_num ||
  3842. first_mb_in_slice >= s->mb_num){
  3843. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  3844. return -1;
  3845. }
  3846. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  3847. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << h->mb_aff_frame;
  3848. assert(s->mb_y < s->mb_height);
  3849. if(s->picture_structure==PICT_FRAME){
  3850. h->curr_pic_num= h->frame_num;
  3851. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  3852. }else{
  3853. h->curr_pic_num= 2*h->frame_num;
  3854. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  3855. }
  3856. if(h->nal_unit_type == NAL_IDR_SLICE){
  3857. get_ue_golomb(&s->gb); /* idr_pic_id */
  3858. }
  3859. if(h->sps.poc_type==0){
  3860. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  3861. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  3862. h->delta_poc_bottom= get_se_golomb(&s->gb);
  3863. }
  3864. }
  3865. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  3866. h->delta_poc[0]= get_se_golomb(&s->gb);
  3867. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  3868. h->delta_poc[1]= get_se_golomb(&s->gb);
  3869. }
  3870. init_poc(h);
  3871. if(h->pps.redundant_pic_cnt_present){
  3872. h->redundant_pic_count= get_ue_golomb(&s->gb);
  3873. }
  3874. //set defaults, might be overriden a few line later
  3875. h->ref_count[0]= h->pps.ref_count[0];
  3876. h->ref_count[1]= h->pps.ref_count[1];
  3877. if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
  3878. if(h->slice_type == B_TYPE){
  3879. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  3880. if(h->sps.mb_aff && h->direct_spatial_mv_pred)
  3881. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF + spatial direct mode is not implemented\n");
  3882. }
  3883. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  3884. if(num_ref_idx_active_override_flag){
  3885. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  3886. if(h->slice_type==B_TYPE)
  3887. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  3888. if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
  3889. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  3890. h->ref_count[0]= h->ref_count[1]= 1;
  3891. return -1;
  3892. }
  3893. }
  3894. if(h->slice_type == B_TYPE)
  3895. h->list_count= 2;
  3896. else
  3897. h->list_count= 1;
  3898. }else
  3899. h->list_count= 0;
  3900. if(!default_ref_list_done){
  3901. fill_default_ref_list(h);
  3902. }
  3903. if(decode_ref_pic_list_reordering(h) < 0)
  3904. return -1;
  3905. if( (h->pps.weighted_pred && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE ))
  3906. || (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
  3907. pred_weight_table(h);
  3908. else if(h->pps.weighted_bipred_idc==2 && h->slice_type==B_TYPE)
  3909. implicit_weight_table(h);
  3910. else
  3911. h->use_weight = 0;
  3912. if(s->current_picture.reference)
  3913. decode_ref_pic_marking(h);
  3914. if(FRAME_MBAFF)
  3915. fill_mbaff_ref_list(h);
  3916. if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE && h->pps.cabac ){
  3917. tmp = get_ue_golomb(&s->gb);
  3918. if(tmp > 2){
  3919. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  3920. return -1;
  3921. }
  3922. h->cabac_init_idc= tmp;
  3923. }
  3924. h->last_qscale_diff = 0;
  3925. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  3926. if(tmp>51){
  3927. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  3928. return -1;
  3929. }
  3930. s->qscale= tmp;
  3931. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale);
  3932. //FIXME qscale / qp ... stuff
  3933. if(h->slice_type == SP_TYPE){
  3934. get_bits1(&s->gb); /* sp_for_switch_flag */
  3935. }
  3936. if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
  3937. get_se_golomb(&s->gb); /* slice_qs_delta */
  3938. }
  3939. h->deblocking_filter = 1;
  3940. h->slice_alpha_c0_offset = 0;
  3941. h->slice_beta_offset = 0;
  3942. if( h->pps.deblocking_filter_parameters_present ) {
  3943. tmp= get_ue_golomb(&s->gb);
  3944. if(tmp > 2){
  3945. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  3946. return -1;
  3947. }
  3948. h->deblocking_filter= tmp;
  3949. if(h->deblocking_filter < 2)
  3950. h->deblocking_filter^= 1; // 1<->0
  3951. if( h->deblocking_filter ) {
  3952. h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
  3953. h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
  3954. }
  3955. }
  3956. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  3957. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type != I_TYPE)
  3958. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type == B_TYPE)
  3959. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  3960. h->deblocking_filter= 0;
  3961. #if 0 //FMO
  3962. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  3963. slice_group_change_cycle= get_bits(&s->gb, ?);
  3964. #endif
  3965. h->slice_num++;
  3966. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  3967. h->emu_edge_height= FRAME_MBAFF ? 0 : h->emu_edge_width;
  3968. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  3969. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s\n",
  3970. h->slice_num,
  3971. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  3972. first_mb_in_slice,
  3973. av_get_pict_type_char(h->slice_type),
  3974. pps_id, h->frame_num,
  3975. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  3976. h->ref_count[0], h->ref_count[1],
  3977. s->qscale,
  3978. h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
  3979. h->use_weight,
  3980. h->use_weight==1 && h->use_weight_chroma ? "c" : ""
  3981. );
  3982. }
  3983. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !s->current_picture.reference){
  3984. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  3985. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  3986. }else{
  3987. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  3988. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  3989. }
  3990. return 0;
  3991. }
  3992. /**
  3993. *
  3994. */
  3995. static inline int get_level_prefix(GetBitContext *gb){
  3996. unsigned int buf;
  3997. int log;
  3998. OPEN_READER(re, gb);
  3999. UPDATE_CACHE(re, gb);
  4000. buf=GET_CACHE(re, gb);
  4001. log= 32 - av_log2(buf);
  4002. #ifdef TRACE
  4003. print_bin(buf>>(32-log), log);
  4004. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  4005. #endif
  4006. LAST_SKIP_BITS(re, gb, log);
  4007. CLOSE_READER(re, gb);
  4008. return log-1;
  4009. }
  4010. static inline int get_dct8x8_allowed(H264Context *h){
  4011. int i;
  4012. for(i=0; i<4; i++){
  4013. if(!IS_SUB_8X8(h->sub_mb_type[i])
  4014. || (!h->sps.direct_8x8_inference_flag && IS_DIRECT(h->sub_mb_type[i])))
  4015. return 0;
  4016. }
  4017. return 1;
  4018. }
  4019. /**
  4020. * decodes a residual block.
  4021. * @param n block index
  4022. * @param scantable scantable
  4023. * @param max_coeff number of coefficients in the block
  4024. * @return <0 if an error occured
  4025. */
  4026. static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
  4027. MpegEncContext * const s = &h->s;
  4028. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  4029. int level[16];
  4030. int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before;
  4031. //FIXME put trailing_onex into the context
  4032. if(n == CHROMA_DC_BLOCK_INDEX){
  4033. coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  4034. total_coeff= coeff_token>>2;
  4035. }else{
  4036. if(n == LUMA_DC_BLOCK_INDEX){
  4037. total_coeff= pred_non_zero_count(h, 0);
  4038. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  4039. total_coeff= coeff_token>>2;
  4040. }else{
  4041. total_coeff= pred_non_zero_count(h, n);
  4042. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  4043. total_coeff= coeff_token>>2;
  4044. h->non_zero_count_cache[ scan8[n] ]= total_coeff;
  4045. }
  4046. }
  4047. //FIXME set last_non_zero?
  4048. if(total_coeff==0)
  4049. return 0;
  4050. if(total_coeff > (unsigned)max_coeff) {
  4051. av_log(h->s.avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", s->mb_x, s->mb_y, total_coeff);
  4052. return -1;
  4053. }
  4054. trailing_ones= coeff_token&3;
  4055. tprintf(h->s.avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
  4056. assert(total_coeff<=16);
  4057. for(i=0; i<trailing_ones; i++){
  4058. level[i]= 1 - 2*get_bits1(gb);
  4059. }
  4060. if(i<total_coeff) {
  4061. int level_code, mask;
  4062. int suffix_length = total_coeff > 10 && trailing_ones < 3;
  4063. int prefix= get_level_prefix(gb);
  4064. //first coefficient has suffix_length equal to 0 or 1
  4065. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  4066. if(suffix_length)
  4067. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  4068. else
  4069. level_code= (prefix<<suffix_length); //part
  4070. }else if(prefix==14){
  4071. if(suffix_length)
  4072. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  4073. else
  4074. level_code= prefix + get_bits(gb, 4); //part
  4075. }else if(prefix==15){
  4076. level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
  4077. if(suffix_length==0) level_code+=15; //FIXME doesn't make (much)sense
  4078. }else{
  4079. av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
  4080. return -1;
  4081. }
  4082. if(trailing_ones < 3) level_code += 2;
  4083. suffix_length = 1;
  4084. if(level_code > 5)
  4085. suffix_length++;
  4086. mask= -(level_code&1);
  4087. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  4088. i++;
  4089. //remaining coefficients have suffix_length > 0
  4090. for(;i<total_coeff;i++) {
  4091. static const int suffix_limit[7] = {0,5,11,23,47,95,INT_MAX };
  4092. prefix = get_level_prefix(gb);
  4093. if(prefix<15){
  4094. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  4095. }else if(prefix==15){
  4096. level_code = (prefix<<suffix_length) + get_bits(gb, 12);
  4097. }else{
  4098. av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
  4099. return -1;
  4100. }
  4101. mask= -(level_code&1);
  4102. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  4103. if(level_code > suffix_limit[suffix_length])
  4104. suffix_length++;
  4105. }
  4106. }
  4107. if(total_coeff == max_coeff)
  4108. zeros_left=0;
  4109. else{
  4110. if(n == CHROMA_DC_BLOCK_INDEX)
  4111. zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  4112. else
  4113. zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
  4114. }
  4115. coeff_num = zeros_left + total_coeff - 1;
  4116. j = scantable[coeff_num];
  4117. if(n > 24){
  4118. block[j] = level[0];
  4119. for(i=1;i<total_coeff;i++) {
  4120. if(zeros_left <= 0)
  4121. run_before = 0;
  4122. else if(zeros_left < 7){
  4123. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  4124. }else{
  4125. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  4126. }
  4127. zeros_left -= run_before;
  4128. coeff_num -= 1 + run_before;
  4129. j= scantable[ coeff_num ];
  4130. block[j]= level[i];
  4131. }
  4132. }else{
  4133. block[j] = (level[0] * qmul[j] + 32)>>6;
  4134. for(i=1;i<total_coeff;i++) {
  4135. if(zeros_left <= 0)
  4136. run_before = 0;
  4137. else if(zeros_left < 7){
  4138. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  4139. }else{
  4140. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  4141. }
  4142. zeros_left -= run_before;
  4143. coeff_num -= 1 + run_before;
  4144. j= scantable[ coeff_num ];
  4145. block[j]= (level[i] * qmul[j] + 32)>>6;
  4146. }
  4147. }
  4148. if(zeros_left<0){
  4149. av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
  4150. return -1;
  4151. }
  4152. return 0;
  4153. }
  4154. static void predict_field_decoding_flag(H264Context *h){
  4155. MpegEncContext * const s = &h->s;
  4156. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  4157. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  4158. ? s->current_picture.mb_type[mb_xy-1]
  4159. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  4160. ? s->current_picture.mb_type[mb_xy-s->mb_stride]
  4161. : 0;
  4162. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  4163. }
  4164. /**
  4165. * decodes a P_SKIP or B_SKIP macroblock
  4166. */
  4167. static void decode_mb_skip(H264Context *h){
  4168. MpegEncContext * const s = &h->s;
  4169. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  4170. int mb_type=0;
  4171. memset(h->non_zero_count[mb_xy], 0, 16);
  4172. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  4173. if(MB_FIELD)
  4174. mb_type|= MB_TYPE_INTERLACED;
  4175. if( h->slice_type == B_TYPE )
  4176. {
  4177. // just for fill_caches. pred_direct_motion will set the real mb_type
  4178. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  4179. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  4180. pred_direct_motion(h, &mb_type);
  4181. mb_type|= MB_TYPE_SKIP;
  4182. }
  4183. else
  4184. {
  4185. int mx, my;
  4186. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  4187. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  4188. pred_pskip_motion(h, &mx, &my);
  4189. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  4190. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  4191. }
  4192. write_back_motion(h, mb_type);
  4193. s->current_picture.mb_type[mb_xy]= mb_type;
  4194. s->current_picture.qscale_table[mb_xy]= s->qscale;
  4195. h->slice_table[ mb_xy ]= h->slice_num;
  4196. h->prev_mb_skipped= 1;
  4197. }
  4198. /**
  4199. * decodes a macroblock
  4200. * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  4201. */
  4202. static int decode_mb_cavlc(H264Context *h){
  4203. MpegEncContext * const s = &h->s;
  4204. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  4205. int partition_count;
  4206. unsigned int mb_type, cbp;
  4207. int dct8x8_allowed= h->pps.transform_8x8_mode;
  4208. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?
  4209. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  4210. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  4211. down the code */
  4212. if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){
  4213. if(s->mb_skip_run==-1)
  4214. s->mb_skip_run= get_ue_golomb(&s->gb);
  4215. if (s->mb_skip_run--) {
  4216. if(FRAME_MBAFF && (s->mb_y&1) == 0){
  4217. if(s->mb_skip_run==0)
  4218. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  4219. else
  4220. predict_field_decoding_flag(h);
  4221. }
  4222. decode_mb_skip(h);
  4223. return 0;
  4224. }
  4225. }
  4226. if(FRAME_MBAFF){
  4227. if( (s->mb_y&1) == 0 )
  4228. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  4229. }else
  4230. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  4231. h->prev_mb_skipped= 0;
  4232. mb_type= get_ue_golomb(&s->gb);
  4233. if(h->slice_type == B_TYPE){
  4234. if(mb_type < 23){
  4235. partition_count= b_mb_type_info[mb_type].partition_count;
  4236. mb_type= b_mb_type_info[mb_type].type;
  4237. }else{
  4238. mb_type -= 23;
  4239. goto decode_intra_mb;
  4240. }
  4241. }else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){
  4242. if(mb_type < 5){
  4243. partition_count= p_mb_type_info[mb_type].partition_count;
  4244. mb_type= p_mb_type_info[mb_type].type;
  4245. }else{
  4246. mb_type -= 5;
  4247. goto decode_intra_mb;
  4248. }
  4249. }else{
  4250. assert(h->slice_type == I_TYPE);
  4251. decode_intra_mb:
  4252. if(mb_type > 25){
  4253. av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
  4254. return -1;
  4255. }
  4256. partition_count=0;
  4257. cbp= i_mb_type_info[mb_type].cbp;
  4258. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  4259. mb_type= i_mb_type_info[mb_type].type;
  4260. }
  4261. if(MB_FIELD)
  4262. mb_type |= MB_TYPE_INTERLACED;
  4263. h->slice_table[ mb_xy ]= h->slice_num;
  4264. if(IS_INTRA_PCM(mb_type)){
  4265. unsigned int x, y;
  4266. // We assume these blocks are very rare so we do not optimize it.
  4267. align_get_bits(&s->gb);
  4268. // The pixels are stored in the same order as levels in h->mb array.
  4269. for(y=0; y<16; y++){
  4270. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  4271. for(x=0; x<16; x++){
  4272. tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4273. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= get_bits(&s->gb, 8);
  4274. }
  4275. }
  4276. for(y=0; y<8; y++){
  4277. const int index= 256 + 4*(y&3) + 32*(y>>2);
  4278. for(x=0; x<8; x++){
  4279. tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4280. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4281. }
  4282. }
  4283. for(y=0; y<8; y++){
  4284. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  4285. for(x=0; x<8; x++){
  4286. tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4287. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4288. }
  4289. }
  4290. // In deblocking, the quantizer is 0
  4291. s->current_picture.qscale_table[mb_xy]= 0;
  4292. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, 0);
  4293. // All coeffs are present
  4294. memset(h->non_zero_count[mb_xy], 16, 16);
  4295. s->current_picture.mb_type[mb_xy]= mb_type;
  4296. return 0;
  4297. }
  4298. if(MB_MBAFF){
  4299. h->ref_count[0] <<= 1;
  4300. h->ref_count[1] <<= 1;
  4301. }
  4302. fill_caches(h, mb_type, 0);
  4303. //mb_pred
  4304. if(IS_INTRA(mb_type)){
  4305. int pred_mode;
  4306. // init_top_left_availability(h);
  4307. if(IS_INTRA4x4(mb_type)){
  4308. int i;
  4309. int di = 1;
  4310. if(dct8x8_allowed && get_bits1(&s->gb)){
  4311. mb_type |= MB_TYPE_8x8DCT;
  4312. di = 4;
  4313. }
  4314. // fill_intra4x4_pred_table(h);
  4315. for(i=0; i<16; i+=di){
  4316. int mode= pred_intra_mode(h, i);
  4317. if(!get_bits1(&s->gb)){
  4318. const int rem_mode= get_bits(&s->gb, 3);
  4319. mode = rem_mode + (rem_mode >= mode);
  4320. }
  4321. if(di==4)
  4322. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  4323. else
  4324. h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
  4325. }
  4326. write_back_intra_pred_mode(h);
  4327. if( check_intra4x4_pred_mode(h) < 0)
  4328. return -1;
  4329. }else{
  4330. h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
  4331. if(h->intra16x16_pred_mode < 0)
  4332. return -1;
  4333. }
  4334. pred_mode= check_intra_pred_mode(h, get_ue_golomb(&s->gb));
  4335. if(pred_mode < 0)
  4336. return -1;
  4337. h->chroma_pred_mode= pred_mode;
  4338. }else if(partition_count==4){
  4339. int i, j, sub_partition_count[4], list, ref[2][4];
  4340. if(h->slice_type == B_TYPE){
  4341. for(i=0; i<4; i++){
  4342. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4343. if(h->sub_mb_type[i] >=13){
  4344. av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4345. return -1;
  4346. }
  4347. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4348. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4349. }
  4350. if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
  4351. || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
  4352. pred_direct_motion(h, &mb_type);
  4353. h->ref_cache[0][scan8[4]] =
  4354. h->ref_cache[1][scan8[4]] =
  4355. h->ref_cache[0][scan8[12]] =
  4356. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  4357. }
  4358. }else{
  4359. assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ?
  4360. for(i=0; i<4; i++){
  4361. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4362. if(h->sub_mb_type[i] >=4){
  4363. av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4364. return -1;
  4365. }
  4366. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4367. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4368. }
  4369. }
  4370. for(list=0; list<h->list_count; list++){
  4371. int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  4372. for(i=0; i<4; i++){
  4373. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  4374. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4375. unsigned int tmp = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
  4376. if(tmp>=ref_count){
  4377. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
  4378. return -1;
  4379. }
  4380. ref[list][i]= tmp;
  4381. }else{
  4382. //FIXME
  4383. ref[list][i] = -1;
  4384. }
  4385. }
  4386. }
  4387. if(dct8x8_allowed)
  4388. dct8x8_allowed = get_dct8x8_allowed(h);
  4389. for(list=0; list<h->list_count; list++){
  4390. for(i=0; i<4; i++){
  4391. if(IS_DIRECT(h->sub_mb_type[i])) {
  4392. h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
  4393. continue;
  4394. }
  4395. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
  4396. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  4397. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4398. const int sub_mb_type= h->sub_mb_type[i];
  4399. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  4400. for(j=0; j<sub_partition_count[i]; j++){
  4401. int mx, my;
  4402. const int index= 4*i + block_width*j;
  4403. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  4404. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
  4405. mx += get_se_golomb(&s->gb);
  4406. my += get_se_golomb(&s->gb);
  4407. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4408. if(IS_SUB_8X8(sub_mb_type)){
  4409. mv_cache[ 1 ][0]=
  4410. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  4411. mv_cache[ 1 ][1]=
  4412. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  4413. }else if(IS_SUB_8X4(sub_mb_type)){
  4414. mv_cache[ 1 ][0]= mx;
  4415. mv_cache[ 1 ][1]= my;
  4416. }else if(IS_SUB_4X8(sub_mb_type)){
  4417. mv_cache[ 8 ][0]= mx;
  4418. mv_cache[ 8 ][1]= my;
  4419. }
  4420. mv_cache[ 0 ][0]= mx;
  4421. mv_cache[ 0 ][1]= my;
  4422. }
  4423. }else{
  4424. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  4425. p[0] = p[1]=
  4426. p[8] = p[9]= 0;
  4427. }
  4428. }
  4429. }
  4430. }else if(IS_DIRECT(mb_type)){
  4431. pred_direct_motion(h, &mb_type);
  4432. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  4433. }else{
  4434. int list, mx, my, i;
  4435. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  4436. if(IS_16X16(mb_type)){
  4437. for(list=0; list<h->list_count; list++){
  4438. unsigned int val;
  4439. if(IS_DIR(mb_type, 0, list)){
  4440. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4441. if(val >= h->ref_count[list]){
  4442. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4443. return -1;
  4444. }
  4445. }else
  4446. val= LIST_NOT_USED&0xFF;
  4447. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  4448. }
  4449. for(list=0; list<h->list_count; list++){
  4450. unsigned int val;
  4451. if(IS_DIR(mb_type, 0, list)){
  4452. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
  4453. mx += get_se_golomb(&s->gb);
  4454. my += get_se_golomb(&s->gb);
  4455. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4456. val= pack16to32(mx,my);
  4457. }else
  4458. val=0;
  4459. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, val, 4);
  4460. }
  4461. }
  4462. else if(IS_16X8(mb_type)){
  4463. for(list=0; list<h->list_count; list++){
  4464. for(i=0; i<2; i++){
  4465. unsigned int val;
  4466. if(IS_DIR(mb_type, i, list)){
  4467. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4468. if(val >= h->ref_count[list]){
  4469. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4470. return -1;
  4471. }
  4472. }else
  4473. val= LIST_NOT_USED&0xFF;
  4474. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  4475. }
  4476. }
  4477. for(list=0; list<h->list_count; list++){
  4478. for(i=0; i<2; i++){
  4479. unsigned int val;
  4480. if(IS_DIR(mb_type, i, list)){
  4481. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  4482. mx += get_se_golomb(&s->gb);
  4483. my += get_se_golomb(&s->gb);
  4484. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4485. val= pack16to32(mx,my);
  4486. }else
  4487. val=0;
  4488. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
  4489. }
  4490. }
  4491. }else{
  4492. assert(IS_8X16(mb_type));
  4493. for(list=0; list<h->list_count; list++){
  4494. for(i=0; i<2; i++){
  4495. unsigned int val;
  4496. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  4497. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4498. if(val >= h->ref_count[list]){
  4499. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4500. return -1;
  4501. }
  4502. }else
  4503. val= LIST_NOT_USED&0xFF;
  4504. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  4505. }
  4506. }
  4507. for(list=0; list<h->list_count; list++){
  4508. for(i=0; i<2; i++){
  4509. unsigned int val;
  4510. if(IS_DIR(mb_type, i, list)){
  4511. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  4512. mx += get_se_golomb(&s->gb);
  4513. my += get_se_golomb(&s->gb);
  4514. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4515. val= pack16to32(mx,my);
  4516. }else
  4517. val=0;
  4518. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
  4519. }
  4520. }
  4521. }
  4522. }
  4523. if(IS_INTER(mb_type))
  4524. write_back_motion(h, mb_type);
  4525. if(!IS_INTRA16x16(mb_type)){
  4526. cbp= get_ue_golomb(&s->gb);
  4527. if(cbp > 47){
  4528. av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, s->mb_x, s->mb_y);
  4529. return -1;
  4530. }
  4531. if(IS_INTRA4x4(mb_type))
  4532. cbp= golomb_to_intra4x4_cbp[cbp];
  4533. else
  4534. cbp= golomb_to_inter_cbp[cbp];
  4535. }
  4536. h->cbp = cbp;
  4537. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  4538. if(get_bits1(&s->gb))
  4539. mb_type |= MB_TYPE_8x8DCT;
  4540. }
  4541. s->current_picture.mb_type[mb_xy]= mb_type;
  4542. if(cbp || IS_INTRA16x16(mb_type)){
  4543. int i8x8, i4x4, chroma_idx;
  4544. int chroma_qp, dquant;
  4545. GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
  4546. const uint8_t *scan, *scan8x8, *dc_scan;
  4547. // fill_non_zero_count_cache(h);
  4548. if(IS_INTERLACED(mb_type)){
  4549. scan8x8= s->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
  4550. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  4551. dc_scan= luma_dc_field_scan;
  4552. }else{
  4553. scan8x8= s->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
  4554. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  4555. dc_scan= luma_dc_zigzag_scan;
  4556. }
  4557. dquant= get_se_golomb(&s->gb);
  4558. if( dquant > 25 || dquant < -26 ){
  4559. av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
  4560. return -1;
  4561. }
  4562. s->qscale += dquant;
  4563. if(((unsigned)s->qscale) > 51){
  4564. if(s->qscale<0) s->qscale+= 52;
  4565. else s->qscale-= 52;
  4566. }
  4567. h->chroma_qp= chroma_qp= get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale);
  4568. if(IS_INTRA16x16(mb_type)){
  4569. if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, h->dequant4_coeff[0][s->qscale], 16) < 0){
  4570. return -1; //FIXME continue if partitioned and other return -1 too
  4571. }
  4572. assert((cbp&15) == 0 || (cbp&15) == 15);
  4573. if(cbp&15){
  4574. for(i8x8=0; i8x8<4; i8x8++){
  4575. for(i4x4=0; i4x4<4; i4x4++){
  4576. const int index= i4x4 + 4*i8x8;
  4577. if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ){
  4578. return -1;
  4579. }
  4580. }
  4581. }
  4582. }else{
  4583. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  4584. }
  4585. }else{
  4586. for(i8x8=0; i8x8<4; i8x8++){
  4587. if(cbp & (1<<i8x8)){
  4588. if(IS_8x8DCT(mb_type)){
  4589. DCTELEM *buf = &h->mb[64*i8x8];
  4590. uint8_t *nnz;
  4591. for(i4x4=0; i4x4<4; i4x4++){
  4592. if( decode_residual(h, gb, buf, i4x4+4*i8x8, scan8x8+16*i4x4,
  4593. h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 16) <0 )
  4594. return -1;
  4595. }
  4596. nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4597. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  4598. }else{
  4599. for(i4x4=0; i4x4<4; i4x4++){
  4600. const int index= i4x4 + 4*i8x8;
  4601. if( decode_residual(h, gb, h->mb + 16*index, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) <0 ){
  4602. return -1;
  4603. }
  4604. }
  4605. }
  4606. }else{
  4607. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4608. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  4609. }
  4610. }
  4611. }
  4612. if(cbp&0x30){
  4613. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  4614. if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, NULL, 4) < 0){
  4615. return -1;
  4616. }
  4617. }
  4618. if(cbp&0x20){
  4619. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  4620. for(i4x4=0; i4x4<4; i4x4++){
  4621. const int index= 16 + 4*chroma_idx + i4x4;
  4622. if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][chroma_qp], 15) < 0){
  4623. return -1;
  4624. }
  4625. }
  4626. }
  4627. }else{
  4628. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4629. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4630. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4631. }
  4632. }else{
  4633. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4634. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  4635. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4636. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4637. }
  4638. s->current_picture.qscale_table[mb_xy]= s->qscale;
  4639. write_back_non_zero_count(h);
  4640. if(MB_MBAFF){
  4641. h->ref_count[0] >>= 1;
  4642. h->ref_count[1] >>= 1;
  4643. }
  4644. return 0;
  4645. }
  4646. static int decode_cabac_field_decoding_flag(H264Context *h) {
  4647. MpegEncContext * const s = &h->s;
  4648. const int mb_x = s->mb_x;
  4649. const int mb_y = s->mb_y & ~1;
  4650. const int mba_xy = mb_x - 1 + mb_y *s->mb_stride;
  4651. const int mbb_xy = mb_x + (mb_y-2)*s->mb_stride;
  4652. unsigned int ctx = 0;
  4653. if( h->slice_table[mba_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) {
  4654. ctx += 1;
  4655. }
  4656. if( h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) {
  4657. ctx += 1;
  4658. }
  4659. return get_cabac_noinline( &h->cabac, &h->cabac_state[70 + ctx] );
  4660. }
  4661. static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
  4662. uint8_t *state= &h->cabac_state[ctx_base];
  4663. int mb_type;
  4664. if(intra_slice){
  4665. MpegEncContext * const s = &h->s;
  4666. const int mba_xy = h->left_mb_xy[0];
  4667. const int mbb_xy = h->top_mb_xy;
  4668. int ctx=0;
  4669. if( h->slice_table[mba_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mba_xy] ) )
  4670. ctx++;
  4671. if( h->slice_table[mbb_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mbb_xy] ) )
  4672. ctx++;
  4673. if( get_cabac_noinline( &h->cabac, &state[ctx] ) == 0 )
  4674. return 0; /* I4x4 */
  4675. state += 2;
  4676. }else{
  4677. if( get_cabac_noinline( &h->cabac, &state[0] ) == 0 )
  4678. return 0; /* I4x4 */
  4679. }
  4680. if( get_cabac_terminate( &h->cabac ) )
  4681. return 25; /* PCM */
  4682. mb_type = 1; /* I16x16 */
  4683. mb_type += 12 * get_cabac_noinline( &h->cabac, &state[1] ); /* cbp_luma != 0 */
  4684. if( get_cabac_noinline( &h->cabac, &state[2] ) ) /* cbp_chroma */
  4685. mb_type += 4 + 4 * get_cabac_noinline( &h->cabac, &state[2+intra_slice] );
  4686. mb_type += 2 * get_cabac_noinline( &h->cabac, &state[3+intra_slice] );
  4687. mb_type += 1 * get_cabac_noinline( &h->cabac, &state[3+2*intra_slice] );
  4688. return mb_type;
  4689. }
  4690. static int decode_cabac_mb_type( H264Context *h ) {
  4691. MpegEncContext * const s = &h->s;
  4692. if( h->slice_type == I_TYPE ) {
  4693. return decode_cabac_intra_mb_type(h, 3, 1);
  4694. } else if( h->slice_type == P_TYPE ) {
  4695. if( get_cabac_noinline( &h->cabac, &h->cabac_state[14] ) == 0 ) {
  4696. /* P-type */
  4697. if( get_cabac_noinline( &h->cabac, &h->cabac_state[15] ) == 0 ) {
  4698. /* P_L0_D16x16, P_8x8 */
  4699. return 3 * get_cabac_noinline( &h->cabac, &h->cabac_state[16] );
  4700. } else {
  4701. /* P_L0_D8x16, P_L0_D16x8 */
  4702. return 2 - get_cabac_noinline( &h->cabac, &h->cabac_state[17] );
  4703. }
  4704. } else {
  4705. return decode_cabac_intra_mb_type(h, 17, 0) + 5;
  4706. }
  4707. } else if( h->slice_type == B_TYPE ) {
  4708. const int mba_xy = h->left_mb_xy[0];
  4709. const int mbb_xy = h->top_mb_xy;
  4710. int ctx = 0;
  4711. int bits;
  4712. if( h->slice_table[mba_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mba_xy] ) )
  4713. ctx++;
  4714. if( h->slice_table[mbb_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mbb_xy] ) )
  4715. ctx++;
  4716. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+ctx] ) )
  4717. return 0; /* B_Direct_16x16 */
  4718. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+3] ) ) {
  4719. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
  4720. }
  4721. bits = get_cabac_noinline( &h->cabac, &h->cabac_state[27+4] ) << 3;
  4722. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 2;
  4723. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 1;
  4724. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4725. if( bits < 8 )
  4726. return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
  4727. else if( bits == 13 ) {
  4728. return decode_cabac_intra_mb_type(h, 32, 0) + 23;
  4729. } else if( bits == 14 )
  4730. return 11; /* B_L1_L0_8x16 */
  4731. else if( bits == 15 )
  4732. return 22; /* B_8x8 */
  4733. bits= ( bits<<1 ) | get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4734. return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
  4735. } else {
  4736. /* TODO SI/SP frames? */
  4737. return -1;
  4738. }
  4739. }
  4740. static int decode_cabac_mb_skip( H264Context *h, int mb_x, int mb_y ) {
  4741. MpegEncContext * const s = &h->s;
  4742. int mba_xy, mbb_xy;
  4743. int ctx = 0;
  4744. if(FRAME_MBAFF){ //FIXME merge with the stuff in fill_caches?
  4745. int mb_xy = mb_x + (mb_y&~1)*s->mb_stride;
  4746. mba_xy = mb_xy - 1;
  4747. if( (mb_y&1)
  4748. && h->slice_table[mba_xy] == h->slice_num
  4749. && MB_FIELD == !!IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) )
  4750. mba_xy += s->mb_stride;
  4751. if( MB_FIELD ){
  4752. mbb_xy = mb_xy - s->mb_stride;
  4753. if( !(mb_y&1)
  4754. && h->slice_table[mbb_xy] == h->slice_num
  4755. && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) )
  4756. mbb_xy -= s->mb_stride;
  4757. }else
  4758. mbb_xy = mb_x + (mb_y-1)*s->mb_stride;
  4759. }else{
  4760. int mb_xy = mb_x + mb_y*s->mb_stride;
  4761. mba_xy = mb_xy - 1;
  4762. mbb_xy = mb_xy - s->mb_stride;
  4763. }
  4764. if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] ))
  4765. ctx++;
  4766. if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ))
  4767. ctx++;
  4768. if( h->slice_type == B_TYPE )
  4769. ctx += 13;
  4770. return get_cabac_noinline( &h->cabac, &h->cabac_state[11+ctx] );
  4771. }
  4772. static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
  4773. int mode = 0;
  4774. if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
  4775. return pred_mode;
  4776. mode += 1 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4777. mode += 2 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4778. mode += 4 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4779. if( mode >= pred_mode )
  4780. return mode + 1;
  4781. else
  4782. return mode;
  4783. }
  4784. static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
  4785. const int mba_xy = h->left_mb_xy[0];
  4786. const int mbb_xy = h->top_mb_xy;
  4787. int ctx = 0;
  4788. /* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
  4789. if( h->slice_table[mba_xy] == h->slice_num && h->chroma_pred_mode_table[mba_xy] != 0 )
  4790. ctx++;
  4791. if( h->slice_table[mbb_xy] == h->slice_num && h->chroma_pred_mode_table[mbb_xy] != 0 )
  4792. ctx++;
  4793. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
  4794. return 0;
  4795. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4796. return 1;
  4797. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4798. return 2;
  4799. else
  4800. return 3;
  4801. }
  4802. static const uint8_t block_idx_x[16] = {
  4803. 0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3
  4804. };
  4805. static const uint8_t block_idx_y[16] = {
  4806. 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3
  4807. };
  4808. static const uint8_t block_idx_xy[4][4] = {
  4809. { 0, 2, 8, 10},
  4810. { 1, 3, 9, 11},
  4811. { 4, 6, 12, 14},
  4812. { 5, 7, 13, 15}
  4813. };
  4814. static int decode_cabac_mb_cbp_luma( H264Context *h) {
  4815. int cbp = 0;
  4816. int cbp_b = -1;
  4817. int i8x8;
  4818. if( h->slice_table[h->top_mb_xy] == h->slice_num ) {
  4819. cbp_b = h->top_cbp;
  4820. tprintf(h->s.avctx, "cbp_b = top_cbp = %x\n", cbp_b);
  4821. }
  4822. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  4823. int cbp_a = -1;
  4824. int x, y;
  4825. int ctx = 0;
  4826. x = block_idx_x[4*i8x8];
  4827. y = block_idx_y[4*i8x8];
  4828. if( x > 0 )
  4829. cbp_a = cbp;
  4830. else if( h->slice_table[h->left_mb_xy[0]] == h->slice_num ) {
  4831. cbp_a = h->left_cbp;
  4832. tprintf(h->s.avctx, "cbp_a = left_cbp = %x\n", cbp_a);
  4833. }
  4834. if( y > 0 )
  4835. cbp_b = cbp;
  4836. /* No need to test for skip as we put 0 for skip block */
  4837. /* No need to test for IPCM as we put 1 for IPCM block */
  4838. if( cbp_a >= 0 ) {
  4839. int i8x8a = block_idx_xy[(x-1)&0x03][y]/4;
  4840. if( ((cbp_a >> i8x8a)&0x01) == 0 )
  4841. ctx++;
  4842. }
  4843. if( cbp_b >= 0 ) {
  4844. int i8x8b = block_idx_xy[x][(y-1)&0x03]/4;
  4845. if( ((cbp_b >> i8x8b)&0x01) == 0 )
  4846. ctx += 2;
  4847. }
  4848. if( get_cabac( &h->cabac, &h->cabac_state[73 + ctx] ) ) {
  4849. cbp |= 1 << i8x8;
  4850. }
  4851. }
  4852. return cbp;
  4853. }
  4854. static int decode_cabac_mb_cbp_chroma( H264Context *h) {
  4855. int ctx;
  4856. int cbp_a, cbp_b;
  4857. cbp_a = (h->left_cbp>>4)&0x03;
  4858. cbp_b = (h-> top_cbp>>4)&0x03;
  4859. ctx = 0;
  4860. if( cbp_a > 0 ) ctx++;
  4861. if( cbp_b > 0 ) ctx += 2;
  4862. if( get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 )
  4863. return 0;
  4864. ctx = 4;
  4865. if( cbp_a == 2 ) ctx++;
  4866. if( cbp_b == 2 ) ctx += 2;
  4867. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] );
  4868. }
  4869. static int decode_cabac_mb_dqp( H264Context *h) {
  4870. MpegEncContext * const s = &h->s;
  4871. int mbn_xy;
  4872. int ctx = 0;
  4873. int val = 0;
  4874. if( s->mb_x > 0 )
  4875. mbn_xy = s->mb_x + s->mb_y*s->mb_stride - 1;
  4876. else
  4877. mbn_xy = s->mb_width - 1 + (s->mb_y-1)*s->mb_stride;
  4878. if( h->last_qscale_diff != 0 )
  4879. ctx++;
  4880. while( get_cabac_noinline( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
  4881. if( ctx < 2 )
  4882. ctx = 2;
  4883. else
  4884. ctx = 3;
  4885. val++;
  4886. if(val > 102) //prevent infinite loop
  4887. return INT_MIN;
  4888. }
  4889. if( val&0x01 )
  4890. return (val + 1)/2;
  4891. else
  4892. return -(val + 1)/2;
  4893. }
  4894. static int decode_cabac_p_mb_sub_type( H264Context *h ) {
  4895. if( get_cabac( &h->cabac, &h->cabac_state[21] ) )
  4896. return 0; /* 8x8 */
  4897. if( !get_cabac( &h->cabac, &h->cabac_state[22] ) )
  4898. return 1; /* 8x4 */
  4899. if( get_cabac( &h->cabac, &h->cabac_state[23] ) )
  4900. return 2; /* 4x8 */
  4901. return 3; /* 4x4 */
  4902. }
  4903. static int decode_cabac_b_mb_sub_type( H264Context *h ) {
  4904. int type;
  4905. if( !get_cabac( &h->cabac, &h->cabac_state[36] ) )
  4906. return 0; /* B_Direct_8x8 */
  4907. if( !get_cabac( &h->cabac, &h->cabac_state[37] ) )
  4908. return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */
  4909. type = 3;
  4910. if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) {
  4911. if( get_cabac( &h->cabac, &h->cabac_state[39] ) )
  4912. return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */
  4913. type += 4;
  4914. }
  4915. type += 2*get_cabac( &h->cabac, &h->cabac_state[39] );
  4916. type += get_cabac( &h->cabac, &h->cabac_state[39] );
  4917. return type;
  4918. }
  4919. static inline int decode_cabac_mb_transform_size( H264Context *h ) {
  4920. return get_cabac_noinline( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] );
  4921. }
  4922. static int decode_cabac_mb_ref( H264Context *h, int list, int n ) {
  4923. int refa = h->ref_cache[list][scan8[n] - 1];
  4924. int refb = h->ref_cache[list][scan8[n] - 8];
  4925. int ref = 0;
  4926. int ctx = 0;
  4927. if( h->slice_type == B_TYPE) {
  4928. if( refa > 0 && !h->direct_cache[scan8[n] - 1] )
  4929. ctx++;
  4930. if( refb > 0 && !h->direct_cache[scan8[n] - 8] )
  4931. ctx += 2;
  4932. } else {
  4933. if( refa > 0 )
  4934. ctx++;
  4935. if( refb > 0 )
  4936. ctx += 2;
  4937. }
  4938. while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) {
  4939. ref++;
  4940. if( ctx < 4 )
  4941. ctx = 4;
  4942. else
  4943. ctx = 5;
  4944. if(ref >= 32 /*h->ref_list[list]*/){
  4945. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_ref\n");
  4946. return 0; //FIXME we should return -1 and check the return everywhere
  4947. }
  4948. }
  4949. return ref;
  4950. }
  4951. static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) {
  4952. int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) +
  4953. abs( h->mvd_cache[list][scan8[n] - 8][l] );
  4954. int ctxbase = (l == 0) ? 40 : 47;
  4955. int ctx, mvd;
  4956. if( amvd < 3 )
  4957. ctx = 0;
  4958. else if( amvd > 32 )
  4959. ctx = 2;
  4960. else
  4961. ctx = 1;
  4962. if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx]))
  4963. return 0;
  4964. mvd= 1;
  4965. ctx= 3;
  4966. while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) {
  4967. mvd++;
  4968. if( ctx < 6 )
  4969. ctx++;
  4970. }
  4971. if( mvd >= 9 ) {
  4972. int k = 3;
  4973. while( get_cabac_bypass( &h->cabac ) ) {
  4974. mvd += 1 << k;
  4975. k++;
  4976. if(k>24){
  4977. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_mvd\n");
  4978. return INT_MIN;
  4979. }
  4980. }
  4981. while( k-- ) {
  4982. if( get_cabac_bypass( &h->cabac ) )
  4983. mvd += 1 << k;
  4984. }
  4985. }
  4986. return get_cabac_bypass_sign( &h->cabac, -mvd );
  4987. }
  4988. static inline int get_cabac_cbf_ctx( H264Context *h, int cat, int idx ) {
  4989. int nza, nzb;
  4990. int ctx = 0;
  4991. if( cat == 0 ) {
  4992. nza = h->left_cbp&0x100;
  4993. nzb = h-> top_cbp&0x100;
  4994. } else if( cat == 1 || cat == 2 ) {
  4995. nza = h->non_zero_count_cache[scan8[idx] - 1];
  4996. nzb = h->non_zero_count_cache[scan8[idx] - 8];
  4997. } else if( cat == 3 ) {
  4998. nza = (h->left_cbp>>(6+idx))&0x01;
  4999. nzb = (h-> top_cbp>>(6+idx))&0x01;
  5000. } else {
  5001. assert(cat == 4);
  5002. nza = h->non_zero_count_cache[scan8[16+idx] - 1];
  5003. nzb = h->non_zero_count_cache[scan8[16+idx] - 8];
  5004. }
  5005. if( nza > 0 )
  5006. ctx++;
  5007. if( nzb > 0 )
  5008. ctx += 2;
  5009. return ctx + 4 * cat;
  5010. }
  5011. static const attribute_used uint8_t last_coeff_flag_offset_8x8[63] = {
  5012. 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  5013. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  5014. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  5015. 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8
  5016. };
  5017. static int decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff) {
  5018. const int mb_xy = h->s.mb_x + h->s.mb_y*h->s.mb_stride;
  5019. static const int significant_coeff_flag_offset[2][6] = {
  5020. { 105+0, 105+15, 105+29, 105+44, 105+47, 402 },
  5021. { 277+0, 277+15, 277+29, 277+44, 277+47, 436 }
  5022. };
  5023. static const int last_coeff_flag_offset[2][6] = {
  5024. { 166+0, 166+15, 166+29, 166+44, 166+47, 417 },
  5025. { 338+0, 338+15, 338+29, 338+44, 338+47, 451 }
  5026. };
  5027. static const int coeff_abs_level_m1_offset[6] = {
  5028. 227+0, 227+10, 227+20, 227+30, 227+39, 426
  5029. };
  5030. static const uint8_t significant_coeff_flag_offset_8x8[2][63] = {
  5031. { 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5,
  5032. 4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9,10, 9, 8, 7,
  5033. 7, 6,11,12,13,11, 6, 7, 8, 9,14,10, 9, 8, 6,11,
  5034. 12,13,11, 6, 9,14,10, 9,11,12,13,11,14,10,12 },
  5035. { 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7, 8, 4, 5,
  5036. 6, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,11,12,11,
  5037. 9, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,13,13, 9,
  5038. 9,10,10, 8,13,13, 9, 9,10,10,14,14,14,14,14 }
  5039. };
  5040. int index[64];
  5041. int last;
  5042. int coeff_count = 0;
  5043. int abslevel1 = 1;
  5044. int abslevelgt1 = 0;
  5045. uint8_t *significant_coeff_ctx_base;
  5046. uint8_t *last_coeff_ctx_base;
  5047. uint8_t *abs_level_m1_ctx_base;
  5048. #ifndef ARCH_X86
  5049. #define CABAC_ON_STACK
  5050. #endif
  5051. #ifdef CABAC_ON_STACK
  5052. #define CC &cc
  5053. CABACContext cc;
  5054. cc.range = h->cabac.range;
  5055. cc.low = h->cabac.low;
  5056. cc.bytestream= h->cabac.bytestream;
  5057. #else
  5058. #define CC &h->cabac
  5059. #endif
  5060. /* cat: 0-> DC 16x16 n = 0
  5061. * 1-> AC 16x16 n = luma4x4idx
  5062. * 2-> Luma4x4 n = luma4x4idx
  5063. * 3-> DC Chroma n = iCbCr
  5064. * 4-> AC Chroma n = 4 * iCbCr + chroma4x4idx
  5065. * 5-> Luma8x8 n = 4 * luma8x8idx
  5066. */
  5067. /* read coded block flag */
  5068. if( cat != 5 ) {
  5069. if( get_cabac( CC, &h->cabac_state[85 + get_cabac_cbf_ctx( h, cat, n ) ] ) == 0 ) {
  5070. if( cat == 1 || cat == 2 )
  5071. h->non_zero_count_cache[scan8[n]] = 0;
  5072. else if( cat == 4 )
  5073. h->non_zero_count_cache[scan8[16+n]] = 0;
  5074. #ifdef CABAC_ON_STACK
  5075. h->cabac.range = cc.range ;
  5076. h->cabac.low = cc.low ;
  5077. h->cabac.bytestream= cc.bytestream;
  5078. #endif
  5079. return 0;
  5080. }
  5081. }
  5082. significant_coeff_ctx_base = h->cabac_state
  5083. + significant_coeff_flag_offset[MB_FIELD][cat];
  5084. last_coeff_ctx_base = h->cabac_state
  5085. + last_coeff_flag_offset[MB_FIELD][cat];
  5086. abs_level_m1_ctx_base = h->cabac_state
  5087. + coeff_abs_level_m1_offset[cat];
  5088. if( cat == 5 ) {
  5089. #define DECODE_SIGNIFICANCE( coefs, sig_off, last_off ) \
  5090. for(last= 0; last < coefs; last++) { \
  5091. uint8_t *sig_ctx = significant_coeff_ctx_base + sig_off; \
  5092. if( get_cabac( CC, sig_ctx )) { \
  5093. uint8_t *last_ctx = last_coeff_ctx_base + last_off; \
  5094. index[coeff_count++] = last; \
  5095. if( get_cabac( CC, last_ctx ) ) { \
  5096. last= max_coeff; \
  5097. break; \
  5098. } \
  5099. } \
  5100. }\
  5101. if( last == max_coeff -1 ) {\
  5102. index[coeff_count++] = last;\
  5103. }
  5104. const uint8_t *sig_off = significant_coeff_flag_offset_8x8[MB_FIELD];
  5105. #if defined(ARCH_X86) && defined(CONFIG_7REGS) && defined(HAVE_EBX_AVAILABLE) && !defined(BROKEN_RELOCATIONS)
  5106. coeff_count= decode_significance_8x8_x86(CC, significant_coeff_ctx_base, index, sig_off);
  5107. } else {
  5108. coeff_count= decode_significance_x86(CC, max_coeff, significant_coeff_ctx_base, index);
  5109. #else
  5110. DECODE_SIGNIFICANCE( 63, sig_off[last], last_coeff_flag_offset_8x8[last] );
  5111. } else {
  5112. DECODE_SIGNIFICANCE( max_coeff - 1, last, last );
  5113. #endif
  5114. }
  5115. assert(coeff_count > 0);
  5116. if( cat == 0 )
  5117. h->cbp_table[mb_xy] |= 0x100;
  5118. else if( cat == 1 || cat == 2 )
  5119. h->non_zero_count_cache[scan8[n]] = coeff_count;
  5120. else if( cat == 3 )
  5121. h->cbp_table[mb_xy] |= 0x40 << n;
  5122. else if( cat == 4 )
  5123. h->non_zero_count_cache[scan8[16+n]] = coeff_count;
  5124. else {
  5125. assert( cat == 5 );
  5126. fill_rectangle(&h->non_zero_count_cache[scan8[n]], 2, 2, 8, coeff_count, 1);
  5127. }
  5128. for( coeff_count--; coeff_count >= 0; coeff_count-- ) {
  5129. uint8_t *ctx = (abslevelgt1 != 0 ? 0 : FFMIN( 4, abslevel1 )) + abs_level_m1_ctx_base;
  5130. int j= scantable[index[coeff_count]];
  5131. if( get_cabac( CC, ctx ) == 0 ) {
  5132. if( !qmul ) {
  5133. block[j] = get_cabac_bypass_sign( CC, -1);
  5134. }else{
  5135. block[j] = (get_cabac_bypass_sign( CC, -qmul[j]) + 32) >> 6;;
  5136. }
  5137. abslevel1++;
  5138. } else {
  5139. int coeff_abs = 2;
  5140. ctx = 5 + FFMIN( 4, abslevelgt1 ) + abs_level_m1_ctx_base;
  5141. while( coeff_abs < 15 && get_cabac( CC, ctx ) ) {
  5142. coeff_abs++;
  5143. }
  5144. if( coeff_abs >= 15 ) {
  5145. int j = 0;
  5146. while( get_cabac_bypass( CC ) ) {
  5147. j++;
  5148. }
  5149. coeff_abs=1;
  5150. while( j-- ) {
  5151. coeff_abs += coeff_abs + get_cabac_bypass( CC );
  5152. }
  5153. coeff_abs+= 14;
  5154. }
  5155. if( !qmul ) {
  5156. if( get_cabac_bypass( CC ) ) block[j] = -coeff_abs;
  5157. else block[j] = coeff_abs;
  5158. }else{
  5159. if( get_cabac_bypass( CC ) ) block[j] = (-coeff_abs * qmul[j] + 32) >> 6;
  5160. else block[j] = ( coeff_abs * qmul[j] + 32) >> 6;
  5161. }
  5162. abslevelgt1++;
  5163. }
  5164. }
  5165. #ifdef CABAC_ON_STACK
  5166. h->cabac.range = cc.range ;
  5167. h->cabac.low = cc.low ;
  5168. h->cabac.bytestream= cc.bytestream;
  5169. #endif
  5170. return 0;
  5171. }
  5172. static inline void compute_mb_neighbors(H264Context *h)
  5173. {
  5174. MpegEncContext * const s = &h->s;
  5175. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  5176. h->top_mb_xy = mb_xy - s->mb_stride;
  5177. h->left_mb_xy[0] = mb_xy - 1;
  5178. if(FRAME_MBAFF){
  5179. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  5180. const int top_pair_xy = pair_xy - s->mb_stride;
  5181. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  5182. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  5183. const int curr_mb_frame_flag = !MB_FIELD;
  5184. const int bottom = (s->mb_y & 1);
  5185. if (bottom
  5186. ? !curr_mb_frame_flag // bottom macroblock
  5187. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  5188. ) {
  5189. h->top_mb_xy -= s->mb_stride;
  5190. }
  5191. if (left_mb_frame_flag != curr_mb_frame_flag) {
  5192. h->left_mb_xy[0] = pair_xy - 1;
  5193. }
  5194. }
  5195. return;
  5196. }
  5197. /**
  5198. * decodes a macroblock
  5199. * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  5200. */
  5201. static int decode_mb_cabac(H264Context *h) {
  5202. MpegEncContext * const s = &h->s;
  5203. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  5204. int mb_type, partition_count, cbp = 0;
  5205. int dct8x8_allowed= h->pps.transform_8x8_mode;
  5206. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?)
  5207. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  5208. if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE ) {
  5209. int skip;
  5210. /* a skipped mb needs the aff flag from the following mb */
  5211. if( FRAME_MBAFF && s->mb_x==0 && (s->mb_y&1)==0 )
  5212. predict_field_decoding_flag(h);
  5213. if( FRAME_MBAFF && (s->mb_y&1)==1 && h->prev_mb_skipped )
  5214. skip = h->next_mb_skipped;
  5215. else
  5216. skip = decode_cabac_mb_skip( h, s->mb_x, s->mb_y );
  5217. /* read skip flags */
  5218. if( skip ) {
  5219. if( FRAME_MBAFF && (s->mb_y&1)==0 ){
  5220. s->current_picture.mb_type[mb_xy] = MB_TYPE_SKIP;
  5221. h->next_mb_skipped = decode_cabac_mb_skip( h, s->mb_x, s->mb_y+1 );
  5222. if(h->next_mb_skipped)
  5223. predict_field_decoding_flag(h);
  5224. else
  5225. h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  5226. }
  5227. decode_mb_skip(h);
  5228. h->cbp_table[mb_xy] = 0;
  5229. h->chroma_pred_mode_table[mb_xy] = 0;
  5230. h->last_qscale_diff = 0;
  5231. return 0;
  5232. }
  5233. }
  5234. if(FRAME_MBAFF){
  5235. if( (s->mb_y&1) == 0 )
  5236. h->mb_mbaff =
  5237. h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  5238. }else
  5239. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  5240. h->prev_mb_skipped = 0;
  5241. compute_mb_neighbors(h);
  5242. if( ( mb_type = decode_cabac_mb_type( h ) ) < 0 ) {
  5243. av_log( h->s.avctx, AV_LOG_ERROR, "decode_cabac_mb_type failed\n" );
  5244. return -1;
  5245. }
  5246. if( h->slice_type == B_TYPE ) {
  5247. if( mb_type < 23 ){
  5248. partition_count= b_mb_type_info[mb_type].partition_count;
  5249. mb_type= b_mb_type_info[mb_type].type;
  5250. }else{
  5251. mb_type -= 23;
  5252. goto decode_intra_mb;
  5253. }
  5254. } else if( h->slice_type == P_TYPE ) {
  5255. if( mb_type < 5) {
  5256. partition_count= p_mb_type_info[mb_type].partition_count;
  5257. mb_type= p_mb_type_info[mb_type].type;
  5258. } else {
  5259. mb_type -= 5;
  5260. goto decode_intra_mb;
  5261. }
  5262. } else {
  5263. assert(h->slice_type == I_TYPE);
  5264. decode_intra_mb:
  5265. partition_count = 0;
  5266. cbp= i_mb_type_info[mb_type].cbp;
  5267. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  5268. mb_type= i_mb_type_info[mb_type].type;
  5269. }
  5270. if(MB_FIELD)
  5271. mb_type |= MB_TYPE_INTERLACED;
  5272. h->slice_table[ mb_xy ]= h->slice_num;
  5273. if(IS_INTRA_PCM(mb_type)) {
  5274. const uint8_t *ptr;
  5275. unsigned int x, y;
  5276. // We assume these blocks are very rare so we do not optimize it.
  5277. // FIXME The two following lines get the bitstream position in the cabac
  5278. // decode, I think it should be done by a function in cabac.h (or cabac.c).
  5279. ptr= h->cabac.bytestream;
  5280. if(h->cabac.low&0x1) ptr--;
  5281. if(CABAC_BITS==16){
  5282. if(h->cabac.low&0x1FF) ptr--;
  5283. }
  5284. // The pixels are stored in the same order as levels in h->mb array.
  5285. for(y=0; y<16; y++){
  5286. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  5287. for(x=0; x<16; x++){
  5288. tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", *ptr);
  5289. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= *ptr++;
  5290. }
  5291. }
  5292. for(y=0; y<8; y++){
  5293. const int index= 256 + 4*(y&3) + 32*(y>>2);
  5294. for(x=0; x<8; x++){
  5295. tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", *ptr);
  5296. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5297. }
  5298. }
  5299. for(y=0; y<8; y++){
  5300. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  5301. for(x=0; x<8; x++){
  5302. tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", *ptr);
  5303. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5304. }
  5305. }
  5306. ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr);
  5307. // All blocks are present
  5308. h->cbp_table[mb_xy] = 0x1ef;
  5309. h->chroma_pred_mode_table[mb_xy] = 0;
  5310. // In deblocking, the quantizer is 0
  5311. s->current_picture.qscale_table[mb_xy]= 0;
  5312. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, 0);
  5313. // All coeffs are present
  5314. memset(h->non_zero_count[mb_xy], 16, 16);
  5315. s->current_picture.mb_type[mb_xy]= mb_type;
  5316. return 0;
  5317. }
  5318. if(MB_MBAFF){
  5319. h->ref_count[0] <<= 1;
  5320. h->ref_count[1] <<= 1;
  5321. }
  5322. fill_caches(h, mb_type, 0);
  5323. if( IS_INTRA( mb_type ) ) {
  5324. int i, pred_mode;
  5325. if( IS_INTRA4x4( mb_type ) ) {
  5326. if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) {
  5327. mb_type |= MB_TYPE_8x8DCT;
  5328. for( i = 0; i < 16; i+=4 ) {
  5329. int pred = pred_intra_mode( h, i );
  5330. int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5331. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  5332. }
  5333. } else {
  5334. for( i = 0; i < 16; i++ ) {
  5335. int pred = pred_intra_mode( h, i );
  5336. h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5337. //av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] );
  5338. }
  5339. }
  5340. write_back_intra_pred_mode(h);
  5341. if( check_intra4x4_pred_mode(h) < 0 ) return -1;
  5342. } else {
  5343. h->intra16x16_pred_mode= check_intra_pred_mode( h, h->intra16x16_pred_mode );
  5344. if( h->intra16x16_pred_mode < 0 ) return -1;
  5345. }
  5346. h->chroma_pred_mode_table[mb_xy] =
  5347. pred_mode = decode_cabac_mb_chroma_pre_mode( h );
  5348. pred_mode= check_intra_pred_mode( h, pred_mode );
  5349. if( pred_mode < 0 ) return -1;
  5350. h->chroma_pred_mode= pred_mode;
  5351. } else if( partition_count == 4 ) {
  5352. int i, j, sub_partition_count[4], list, ref[2][4];
  5353. if( h->slice_type == B_TYPE ) {
  5354. for( i = 0; i < 4; i++ ) {
  5355. h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h );
  5356. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5357. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5358. }
  5359. if( IS_DIRECT(h->sub_mb_type[0] | h->sub_mb_type[1] |
  5360. h->sub_mb_type[2] | h->sub_mb_type[3]) ) {
  5361. pred_direct_motion(h, &mb_type);
  5362. if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) {
  5363. for( i = 0; i < 4; i++ )
  5364. if( IS_DIRECT(h->sub_mb_type[i]) )
  5365. fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 );
  5366. }
  5367. }
  5368. } else {
  5369. for( i = 0; i < 4; i++ ) {
  5370. h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h );
  5371. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5372. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5373. }
  5374. }
  5375. for( list = 0; list < h->list_count; list++ ) {
  5376. for( i = 0; i < 4; i++ ) {
  5377. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  5378. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  5379. if( h->ref_count[list] > 1 )
  5380. ref[list][i] = decode_cabac_mb_ref( h, list, 4*i );
  5381. else
  5382. ref[list][i] = 0;
  5383. } else {
  5384. ref[list][i] = -1;
  5385. }
  5386. h->ref_cache[list][ scan8[4*i]+1 ]=
  5387. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  5388. }
  5389. }
  5390. if(dct8x8_allowed)
  5391. dct8x8_allowed = get_dct8x8_allowed(h);
  5392. for(list=0; list<h->list_count; list++){
  5393. for(i=0; i<4; i++){
  5394. if(IS_DIRECT(h->sub_mb_type[i])){
  5395. fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4);
  5396. continue;
  5397. }
  5398. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ];
  5399. if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
  5400. const int sub_mb_type= h->sub_mb_type[i];
  5401. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  5402. for(j=0; j<sub_partition_count[i]; j++){
  5403. int mpx, mpy;
  5404. int mx, my;
  5405. const int index= 4*i + block_width*j;
  5406. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  5407. int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ];
  5408. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy);
  5409. mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 );
  5410. my = mpy + decode_cabac_mb_mvd( h, list, index, 1 );
  5411. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5412. if(IS_SUB_8X8(sub_mb_type)){
  5413. mv_cache[ 1 ][0]=
  5414. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  5415. mv_cache[ 1 ][1]=
  5416. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  5417. mvd_cache[ 1 ][0]=
  5418. mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx;
  5419. mvd_cache[ 1 ][1]=
  5420. mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy;
  5421. }else if(IS_SUB_8X4(sub_mb_type)){
  5422. mv_cache[ 1 ][0]= mx;
  5423. mv_cache[ 1 ][1]= my;
  5424. mvd_cache[ 1 ][0]= mx - mpx;
  5425. mvd_cache[ 1 ][1]= my - mpy;
  5426. }else if(IS_SUB_4X8(sub_mb_type)){
  5427. mv_cache[ 8 ][0]= mx;
  5428. mv_cache[ 8 ][1]= my;
  5429. mvd_cache[ 8 ][0]= mx - mpx;
  5430. mvd_cache[ 8 ][1]= my - mpy;
  5431. }
  5432. mv_cache[ 0 ][0]= mx;
  5433. mv_cache[ 0 ][1]= my;
  5434. mvd_cache[ 0 ][0]= mx - mpx;
  5435. mvd_cache[ 0 ][1]= my - mpy;
  5436. }
  5437. }else{
  5438. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  5439. uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0];
  5440. p[0] = p[1] = p[8] = p[9] = 0;
  5441. pd[0]= pd[1]= pd[8]= pd[9]= 0;
  5442. }
  5443. }
  5444. }
  5445. } else if( IS_DIRECT(mb_type) ) {
  5446. pred_direct_motion(h, &mb_type);
  5447. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  5448. fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  5449. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  5450. } else {
  5451. int list, mx, my, i, mpx, mpy;
  5452. if(IS_16X16(mb_type)){
  5453. for(list=0; list<h->list_count; list++){
  5454. if(IS_DIR(mb_type, 0, list)){
  5455. const int ref = h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 0 ) : 0;
  5456. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1);
  5457. }else
  5458. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); //FIXME factorize and the other fill_rect below too
  5459. }
  5460. for(list=0; list<h->list_count; list++){
  5461. if(IS_DIR(mb_type, 0, list)){
  5462. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy);
  5463. mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 );
  5464. my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 );
  5465. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5466. fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5467. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  5468. }else
  5469. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
  5470. }
  5471. }
  5472. else if(IS_16X8(mb_type)){
  5473. for(list=0; list<h->list_count; list++){
  5474. for(i=0; i<2; i++){
  5475. if(IS_DIR(mb_type, i, list)){
  5476. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 8*i ) : 0;
  5477. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1);
  5478. }else
  5479. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
  5480. }
  5481. }
  5482. for(list=0; list<h->list_count; list++){
  5483. for(i=0; i<2; i++){
  5484. if(IS_DIR(mb_type, i, list)){
  5485. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy);
  5486. mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 );
  5487. my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 );
  5488. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5489. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4);
  5490. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
  5491. }else{
  5492. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5493. fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5494. }
  5495. }
  5496. }
  5497. }else{
  5498. assert(IS_8X16(mb_type));
  5499. for(list=0; list<h->list_count; list++){
  5500. for(i=0; i<2; i++){
  5501. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  5502. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 4*i ) : 0;
  5503. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1);
  5504. }else
  5505. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
  5506. }
  5507. }
  5508. for(list=0; list<h->list_count; list++){
  5509. for(i=0; i<2; i++){
  5510. if(IS_DIR(mb_type, i, list)){
  5511. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy);
  5512. mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 );
  5513. my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 );
  5514. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5515. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5516. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
  5517. }else{
  5518. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5519. fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5520. }
  5521. }
  5522. }
  5523. }
  5524. }
  5525. if( IS_INTER( mb_type ) ) {
  5526. h->chroma_pred_mode_table[mb_xy] = 0;
  5527. write_back_motion( h, mb_type );
  5528. }
  5529. if( !IS_INTRA16x16( mb_type ) ) {
  5530. cbp = decode_cabac_mb_cbp_luma( h );
  5531. cbp |= decode_cabac_mb_cbp_chroma( h ) << 4;
  5532. }
  5533. h->cbp_table[mb_xy] = h->cbp = cbp;
  5534. if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) {
  5535. if( decode_cabac_mb_transform_size( h ) )
  5536. mb_type |= MB_TYPE_8x8DCT;
  5537. }
  5538. s->current_picture.mb_type[mb_xy]= mb_type;
  5539. if( cbp || IS_INTRA16x16( mb_type ) ) {
  5540. const uint8_t *scan, *scan8x8, *dc_scan;
  5541. int dqp;
  5542. if(IS_INTERLACED(mb_type)){
  5543. scan8x8= s->qscale ? h->field_scan8x8 : h->field_scan8x8_q0;
  5544. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  5545. dc_scan= luma_dc_field_scan;
  5546. }else{
  5547. scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0;
  5548. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  5549. dc_scan= luma_dc_zigzag_scan;
  5550. }
  5551. h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h );
  5552. if( dqp == INT_MIN ){
  5553. av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y);
  5554. return -1;
  5555. }
  5556. s->qscale += dqp;
  5557. if(((unsigned)s->qscale) > 51){
  5558. if(s->qscale<0) s->qscale+= 52;
  5559. else s->qscale-= 52;
  5560. }
  5561. h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale);
  5562. if( IS_INTRA16x16( mb_type ) ) {
  5563. int i;
  5564. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" );
  5565. if( decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16) < 0)
  5566. return -1;
  5567. if( cbp&15 ) {
  5568. for( i = 0; i < 16; i++ ) {
  5569. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i );
  5570. if( decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 )
  5571. return -1;
  5572. }
  5573. } else {
  5574. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  5575. }
  5576. } else {
  5577. int i8x8, i4x4;
  5578. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  5579. if( cbp & (1<<i8x8) ) {
  5580. if( IS_8x8DCT(mb_type) ) {
  5581. if( decode_cabac_residual(h, h->mb + 64*i8x8, 5, 4*i8x8,
  5582. scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64) < 0 )
  5583. return -1;
  5584. } else
  5585. for( i4x4 = 0; i4x4 < 4; i4x4++ ) {
  5586. const int index = 4*i8x8 + i4x4;
  5587. //av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index );
  5588. //START_TIMER
  5589. if( decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) < 0 )
  5590. return -1;
  5591. //STOP_TIMER("decode_residual")
  5592. }
  5593. } else {
  5594. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  5595. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  5596. }
  5597. }
  5598. }
  5599. if( cbp&0x30 ){
  5600. int c;
  5601. for( c = 0; c < 2; c++ ) {
  5602. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
  5603. if( decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4) < 0)
  5604. return -1;
  5605. }
  5606. }
  5607. if( cbp&0x20 ) {
  5608. int c, i;
  5609. for( c = 0; c < 2; c++ ) {
  5610. for( i = 0; i < 4; i++ ) {
  5611. const int index = 16 + 4 * c + i;
  5612. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 );
  5613. if( decode_cabac_residual(h, h->mb + 16*index, 4, index - 16, scan + 1, h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp], 15) < 0)
  5614. return -1;
  5615. }
  5616. }
  5617. } else {
  5618. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5619. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5620. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5621. }
  5622. } else {
  5623. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5624. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  5625. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5626. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5627. h->last_qscale_diff = 0;
  5628. }
  5629. s->current_picture.qscale_table[mb_xy]= s->qscale;
  5630. write_back_non_zero_count(h);
  5631. if(MB_MBAFF){
  5632. h->ref_count[0] >>= 1;
  5633. h->ref_count[1] >>= 1;
  5634. }
  5635. return 0;
  5636. }
  5637. static void filter_mb_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5638. int i, d;
  5639. const int index_a = qp + h->slice_alpha_c0_offset;
  5640. const int alpha = (alpha_table+52)[index_a];
  5641. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5642. if( bS[0] < 4 ) {
  5643. int8_t tc[4];
  5644. for(i=0; i<4; i++)
  5645. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5646. h->s.dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
  5647. } else {
  5648. /* 16px edge length, because bS=4 is triggered by being at
  5649. * the edge of an intra MB, so all 4 bS are the same */
  5650. for( d = 0; d < 16; d++ ) {
  5651. const int p0 = pix[-1];
  5652. const int p1 = pix[-2];
  5653. const int p2 = pix[-3];
  5654. const int q0 = pix[0];
  5655. const int q1 = pix[1];
  5656. const int q2 = pix[2];
  5657. if( FFABS( p0 - q0 ) < alpha &&
  5658. FFABS( p1 - p0 ) < beta &&
  5659. FFABS( q1 - q0 ) < beta ) {
  5660. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5661. if( FFABS( p2 - p0 ) < beta)
  5662. {
  5663. const int p3 = pix[-4];
  5664. /* p0', p1', p2' */
  5665. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5666. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5667. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5668. } else {
  5669. /* p0' */
  5670. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5671. }
  5672. if( FFABS( q2 - q0 ) < beta)
  5673. {
  5674. const int q3 = pix[3];
  5675. /* q0', q1', q2' */
  5676. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5677. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5678. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5679. } else {
  5680. /* q0' */
  5681. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5682. }
  5683. }else{
  5684. /* p0', q0' */
  5685. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5686. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5687. }
  5688. tprintf(h->s.avctx, "filter_mb_edgev i:%d d:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, p2, p1, p0, q0, q1, q2, pix[-2], pix[-1], pix[0], pix[1]);
  5689. }
  5690. pix += stride;
  5691. }
  5692. }
  5693. }
  5694. static void filter_mb_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5695. int i;
  5696. const int index_a = qp + h->slice_alpha_c0_offset;
  5697. const int alpha = (alpha_table+52)[index_a];
  5698. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5699. if( bS[0] < 4 ) {
  5700. int8_t tc[4];
  5701. for(i=0; i<4; i++)
  5702. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5703. h->s.dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5704. } else {
  5705. h->s.dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5706. }
  5707. }
  5708. static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5709. int i;
  5710. for( i = 0; i < 16; i++, pix += stride) {
  5711. int index_a;
  5712. int alpha;
  5713. int beta;
  5714. int qp_index;
  5715. int bS_index = (i >> 1);
  5716. if (!MB_FIELD) {
  5717. bS_index &= ~1;
  5718. bS_index |= (i & 1);
  5719. }
  5720. if( bS[bS_index] == 0 ) {
  5721. continue;
  5722. }
  5723. qp_index = MB_FIELD ? (i >> 3) : (i & 1);
  5724. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5725. alpha = (alpha_table+52)[index_a];
  5726. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5727. if( bS[bS_index] < 4 ) {
  5728. const int tc0 = (tc0_table+52)[index_a][bS[bS_index] - 1];
  5729. const int p0 = pix[-1];
  5730. const int p1 = pix[-2];
  5731. const int p2 = pix[-3];
  5732. const int q0 = pix[0];
  5733. const int q1 = pix[1];
  5734. const int q2 = pix[2];
  5735. if( FFABS( p0 - q0 ) < alpha &&
  5736. FFABS( p1 - p0 ) < beta &&
  5737. FFABS( q1 - q0 ) < beta ) {
  5738. int tc = tc0;
  5739. int i_delta;
  5740. if( FFABS( p2 - p0 ) < beta ) {
  5741. pix[-2] = p1 + av_clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 );
  5742. tc++;
  5743. }
  5744. if( FFABS( q2 - q0 ) < beta ) {
  5745. pix[1] = q1 + av_clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 );
  5746. tc++;
  5747. }
  5748. i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5749. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  5750. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  5751. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5752. }
  5753. }else{
  5754. const int p0 = pix[-1];
  5755. const int p1 = pix[-2];
  5756. const int p2 = pix[-3];
  5757. const int q0 = pix[0];
  5758. const int q1 = pix[1];
  5759. const int q2 = pix[2];
  5760. if( FFABS( p0 - q0 ) < alpha &&
  5761. FFABS( p1 - p0 ) < beta &&
  5762. FFABS( q1 - q0 ) < beta ) {
  5763. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5764. if( FFABS( p2 - p0 ) < beta)
  5765. {
  5766. const int p3 = pix[-4];
  5767. /* p0', p1', p2' */
  5768. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5769. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5770. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5771. } else {
  5772. /* p0' */
  5773. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5774. }
  5775. if( FFABS( q2 - q0 ) < beta)
  5776. {
  5777. const int q3 = pix[3];
  5778. /* q0', q1', q2' */
  5779. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5780. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5781. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5782. } else {
  5783. /* q0' */
  5784. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5785. }
  5786. }else{
  5787. /* p0', q0' */
  5788. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5789. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5790. }
  5791. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5792. }
  5793. }
  5794. }
  5795. }
  5796. static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5797. int i;
  5798. for( i = 0; i < 8; i++, pix += stride) {
  5799. int index_a;
  5800. int alpha;
  5801. int beta;
  5802. int qp_index;
  5803. int bS_index = i;
  5804. if( bS[bS_index] == 0 ) {
  5805. continue;
  5806. }
  5807. qp_index = MB_FIELD ? (i >> 2) : (i & 1);
  5808. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5809. alpha = (alpha_table+52)[index_a];
  5810. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5811. if( bS[bS_index] < 4 ) {
  5812. const int tc = (tc0_table+52)[index_a][bS[bS_index] - 1] + 1;
  5813. const int p0 = pix[-1];
  5814. const int p1 = pix[-2];
  5815. const int q0 = pix[0];
  5816. const int q1 = pix[1];
  5817. if( FFABS( p0 - q0 ) < alpha &&
  5818. FFABS( p1 - p0 ) < beta &&
  5819. FFABS( q1 - q0 ) < beta ) {
  5820. const int i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5821. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  5822. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  5823. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5824. }
  5825. }else{
  5826. const int p0 = pix[-1];
  5827. const int p1 = pix[-2];
  5828. const int q0 = pix[0];
  5829. const int q1 = pix[1];
  5830. if( FFABS( p0 - q0 ) < alpha &&
  5831. FFABS( p1 - p0 ) < beta &&
  5832. FFABS( q1 - q0 ) < beta ) {
  5833. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
  5834. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
  5835. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5836. }
  5837. }
  5838. }
  5839. }
  5840. static void filter_mb_edgeh( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5841. int i, d;
  5842. const int index_a = qp + h->slice_alpha_c0_offset;
  5843. const int alpha = (alpha_table+52)[index_a];
  5844. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5845. const int pix_next = stride;
  5846. if( bS[0] < 4 ) {
  5847. int8_t tc[4];
  5848. for(i=0; i<4; i++)
  5849. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5850. h->s.dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
  5851. } else {
  5852. /* 16px edge length, see filter_mb_edgev */
  5853. for( d = 0; d < 16; d++ ) {
  5854. const int p0 = pix[-1*pix_next];
  5855. const int p1 = pix[-2*pix_next];
  5856. const int p2 = pix[-3*pix_next];
  5857. const int q0 = pix[0];
  5858. const int q1 = pix[1*pix_next];
  5859. const int q2 = pix[2*pix_next];
  5860. if( FFABS( p0 - q0 ) < alpha &&
  5861. FFABS( p1 - p0 ) < beta &&
  5862. FFABS( q1 - q0 ) < beta ) {
  5863. const int p3 = pix[-4*pix_next];
  5864. const int q3 = pix[ 3*pix_next];
  5865. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5866. if( FFABS( p2 - p0 ) < beta) {
  5867. /* p0', p1', p2' */
  5868. pix[-1*pix_next] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5869. pix[-2*pix_next] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5870. pix[-3*pix_next] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5871. } else {
  5872. /* p0' */
  5873. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5874. }
  5875. if( FFABS( q2 - q0 ) < beta) {
  5876. /* q0', q1', q2' */
  5877. pix[0*pix_next] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5878. pix[1*pix_next] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5879. pix[2*pix_next] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5880. } else {
  5881. /* q0' */
  5882. pix[0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5883. }
  5884. }else{
  5885. /* p0', q0' */
  5886. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5887. pix[ 0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5888. }
  5889. tprintf(h->s.avctx, "filter_mb_edgeh i:%d d:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, qp, index_a, alpha, beta, bS[i], p2, p1, p0, q0, q1, q2, pix[-2*pix_next], pix[-pix_next], pix[0], pix[pix_next]);
  5890. }
  5891. pix++;
  5892. }
  5893. }
  5894. }
  5895. static void filter_mb_edgech( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5896. int i;
  5897. const int index_a = qp + h->slice_alpha_c0_offset;
  5898. const int alpha = (alpha_table+52)[index_a];
  5899. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5900. if( bS[0] < 4 ) {
  5901. int8_t tc[4];
  5902. for(i=0; i<4; i++)
  5903. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5904. h->s.dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5905. } else {
  5906. h->s.dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5907. }
  5908. }
  5909. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5910. MpegEncContext * const s = &h->s;
  5911. int mb_xy, mb_type;
  5912. int qp, qp0, qp1, qpc, qpc0, qpc1, qp_thresh;
  5913. mb_xy = mb_x + mb_y*s->mb_stride;
  5914. if(mb_x==0 || mb_y==0 || !s->dsp.h264_loop_filter_strength ||
  5915. (h->deblocking_filter == 2 && (h->slice_table[mb_xy] != h->slice_table[h->top_mb_xy] ||
  5916. h->slice_table[mb_xy] != h->slice_table[mb_xy - 1]))) {
  5917. filter_mb(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize);
  5918. return;
  5919. }
  5920. assert(!FRAME_MBAFF);
  5921. mb_type = s->current_picture.mb_type[mb_xy];
  5922. qp = s->current_picture.qscale_table[mb_xy];
  5923. qp0 = s->current_picture.qscale_table[mb_xy-1];
  5924. qp1 = s->current_picture.qscale_table[h->top_mb_xy];
  5925. qpc = get_chroma_qp( h->pps.chroma_qp_index_offset, qp );
  5926. qpc0 = get_chroma_qp( h->pps.chroma_qp_index_offset, qp0 );
  5927. qpc1 = get_chroma_qp( h->pps.chroma_qp_index_offset, qp1 );
  5928. qp0 = (qp + qp0 + 1) >> 1;
  5929. qp1 = (qp + qp1 + 1) >> 1;
  5930. qpc0 = (qpc + qpc0 + 1) >> 1;
  5931. qpc1 = (qpc + qpc1 + 1) >> 1;
  5932. qp_thresh = 15 - h->slice_alpha_c0_offset;
  5933. if(qp <= qp_thresh && qp0 <= qp_thresh && qp1 <= qp_thresh &&
  5934. qpc <= qp_thresh && qpc0 <= qp_thresh && qpc1 <= qp_thresh)
  5935. return;
  5936. if( IS_INTRA(mb_type) ) {
  5937. int16_t bS4[4] = {4,4,4,4};
  5938. int16_t bS3[4] = {3,3,3,3};
  5939. if( IS_8x8DCT(mb_type) ) {
  5940. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  5941. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  5942. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bS4, qp1 );
  5943. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  5944. } else {
  5945. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  5946. filter_mb_edgev( h, &img_y[4*1], linesize, bS3, qp );
  5947. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  5948. filter_mb_edgev( h, &img_y[4*3], linesize, bS3, qp );
  5949. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bS4, qp1 );
  5950. filter_mb_edgeh( h, &img_y[4*1*linesize], linesize, bS3, qp );
  5951. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  5952. filter_mb_edgeh( h, &img_y[4*3*linesize], linesize, bS3, qp );
  5953. }
  5954. filter_mb_edgecv( h, &img_cb[2*0], uvlinesize, bS4, qpc0 );
  5955. filter_mb_edgecv( h, &img_cb[2*2], uvlinesize, bS3, qpc );
  5956. filter_mb_edgecv( h, &img_cr[2*0], uvlinesize, bS4, qpc0 );
  5957. filter_mb_edgecv( h, &img_cr[2*2], uvlinesize, bS3, qpc );
  5958. filter_mb_edgech( h, &img_cb[2*0*uvlinesize], uvlinesize, bS4, qpc1 );
  5959. filter_mb_edgech( h, &img_cb[2*2*uvlinesize], uvlinesize, bS3, qpc );
  5960. filter_mb_edgech( h, &img_cr[2*0*uvlinesize], uvlinesize, bS4, qpc1 );
  5961. filter_mb_edgech( h, &img_cr[2*2*uvlinesize], uvlinesize, bS3, qpc );
  5962. return;
  5963. } else {
  5964. DECLARE_ALIGNED_8(int16_t, bS[2][4][4]);
  5965. uint64_t (*bSv)[4] = (uint64_t(*)[4])bS;
  5966. int edges;
  5967. if( IS_8x8DCT(mb_type) && (h->cbp&7) == 7 ) {
  5968. edges = 4;
  5969. bSv[0][0] = bSv[0][2] = bSv[1][0] = bSv[1][2] = 0x0002000200020002ULL;
  5970. } else {
  5971. int mask_edge1 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 :
  5972. (mb_type & MB_TYPE_16x8) ? 1 : 0;
  5973. int mask_edge0 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16))
  5974. && (s->current_picture.mb_type[mb_xy-1] & (MB_TYPE_16x16 | MB_TYPE_8x16))
  5975. ? 3 : 0;
  5976. int step = IS_8x8DCT(mb_type) ? 2 : 1;
  5977. edges = (mb_type & MB_TYPE_16x16) && !(h->cbp & 15) ? 1 : 4;
  5978. s->dsp.h264_loop_filter_strength( bS, h->non_zero_count_cache, h->ref_cache, h->mv_cache,
  5979. (h->slice_type == B_TYPE), edges, step, mask_edge0, mask_edge1 );
  5980. }
  5981. if( IS_INTRA(s->current_picture.mb_type[mb_xy-1]) )
  5982. bSv[0][0] = 0x0004000400040004ULL;
  5983. if( IS_INTRA(s->current_picture.mb_type[h->top_mb_xy]) )
  5984. bSv[1][0] = 0x0004000400040004ULL;
  5985. #define FILTER(hv,dir,edge)\
  5986. if(bSv[dir][edge]) {\
  5987. filter_mb_edge##hv( h, &img_y[4*edge*(dir?linesize:1)], linesize, bS[dir][edge], edge ? qp : qp##dir );\
  5988. if(!(edge&1)) {\
  5989. filter_mb_edgec##hv( h, &img_cb[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  5990. filter_mb_edgec##hv( h, &img_cr[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  5991. }\
  5992. }
  5993. if( edges == 1 ) {
  5994. FILTER(v,0,0);
  5995. FILTER(h,1,0);
  5996. } else if( IS_8x8DCT(mb_type) ) {
  5997. FILTER(v,0,0);
  5998. FILTER(v,0,2);
  5999. FILTER(h,1,0);
  6000. FILTER(h,1,2);
  6001. } else {
  6002. FILTER(v,0,0);
  6003. FILTER(v,0,1);
  6004. FILTER(v,0,2);
  6005. FILTER(v,0,3);
  6006. FILTER(h,1,0);
  6007. FILTER(h,1,1);
  6008. FILTER(h,1,2);
  6009. FILTER(h,1,3);
  6010. }
  6011. #undef FILTER
  6012. }
  6013. }
  6014. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  6015. MpegEncContext * const s = &h->s;
  6016. const int mb_xy= mb_x + mb_y*s->mb_stride;
  6017. const int mb_type = s->current_picture.mb_type[mb_xy];
  6018. const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4;
  6019. int first_vertical_edge_done = 0;
  6020. int dir;
  6021. /* FIXME: A given frame may occupy more than one position in
  6022. * the reference list. So ref2frm should be populated with
  6023. * frame numbers, not indices. */
  6024. static const int ref2frm[34] = {-1,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
  6025. 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31};
  6026. //for sufficiently low qp, filtering wouldn't do anything
  6027. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  6028. if(!FRAME_MBAFF){
  6029. int qp_thresh = 15 - h->slice_alpha_c0_offset - FFMAX(0, h->pps.chroma_qp_index_offset);
  6030. int qp = s->current_picture.qscale_table[mb_xy];
  6031. if(qp <= qp_thresh
  6032. && (mb_x == 0 || ((qp + s->current_picture.qscale_table[mb_xy-1] + 1)>>1) <= qp_thresh)
  6033. && (mb_y == 0 || ((qp + s->current_picture.qscale_table[h->top_mb_xy] + 1)>>1) <= qp_thresh)){
  6034. return;
  6035. }
  6036. }
  6037. if (FRAME_MBAFF
  6038. // left mb is in picture
  6039. && h->slice_table[mb_xy-1] != 255
  6040. // and current and left pair do not have the same interlaced type
  6041. && (IS_INTERLACED(mb_type) != IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]))
  6042. // and left mb is in the same slice if deblocking_filter == 2
  6043. && (h->deblocking_filter!=2 || h->slice_table[mb_xy-1] == h->slice_table[mb_xy])) {
  6044. /* First vertical edge is different in MBAFF frames
  6045. * There are 8 different bS to compute and 2 different Qp
  6046. */
  6047. const int pair_xy = mb_x + (mb_y&~1)*s->mb_stride;
  6048. const int left_mb_xy[2] = { pair_xy-1, pair_xy-1+s->mb_stride };
  6049. int16_t bS[8];
  6050. int qp[2];
  6051. int chroma_qp[2];
  6052. int mb_qp, mbn0_qp, mbn1_qp;
  6053. int i;
  6054. first_vertical_edge_done = 1;
  6055. if( IS_INTRA(mb_type) )
  6056. bS[0] = bS[1] = bS[2] = bS[3] = bS[4] = bS[5] = bS[6] = bS[7] = 4;
  6057. else {
  6058. for( i = 0; i < 8; i++ ) {
  6059. int mbn_xy = MB_FIELD ? left_mb_xy[i>>2] : left_mb_xy[i&1];
  6060. if( IS_INTRA( s->current_picture.mb_type[mbn_xy] ) )
  6061. bS[i] = 4;
  6062. else if( h->non_zero_count_cache[12+8*(i>>1)] != 0 ||
  6063. /* FIXME: with 8x8dct + cavlc, should check cbp instead of nnz */
  6064. h->non_zero_count[mbn_xy][MB_FIELD ? i&3 : (i>>2)+(mb_y&1)*2] )
  6065. bS[i] = 2;
  6066. else
  6067. bS[i] = 1;
  6068. }
  6069. }
  6070. mb_qp = s->current_picture.qscale_table[mb_xy];
  6071. mbn0_qp = s->current_picture.qscale_table[left_mb_xy[0]];
  6072. mbn1_qp = s->current_picture.qscale_table[left_mb_xy[1]];
  6073. qp[0] = ( mb_qp + mbn0_qp + 1 ) >> 1;
  6074. chroma_qp[0] = ( get_chroma_qp( h->pps.chroma_qp_index_offset, mb_qp ) +
  6075. get_chroma_qp( h->pps.chroma_qp_index_offset, mbn0_qp ) + 1 ) >> 1;
  6076. qp[1] = ( mb_qp + mbn1_qp + 1 ) >> 1;
  6077. chroma_qp[1] = ( get_chroma_qp( h->pps.chroma_qp_index_offset, mb_qp ) +
  6078. get_chroma_qp( h->pps.chroma_qp_index_offset, mbn1_qp ) + 1 ) >> 1;
  6079. /* Filter edge */
  6080. tprintf(s->avctx, "filter mb:%d/%d MBAFF, QPy:%d/%d, QPc:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], chroma_qp[0], chroma_qp[1], linesize, uvlinesize);
  6081. { int i; for (i = 0; i < 8; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  6082. filter_mb_mbaff_edgev ( h, &img_y [0], linesize, bS, qp );
  6083. filter_mb_mbaff_edgecv( h, &img_cb[0], uvlinesize, bS, chroma_qp );
  6084. filter_mb_mbaff_edgecv( h, &img_cr[0], uvlinesize, bS, chroma_qp );
  6085. }
  6086. /* dir : 0 -> vertical edge, 1 -> horizontal edge */
  6087. for( dir = 0; dir < 2; dir++ )
  6088. {
  6089. int edge;
  6090. const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
  6091. const int mbm_type = s->current_picture.mb_type[mbm_xy];
  6092. int start = h->slice_table[mbm_xy] == 255 ? 1 : 0;
  6093. const int edges = (mb_type & (MB_TYPE_16x16|MB_TYPE_SKIP))
  6094. == (MB_TYPE_16x16|MB_TYPE_SKIP) ? 1 : 4;
  6095. // how often to recheck mv-based bS when iterating between edges
  6096. const int mask_edge = (mb_type & (MB_TYPE_16x16 | (MB_TYPE_16x8 << dir))) ? 3 :
  6097. (mb_type & (MB_TYPE_8x16 >> dir)) ? 1 : 0;
  6098. // how often to recheck mv-based bS when iterating along each edge
  6099. const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
  6100. if (first_vertical_edge_done) {
  6101. start = 1;
  6102. first_vertical_edge_done = 0;
  6103. }
  6104. if (h->deblocking_filter==2 && h->slice_table[mbm_xy] != h->slice_table[mb_xy])
  6105. start = 1;
  6106. if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0) && start == 0
  6107. && !IS_INTERLACED(mb_type)
  6108. && IS_INTERLACED(mbm_type)
  6109. ) {
  6110. // This is a special case in the norm where the filtering must
  6111. // be done twice (one each of the field) even if we are in a
  6112. // frame macroblock.
  6113. //
  6114. static const int nnz_idx[4] = {4,5,6,3};
  6115. unsigned int tmp_linesize = 2 * linesize;
  6116. unsigned int tmp_uvlinesize = 2 * uvlinesize;
  6117. int mbn_xy = mb_xy - 2 * s->mb_stride;
  6118. int qp, chroma_qp;
  6119. int i, j;
  6120. int16_t bS[4];
  6121. for(j=0; j<2; j++, mbn_xy += s->mb_stride){
  6122. if( IS_INTRA(mb_type) ||
  6123. IS_INTRA(s->current_picture.mb_type[mbn_xy]) ) {
  6124. bS[0] = bS[1] = bS[2] = bS[3] = 3;
  6125. } else {
  6126. const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy];
  6127. for( i = 0; i < 4; i++ ) {
  6128. if( h->non_zero_count_cache[scan8[0]+i] != 0 ||
  6129. mbn_nnz[nnz_idx[i]] != 0 )
  6130. bS[i] = 2;
  6131. else
  6132. bS[i] = 1;
  6133. }
  6134. }
  6135. // Do not use s->qscale as luma quantizer because it has not the same
  6136. // value in IPCM macroblocks.
  6137. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  6138. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
  6139. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  6140. filter_mb_edgeh( h, &img_y[j*linesize], tmp_linesize, bS, qp );
  6141. chroma_qp = ( h->chroma_qp +
  6142. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1;
  6143. filter_mb_edgech( h, &img_cb[j*uvlinesize], tmp_uvlinesize, bS, chroma_qp );
  6144. filter_mb_edgech( h, &img_cr[j*uvlinesize], tmp_uvlinesize, bS, chroma_qp );
  6145. }
  6146. start = 1;
  6147. }
  6148. /* Calculate bS */
  6149. for( edge = start; edge < edges; edge++ ) {
  6150. /* mbn_xy: neighbor macroblock */
  6151. const int mbn_xy = edge > 0 ? mb_xy : mbm_xy;
  6152. const int mbn_type = s->current_picture.mb_type[mbn_xy];
  6153. int16_t bS[4];
  6154. int qp;
  6155. if( (edge&1) && IS_8x8DCT(mb_type) )
  6156. continue;
  6157. if( IS_INTRA(mb_type) ||
  6158. IS_INTRA(mbn_type) ) {
  6159. int value;
  6160. if (edge == 0) {
  6161. if ( (!IS_INTERLACED(mb_type) && !IS_INTERLACED(mbm_type))
  6162. || ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0))
  6163. ) {
  6164. value = 4;
  6165. } else {
  6166. value = 3;
  6167. }
  6168. } else {
  6169. value = 3;
  6170. }
  6171. bS[0] = bS[1] = bS[2] = bS[3] = value;
  6172. } else {
  6173. int i, l;
  6174. int mv_done;
  6175. if( edge & mask_edge ) {
  6176. bS[0] = bS[1] = bS[2] = bS[3] = 0;
  6177. mv_done = 1;
  6178. }
  6179. else if( FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbn_type)) {
  6180. bS[0] = bS[1] = bS[2] = bS[3] = 1;
  6181. mv_done = 1;
  6182. }
  6183. else if( mask_par0 && (edge || (mbn_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
  6184. int b_idx= 8 + 4 + edge * (dir ? 8:1);
  6185. int bn_idx= b_idx - (dir ? 8:1);
  6186. int v = 0;
  6187. for( l = 0; !v && l < 1 + (h->slice_type == B_TYPE); l++ ) {
  6188. v |= ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
  6189. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  6190. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit;
  6191. }
  6192. bS[0] = bS[1] = bS[2] = bS[3] = v;
  6193. mv_done = 1;
  6194. }
  6195. else
  6196. mv_done = 0;
  6197. for( i = 0; i < 4; i++ ) {
  6198. int x = dir == 0 ? edge : i;
  6199. int y = dir == 0 ? i : edge;
  6200. int b_idx= 8 + 4 + x + 8*y;
  6201. int bn_idx= b_idx - (dir ? 8:1);
  6202. if( h->non_zero_count_cache[b_idx] != 0 ||
  6203. h->non_zero_count_cache[bn_idx] != 0 ) {
  6204. bS[i] = 2;
  6205. }
  6206. else if(!mv_done)
  6207. {
  6208. bS[i] = 0;
  6209. for( l = 0; l < 1 + (h->slice_type == B_TYPE); l++ ) {
  6210. if( ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
  6211. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  6212. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit ) {
  6213. bS[i] = 1;
  6214. break;
  6215. }
  6216. }
  6217. }
  6218. }
  6219. if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
  6220. continue;
  6221. }
  6222. /* Filter edge */
  6223. // Do not use s->qscale as luma quantizer because it has not the same
  6224. // value in IPCM macroblocks.
  6225. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  6226. //tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp, s->current_picture.qscale_table[mbn_xy]);
  6227. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
  6228. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  6229. if( dir == 0 ) {
  6230. filter_mb_edgev( h, &img_y[4*edge], linesize, bS, qp );
  6231. if( (edge&1) == 0 ) {
  6232. int chroma_qp = ( h->chroma_qp +
  6233. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1;
  6234. filter_mb_edgecv( h, &img_cb[2*edge], uvlinesize, bS, chroma_qp );
  6235. filter_mb_edgecv( h, &img_cr[2*edge], uvlinesize, bS, chroma_qp );
  6236. }
  6237. } else {
  6238. filter_mb_edgeh( h, &img_y[4*edge*linesize], linesize, bS, qp );
  6239. if( (edge&1) == 0 ) {
  6240. int chroma_qp = ( h->chroma_qp +
  6241. get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1;
  6242. filter_mb_edgech( h, &img_cb[2*edge*uvlinesize], uvlinesize, bS, chroma_qp );
  6243. filter_mb_edgech( h, &img_cr[2*edge*uvlinesize], uvlinesize, bS, chroma_qp );
  6244. }
  6245. }
  6246. }
  6247. }
  6248. }
  6249. static int decode_slice(H264Context *h){
  6250. MpegEncContext * const s = &h->s;
  6251. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  6252. s->mb_skip_run= -1;
  6253. if( h->pps.cabac ) {
  6254. int i;
  6255. /* realign */
  6256. align_get_bits( &s->gb );
  6257. /* init cabac */
  6258. ff_init_cabac_states( &h->cabac);
  6259. ff_init_cabac_decoder( &h->cabac,
  6260. s->gb.buffer + get_bits_count(&s->gb)/8,
  6261. ( s->gb.size_in_bits - get_bits_count(&s->gb) + 7)/8);
  6262. /* calculate pre-state */
  6263. for( i= 0; i < 460; i++ ) {
  6264. int pre;
  6265. if( h->slice_type == I_TYPE )
  6266. pre = av_clip( ((cabac_context_init_I[i][0] * s->qscale) >>4 ) + cabac_context_init_I[i][1], 1, 126 );
  6267. else
  6268. pre = av_clip( ((cabac_context_init_PB[h->cabac_init_idc][i][0] * s->qscale) >>4 ) + cabac_context_init_PB[h->cabac_init_idc][i][1], 1, 126 );
  6269. if( pre <= 63 )
  6270. h->cabac_state[i] = 2 * ( 63 - pre ) + 0;
  6271. else
  6272. h->cabac_state[i] = 2 * ( pre - 64 ) + 1;
  6273. }
  6274. for(;;){
  6275. //START_TIMER
  6276. int ret = decode_mb_cabac(h);
  6277. int eos;
  6278. //STOP_TIMER("decode_mb_cabac")
  6279. if(ret>=0) hl_decode_mb(h);
  6280. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  6281. s->mb_y++;
  6282. if(ret>=0) ret = decode_mb_cabac(h);
  6283. if(ret>=0) hl_decode_mb(h);
  6284. s->mb_y--;
  6285. }
  6286. eos = get_cabac_terminate( &h->cabac );
  6287. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  6288. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%d)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  6289. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6290. return -1;
  6291. }
  6292. if( ++s->mb_x >= s->mb_width ) {
  6293. s->mb_x = 0;
  6294. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6295. ++s->mb_y;
  6296. if(FRAME_MBAFF) {
  6297. ++s->mb_y;
  6298. }
  6299. }
  6300. if( eos || s->mb_y >= s->mb_height ) {
  6301. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6302. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6303. return 0;
  6304. }
  6305. }
  6306. } else {
  6307. for(;;){
  6308. int ret = decode_mb_cavlc(h);
  6309. if(ret>=0) hl_decode_mb(h);
  6310. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  6311. s->mb_y++;
  6312. ret = decode_mb_cavlc(h);
  6313. if(ret>=0) hl_decode_mb(h);
  6314. s->mb_y--;
  6315. }
  6316. if(ret<0){
  6317. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6318. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6319. return -1;
  6320. }
  6321. if(++s->mb_x >= s->mb_width){
  6322. s->mb_x=0;
  6323. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6324. ++s->mb_y;
  6325. if(FRAME_MBAFF) {
  6326. ++s->mb_y;
  6327. }
  6328. if(s->mb_y >= s->mb_height){
  6329. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6330. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  6331. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6332. return 0;
  6333. }else{
  6334. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6335. return -1;
  6336. }
  6337. }
  6338. }
  6339. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  6340. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6341. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  6342. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6343. return 0;
  6344. }else{
  6345. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6346. return -1;
  6347. }
  6348. }
  6349. }
  6350. }
  6351. #if 0
  6352. for(;s->mb_y < s->mb_height; s->mb_y++){
  6353. for(;s->mb_x < s->mb_width; s->mb_x++){
  6354. int ret= decode_mb(h);
  6355. hl_decode_mb(h);
  6356. if(ret<0){
  6357. av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6358. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6359. return -1;
  6360. }
  6361. if(++s->mb_x >= s->mb_width){
  6362. s->mb_x=0;
  6363. if(++s->mb_y >= s->mb_height){
  6364. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6365. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6366. return 0;
  6367. }else{
  6368. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6369. return -1;
  6370. }
  6371. }
  6372. }
  6373. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  6374. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6375. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6376. return 0;
  6377. }else{
  6378. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6379. return -1;
  6380. }
  6381. }
  6382. }
  6383. s->mb_x=0;
  6384. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6385. }
  6386. #endif
  6387. return -1; //not reached
  6388. }
  6389. static int decode_unregistered_user_data(H264Context *h, int size){
  6390. MpegEncContext * const s = &h->s;
  6391. uint8_t user_data[16+256];
  6392. int e, build, i;
  6393. if(size<16)
  6394. return -1;
  6395. for(i=0; i<sizeof(user_data)-1 && i<size; i++){
  6396. user_data[i]= get_bits(&s->gb, 8);
  6397. }
  6398. user_data[i]= 0;
  6399. e= sscanf(user_data+16, "x264 - core %d"/*%s - H.264/MPEG-4 AVC codec - Copyleft 2005 - http://www.videolan.org/x264.html*/, &build);
  6400. if(e==1 && build>=0)
  6401. h->x264_build= build;
  6402. if(s->avctx->debug & FF_DEBUG_BUGS)
  6403. av_log(s->avctx, AV_LOG_DEBUG, "user data:\"%s\"\n", user_data+16);
  6404. for(; i<size; i++)
  6405. skip_bits(&s->gb, 8);
  6406. return 0;
  6407. }
  6408. static int decode_sei(H264Context *h){
  6409. MpegEncContext * const s = &h->s;
  6410. while(get_bits_count(&s->gb) + 16 < s->gb.size_in_bits){
  6411. int size, type;
  6412. type=0;
  6413. do{
  6414. type+= show_bits(&s->gb, 8);
  6415. }while(get_bits(&s->gb, 8) == 255);
  6416. size=0;
  6417. do{
  6418. size+= show_bits(&s->gb, 8);
  6419. }while(get_bits(&s->gb, 8) == 255);
  6420. switch(type){
  6421. case 5:
  6422. if(decode_unregistered_user_data(h, size) < 0)
  6423. return -1;
  6424. break;
  6425. default:
  6426. skip_bits(&s->gb, 8*size);
  6427. }
  6428. //FIXME check bits here
  6429. align_get_bits(&s->gb);
  6430. }
  6431. return 0;
  6432. }
  6433. static inline void decode_hrd_parameters(H264Context *h, SPS *sps){
  6434. MpegEncContext * const s = &h->s;
  6435. int cpb_count, i;
  6436. cpb_count = get_ue_golomb(&s->gb) + 1;
  6437. get_bits(&s->gb, 4); /* bit_rate_scale */
  6438. get_bits(&s->gb, 4); /* cpb_size_scale */
  6439. for(i=0; i<cpb_count; i++){
  6440. get_ue_golomb(&s->gb); /* bit_rate_value_minus1 */
  6441. get_ue_golomb(&s->gb); /* cpb_size_value_minus1 */
  6442. get_bits1(&s->gb); /* cbr_flag */
  6443. }
  6444. get_bits(&s->gb, 5); /* initial_cpb_removal_delay_length_minus1 */
  6445. get_bits(&s->gb, 5); /* cpb_removal_delay_length_minus1 */
  6446. get_bits(&s->gb, 5); /* dpb_output_delay_length_minus1 */
  6447. get_bits(&s->gb, 5); /* time_offset_length */
  6448. }
  6449. static inline int decode_vui_parameters(H264Context *h, SPS *sps){
  6450. MpegEncContext * const s = &h->s;
  6451. int aspect_ratio_info_present_flag;
  6452. unsigned int aspect_ratio_idc;
  6453. int nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag;
  6454. aspect_ratio_info_present_flag= get_bits1(&s->gb);
  6455. if( aspect_ratio_info_present_flag ) {
  6456. aspect_ratio_idc= get_bits(&s->gb, 8);
  6457. if( aspect_ratio_idc == EXTENDED_SAR ) {
  6458. sps->sar.num= get_bits(&s->gb, 16);
  6459. sps->sar.den= get_bits(&s->gb, 16);
  6460. }else if(aspect_ratio_idc < 14){
  6461. sps->sar= pixel_aspect[aspect_ratio_idc];
  6462. }else{
  6463. av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
  6464. return -1;
  6465. }
  6466. }else{
  6467. sps->sar.num=
  6468. sps->sar.den= 0;
  6469. }
  6470. // s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
  6471. if(get_bits1(&s->gb)){ /* overscan_info_present_flag */
  6472. get_bits1(&s->gb); /* overscan_appropriate_flag */
  6473. }
  6474. if(get_bits1(&s->gb)){ /* video_signal_type_present_flag */
  6475. get_bits(&s->gb, 3); /* video_format */
  6476. get_bits1(&s->gb); /* video_full_range_flag */
  6477. if(get_bits1(&s->gb)){ /* colour_description_present_flag */
  6478. get_bits(&s->gb, 8); /* colour_primaries */
  6479. get_bits(&s->gb, 8); /* transfer_characteristics */
  6480. get_bits(&s->gb, 8); /* matrix_coefficients */
  6481. }
  6482. }
  6483. if(get_bits1(&s->gb)){ /* chroma_location_info_present_flag */
  6484. get_ue_golomb(&s->gb); /* chroma_sample_location_type_top_field */
  6485. get_ue_golomb(&s->gb); /* chroma_sample_location_type_bottom_field */
  6486. }
  6487. sps->timing_info_present_flag = get_bits1(&s->gb);
  6488. if(sps->timing_info_present_flag){
  6489. sps->num_units_in_tick = get_bits_long(&s->gb, 32);
  6490. sps->time_scale = get_bits_long(&s->gb, 32);
  6491. sps->fixed_frame_rate_flag = get_bits1(&s->gb);
  6492. }
  6493. nal_hrd_parameters_present_flag = get_bits1(&s->gb);
  6494. if(nal_hrd_parameters_present_flag)
  6495. decode_hrd_parameters(h, sps);
  6496. vcl_hrd_parameters_present_flag = get_bits1(&s->gb);
  6497. if(vcl_hrd_parameters_present_flag)
  6498. decode_hrd_parameters(h, sps);
  6499. if(nal_hrd_parameters_present_flag || vcl_hrd_parameters_present_flag)
  6500. get_bits1(&s->gb); /* low_delay_hrd_flag */
  6501. get_bits1(&s->gb); /* pic_struct_present_flag */
  6502. sps->bitstream_restriction_flag = get_bits1(&s->gb);
  6503. if(sps->bitstream_restriction_flag){
  6504. unsigned int num_reorder_frames;
  6505. get_bits1(&s->gb); /* motion_vectors_over_pic_boundaries_flag */
  6506. get_ue_golomb(&s->gb); /* max_bytes_per_pic_denom */
  6507. get_ue_golomb(&s->gb); /* max_bits_per_mb_denom */
  6508. get_ue_golomb(&s->gb); /* log2_max_mv_length_horizontal */
  6509. get_ue_golomb(&s->gb); /* log2_max_mv_length_vertical */
  6510. num_reorder_frames= get_ue_golomb(&s->gb);
  6511. get_ue_golomb(&s->gb); /*max_dec_frame_buffering*/
  6512. if(num_reorder_frames > 16 /*max_dec_frame_buffering || max_dec_frame_buffering > 16*/){
  6513. av_log(h->s.avctx, AV_LOG_ERROR, "illegal num_reorder_frames %d\n", num_reorder_frames);
  6514. return -1;
  6515. }
  6516. sps->num_reorder_frames= num_reorder_frames;
  6517. }
  6518. return 0;
  6519. }
  6520. static void decode_scaling_list(H264Context *h, uint8_t *factors, int size,
  6521. const uint8_t *jvt_list, const uint8_t *fallback_list){
  6522. MpegEncContext * const s = &h->s;
  6523. int i, last = 8, next = 8;
  6524. const uint8_t *scan = size == 16 ? zigzag_scan : zigzag_scan8x8;
  6525. if(!get_bits1(&s->gb)) /* matrix not written, we use the predicted one */
  6526. memcpy(factors, fallback_list, size*sizeof(uint8_t));
  6527. else
  6528. for(i=0;i<size;i++){
  6529. if(next)
  6530. next = (last + get_se_golomb(&s->gb)) & 0xff;
  6531. if(!i && !next){ /* matrix not written, we use the preset one */
  6532. memcpy(factors, jvt_list, size*sizeof(uint8_t));
  6533. break;
  6534. }
  6535. last = factors[scan[i]] = next ? next : last;
  6536. }
  6537. }
  6538. static void decode_scaling_matrices(H264Context *h, SPS *sps, PPS *pps, int is_sps,
  6539. uint8_t (*scaling_matrix4)[16], uint8_t (*scaling_matrix8)[64]){
  6540. MpegEncContext * const s = &h->s;
  6541. int fallback_sps = !is_sps && sps->scaling_matrix_present;
  6542. const uint8_t *fallback[4] = {
  6543. fallback_sps ? sps->scaling_matrix4[0] : default_scaling4[0],
  6544. fallback_sps ? sps->scaling_matrix4[3] : default_scaling4[1],
  6545. fallback_sps ? sps->scaling_matrix8[0] : default_scaling8[0],
  6546. fallback_sps ? sps->scaling_matrix8[1] : default_scaling8[1]
  6547. };
  6548. if(get_bits1(&s->gb)){
  6549. sps->scaling_matrix_present |= is_sps;
  6550. decode_scaling_list(h,scaling_matrix4[0],16,default_scaling4[0],fallback[0]); // Intra, Y
  6551. decode_scaling_list(h,scaling_matrix4[1],16,default_scaling4[0],scaling_matrix4[0]); // Intra, Cr
  6552. decode_scaling_list(h,scaling_matrix4[2],16,default_scaling4[0],scaling_matrix4[1]); // Intra, Cb
  6553. decode_scaling_list(h,scaling_matrix4[3],16,default_scaling4[1],fallback[1]); // Inter, Y
  6554. decode_scaling_list(h,scaling_matrix4[4],16,default_scaling4[1],scaling_matrix4[3]); // Inter, Cr
  6555. decode_scaling_list(h,scaling_matrix4[5],16,default_scaling4[1],scaling_matrix4[4]); // Inter, Cb
  6556. if(is_sps || pps->transform_8x8_mode){
  6557. decode_scaling_list(h,scaling_matrix8[0],64,default_scaling8[0],fallback[2]); // Intra, Y
  6558. decode_scaling_list(h,scaling_matrix8[1],64,default_scaling8[1],fallback[3]); // Inter, Y
  6559. }
  6560. } else if(fallback_sps) {
  6561. memcpy(scaling_matrix4, sps->scaling_matrix4, 6*16*sizeof(uint8_t));
  6562. memcpy(scaling_matrix8, sps->scaling_matrix8, 2*64*sizeof(uint8_t));
  6563. }
  6564. }
  6565. /**
  6566. * Returns and optionally allocates SPS / PPS structures in the supplied array 'vec'
  6567. */
  6568. static void *
  6569. alloc_parameter_set(H264Context *h, void **vec, const unsigned int id, const unsigned int max,
  6570. const size_t size, const char *name)
  6571. {
  6572. if(id>=max) {
  6573. av_log(h->s.avctx, AV_LOG_ERROR, "%s_id (%d) out of range\n", name, id);
  6574. return NULL;
  6575. }
  6576. if(!vec[id]) {
  6577. vec[id] = av_mallocz(size);
  6578. if(vec[id] == NULL)
  6579. av_log(h->s.avctx, AV_LOG_ERROR, "cannot allocate memory for %s\n", name);
  6580. }
  6581. return vec[id];
  6582. }
  6583. static inline int decode_seq_parameter_set(H264Context *h){
  6584. MpegEncContext * const s = &h->s;
  6585. int profile_idc, level_idc;
  6586. unsigned int sps_id, tmp, mb_width, mb_height;
  6587. int i;
  6588. SPS *sps;
  6589. profile_idc= get_bits(&s->gb, 8);
  6590. get_bits1(&s->gb); //constraint_set0_flag
  6591. get_bits1(&s->gb); //constraint_set1_flag
  6592. get_bits1(&s->gb); //constraint_set2_flag
  6593. get_bits1(&s->gb); //constraint_set3_flag
  6594. get_bits(&s->gb, 4); // reserved
  6595. level_idc= get_bits(&s->gb, 8);
  6596. sps_id= get_ue_golomb(&s->gb);
  6597. sps = alloc_parameter_set(h, (void **)h->sps_buffers, sps_id, MAX_SPS_COUNT, sizeof(SPS), "sps");
  6598. if(sps == NULL)
  6599. return -1;
  6600. sps->profile_idc= profile_idc;
  6601. sps->level_idc= level_idc;
  6602. if(sps->profile_idc >= 100){ //high profile
  6603. if(get_ue_golomb(&s->gb) == 3) //chroma_format_idc
  6604. get_bits1(&s->gb); //residual_color_transform_flag
  6605. get_ue_golomb(&s->gb); //bit_depth_luma_minus8
  6606. get_ue_golomb(&s->gb); //bit_depth_chroma_minus8
  6607. sps->transform_bypass = get_bits1(&s->gb);
  6608. decode_scaling_matrices(h, sps, NULL, 1, sps->scaling_matrix4, sps->scaling_matrix8);
  6609. }else
  6610. sps->scaling_matrix_present = 0;
  6611. sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
  6612. sps->poc_type= get_ue_golomb(&s->gb);
  6613. if(sps->poc_type == 0){ //FIXME #define
  6614. sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
  6615. } else if(sps->poc_type == 1){//FIXME #define
  6616. sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
  6617. sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
  6618. sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
  6619. tmp= get_ue_golomb(&s->gb);
  6620. if(tmp >= sizeof(sps->offset_for_ref_frame) / sizeof(sps->offset_for_ref_frame[0])){
  6621. av_log(h->s.avctx, AV_LOG_ERROR, "poc_cycle_length overflow %u\n", tmp);
  6622. return -1;
  6623. }
  6624. sps->poc_cycle_length= tmp;
  6625. for(i=0; i<sps->poc_cycle_length; i++)
  6626. sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
  6627. }else if(sps->poc_type != 2){
  6628. av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
  6629. return -1;
  6630. }
  6631. tmp= get_ue_golomb(&s->gb);
  6632. if(tmp > MAX_PICTURE_COUNT-2){
  6633. av_log(h->s.avctx, AV_LOG_ERROR, "too many reference frames\n");
  6634. }
  6635. sps->ref_frame_count= tmp;
  6636. sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
  6637. mb_width= get_ue_golomb(&s->gb) + 1;
  6638. mb_height= get_ue_golomb(&s->gb) + 1;
  6639. if(mb_width >= INT_MAX/16 || mb_height >= INT_MAX/16 ||
  6640. avcodec_check_dimensions(NULL, 16*mb_width, 16*mb_height)){
  6641. av_log(h->s.avctx, AV_LOG_ERROR, "mb_width/height overflow\n");
  6642. return -1;
  6643. }
  6644. sps->mb_width = mb_width;
  6645. sps->mb_height= mb_height;
  6646. sps->frame_mbs_only_flag= get_bits1(&s->gb);
  6647. if(!sps->frame_mbs_only_flag)
  6648. sps->mb_aff= get_bits1(&s->gb);
  6649. else
  6650. sps->mb_aff= 0;
  6651. sps->direct_8x8_inference_flag= get_bits1(&s->gb);
  6652. #ifndef ALLOW_INTERLACE
  6653. if(sps->mb_aff)
  6654. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF support not included; enable it at compile-time.\n");
  6655. #endif
  6656. if(!sps->direct_8x8_inference_flag && sps->mb_aff)
  6657. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF + !direct_8x8_inference is not implemented\n");
  6658. sps->crop= get_bits1(&s->gb);
  6659. if(sps->crop){
  6660. sps->crop_left = get_ue_golomb(&s->gb);
  6661. sps->crop_right = get_ue_golomb(&s->gb);
  6662. sps->crop_top = get_ue_golomb(&s->gb);
  6663. sps->crop_bottom= get_ue_golomb(&s->gb);
  6664. if(sps->crop_left || sps->crop_top){
  6665. av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completely supported, this could look slightly wrong ...\n");
  6666. }
  6667. }else{
  6668. sps->crop_left =
  6669. sps->crop_right =
  6670. sps->crop_top =
  6671. sps->crop_bottom= 0;
  6672. }
  6673. sps->vui_parameters_present_flag= get_bits1(&s->gb);
  6674. if( sps->vui_parameters_present_flag )
  6675. decode_vui_parameters(h, sps);
  6676. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6677. av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%u profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n",
  6678. sps_id, sps->profile_idc, sps->level_idc,
  6679. sps->poc_type,
  6680. sps->ref_frame_count,
  6681. sps->mb_width, sps->mb_height,
  6682. sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
  6683. sps->direct_8x8_inference_flag ? "8B8" : "",
  6684. sps->crop_left, sps->crop_right,
  6685. sps->crop_top, sps->crop_bottom,
  6686. sps->vui_parameters_present_flag ? "VUI" : ""
  6687. );
  6688. }
  6689. return 0;
  6690. }
  6691. static inline int decode_picture_parameter_set(H264Context *h, int bit_length){
  6692. MpegEncContext * const s = &h->s;
  6693. unsigned int tmp, pps_id= get_ue_golomb(&s->gb);
  6694. PPS *pps;
  6695. pps = alloc_parameter_set(h, (void **)h->pps_buffers, pps_id, MAX_PPS_COUNT, sizeof(PPS), "pps");
  6696. if(pps == NULL)
  6697. return -1;
  6698. tmp= get_ue_golomb(&s->gb);
  6699. if(tmp>=MAX_SPS_COUNT || h->sps_buffers[tmp] == NULL){
  6700. av_log(h->s.avctx, AV_LOG_ERROR, "sps_id out of range\n");
  6701. return -1;
  6702. }
  6703. pps->sps_id= tmp;
  6704. pps->cabac= get_bits1(&s->gb);
  6705. pps->pic_order_present= get_bits1(&s->gb);
  6706. pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
  6707. if(pps->slice_group_count > 1 ){
  6708. pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
  6709. av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
  6710. switch(pps->mb_slice_group_map_type){
  6711. case 0:
  6712. #if 0
  6713. | for( i = 0; i <= num_slice_groups_minus1; i++ ) | | |
  6714. | run_length[ i ] |1 |ue(v) |
  6715. #endif
  6716. break;
  6717. case 2:
  6718. #if 0
  6719. | for( i = 0; i < num_slice_groups_minus1; i++ ) | | |
  6720. |{ | | |
  6721. | top_left_mb[ i ] |1 |ue(v) |
  6722. | bottom_right_mb[ i ] |1 |ue(v) |
  6723. | } | | |
  6724. #endif
  6725. break;
  6726. case 3:
  6727. case 4:
  6728. case 5:
  6729. #if 0
  6730. | slice_group_change_direction_flag |1 |u(1) |
  6731. | slice_group_change_rate_minus1 |1 |ue(v) |
  6732. #endif
  6733. break;
  6734. case 6:
  6735. #if 0
  6736. | slice_group_id_cnt_minus1 |1 |ue(v) |
  6737. | for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | |
  6738. |) | | |
  6739. | slice_group_id[ i ] |1 |u(v) |
  6740. #endif
  6741. break;
  6742. }
  6743. }
  6744. pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  6745. pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  6746. if(pps->ref_count[0]-1 > 32-1 || pps->ref_count[1]-1 > 32-1){
  6747. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
  6748. pps->ref_count[0]= pps->ref_count[1]= 1;
  6749. return -1;
  6750. }
  6751. pps->weighted_pred= get_bits1(&s->gb);
  6752. pps->weighted_bipred_idc= get_bits(&s->gb, 2);
  6753. pps->init_qp= get_se_golomb(&s->gb) + 26;
  6754. pps->init_qs= get_se_golomb(&s->gb) + 26;
  6755. pps->chroma_qp_index_offset= get_se_golomb(&s->gb);
  6756. pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
  6757. pps->constrained_intra_pred= get_bits1(&s->gb);
  6758. pps->redundant_pic_cnt_present = get_bits1(&s->gb);
  6759. pps->transform_8x8_mode= 0;
  6760. h->dequant_coeff_pps= -1; //contents of sps/pps can change even if id doesn't, so reinit
  6761. memset(pps->scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  6762. memset(pps->scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  6763. if(get_bits_count(&s->gb) < bit_length){
  6764. pps->transform_8x8_mode= get_bits1(&s->gb);
  6765. decode_scaling_matrices(h, h->sps_buffers[pps->sps_id], pps, 0, pps->scaling_matrix4, pps->scaling_matrix8);
  6766. get_se_golomb(&s->gb); //second_chroma_qp_index_offset
  6767. }
  6768. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6769. av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%u sps:%u %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d %s %s %s %s\n",
  6770. pps_id, pps->sps_id,
  6771. pps->cabac ? "CABAC" : "CAVLC",
  6772. pps->slice_group_count,
  6773. pps->ref_count[0], pps->ref_count[1],
  6774. pps->weighted_pred ? "weighted" : "",
  6775. pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset,
  6776. pps->deblocking_filter_parameters_present ? "LPAR" : "",
  6777. pps->constrained_intra_pred ? "CONSTR" : "",
  6778. pps->redundant_pic_cnt_present ? "REDU" : "",
  6779. pps->transform_8x8_mode ? "8x8DCT" : ""
  6780. );
  6781. }
  6782. return 0;
  6783. }
  6784. static int decode_nal_units(H264Context *h, uint8_t *buf, int buf_size){
  6785. MpegEncContext * const s = &h->s;
  6786. AVCodecContext * const avctx= s->avctx;
  6787. int buf_index=0;
  6788. #if 0
  6789. int i;
  6790. for(i=0; i<50; i++){
  6791. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  6792. }
  6793. #endif
  6794. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
  6795. h->slice_num = 0;
  6796. s->current_picture_ptr= NULL;
  6797. }
  6798. for(;;){
  6799. int consumed;
  6800. int dst_length;
  6801. int bit_length;
  6802. uint8_t *ptr;
  6803. int i, nalsize = 0;
  6804. if(h->is_avc) {
  6805. if(buf_index >= buf_size) break;
  6806. nalsize = 0;
  6807. for(i = 0; i < h->nal_length_size; i++)
  6808. nalsize = (nalsize << 8) | buf[buf_index++];
  6809. if(nalsize <= 1 || (nalsize+buf_index > buf_size)){
  6810. if(nalsize == 1){
  6811. buf_index++;
  6812. continue;
  6813. }else{
  6814. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  6815. break;
  6816. }
  6817. }
  6818. } else {
  6819. // start code prefix search
  6820. for(; buf_index + 3 < buf_size; buf_index++){
  6821. // This should always succeed in the first iteration.
  6822. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  6823. break;
  6824. }
  6825. if(buf_index+3 >= buf_size) break;
  6826. buf_index+=3;
  6827. }
  6828. ptr= decode_nal(h, buf + buf_index, &dst_length, &consumed, h->is_avc ? nalsize : buf_size - buf_index);
  6829. if (ptr==NULL || dst_length < 0){
  6830. return -1;
  6831. }
  6832. while(ptr[dst_length - 1] == 0 && dst_length > 0)
  6833. dst_length--;
  6834. bit_length= !dst_length ? 0 : (8*dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1));
  6835. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  6836. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", h->nal_unit_type, buf_index, buf_size, dst_length);
  6837. }
  6838. if (h->is_avc && (nalsize != consumed))
  6839. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  6840. buf_index += consumed;
  6841. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id
  6842. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  6843. continue;
  6844. switch(h->nal_unit_type){
  6845. case NAL_IDR_SLICE:
  6846. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  6847. case NAL_SLICE:
  6848. init_get_bits(&s->gb, ptr, bit_length);
  6849. h->intra_gb_ptr=
  6850. h->inter_gb_ptr= &s->gb;
  6851. s->data_partitioning = 0;
  6852. if(decode_slice_header(h) < 0){
  6853. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  6854. break;
  6855. }
  6856. s->current_picture_ptr->key_frame= (h->nal_unit_type == NAL_IDR_SLICE);
  6857. if(h->redundant_pic_count==0 && s->hurry_up < 5
  6858. && (avctx->skip_frame < AVDISCARD_NONREF || h->nal_ref_idc)
  6859. && (avctx->skip_frame < AVDISCARD_BIDIR || h->slice_type!=B_TYPE)
  6860. && (avctx->skip_frame < AVDISCARD_NONKEY || h->slice_type==I_TYPE)
  6861. && avctx->skip_frame < AVDISCARD_ALL)
  6862. decode_slice(h);
  6863. break;
  6864. case NAL_DPA:
  6865. init_get_bits(&s->gb, ptr, bit_length);
  6866. h->intra_gb_ptr=
  6867. h->inter_gb_ptr= NULL;
  6868. s->data_partitioning = 1;
  6869. if(decode_slice_header(h) < 0){
  6870. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  6871. }
  6872. break;
  6873. case NAL_DPB:
  6874. init_get_bits(&h->intra_gb, ptr, bit_length);
  6875. h->intra_gb_ptr= &h->intra_gb;
  6876. break;
  6877. case NAL_DPC:
  6878. init_get_bits(&h->inter_gb, ptr, bit_length);
  6879. h->inter_gb_ptr= &h->inter_gb;
  6880. if(h->redundant_pic_count==0 && h->intra_gb_ptr && s->data_partitioning
  6881. && s->context_initialized
  6882. && s->hurry_up < 5
  6883. && (avctx->skip_frame < AVDISCARD_NONREF || h->nal_ref_idc)
  6884. && (avctx->skip_frame < AVDISCARD_BIDIR || h->slice_type!=B_TYPE)
  6885. && (avctx->skip_frame < AVDISCARD_NONKEY || h->slice_type==I_TYPE)
  6886. && avctx->skip_frame < AVDISCARD_ALL)
  6887. decode_slice(h);
  6888. break;
  6889. case NAL_SEI:
  6890. init_get_bits(&s->gb, ptr, bit_length);
  6891. decode_sei(h);
  6892. break;
  6893. case NAL_SPS:
  6894. init_get_bits(&s->gb, ptr, bit_length);
  6895. decode_seq_parameter_set(h);
  6896. if(s->flags& CODEC_FLAG_LOW_DELAY)
  6897. s->low_delay=1;
  6898. if(avctx->has_b_frames < 2)
  6899. avctx->has_b_frames= !s->low_delay;
  6900. break;
  6901. case NAL_PPS:
  6902. init_get_bits(&s->gb, ptr, bit_length);
  6903. decode_picture_parameter_set(h, bit_length);
  6904. break;
  6905. case NAL_AUD:
  6906. case NAL_END_SEQUENCE:
  6907. case NAL_END_STREAM:
  6908. case NAL_FILLER_DATA:
  6909. case NAL_SPS_EXT:
  6910. case NAL_AUXILIARY_SLICE:
  6911. break;
  6912. default:
  6913. av_log(avctx, AV_LOG_ERROR, "Unknown NAL code: %d\n", h->nal_unit_type);
  6914. }
  6915. }
  6916. return buf_index;
  6917. }
  6918. /**
  6919. * returns the number of bytes consumed for building the current frame
  6920. */
  6921. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  6922. if(s->flags&CODEC_FLAG_TRUNCATED){
  6923. pos -= s->parse_context.last_index;
  6924. if(pos<0) pos=0; // FIXME remove (unneeded?)
  6925. return pos;
  6926. }else{
  6927. if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
  6928. if(pos+10>buf_size) pos=buf_size; // oops ;)
  6929. return pos;
  6930. }
  6931. }
  6932. static int decode_frame(AVCodecContext *avctx,
  6933. void *data, int *data_size,
  6934. uint8_t *buf, int buf_size)
  6935. {
  6936. H264Context *h = avctx->priv_data;
  6937. MpegEncContext *s = &h->s;
  6938. AVFrame *pict = data;
  6939. int buf_index;
  6940. s->flags= avctx->flags;
  6941. s->flags2= avctx->flags2;
  6942. /* no supplementary picture */
  6943. if (buf_size == 0) {
  6944. Picture *out;
  6945. int i, out_idx;
  6946. //FIXME factorize this with the output code below
  6947. out = h->delayed_pic[0];
  6948. out_idx = 0;
  6949. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++)
  6950. if(h->delayed_pic[i]->poc < out->poc){
  6951. out = h->delayed_pic[i];
  6952. out_idx = i;
  6953. }
  6954. for(i=out_idx; h->delayed_pic[i]; i++)
  6955. h->delayed_pic[i] = h->delayed_pic[i+1];
  6956. if(out){
  6957. *data_size = sizeof(AVFrame);
  6958. *pict= *(AVFrame*)out;
  6959. }
  6960. return 0;
  6961. }
  6962. if(s->flags&CODEC_FLAG_TRUNCATED){
  6963. int next= ff_h264_find_frame_end(h, buf, buf_size);
  6964. if( ff_combine_frame(&s->parse_context, next, (const uint8_t **)&buf, &buf_size) < 0 )
  6965. return buf_size;
  6966. //printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index);
  6967. }
  6968. if(h->is_avc && !h->got_avcC) {
  6969. int i, cnt, nalsize;
  6970. unsigned char *p = avctx->extradata;
  6971. if(avctx->extradata_size < 7) {
  6972. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  6973. return -1;
  6974. }
  6975. if(*p != 1) {
  6976. av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p);
  6977. return -1;
  6978. }
  6979. /* sps and pps in the avcC always have length coded with 2 bytes,
  6980. so put a fake nal_length_size = 2 while parsing them */
  6981. h->nal_length_size = 2;
  6982. // Decode sps from avcC
  6983. cnt = *(p+5) & 0x1f; // Number of sps
  6984. p += 6;
  6985. for (i = 0; i < cnt; i++) {
  6986. nalsize = AV_RB16(p) + 2;
  6987. if(decode_nal_units(h, p, nalsize) < 0) {
  6988. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  6989. return -1;
  6990. }
  6991. p += nalsize;
  6992. }
  6993. // Decode pps from avcC
  6994. cnt = *(p++); // Number of pps
  6995. for (i = 0; i < cnt; i++) {
  6996. nalsize = AV_RB16(p) + 2;
  6997. if(decode_nal_units(h, p, nalsize) != nalsize) {
  6998. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  6999. return -1;
  7000. }
  7001. p += nalsize;
  7002. }
  7003. // Now store right nal length size, that will be use to parse all other nals
  7004. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  7005. // Do not reparse avcC
  7006. h->got_avcC = 1;
  7007. }
  7008. if(avctx->frame_number==0 && !h->is_avc && s->avctx->extradata_size){
  7009. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  7010. return -1;
  7011. }
  7012. buf_index=decode_nal_units(h, buf, buf_size);
  7013. if(buf_index < 0)
  7014. return -1;
  7015. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
  7016. av_log(avctx, AV_LOG_ERROR, "no frame!\n");
  7017. return -1;
  7018. }
  7019. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
  7020. Picture *out = s->current_picture_ptr;
  7021. Picture *cur = s->current_picture_ptr;
  7022. Picture *prev = h->delayed_output_pic;
  7023. int i, pics, cross_idr, out_of_order, out_idx;
  7024. s->mb_y= 0;
  7025. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  7026. s->current_picture_ptr->pict_type= s->pict_type;
  7027. h->prev_frame_num_offset= h->frame_num_offset;
  7028. h->prev_frame_num= h->frame_num;
  7029. if(s->current_picture_ptr->reference){
  7030. h->prev_poc_msb= h->poc_msb;
  7031. h->prev_poc_lsb= h->poc_lsb;
  7032. }
  7033. if(s->current_picture_ptr->reference)
  7034. execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  7035. ff_er_frame_end(s);
  7036. MPV_frame_end(s);
  7037. //FIXME do something with unavailable reference frames
  7038. #if 0 //decode order
  7039. *data_size = sizeof(AVFrame);
  7040. #else
  7041. /* Sort B-frames into display order */
  7042. if(h->sps.bitstream_restriction_flag
  7043. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  7044. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  7045. s->low_delay = 0;
  7046. }
  7047. pics = 0;
  7048. while(h->delayed_pic[pics]) pics++;
  7049. assert(pics+1 < sizeof(h->delayed_pic) / sizeof(h->delayed_pic[0]));
  7050. h->delayed_pic[pics++] = cur;
  7051. if(cur->reference == 0)
  7052. cur->reference = 1;
  7053. cross_idr = 0;
  7054. for(i=0; h->delayed_pic[i]; i++)
  7055. if(h->delayed_pic[i]->key_frame || h->delayed_pic[i]->poc==0)
  7056. cross_idr = 1;
  7057. out = h->delayed_pic[0];
  7058. out_idx = 0;
  7059. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++)
  7060. if(h->delayed_pic[i]->poc < out->poc){
  7061. out = h->delayed_pic[i];
  7062. out_idx = i;
  7063. }
  7064. out_of_order = !cross_idr && prev && out->poc < prev->poc;
  7065. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  7066. { }
  7067. else if(prev && pics <= s->avctx->has_b_frames)
  7068. out = prev;
  7069. else if((out_of_order && pics-1 == s->avctx->has_b_frames && pics < 15)
  7070. || (s->low_delay &&
  7071. ((!cross_idr && prev && out->poc > prev->poc + 2)
  7072. || cur->pict_type == B_TYPE)))
  7073. {
  7074. s->low_delay = 0;
  7075. s->avctx->has_b_frames++;
  7076. out = prev;
  7077. }
  7078. else if(out_of_order)
  7079. out = prev;
  7080. if(out_of_order || pics > s->avctx->has_b_frames){
  7081. for(i=out_idx; h->delayed_pic[i]; i++)
  7082. h->delayed_pic[i] = h->delayed_pic[i+1];
  7083. }
  7084. if(prev == out)
  7085. *data_size = 0;
  7086. else
  7087. *data_size = sizeof(AVFrame);
  7088. if(prev && prev != out && prev->reference == 1)
  7089. prev->reference = 0;
  7090. h->delayed_output_pic = out;
  7091. #endif
  7092. if(out)
  7093. *pict= *(AVFrame*)out;
  7094. else
  7095. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  7096. }
  7097. assert(pict->data[0] || !*data_size);
  7098. ff_print_debug_info(s, pict);
  7099. //printf("out %d\n", (int)pict->data[0]);
  7100. #if 0 //?
  7101. /* Return the Picture timestamp as the frame number */
  7102. /* we substract 1 because it is added on utils.c */
  7103. avctx->frame_number = s->picture_number - 1;
  7104. #endif
  7105. return get_consumed_bytes(s, buf_index, buf_size);
  7106. }
  7107. #if 0
  7108. static inline void fill_mb_avail(H264Context *h){
  7109. MpegEncContext * const s = &h->s;
  7110. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  7111. if(s->mb_y){
  7112. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  7113. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  7114. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  7115. }else{
  7116. h->mb_avail[0]=
  7117. h->mb_avail[1]=
  7118. h->mb_avail[2]= 0;
  7119. }
  7120. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  7121. h->mb_avail[4]= 1; //FIXME move out
  7122. h->mb_avail[5]= 0; //FIXME move out
  7123. }
  7124. #endif
  7125. #if 0 //selftest
  7126. #define COUNT 8000
  7127. #define SIZE (COUNT*40)
  7128. int main(){
  7129. int i;
  7130. uint8_t temp[SIZE];
  7131. PutBitContext pb;
  7132. GetBitContext gb;
  7133. // int int_temp[10000];
  7134. DSPContext dsp;
  7135. AVCodecContext avctx;
  7136. dsputil_init(&dsp, &avctx);
  7137. init_put_bits(&pb, temp, SIZE);
  7138. printf("testing unsigned exp golomb\n");
  7139. for(i=0; i<COUNT; i++){
  7140. START_TIMER
  7141. set_ue_golomb(&pb, i);
  7142. STOP_TIMER("set_ue_golomb");
  7143. }
  7144. flush_put_bits(&pb);
  7145. init_get_bits(&gb, temp, 8*SIZE);
  7146. for(i=0; i<COUNT; i++){
  7147. int j, s;
  7148. s= show_bits(&gb, 24);
  7149. START_TIMER
  7150. j= get_ue_golomb(&gb);
  7151. if(j != i){
  7152. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  7153. // return -1;
  7154. }
  7155. STOP_TIMER("get_ue_golomb");
  7156. }
  7157. init_put_bits(&pb, temp, SIZE);
  7158. printf("testing signed exp golomb\n");
  7159. for(i=0; i<COUNT; i++){
  7160. START_TIMER
  7161. set_se_golomb(&pb, i - COUNT/2);
  7162. STOP_TIMER("set_se_golomb");
  7163. }
  7164. flush_put_bits(&pb);
  7165. init_get_bits(&gb, temp, 8*SIZE);
  7166. for(i=0; i<COUNT; i++){
  7167. int j, s;
  7168. s= show_bits(&gb, 24);
  7169. START_TIMER
  7170. j= get_se_golomb(&gb);
  7171. if(j != i - COUNT/2){
  7172. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  7173. // return -1;
  7174. }
  7175. STOP_TIMER("get_se_golomb");
  7176. }
  7177. printf("testing 4x4 (I)DCT\n");
  7178. DCTELEM block[16];
  7179. uint8_t src[16], ref[16];
  7180. uint64_t error= 0, max_error=0;
  7181. for(i=0; i<COUNT; i++){
  7182. int j;
  7183. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  7184. for(j=0; j<16; j++){
  7185. ref[j]= random()%255;
  7186. src[j]= random()%255;
  7187. }
  7188. h264_diff_dct_c(block, src, ref, 4);
  7189. //normalize
  7190. for(j=0; j<16; j++){
  7191. // printf("%d ", block[j]);
  7192. block[j]= block[j]*4;
  7193. if(j&1) block[j]= (block[j]*4 + 2)/5;
  7194. if(j&4) block[j]= (block[j]*4 + 2)/5;
  7195. }
  7196. // printf("\n");
  7197. s->dsp.h264_idct_add(ref, block, 4);
  7198. /* for(j=0; j<16; j++){
  7199. printf("%d ", ref[j]);
  7200. }
  7201. printf("\n");*/
  7202. for(j=0; j<16; j++){
  7203. int diff= FFABS(src[j] - ref[j]);
  7204. error+= diff*diff;
  7205. max_error= FFMAX(max_error, diff);
  7206. }
  7207. }
  7208. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  7209. #if 0
  7210. printf("testing quantizer\n");
  7211. for(qp=0; qp<52; qp++){
  7212. for(i=0; i<16; i++)
  7213. src1_block[i]= src2_block[i]= random()%255;
  7214. }
  7215. #endif
  7216. printf("Testing NAL layer\n");
  7217. uint8_t bitstream[COUNT];
  7218. uint8_t nal[COUNT*2];
  7219. H264Context h;
  7220. memset(&h, 0, sizeof(H264Context));
  7221. for(i=0; i<COUNT; i++){
  7222. int zeros= i;
  7223. int nal_length;
  7224. int consumed;
  7225. int out_length;
  7226. uint8_t *out;
  7227. int j;
  7228. for(j=0; j<COUNT; j++){
  7229. bitstream[j]= (random() % 255) + 1;
  7230. }
  7231. for(j=0; j<zeros; j++){
  7232. int pos= random() % COUNT;
  7233. while(bitstream[pos] == 0){
  7234. pos++;
  7235. pos %= COUNT;
  7236. }
  7237. bitstream[pos]=0;
  7238. }
  7239. START_TIMER
  7240. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  7241. if(nal_length<0){
  7242. printf("encoding failed\n");
  7243. return -1;
  7244. }
  7245. out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
  7246. STOP_TIMER("NAL")
  7247. if(out_length != COUNT){
  7248. printf("incorrect length %d %d\n", out_length, COUNT);
  7249. return -1;
  7250. }
  7251. if(consumed != nal_length){
  7252. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  7253. return -1;
  7254. }
  7255. if(memcmp(bitstream, out, COUNT)){
  7256. printf("mismatch\n");
  7257. return -1;
  7258. }
  7259. }
  7260. printf("Testing RBSP\n");
  7261. return 0;
  7262. }
  7263. #endif
  7264. static int decode_end(AVCodecContext *avctx)
  7265. {
  7266. H264Context *h = avctx->priv_data;
  7267. MpegEncContext *s = &h->s;
  7268. av_freep(&h->rbsp_buffer);
  7269. free_tables(h); //FIXME cleanup init stuff perhaps
  7270. MPV_common_end(s);
  7271. // memset(h, 0, sizeof(H264Context));
  7272. return 0;
  7273. }
  7274. AVCodec h264_decoder = {
  7275. "h264",
  7276. CODEC_TYPE_VIDEO,
  7277. CODEC_ID_H264,
  7278. sizeof(H264Context),
  7279. decode_init,
  7280. NULL,
  7281. decode_end,
  7282. decode_frame,
  7283. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED | CODEC_CAP_DELAY,
  7284. .flush= flush_dpb,
  7285. };
  7286. #include "svq3.c"