You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

900 lines
34KB

  1. /*
  2. * AAC encoder
  3. * Copyright (C) 2008 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AAC encoder
  24. */
  25. /***********************************
  26. * TODOs:
  27. * add sane pulse detection
  28. ***********************************/
  29. #include "libavutil/float_dsp.h"
  30. #include "libavutil/opt.h"
  31. #include "avcodec.h"
  32. #include "put_bits.h"
  33. #include "internal.h"
  34. #include "mpeg4audio.h"
  35. #include "kbdwin.h"
  36. #include "sinewin.h"
  37. #include "aac.h"
  38. #include "aactab.h"
  39. #include "aacenc.h"
  40. #include "aacenctab.h"
  41. #include "aacenc_utils.h"
  42. #include "psymodel.h"
  43. /**
  44. * Make AAC audio config object.
  45. * @see 1.6.2.1 "Syntax - AudioSpecificConfig"
  46. */
  47. static void put_audio_specific_config(AVCodecContext *avctx)
  48. {
  49. PutBitContext pb;
  50. AACEncContext *s = avctx->priv_data;
  51. init_put_bits(&pb, avctx->extradata, avctx->extradata_size);
  52. put_bits(&pb, 5, s->profile+1); //profile
  53. put_bits(&pb, 4, s->samplerate_index); //sample rate index
  54. put_bits(&pb, 4, s->channels);
  55. //GASpecificConfig
  56. put_bits(&pb, 1, 0); //frame length - 1024 samples
  57. put_bits(&pb, 1, 0); //does not depend on core coder
  58. put_bits(&pb, 1, 0); //is not extension
  59. //Explicitly Mark SBR absent
  60. put_bits(&pb, 11, 0x2b7); //sync extension
  61. put_bits(&pb, 5, AOT_SBR);
  62. put_bits(&pb, 1, 0);
  63. flush_put_bits(&pb);
  64. }
  65. #define WINDOW_FUNC(type) \
  66. static void apply_ ##type ##_window(AVFloatDSPContext *fdsp, \
  67. SingleChannelElement *sce, \
  68. const float *audio)
  69. WINDOW_FUNC(only_long)
  70. {
  71. const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  72. const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  73. float *out = sce->ret_buf;
  74. fdsp->vector_fmul (out, audio, lwindow, 1024);
  75. fdsp->vector_fmul_reverse(out + 1024, audio + 1024, pwindow, 1024);
  76. }
  77. WINDOW_FUNC(long_start)
  78. {
  79. const float *lwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  80. const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  81. float *out = sce->ret_buf;
  82. fdsp->vector_fmul(out, audio, lwindow, 1024);
  83. memcpy(out + 1024, audio + 1024, sizeof(out[0]) * 448);
  84. fdsp->vector_fmul_reverse(out + 1024 + 448, audio + 1024 + 448, swindow, 128);
  85. memset(out + 1024 + 576, 0, sizeof(out[0]) * 448);
  86. }
  87. WINDOW_FUNC(long_stop)
  88. {
  89. const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  90. const float *swindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  91. float *out = sce->ret_buf;
  92. memset(out, 0, sizeof(out[0]) * 448);
  93. fdsp->vector_fmul(out + 448, audio + 448, swindow, 128);
  94. memcpy(out + 576, audio + 576, sizeof(out[0]) * 448);
  95. fdsp->vector_fmul_reverse(out + 1024, audio + 1024, lwindow, 1024);
  96. }
  97. WINDOW_FUNC(eight_short)
  98. {
  99. const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  100. const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  101. const float *in = audio + 448;
  102. float *out = sce->ret_buf;
  103. int w;
  104. for (w = 0; w < 8; w++) {
  105. fdsp->vector_fmul (out, in, w ? pwindow : swindow, 128);
  106. out += 128;
  107. in += 128;
  108. fdsp->vector_fmul_reverse(out, in, swindow, 128);
  109. out += 128;
  110. }
  111. }
  112. static void (*const apply_window[4])(AVFloatDSPContext *fdsp,
  113. SingleChannelElement *sce,
  114. const float *audio) = {
  115. [ONLY_LONG_SEQUENCE] = apply_only_long_window,
  116. [LONG_START_SEQUENCE] = apply_long_start_window,
  117. [EIGHT_SHORT_SEQUENCE] = apply_eight_short_window,
  118. [LONG_STOP_SEQUENCE] = apply_long_stop_window
  119. };
  120. static void apply_window_and_mdct(AACEncContext *s, SingleChannelElement *sce,
  121. float *audio)
  122. {
  123. int i;
  124. float *output = sce->ret_buf;
  125. apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, audio);
  126. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE)
  127. s->mdct1024.mdct_calc(&s->mdct1024, sce->coeffs, output);
  128. else
  129. for (i = 0; i < 1024; i += 128)
  130. s->mdct128.mdct_calc(&s->mdct128, &sce->coeffs[i], output + i*2);
  131. memcpy(audio, audio + 1024, sizeof(audio[0]) * 1024);
  132. memcpy(sce->pcoeffs, sce->coeffs, sizeof(sce->pcoeffs));
  133. }
  134. /**
  135. * Encode ics_info element.
  136. * @see Table 4.6 (syntax of ics_info)
  137. */
  138. static void put_ics_info(AACEncContext *s, IndividualChannelStream *info)
  139. {
  140. int w;
  141. put_bits(&s->pb, 1, 0); // ics_reserved bit
  142. put_bits(&s->pb, 2, info->window_sequence[0]);
  143. put_bits(&s->pb, 1, info->use_kb_window[0]);
  144. if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  145. put_bits(&s->pb, 6, info->max_sfb);
  146. put_bits(&s->pb, 1, !!info->predictor_present);
  147. } else {
  148. put_bits(&s->pb, 4, info->max_sfb);
  149. for (w = 1; w < 8; w++)
  150. put_bits(&s->pb, 1, !info->group_len[w]);
  151. }
  152. }
  153. /**
  154. * Encode MS data.
  155. * @see 4.6.8.1 "Joint Coding - M/S Stereo"
  156. */
  157. static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe)
  158. {
  159. int i, w;
  160. put_bits(pb, 2, cpe->ms_mode);
  161. if (cpe->ms_mode == 1)
  162. for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w])
  163. for (i = 0; i < cpe->ch[0].ics.max_sfb; i++)
  164. put_bits(pb, 1, cpe->ms_mask[w*16 + i]);
  165. }
  166. /**
  167. * Produce integer coefficients from scalefactors provided by the model.
  168. */
  169. static void adjust_frame_information(ChannelElement *cpe, int chans)
  170. {
  171. int i, w, w2, g, ch;
  172. int maxsfb, cmaxsfb;
  173. IndividualChannelStream *ics;
  174. if (cpe->common_window) {
  175. ics = &cpe->ch[0].ics;
  176. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  177. for (w2 = 0; w2 < ics->group_len[w]; w2++) {
  178. int start = (w+w2) * 128;
  179. for (g = 0; g < ics->num_swb; g++) {
  180. //apply Intensity stereo coeffs transformation
  181. if (cpe->is_mask[w*16 + g]) {
  182. int p = -1 + 2 * (cpe->ch[1].band_type[w*16+g] - 14);
  183. float scale = cpe->ch[0].is_ener[w*16+g];
  184. for (i = 0; i < ics->swb_sizes[g]; i++) {
  185. cpe->ch[0].coeffs[start+i] = (cpe->ch[0].coeffs[start+i] + p*cpe->ch[1].coeffs[start+i]) * scale;
  186. cpe->ch[1].coeffs[start+i] = 0.0f;
  187. }
  188. } else if (cpe->ms_mask[w*16 + g] &&
  189. cpe->ch[0].band_type[w*16 + g] < NOISE_BT &&
  190. cpe->ch[1].band_type[w*16 + g] < NOISE_BT) {
  191. for (i = 0; i < ics->swb_sizes[g]; i++) {
  192. float L = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) * 0.5f;
  193. float R = L - cpe->ch[1].coeffs[start+i];
  194. cpe->ch[0].coeffs[start+i] = L;
  195. cpe->ch[1].coeffs[start+i] = R;
  196. }
  197. }
  198. start += ics->swb_sizes[g];
  199. }
  200. }
  201. }
  202. }
  203. for (ch = 0; ch < chans; ch++) {
  204. IndividualChannelStream *ics = &cpe->ch[ch].ics;
  205. maxsfb = 0;
  206. cpe->ch[ch].pulse.num_pulse = 0;
  207. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  208. for (w2 = 0; w2 < ics->group_len[w]; w2++) {
  209. for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w*16+cmaxsfb-1]; cmaxsfb--)
  210. ;
  211. maxsfb = FFMAX(maxsfb, cmaxsfb);
  212. }
  213. }
  214. ics->max_sfb = maxsfb;
  215. //adjust zero bands for window groups
  216. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  217. for (g = 0; g < ics->max_sfb; g++) {
  218. i = 1;
  219. for (w2 = w; w2 < w + ics->group_len[w]; w2++) {
  220. if (!cpe->ch[ch].zeroes[w2*16 + g]) {
  221. i = 0;
  222. break;
  223. }
  224. }
  225. cpe->ch[ch].zeroes[w*16 + g] = i;
  226. }
  227. }
  228. }
  229. if (chans > 1 && cpe->common_window) {
  230. IndividualChannelStream *ics0 = &cpe->ch[0].ics;
  231. IndividualChannelStream *ics1 = &cpe->ch[1].ics;
  232. int msc = 0;
  233. ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb);
  234. ics1->max_sfb = ics0->max_sfb;
  235. for (w = 0; w < ics0->num_windows*16; w += 16)
  236. for (i = 0; i < ics0->max_sfb; i++)
  237. if (cpe->ms_mask[w+i])
  238. msc++;
  239. if (msc == 0 || ics0->max_sfb == 0)
  240. cpe->ms_mode = 0;
  241. else
  242. cpe->ms_mode = msc < ics0->max_sfb * ics0->num_windows ? 1 : 2;
  243. }
  244. }
  245. /**
  246. * Encode scalefactor band coding type.
  247. */
  248. static void encode_band_info(AACEncContext *s, SingleChannelElement *sce)
  249. {
  250. int w;
  251. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
  252. s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda);
  253. }
  254. /**
  255. * Encode scalefactors.
  256. */
  257. static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s,
  258. SingleChannelElement *sce)
  259. {
  260. int diff, off_sf = sce->sf_idx[0], off_pns = sce->sf_idx[0] - NOISE_OFFSET;
  261. int off_is = 0, noise_flag = 1;
  262. int i, w;
  263. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  264. for (i = 0; i < sce->ics.max_sfb; i++) {
  265. if (!sce->zeroes[w*16 + i]) {
  266. if (sce->band_type[w*16 + i] == NOISE_BT) {
  267. diff = sce->sf_idx[w*16 + i] - off_pns;
  268. off_pns = sce->sf_idx[w*16 + i];
  269. if (noise_flag-- > 0) {
  270. put_bits(&s->pb, NOISE_PRE_BITS, diff + NOISE_PRE);
  271. continue;
  272. }
  273. } else if (sce->band_type[w*16 + i] == INTENSITY_BT ||
  274. sce->band_type[w*16 + i] == INTENSITY_BT2) {
  275. diff = sce->sf_idx[w*16 + i] - off_is;
  276. off_is = sce->sf_idx[w*16 + i];
  277. } else {
  278. diff = sce->sf_idx[w*16 + i] - off_sf;
  279. off_sf = sce->sf_idx[w*16 + i];
  280. }
  281. diff += SCALE_DIFF_ZERO;
  282. av_assert0(diff >= 0 && diff <= 120);
  283. put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
  284. }
  285. }
  286. }
  287. }
  288. /**
  289. * Encode pulse data.
  290. */
  291. static void encode_pulses(AACEncContext *s, Pulse *pulse)
  292. {
  293. int i;
  294. put_bits(&s->pb, 1, !!pulse->num_pulse);
  295. if (!pulse->num_pulse)
  296. return;
  297. put_bits(&s->pb, 2, pulse->num_pulse - 1);
  298. put_bits(&s->pb, 6, pulse->start);
  299. for (i = 0; i < pulse->num_pulse; i++) {
  300. put_bits(&s->pb, 5, pulse->pos[i]);
  301. put_bits(&s->pb, 4, pulse->amp[i]);
  302. }
  303. }
  304. /**
  305. * Encode spectral coefficients processed by psychoacoustic model.
  306. */
  307. static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
  308. {
  309. int start, i, w, w2;
  310. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  311. start = 0;
  312. for (i = 0; i < sce->ics.max_sfb; i++) {
  313. if (sce->zeroes[w*16 + i]) {
  314. start += sce->ics.swb_sizes[i];
  315. continue;
  316. }
  317. for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++) {
  318. s->coder->quantize_and_encode_band(s, &s->pb,
  319. &sce->coeffs[start + w2*128],
  320. NULL, sce->ics.swb_sizes[i],
  321. sce->sf_idx[w*16 + i],
  322. sce->band_type[w*16 + i],
  323. s->lambda,
  324. sce->ics.window_clipping[w]);
  325. }
  326. start += sce->ics.swb_sizes[i];
  327. }
  328. }
  329. }
  330. /**
  331. * Downscale spectral coefficients for near-clipping windows to avoid artifacts
  332. */
  333. static void avoid_clipping(AACEncContext *s, SingleChannelElement *sce)
  334. {
  335. int start, i, j, w;
  336. if (sce->ics.clip_avoidance_factor < 1.0f) {
  337. for (w = 0; w < sce->ics.num_windows; w++) {
  338. start = 0;
  339. for (i = 0; i < sce->ics.max_sfb; i++) {
  340. float *swb_coeffs = &sce->coeffs[start + w*128];
  341. for (j = 0; j < sce->ics.swb_sizes[i]; j++)
  342. swb_coeffs[j] *= sce->ics.clip_avoidance_factor;
  343. start += sce->ics.swb_sizes[i];
  344. }
  345. }
  346. }
  347. }
  348. /**
  349. * Encode one channel of audio data.
  350. */
  351. static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s,
  352. SingleChannelElement *sce,
  353. int common_window)
  354. {
  355. put_bits(&s->pb, 8, sce->sf_idx[0]);
  356. if (!common_window) {
  357. put_ics_info(s, &sce->ics);
  358. if (s->coder->encode_main_pred)
  359. s->coder->encode_main_pred(s, sce);
  360. }
  361. encode_band_info(s, sce);
  362. encode_scale_factors(avctx, s, sce);
  363. encode_pulses(s, &sce->pulse);
  364. put_bits(&s->pb, 1, !!sce->tns.present);
  365. if (s->coder->encode_tns_info)
  366. s->coder->encode_tns_info(s, sce);
  367. put_bits(&s->pb, 1, 0); //ssr
  368. encode_spectral_coeffs(s, sce);
  369. return 0;
  370. }
  371. /**
  372. * Write some auxiliary information about the created AAC file.
  373. */
  374. static void put_bitstream_info(AACEncContext *s, const char *name)
  375. {
  376. int i, namelen, padbits;
  377. namelen = strlen(name) + 2;
  378. put_bits(&s->pb, 3, TYPE_FIL);
  379. put_bits(&s->pb, 4, FFMIN(namelen, 15));
  380. if (namelen >= 15)
  381. put_bits(&s->pb, 8, namelen - 14);
  382. put_bits(&s->pb, 4, 0); //extension type - filler
  383. padbits = -put_bits_count(&s->pb) & 7;
  384. avpriv_align_put_bits(&s->pb);
  385. for (i = 0; i < namelen - 2; i++)
  386. put_bits(&s->pb, 8, name[i]);
  387. put_bits(&s->pb, 12 - padbits, 0);
  388. }
  389. /*
  390. * Copy input samples.
  391. * Channels are reordered from libavcodec's default order to AAC order.
  392. */
  393. static void copy_input_samples(AACEncContext *s, const AVFrame *frame)
  394. {
  395. int ch;
  396. int end = 2048 + (frame ? frame->nb_samples : 0);
  397. const uint8_t *channel_map = aac_chan_maps[s->channels - 1];
  398. /* copy and remap input samples */
  399. for (ch = 0; ch < s->channels; ch++) {
  400. /* copy last 1024 samples of previous frame to the start of the current frame */
  401. memcpy(&s->planar_samples[ch][1024], &s->planar_samples[ch][2048], 1024 * sizeof(s->planar_samples[0][0]));
  402. /* copy new samples and zero any remaining samples */
  403. if (frame) {
  404. memcpy(&s->planar_samples[ch][2048],
  405. frame->extended_data[channel_map[ch]],
  406. frame->nb_samples * sizeof(s->planar_samples[0][0]));
  407. }
  408. memset(&s->planar_samples[ch][end], 0,
  409. (3072 - end) * sizeof(s->planar_samples[0][0]));
  410. }
  411. }
  412. static int aac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  413. const AVFrame *frame, int *got_packet_ptr)
  414. {
  415. AACEncContext *s = avctx->priv_data;
  416. float **samples = s->planar_samples, *samples2, *la, *overlap;
  417. ChannelElement *cpe;
  418. SingleChannelElement *sce;
  419. int i, ch, w, g, chans, tag, start_ch, ret;
  420. int ms_mode = 0, is_mode = 0, tns_mode = 0, pred_mode = 0;
  421. int chan_el_counter[4];
  422. FFPsyWindowInfo windows[AAC_MAX_CHANNELS];
  423. if (s->last_frame == 2)
  424. return 0;
  425. /* add current frame to queue */
  426. if (frame) {
  427. if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
  428. return ret;
  429. }
  430. copy_input_samples(s, frame);
  431. if (s->psypp)
  432. ff_psy_preprocess(s->psypp, s->planar_samples, s->channels);
  433. if (!avctx->frame_number)
  434. return 0;
  435. start_ch = 0;
  436. for (i = 0; i < s->chan_map[0]; i++) {
  437. FFPsyWindowInfo* wi = windows + start_ch;
  438. tag = s->chan_map[i+1];
  439. chans = tag == TYPE_CPE ? 2 : 1;
  440. cpe = &s->cpe[i];
  441. for (ch = 0; ch < chans; ch++) {
  442. IndividualChannelStream *ics = &cpe->ch[ch].ics;
  443. int cur_channel = start_ch + ch;
  444. float clip_avoidance_factor;
  445. overlap = &samples[cur_channel][0];
  446. samples2 = overlap + 1024;
  447. la = samples2 + (448+64);
  448. if (!frame)
  449. la = NULL;
  450. if (tag == TYPE_LFE) {
  451. wi[ch].window_type[0] = ONLY_LONG_SEQUENCE;
  452. wi[ch].window_shape = 0;
  453. wi[ch].num_windows = 1;
  454. wi[ch].grouping[0] = 1;
  455. /* Only the lowest 12 coefficients are used in a LFE channel.
  456. * The expression below results in only the bottom 8 coefficients
  457. * being used for 11.025kHz to 16kHz sample rates.
  458. */
  459. ics->num_swb = s->samplerate_index >= 8 ? 1 : 3;
  460. } else {
  461. wi[ch] = s->psy.model->window(&s->psy, samples2, la, cur_channel,
  462. ics->window_sequence[0]);
  463. }
  464. ics->window_sequence[1] = ics->window_sequence[0];
  465. ics->window_sequence[0] = wi[ch].window_type[0];
  466. ics->use_kb_window[1] = ics->use_kb_window[0];
  467. ics->use_kb_window[0] = wi[ch].window_shape;
  468. ics->num_windows = wi[ch].num_windows;
  469. ics->swb_sizes = s->psy.bands [ics->num_windows == 8];
  470. ics->num_swb = tag == TYPE_LFE ? ics->num_swb : s->psy.num_bands[ics->num_windows == 8];
  471. ics->swb_offset = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
  472. ff_swb_offset_128 [s->samplerate_index]:
  473. ff_swb_offset_1024[s->samplerate_index];
  474. ics->tns_max_bands = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
  475. ff_tns_max_bands_128 [s->samplerate_index]:
  476. ff_tns_max_bands_1024[s->samplerate_index];
  477. clip_avoidance_factor = 0.0f;
  478. for (w = 0; w < ics->num_windows; w++)
  479. ics->group_len[w] = wi[ch].grouping[w];
  480. for (w = 0; w < ics->num_windows; w++) {
  481. if (wi[ch].clipping[w] > CLIP_AVOIDANCE_FACTOR) {
  482. ics->window_clipping[w] = 1;
  483. clip_avoidance_factor = FFMAX(clip_avoidance_factor, wi[ch].clipping[w]);
  484. } else {
  485. ics->window_clipping[w] = 0;
  486. }
  487. }
  488. if (clip_avoidance_factor > CLIP_AVOIDANCE_FACTOR) {
  489. ics->clip_avoidance_factor = CLIP_AVOIDANCE_FACTOR / clip_avoidance_factor;
  490. } else {
  491. ics->clip_avoidance_factor = 1.0f;
  492. }
  493. apply_window_and_mdct(s, &cpe->ch[ch], overlap);
  494. if (isnan(cpe->ch->coeffs[0])) {
  495. av_log(avctx, AV_LOG_ERROR, "Input contains NaN\n");
  496. return AVERROR(EINVAL);
  497. }
  498. avoid_clipping(s, &cpe->ch[ch]);
  499. }
  500. start_ch += chans;
  501. }
  502. if ((ret = ff_alloc_packet2(avctx, avpkt, 8192 * s->channels, 0)) < 0)
  503. return ret;
  504. do {
  505. int frame_bits;
  506. init_put_bits(&s->pb, avpkt->data, avpkt->size);
  507. if ((avctx->frame_number & 0xFF)==1 && !(avctx->flags & AV_CODEC_FLAG_BITEXACT))
  508. put_bitstream_info(s, LIBAVCODEC_IDENT);
  509. start_ch = 0;
  510. memset(chan_el_counter, 0, sizeof(chan_el_counter));
  511. for (i = 0; i < s->chan_map[0]; i++) {
  512. FFPsyWindowInfo* wi = windows + start_ch;
  513. const float *coeffs[2];
  514. tag = s->chan_map[i+1];
  515. chans = tag == TYPE_CPE ? 2 : 1;
  516. cpe = &s->cpe[i];
  517. cpe->common_window = 0;
  518. memset(cpe->is_mask, 0, sizeof(cpe->is_mask));
  519. memset(cpe->ms_mask, 0, sizeof(cpe->ms_mask));
  520. put_bits(&s->pb, 3, tag);
  521. put_bits(&s->pb, 4, chan_el_counter[tag]++);
  522. for (ch = 0; ch < chans; ch++) {
  523. sce = &cpe->ch[ch];
  524. coeffs[ch] = sce->coeffs;
  525. sce->ics.predictor_present = 0;
  526. memset(&sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
  527. memset(&sce->tns, 0, sizeof(TemporalNoiseShaping));
  528. for (w = 0; w < 128; w++)
  529. if (sce->band_type[w] > RESERVED_BT)
  530. sce->band_type[w] = 0;
  531. }
  532. s->psy.model->analyze(&s->psy, start_ch, coeffs, wi);
  533. for (ch = 0; ch < chans; ch++) {
  534. s->cur_channel = start_ch + ch;
  535. s->coder->search_for_quantizers(avctx, s, &cpe->ch[ch], s->lambda);
  536. }
  537. if (chans > 1
  538. && wi[0].window_type[0] == wi[1].window_type[0]
  539. && wi[0].window_shape == wi[1].window_shape) {
  540. cpe->common_window = 1;
  541. for (w = 0; w < wi[0].num_windows; w++) {
  542. if (wi[0].grouping[w] != wi[1].grouping[w]) {
  543. cpe->common_window = 0;
  544. break;
  545. }
  546. }
  547. }
  548. for (ch = 0; ch < chans; ch++) {
  549. sce = &cpe->ch[ch];
  550. s->cur_channel = start_ch + ch;
  551. if (s->options.pns && s->coder->search_for_pns)
  552. s->coder->search_for_pns(s, avctx, sce);
  553. if (s->options.tns && s->coder->search_for_tns)
  554. s->coder->search_for_tns(s, sce);
  555. if (s->options.tns && s->coder->apply_tns_filt)
  556. s->coder->apply_tns_filt(s, sce);
  557. if (sce->tns.present)
  558. tns_mode = 1;
  559. }
  560. s->cur_channel = start_ch;
  561. if (s->options.stereo_mode && cpe->common_window) {
  562. if (s->options.stereo_mode > 0) {
  563. IndividualChannelStream *ics = &cpe->ch[0].ics;
  564. for (w = 0; w < ics->num_windows; w += ics->group_len[w])
  565. for (g = 0; g < ics->num_swb; g++)
  566. cpe->ms_mask[w*16+g] = 1;
  567. } else if (s->coder->search_for_ms) {
  568. s->coder->search_for_ms(s, cpe);
  569. }
  570. }
  571. if (s->options.intensity_stereo && s->coder->search_for_is) {
  572. s->coder->search_for_is(s, avctx, cpe);
  573. if (cpe->is_mode) is_mode = 1;
  574. }
  575. if (s->coder->set_special_band_scalefactors)
  576. for (ch = 0; ch < chans; ch++)
  577. s->coder->set_special_band_scalefactors(s, &cpe->ch[ch]);
  578. adjust_frame_information(cpe, chans);
  579. for (ch = 0; ch < chans; ch++) {
  580. sce = &cpe->ch[ch];
  581. s->cur_channel = start_ch + ch;
  582. if (s->options.pred && s->coder->search_for_pred)
  583. s->coder->search_for_pred(s, sce);
  584. if (cpe->ch[ch].ics.predictor_present) pred_mode = 1;
  585. }
  586. if (s->options.pred && s->coder->adjust_common_prediction)
  587. s->coder->adjust_common_prediction(s, cpe);
  588. for (ch = 0; ch < chans; ch++) {
  589. sce = &cpe->ch[ch];
  590. s->cur_channel = start_ch + ch;
  591. if (s->options.pred && s->coder->apply_main_pred)
  592. s->coder->apply_main_pred(s, sce);
  593. }
  594. s->cur_channel = start_ch;
  595. if (chans == 2) {
  596. put_bits(&s->pb, 1, cpe->common_window);
  597. if (cpe->common_window) {
  598. put_ics_info(s, &cpe->ch[0].ics);
  599. if (s->coder->encode_main_pred)
  600. s->coder->encode_main_pred(s, &cpe->ch[0]);
  601. encode_ms_info(&s->pb, cpe);
  602. if (cpe->ms_mode) ms_mode = 1;
  603. }
  604. }
  605. for (ch = 0; ch < chans; ch++) {
  606. s->cur_channel = start_ch + ch;
  607. encode_individual_channel(avctx, s, &cpe->ch[ch], cpe->common_window);
  608. }
  609. start_ch += chans;
  610. }
  611. frame_bits = put_bits_count(&s->pb);
  612. if (frame_bits <= 6144 * s->channels - 3) {
  613. s->psy.bitres.bits = frame_bits / s->channels;
  614. break;
  615. }
  616. if (is_mode || ms_mode || tns_mode || pred_mode) {
  617. for (i = 0; i < s->chan_map[0]; i++) {
  618. // Must restore coeffs
  619. chans = tag == TYPE_CPE ? 2 : 1;
  620. cpe = &s->cpe[i];
  621. for (ch = 0; ch < chans; ch++)
  622. memcpy(cpe->ch[ch].coeffs, cpe->ch[ch].pcoeffs, sizeof(cpe->ch[ch].coeffs));
  623. }
  624. }
  625. s->lambda *= avctx->bit_rate * 1024.0f / avctx->sample_rate / frame_bits;
  626. } while (1);
  627. put_bits(&s->pb, 3, TYPE_END);
  628. flush_put_bits(&s->pb);
  629. avctx->frame_bits = put_bits_count(&s->pb);
  630. // rate control stuff
  631. if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) {
  632. float ratio = avctx->bit_rate * 1024.0f / avctx->sample_rate / avctx->frame_bits;
  633. s->lambda *= ratio;
  634. s->lambda = FFMIN(s->lambda, 65536.f);
  635. }
  636. if (!frame)
  637. s->last_frame++;
  638. ff_af_queue_remove(&s->afq, avctx->frame_size, &avpkt->pts,
  639. &avpkt->duration);
  640. avpkt->size = put_bits_count(&s->pb) >> 3;
  641. *got_packet_ptr = 1;
  642. return 0;
  643. }
  644. static av_cold int aac_encode_end(AVCodecContext *avctx)
  645. {
  646. AACEncContext *s = avctx->priv_data;
  647. ff_mdct_end(&s->mdct1024);
  648. ff_mdct_end(&s->mdct128);
  649. ff_psy_end(&s->psy);
  650. ff_lpc_end(&s->lpc);
  651. if (s->psypp)
  652. ff_psy_preprocess_end(s->psypp);
  653. av_freep(&s->buffer.samples);
  654. av_freep(&s->cpe);
  655. av_freep(&s->fdsp);
  656. ff_af_queue_close(&s->afq);
  657. return 0;
  658. }
  659. static av_cold int dsp_init(AVCodecContext *avctx, AACEncContext *s)
  660. {
  661. int ret = 0;
  662. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
  663. if (!s->fdsp)
  664. return AVERROR(ENOMEM);
  665. // window init
  666. ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
  667. ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
  668. ff_init_ff_sine_windows(10);
  669. ff_init_ff_sine_windows(7);
  670. if ((ret = ff_mdct_init(&s->mdct1024, 11, 0, 32768.0)) < 0)
  671. return ret;
  672. if ((ret = ff_mdct_init(&s->mdct128, 8, 0, 32768.0)) < 0)
  673. return ret;
  674. return 0;
  675. }
  676. static av_cold int alloc_buffers(AVCodecContext *avctx, AACEncContext *s)
  677. {
  678. int ch;
  679. FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->buffer.samples, s->channels, 3 * 1024 * sizeof(s->buffer.samples[0]), alloc_fail);
  680. FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->cpe, s->chan_map[0], sizeof(ChannelElement), alloc_fail);
  681. FF_ALLOCZ_OR_GOTO(avctx, avctx->extradata, 5 + AV_INPUT_BUFFER_PADDING_SIZE, alloc_fail);
  682. for(ch = 0; ch < s->channels; ch++)
  683. s->planar_samples[ch] = s->buffer.samples + 3 * 1024 * ch;
  684. return 0;
  685. alloc_fail:
  686. return AVERROR(ENOMEM);
  687. }
  688. static av_cold int aac_encode_init(AVCodecContext *avctx)
  689. {
  690. AACEncContext *s = avctx->priv_data;
  691. int i, ret = 0;
  692. const uint8_t *sizes[2];
  693. uint8_t grouping[AAC_MAX_CHANNELS];
  694. int lengths[2];
  695. avctx->frame_size = 1024;
  696. for (i = 0; i < 16; i++)
  697. if (avctx->sample_rate == avpriv_mpeg4audio_sample_rates[i])
  698. break;
  699. s->channels = avctx->channels;
  700. ERROR_IF(i == 16 || i >= ff_aac_swb_size_1024_len || i >= ff_aac_swb_size_128_len,
  701. "Unsupported sample rate %d\n", avctx->sample_rate);
  702. ERROR_IF(s->channels > AAC_MAX_CHANNELS,
  703. "Unsupported number of channels: %d\n", s->channels);
  704. WARN_IF(1024.0 * avctx->bit_rate / avctx->sample_rate > 6144 * s->channels,
  705. "Too many bits per frame requested, clamping to max\n");
  706. if (avctx->profile == FF_PROFILE_AAC_MAIN) {
  707. s->options.pred = 1;
  708. } else if ((avctx->profile == FF_PROFILE_AAC_LOW ||
  709. avctx->profile == FF_PROFILE_UNKNOWN) && s->options.pred) {
  710. s->profile = 0; /* Main */
  711. WARN_IF(1, "Prediction requested, changing profile to AAC-Main\n");
  712. } else if (avctx->profile == FF_PROFILE_AAC_LOW ||
  713. avctx->profile == FF_PROFILE_UNKNOWN) {
  714. s->profile = 1; /* Low */
  715. } else {
  716. ERROR_IF(1, "Unsupported profile %d\n", avctx->profile);
  717. }
  718. if (s->options.aac_coder != AAC_CODER_TWOLOOP) {
  719. s->options.intensity_stereo = 0;
  720. s->options.pns = 0;
  721. }
  722. avctx->bit_rate = (int)FFMIN(
  723. 6144 * s->channels / 1024.0 * avctx->sample_rate,
  724. avctx->bit_rate);
  725. s->samplerate_index = i;
  726. s->chan_map = aac_chan_configs[s->channels-1];
  727. if ((ret = dsp_init(avctx, s)) < 0)
  728. goto fail;
  729. if ((ret = alloc_buffers(avctx, s)) < 0)
  730. goto fail;
  731. avctx->extradata_size = 5;
  732. put_audio_specific_config(avctx);
  733. sizes[0] = ff_aac_swb_size_1024[i];
  734. sizes[1] = ff_aac_swb_size_128[i];
  735. lengths[0] = ff_aac_num_swb_1024[i];
  736. lengths[1] = ff_aac_num_swb_128[i];
  737. for (i = 0; i < s->chan_map[0]; i++)
  738. grouping[i] = s->chan_map[i + 1] == TYPE_CPE;
  739. if ((ret = ff_psy_init(&s->psy, avctx, 2, sizes, lengths,
  740. s->chan_map[0], grouping)) < 0)
  741. goto fail;
  742. s->psypp = ff_psy_preprocess_init(avctx);
  743. s->coder = &ff_aac_coders[s->options.aac_coder];
  744. ff_lpc_init(&s->lpc, 2*avctx->frame_size, TNS_MAX_ORDER, FF_LPC_TYPE_LEVINSON);
  745. if (HAVE_MIPSDSPR1)
  746. ff_aac_coder_init_mips(s);
  747. s->lambda = avctx->global_quality > 0 ? avctx->global_quality : 120;
  748. ff_aac_tableinit();
  749. avctx->initial_padding = 1024;
  750. ff_af_queue_init(avctx, &s->afq);
  751. return 0;
  752. fail:
  753. aac_encode_end(avctx);
  754. return ret;
  755. }
  756. #define AACENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
  757. static const AVOption aacenc_options[] = {
  758. {"stereo_mode", "Stereo coding method", offsetof(AACEncContext, options.stereo_mode), AV_OPT_TYPE_INT, {.i64 = 0}, -1, 1, AACENC_FLAGS, "stereo_mode"},
  759. {"auto", "Selected by the Encoder", 0, AV_OPT_TYPE_CONST, {.i64 = -1 }, INT_MIN, INT_MAX, AACENC_FLAGS, "stereo_mode"},
  760. {"ms_off", "Disable Mid/Side coding", 0, AV_OPT_TYPE_CONST, {.i64 = 0 }, INT_MIN, INT_MAX, AACENC_FLAGS, "stereo_mode"},
  761. {"ms_force", "Force Mid/Side for the whole frame if possible", 0, AV_OPT_TYPE_CONST, {.i64 = 1 }, INT_MIN, INT_MAX, AACENC_FLAGS, "stereo_mode"},
  762. {"aac_coder", "Coding algorithm", offsetof(AACEncContext, options.aac_coder), AV_OPT_TYPE_INT, {.i64 = AAC_CODER_TWOLOOP}, 0, AAC_CODER_NB-1, AACENC_FLAGS, "aac_coder"},
  763. {"faac", "FAAC-inspired method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAAC}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
  764. {"anmr", "ANMR method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_ANMR}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
  765. {"twoloop", "Two loop searching method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_TWOLOOP}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
  766. {"fast", "Constant quantizer", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAST}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
  767. {"aac_pns", "Perceptual Noise Substitution", offsetof(AACEncContext, options.pns), AV_OPT_TYPE_INT, {.i64 = 1}, 0, 1, AACENC_FLAGS, "aac_pns"},
  768. {"disable", "Disable perceptual noise substitution", 0, AV_OPT_TYPE_CONST, {.i64 = 0 }, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_pns"},
  769. {"enable", "Enable perceptual noise substitution", 0, AV_OPT_TYPE_CONST, {.i64 = 1 }, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_pns"},
  770. {"aac_is", "Intensity stereo coding", offsetof(AACEncContext, options.intensity_stereo), AV_OPT_TYPE_INT, {.i64 = 1}, 0, 1, AACENC_FLAGS, "intensity_stereo"},
  771. {"disable", "Disable intensity stereo coding", 0, AV_OPT_TYPE_CONST, {.i64 = 0}, INT_MIN, INT_MAX, AACENC_FLAGS, "intensity_stereo"},
  772. {"enable", "Enable intensity stereo coding", 0, AV_OPT_TYPE_CONST, {.i64 = 1}, INT_MIN, INT_MAX, AACENC_FLAGS, "intensity_stereo"},
  773. {"aac_tns", "Temporal noise shaping", offsetof(AACEncContext, options.tns), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, AACENC_FLAGS, "aac_tns"},
  774. {"disable", "Disable temporal noise shaping", 0, AV_OPT_TYPE_CONST, {.i64 = 0}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_tns"},
  775. {"enable", "Enable temporal noise shaping", 0, AV_OPT_TYPE_CONST, {.i64 = 1}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_tns"},
  776. {"aac_pred", "AAC-Main prediction", offsetof(AACEncContext, options.pred), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, AACENC_FLAGS, "aac_pred"},
  777. {"disable", "Disable AAC-Main prediction", 0, AV_OPT_TYPE_CONST, {.i64 = 0}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_pred"},
  778. {"enable", "Enable AAC-Main prediction", 0, AV_OPT_TYPE_CONST, {.i64 = 1}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_pred"},
  779. {NULL}
  780. };
  781. static const AVClass aacenc_class = {
  782. "AAC encoder",
  783. av_default_item_name,
  784. aacenc_options,
  785. LIBAVUTIL_VERSION_INT,
  786. };
  787. AVCodec ff_aac_encoder = {
  788. .name = "aac",
  789. .long_name = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"),
  790. .type = AVMEDIA_TYPE_AUDIO,
  791. .id = AV_CODEC_ID_AAC,
  792. .priv_data_size = sizeof(AACEncContext),
  793. .init = aac_encode_init,
  794. .encode2 = aac_encode_frame,
  795. .close = aac_encode_end,
  796. .supported_samplerates = mpeg4audio_sample_rates,
  797. .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY |
  798. AV_CODEC_CAP_EXPERIMENTAL,
  799. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
  800. AV_SAMPLE_FMT_NONE },
  801. .priv_class = &aacenc_class,
  802. };